WO2021144962A1 - 発光装置、および駆動装置 - Google Patents

発光装置、および駆動装置 Download PDF

Info

Publication number
WO2021144962A1
WO2021144962A1 PCT/JP2020/001497 JP2020001497W WO2021144962A1 WO 2021144962 A1 WO2021144962 A1 WO 2021144962A1 JP 2020001497 W JP2020001497 W JP 2020001497W WO 2021144962 A1 WO2021144962 A1 WO 2021144962A1
Authority
WO
WIPO (PCT)
Prior art keywords
output
voltage
current
light emitting
instruction signal
Prior art date
Application number
PCT/JP2020/001497
Other languages
English (en)
French (fr)
Inventor
技 曽我
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2020/001497 priority Critical patent/WO2021144962A1/ja
Priority to JP2021570600A priority patent/JP7343618B2/ja
Publication of WO2021144962A1 publication Critical patent/WO2021144962A1/ja
Priority to US17/678,293 priority patent/US20220181844A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06808Stabilisation of laser output parameters by monitoring the electrical laser parameters, e.g. voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/157Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation

Definitions

  • the present invention relates to a light emitting device and a driving device.
  • a combination of a constant voltage power supply and a constant current driver is widely used as a drive circuit for pulse-driving an LD (Laser Diode).
  • a combination of a constant voltage power supply and an FET switch (a switch for turning on / off a current to a light emitting element) is known as a power saving drive circuit (see, for example, Patent Documents 1 and 2).
  • Japanese Patent No. 5660936 Japanese Patent Application Laid-Open No. 2005-63997 Japanese Patent Application Laid-Open No. 62-118590
  • the drive circuit of Patent Document 1 includes a switching power supply, a smoothing capacitor, a load circuit (a circuit in which LDs are connected in series), and a constant current source (FET switch and resistor for turning on / off a current to a light emitting element). It has a configuration including a composite circuit) and a delay circuit. Due to this configuration, the switching power supply is power efficient, but requires a smoothing capacitor.
  • the time required for the voltage rise due to the accumulation of electric charge in the smoothing capacitor is ON (the pulse corresponds to the optical output of the LD and is ON when the amount of light is H level). It is a cause of delaying the rise (representing the transition from the L level to the H level) of (lighting) and OFF (representing extinguishing) at the L level.
  • Patent Document 1 in the process of pulse OFF, the load circuit is first cut off, and the switching power supply is turned off after a predetermined time by the delay circuit. By doing so, after the pulse is turned off, the electric charge that has lost its place to the load circuit raises the voltage (VA) of the smoothing capacitor. As a result, the voltage rise time in the next pulse can be shortened, and the pulse interval can be shortened even in the switching power supply.
  • VA voltage
  • the waveform of the pulse current (LD current flowing through the LD) is deformed by combining the voltage source and the current source. Compensates for the decrease in the amount of light per pulse (a pulse corresponding to the light output of the LD, which indicates ON (lights) when the amount of light is H level and OFF (off) when the amount of light is L level) due to the inclination of the rise of the current waveform.
  • a pulse corresponding to the light output of the LD which indicates ON (lights) when the amount of light is H level and OFF (off) when the amount of light is L level
  • it was invented as a means for this it can be imagined that it can be applied to suppress the overshoot of the pulse by lowering the voltage at the initial stage of the pulse depending on the adjustment of the voltage source.
  • Patent Document 2 since the voltage source is switched to the current source in the middle while the pulse is lit (ON), at the time of the switching, the output voltage of the voltage source and the current source are used between the LD terminals. A difference occurs in the generated voltage (Vf). Furthermore, since the outputs of the voltage source and current source are switched by separate switches (SW2, SW11-1), a step in the LD drive current in the middle of the pulse is avoided regardless of whether they are simultaneous or first. Can't. Therefore, there is a problem that a step is generated in the amount of light in the middle of the light pulse. When the LD is used as the illumination light of the photographing device, the photographed image may be uneven.
  • the present invention has been made in consideration of the above circumstances, and an object of the present invention is to save power and adjust an optical pulse waveform in light emission control of a light emitting element that repeatedly turns on and off. It is an object of the present invention to provide a power emitting device and a driving device capable of performing the above.
  • Patent Document 3 discloses a method of suppressing an overshoot of an optical pulse (light output) due to a temperature change in pulse lighting, a configuration corresponding to the configuration of the light emitting device and the driving device of the present application is clarified. Not.
  • the light emitting device is a light emitting device that repeatedly turns on and off in a periodic or aperiodic manner, and is a pulse-driven light emitting element, a processor, and a current value instruction from the processor.
  • a current output control type switching power supply that controls the current output based on a signal
  • a capacitor that smoothes the output of the switching power supply, and a current on / off to the light emitting element based on a lighting instruction signal from the processor.
  • a switch and a voltage source for adjusting the voltage of the capacitor are provided, and the processor has a storage unit, and simultaneously turns on the current value instruction signal and the lighting instruction signal to light the light emitting element.
  • the output voltage of the switching power supply is measured, the measured output voltage of the switching power supply is stored in the storage unit as a reference voltage, and the current value instruction signal and the lighting instruction signal are simultaneously turned off.
  • a light emitting device characterized in that the light emitting element is turned off and the voltage of the capacitor is adjusted by controlling the output of the voltage source based on the reference voltage stored in the storage unit immediately before the next lighting. Is.
  • the light emitting device outputs a voltage lower than the reference voltage stored in the storage unit as an output voltage from the voltage source during the extinguishing period. It is characterized by letting it.
  • the light emitting device is characterized in that, in the second aspect, a voltage lower than the reference voltage is set according to the length of the extinguishing period.
  • the drive device includes a pulse-driven light emitting element, a processor, a current output control type switching power supply that controls a current output based on a current value instruction signal from the processor, and the above.
  • Lighting including a capacitor that smoothes the output of the switching power supply, a switch that turns on / off the current to the light emitting element based on the lighting instruction signal from the processor, and a voltage source that adjusts the voltage of the capacitor.
  • a drive device that drives a light emitting device that periodically or aperiodically turns off and turns off the light includes the processor, an analog switch, a voltage source, and a digital switch.
  • the processor is the processor.
  • a first digital analog comparator that outputs the current value indicating signal corresponding to the current value in the on state of the current flowing through the light emitting element by analog output and a first PWM signal corresponding to the lighting instruction signal are output to the switch to emit light.
  • a first PWM circuit that turns on / off the current flowing through the element, an analog digital comparator that measures the output of the switching power supply, a storage unit that stores the measured output voltage of the switching power supply as a reference voltage, and the first PWM circuit output.
  • a second PWM circuit that outputs a second PWM signal having the same period and synchronization as the first PWM signal to the digital switch as an amplifier output signal, and a second digital that outputs a reference voltage stored in the storage unit to the voltage source.
  • the analog switch is a switch that interlocks the current value indicating signal with the lighting instruction signal
  • the voltage source is the reference voltage input to the + terminal and the input to the ⁇ terminal.
  • the output of the switching power supply is compared, and the current is output so that both voltages become the same voltage.
  • the digital switch is an operational unit of the operational unit when the input amplifier output signal is at a high level. A switch that connects the output to the output of the switching power supply, the first PWM circuit turns on the lighting instruction signal, and the analog switch turns on the current flowing through the light emitting element that the first digital analog comparator outputs in analog.
  • the current value indicating signal corresponding to the current value in the state is turned on at the same time in conjunction with the turning on of the lighting instruction signal to light the light emitting element, and during the lighting period, the analog digital comparator uses the switching power supply.
  • the output voltage of the switching power supply was measured and measured.
  • the output voltage is stored in the storage unit as a reference voltage
  • the first PWM circuit turns off the lighting instruction signal
  • the analog switch turns off the current value instruction signal in conjunction with turning off the lighting instruction signal at the same time.
  • the light emitting element is turned off, and immediately before the next lighting, the voltage source compares the reference voltage input to the + terminal with the output of the switching power supply input to the-terminal.
  • the second PWM circuit outputs the high-level amplifier output signal and turns on the digital switch, the voltage of the capacitor is increased by outputting the current so that both voltages are the same voltage. It is a drive device characterized by being adjusted.
  • FIG. 1 It is a block diagram which shows the structural example of the light emitting device which concerns on 1st Embodiment of this invention. It is a timing chart for demonstrating the operation of the light emitting device shown in FIG. It is a block diagram which shows the structural example of the light emitting device which concerns on 2nd Embodiment of this invention. It is a timing chart for demonstrating the operation of the light emitting device shown in FIG.
  • FIG. 1 is a block diagram showing a configuration example of a light emitting device according to a first embodiment of the present invention.
  • the light emitting device 100 shown in FIG. 1 includes a current output control switching power supply 10 (current output control type switching power supply), an FET switch 2 (switch), an operational capacitor 3 (voltage source), an analog switch 4 (analog switch), and a microcomputer 50 (a current output control type switching power supply).
  • a processor a digital switch 5 (digital switch), an output capacitor 6 (condenser), and a light emitting element 7 are included.
  • the current output control switching power supply 10 controls the current output based on the current value instruction signal from the microcomputer 50.
  • the current output control switching power supply 10 is a typical step-down synchronous rectification type as an example of the current output control switching power supply 10. That is, the current output control switching power supply 10 is a device that uses the DC voltage stored in the battery 1 as the input VIN, lowers the input Vin to the output Vout, and outputs the converted output VOUT.
  • the current output control switching power supply 10 includes an OSC (oscillator) 11, a PMW signal generation circuit 12, an amplifier 13, an amplifier 14, a transistor Q1, a transistor Q2, an inductor L1, and a resistor R1.
  • the PMW signal generation circuit 12 repeats the operation of alternately turning on the transistor Q1 and the transistor Q2 in accordance with the Clock signal output of the OSC 11.
  • the transistor Q1 When the transistor Q1 is On (transistor Q2 is Off), the current I1 flows from the input VIN to the output VOUT. Next, when the transistor Q2 is switched to On (transistor Q1 is Off), the current of the inductor L1 continues to flow due to the action of the inductor, and the current I2 flows to the output VOUT.
  • the resistor R1 indicates a resistor for current detection. According to Ohm's law, a voltage proportional to the passing current is generated across the resistor R1.
  • the amplifier 13 takes the voltage across the resistor R1 as an input, converts the difference voltage into a voltage value applicable to the calculation range of the amplifier 14, and outputs the voltage signal Sigma1.
  • the amplifier 14 compares the current value indicating signal Ictrl, which is two voltage signals, with the voltage signal Sig1, and outputs the difference as the signal Sig2.
  • the current value indicating signal Ictrl indicates a voltage signal based on the pulse current (desired current) to be passed through the LD.
  • the voltage signal Sigma1 indicates a voltage value based on the current current value. That is, by obtaining the difference between the current value indicating signal Ictrl and the voltage signal Sigma1, the signal Sigma2 shows the result of determining whether the power supply output should be increased or decreased in order to pass a desired current to the LD.
  • the signal Sigma 2 is input to the PMW signal generation circuit 12.
  • the PMW signal generation circuit 12 changes the ratio of On of the transistors Q1 and Q2 based on the voltage value of the signal Sig2 to change the output amount.
  • the voltage signal Sigma 1 corresponding to the current current value obtained by the resistor R1 and the amplifier 13 is compared with the desired current value indicating voltage Ictrl by the amplifier 14, and when the current current value is lower than the desired value, Increase the Duty of the transistors Q1 and Q2 to increase the power output amount. On the contrary, when the current current value is higher than the desired value, the Duty of the transistors Q1 and Q2 is lowered to reduce the power output amount.
  • the current value output via the resistor R1 has a similar relationship with the current value based on the current value indicating signal Ictrl.
  • the current value indicating signal Ictrl is a pulse voltage
  • a pulse current proportional to the voltage flows to the output VOUT.
  • the capacitance of the output capacitor 6 smoothing capacitor
  • the LD current flowing through the light emitting element 7 is delayed (pulse blunting) with respect to the change in the current value indicating signal Ictrl.
  • the output capacitor 6 (capacitor) is a capacitor that smoothes the output of the current output control switching power supply 10.
  • the light emitting element 7 is a laser diode (LD) element, and is a light emitting element that emits LD light output by being pulse-driven (LD current is supplied from the current output control switching power supply 10).
  • LD laser diode
  • the current output control switching power supply 10 outputs a current proportional to the voltage of the current indicated value signal Ictrl. That is, the current output control switching power supply 10 controls the current output based on the current value instruction signal Ictrl from the microcomputer 50.
  • the FET switch 2 (switch) turns on / off the current to the LD based on the lighting instruction signal LDEN. That is, the FET switch 2 is a switch that turns on / off the LD current to the light emitting element 7 based on the lighting instruction signal from the microcomputer 50.
  • the microcomputer 50 (processor) outputs the current value instruction signal Ictrl and the lighting instruction signal LDEN, and the configuration for this will be described with reference to FIG.
  • the microcomputer 50 includes a CPU 51, a first digital analog comparator 52 (indicated by DAC1 in the figure), a first PWM circuit 53 (indicated by PWM1 in the figure), and an analog digital comparator 54 (ADC in the figure). (Indicated by), a second PWM circuit 55 (indicated by PWM2 in the figure), and a second digital analog comparator 56 (indicated by DAC2 in the figure).
  • the CPU 51 is a central processing device in the microcomputer 50, and controls the first digital analog comparator 52, the first PWM circuit 53, the analog digital comparator 54, the second PWM circuit 55, and the second digital analog comparator 56. do.
  • the CPU 51 controls the first digital analog comparator 52 to perform " is described as “the first digital analog comparator 52 performs " for convenience of explanation. It will be explained by the description.
  • the first digital-analog comparator 52 is an analog output for instructing the drive current value (LD current) of the LD (light emitting element 7), and instructing the output current value of the current output control switching power supply 10.
  • the current value instruction signal Ictrl is changed by the analog switch 4 in accordance with the lighting instruction signal LDEN.
  • the first digital-analog comparator 52 performs the current value indicating signal Ictrl corresponding to the current value in the on state of the current flowing through the light emitting element 7 by the analog output.
  • the analog switch 4 is a switch that links the current value instruction signal Ictrl with the lighting instruction signal LDEN.
  • the first PWM circuit 53 (PWM1) generates a pulse timing, outputs a lighting instruction signal LDEN signal, gives an instruction to the FET switch 2, and turns on / off the LD current. That is, the first PWM circuit 53 outputs the first PWM signal corresponding to the lighting instruction signal LDEN to the FET switch 2 to turn on / off the current flowing through the light emitting element 7.
  • the analog switch 4 when the first PWM circuit 53 turns on the lighting instruction signal LDEN to light the light emitting element 7, the current (LD current) flowing through the light emitting element 7 that the first digital analog comparator 52 outputs in analog is The current value instruction signal Ictrl corresponding to the current value in the on state is turned on at the same time in conjunction with the on of the lighting instruction signal LDEN. Further, when the first PWM circuit 53 turns off the lighting instruction signal LDEN and turns off the light emitting element 7, the analog switch 4 turns off the current value indicating signal Ictrl in conjunction with the turning off of the lighting instruction signal LDEN at the same time.
  • the analog-digital comparator 54 is an analog-digital converter that measures the output voltage (VOUT) of the current output control switching power supply 10. That is, the analog digital comparator 54 measures the output VOUT of the current output control switching power supply 10 (switching power supply).
  • the second PWM circuit 55 (PWM2) outputs a pulse at the same cycle as the first PWM circuit 53 (PWM1) and at a timing prior to the output of the first PWM circuit 53, and the On / Off signal of the output of the operational amplifier 3 (Amplifier output signal AMPEN) is generated. That is, the second PWM circuit 55 outputs the second PWM signal having the same period and synchronization as the first PWM signal output by the first PWM circuit 53 to the digital switch 5 as an amplifier output signal AMPEN.
  • the digital switch 5 is a switch that connects the output of the operational amplifier 3 to the output VOUT of the current output control switching power supply 10 (switching power supply) when the input amplifier output signal AMPEN is, for example, H (high) level.
  • the operational amplifier 3 compares the voltages of the + terminal and the-terminal, and outputs (called a current source) or an input (called a current sink) of a current so that both voltages become the same voltage, which is customary. It is connected to the output VOUT of the current output control switching power supply 10 (switching power supply) only when the amplifier output signal AMPEN is at a high level. That is, the operational amplifier 3 compares the reference voltage input to the + terminal with the output VOUT of the current output control switching power supply 10 (switching power supply) input to the-terminal, so that both voltages have the same voltage. It is an operational amplifier that outputs.
  • the storage unit built in the CPU 51 stores the output voltage (VOUT) of the current output control switching power supply 10 measured by the analog digital comparator 54 (ADC) as a reference voltage.
  • the second digital-analog comparator 56 (DAC2) outputs the adjustment target voltage (reference voltage stored in the storage unit) of the output voltage VOUT to the + terminal of the operational amplifier 3. That is, the second digital-to-analog comparator 56 (DAC2) outputs the reference voltage stored in the storage unit to the + terminal of the operational amplifier 3 (voltage source).
  • the drive device including the microcomputer 50 (processor), the analog switch 4, the operational amplifier 3 (voltage source), and the digital switch 5 described above has a pulse emission timing (turning on and off periodically) shown in FIG. It acts as follows in the timing) in the light emitting device which is repeated targetly or aperiodically.
  • FIG. 2 is a timing chart for explaining the operation of the light emitting device shown in FIG.
  • the current value instruction signal Ictrl, the lighting instruction signal LDEN, the amplifier output signal AMPEN, the voltage value [V] of the output VOUT, the current value [A] of the LD current, and the LD optical output in the light emitting device 100 shown in FIG. [W] Indicates the passage of time of each waveform.
  • the pulse emission timing means that the light emitting device 100 periodically or aperiodically switches the pulse ON (during the lighting period when the light emitting element 7 is lit) and the pulse OFF (during the lighting period when the light emitting element 7 is extinguished). Say to do it repeatedly.
  • the pulse On causes an LD current to flow through the light emitting element 7 (LD) at the output VOUT of the current output control switching power supply 10 (switching power supply) based on the instruction value of the current value instruction signal Ictrl.
  • the current output control switching power supply 10 outputs a constant current during the pulse On while detecting the current value by itself.
  • the current value instruction signal Ictrl is zero (GND level), so that the current output control switching power supply 10 stops the output.
  • the appropriate voltage is the output voltage VOUT of the current output control switching power supply 10 at the time of the previous pulse lighting (voltage value of the output VOUT surrounded by a broken line in the figure).
  • the analog-digital comparator 54 measures the output voltage VOUT, stores the value (reference voltage) in the storage unit, and sets the stored value as it is in the + terminal of the second digital analog comparator 56 (DAC2). ..
  • the operational amplifier 3 (voltage source) charges or discharges the output capacitor 6 (capacitor), and at the start of the subsequent pulse, the voltage (output voltage VOUT) corresponding to the constant current (LD current) is reached.
  • the LD current becomes an ideal rectangular wave, and the LD light output also becomes a desirable waveform according to the LD current.
  • the voltage stepped down during the extinguishing period of the output VOUT is adjusted by the operational amplifier 3 (voltage source) immediately before lighting.
  • the operational amplifier 3 voltage source
  • the current value instruction signals Ictrl and LD to the current output control switching power supply 10 (current output control type switching power supply) having the output capacitor 6 (smoothing capacitor) at the output.
  • the lighting instruction signal LDEN to the FET switch 2 (switch) that turns on and off the current (current to the LD)
  • the voltage at the time of driving the predetermined current remains in the smoothing capacitor.
  • the smoothing capacitor itself and surrounding components may leak and discharge by the start of the next pulse, and the voltage may fall below the voltage appropriate for driving during the pulse extinguishing period.
  • the voltage of the smoothing capacitor can be surely adjusted even if the pulse emission cycle is not constant.
  • the LD current becomes an ideal rectangular wave, and the LD light output also becomes a desirable waveform corresponding to the LD current.
  • FIG. 3 is a block diagram showing a configuration example of a light emitting device according to a second embodiment of the present invention.
  • FIG. 4 is a timing chart for explaining the operation of the light emitting device shown in FIG.
  • the LD current could be an ideal square wave.
  • the temperature characteristic of the light emitting element 7 (LD) at the same current value, the lower the temperature, the stronger the output light. Therefore, in the rectangle where the LD current is ideal, an overshoot was observed in the optical pulse (see FIG. 2). Therefore, for the first embodiment, the following calculation is applied to the reference voltage.
  • the value (reference voltage) set in the + terminal of the second digital-to-analog comparator 56 is the value measured by the ADC as it is. That is, the output voltage VOUT (voltage value of the output VOUT surrounded by a circle in the broken line in FIG. 2) of the current output control switching power supply 10 at the time of the previous pulse lighting is measured by the analog digital comparator 54 (ADC).
  • the value (reference voltage value) was stored in the storage unit, and the stored value was set as it was at the + terminal of the second digital analog comparator 56 (DAC2).
  • the operational amplifier 3 charges or discharges the output capacitor 6 (capacitor) to a voltage (output voltage VOUT) corresponding to a constant current (LD current) at the start of the subsequent pulse.
  • the output voltage VOUT (voltage value of the output VOUT circled by the broken line ⁇ in FIG. 4) of the current output control switching power supply 10 at the time of the previous pulse lighting is analog digital. It is measured by the comparator 54 (ADC), the value (reference voltage value) is stored in the storage unit, and "voltage lower than the reference voltage value" is set in the + terminal of the second digital analog comparator 562 (DAC2). As a result, the operational amplifier 3 (voltage source) outputs "a voltage lower than the reference voltage value", and at the start of the subsequent pulse, the output voltage VOUT is set to "a voltage lower than the reference voltage value".
  • the "voltage lower than the reference value” is preferably set according to the length of the extinguishing period. For example, when the period t of the extinguishing period is the longest settable period tmax, the discharge amount of the output capacitor 6 becomes the largest, and the output voltage VOUT becomes the minimum value output voltage VOUTmin. On the other hand, when the period t of the extinguishing period is the shortest period tmin that can be set, the discharge amount of the output capacitor 6 becomes the smallest, and the output voltage VOUTmax becomes "a value lower than the reference voltage".
  • the voltage is set to "lower than the reference value” corresponding to the length of the confirmed extinguishing period.
  • the voltage may be set according to the period during which the amplifier output signal AMPEN is at the H level.
  • the light emitting device and the driving device of each of the above aspects it is possible to save power and adjust the light pulse waveform regardless of the pulse period in the light emitting control of the light emitting element that repeatedly turns on and off. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Led Devices (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

本発明の第1の態様に係る発光装置は、点灯と消灯を周期的又は非周期的に繰り返し行う発光装置であって、パルス駆動される発光素子と、プロセッサと、前記プロセッサからの電流値指示信号に基づいて電流出力を制御する電流出力制御型のスイッチング電源と、前記スイッチング電源の出力を平滑化するコンデンサと、前記プロセッサからの点灯指示信号に基づいて前記発光素子への電流のオンオフを行うスイッチと、前記コンデンサの電圧を調整する電圧源と、を備え、前記プロセッサは、記憶部を有し、前記電流値指示信号および前記点灯指示信号を同時にオンして、前記発光素子を点灯させ、点灯期間中に、前記スイッチング電源の出力電圧を測定し、測定した前記スイッチング電源の出力電圧を基準電圧として前記記憶部に記憶させ、前記電流値指示信号および前記点灯指示信号を同時にオフして、前記発光素子を消灯させ、次の点灯直前に、前記記憶部に記憶された基準電圧に基づいて、前記電圧源の出力を制御することで前記コンデンサの電圧を調整することを特徴とする発光装置である。

Description

発光装置、および駆動装置
 本発明は、発光装置、および駆動装置に関する。
 LD(Laser Diode;発光素子)をパルス駆動する駆動回路として、定電圧電源と定電流ドライバの組み合わせが広く用いられている。
 これに対して、定電圧電源とFETスイッチ(発光素子への電流のオンオフを行うスイッチ)の組み合わせが省電力化駆動回路として知られている(例えば、特許文献1、特許文献2を参照)。
日本国特許第5660936号公報 日本国特開2005-63997号公報 日本国特開昭62-118590号公報
 しかしながら、従来の省電力化駆動回路では、正確な矩形パルスでLDを駆動することが不可能であった。
 例えば、特許文献1の駆動回路は、スイッチング電源と、平滑コンデンサと、負荷回路(LDが直列接続された回路)と、定電流源(発光素子への電流のオンオフを行うFETスイッチと抵抗器との複合回路)と、遅延回路と、を備える構成を有している。
 この構成のため、スイッチング電源では電力効率は良いが、平滑コンデンサを必要とする。単純に電源回路でパルス駆動しようとすると、その平滑コンデンサへの電荷が溜まることによる電圧上昇に要する時間が、パルス(LDの光出力に対応するパルスであって、光量がHレベルのときON(点灯)、LレベルのときOFF(消灯)を表す)の立ち上がり(LレベルからHレベルの移行を表す)を遅らせる原因となっている。
 特許文献1では、パルスOFFの過程で、先ず負荷回路を遮断し、遅延回路によって所定時間後にスイッチング電源をOFFにする手順を踏んでいる。この様にすることで、パルスOFF後、負荷回路への行き場を失った電荷が平滑コンデンサの電圧(VA)を上昇させる。これによって、次のパルスでの電圧上昇時間を短くし、スイッチング電源でもパルス間隔を短くすることができる。
 このように、特許文献1では、前のパルスから次のパルスの間での出力コンデンサ(平滑コンデンサ)の放電量が一定であるときに安定して動作する。そのため、撮像のための照明など、パルス発光周期(パルスのON・OFFの繰り返しからなる期間)が一定ではない場合(点灯と消灯とを非周期に繰り返し行う場合)では、パルス開始時点での出力開始電圧が消灯期間の長さの影響を受ける。パルス間隔が広く開いてしまったときは、リークや自然放電の時間が長くなり他のパルス間隔に比べて出力コンデンサの電圧が低くなってしまう問題があった。
 また、特許文献2では、電圧源と電流源を組み合わせてパルス電流(LDに流れるLD電流)の波形を変形させている。電流波形立ち上がりの傾斜によるパルス(LDの光出力に対応するパルスであって、光量がHレベルのときON(点灯)、LレベルのときOFF(消灯)を表す))あたりの光量の低下を補うための手段として発明されたものではあるが、電圧源の調整によってはパルス初期の電圧を下げて、パルスのオーバーシュートの抑制にも応用できると想像できる。
 しかし、特許文献2では、パルス点灯(ON)しながら、途中で電圧源から電流源への切替を行っているため、その切り替わり時点で、電圧源の出力電圧と電流源によってLDの端子間に生じる電圧(Vf)で差が発生する。さらに、電圧源、電流源の出力は、それぞれ別々のスイッチ(SW2,SW11-1)で切り替えているため、同時でも、どちらを先にしても、パルスの途中でのLD駆動電流の段差を避けることができない。従って、光パルスの途中で光量に段差が生じる問題があった。LDを撮影機器の照明光として使用した場合、撮影画像にムラができる恐れがある。
 本発明は、上記事情を考慮してなされたものであり、その目的は、点灯と消灯とを繰り返し行なう発光素子の発光制御において、パルス周期に因らない省電力化と、光パルス波形の調整を行うことが可能な電力発光装置、および駆動装置を提供することにある。
 なお,特許文献3には、パルス点灯における温度変化による光パルス(光出力)のオーバーシュートを抑える手法を開示しているが、本願の発光装置、および駆動装置の構成に相当する構成が明示されていない。
 本発明の第1の態様に係る発光装置は、点灯と消灯を周期的又は非周期的に繰り返し行う発光装置であって、パルス駆動される発光素子と、プロセッサと、前記プロセッサからの電流値指示信号に基づいて電流出力を制御する電流出力制御型のスイッチング電源と、前記スイッチング電源の出力を平滑化するコンデンサと、前記プロセッサからの点灯指示信号に基づいて前記発光素子への電流のオンオフを行うスイッチと、前記コンデンサの電圧を調整する電圧源と、を備え、前記プロセッサは、記憶部を有し、前記電流値指示信号および前記点灯指示信号を同時にオンして、前記発光素子を点灯させ、点灯期間中に、前記スイッチング電源の出力電圧を測定し、測定した前記スイッチング電源の出力電圧を基準電圧として前記記憶部に記憶させ、前記電流値指示信号および前記点灯指示信号を同時にオフして、前記発光素子を消灯させ、次の点灯直前に、前記記憶部に記憶された基準電圧に基づいて、前記電圧源の出力を制御することで前記コンデンサの電圧を調整することを特徴とする発光装置である。
 本発明の第2の態様に係る発光装置は、上記第1の態様において、消灯期間中に、前記プロセッサは、前記記憶部に記憶された基準電圧より低い電圧を出力電圧として前記電圧源から出力させることを特徴とする。
 本発明の第3の態様に係る発光装置は、上記第2の態様において、前記基準電圧より低い電圧は、前記消灯期間の時間の長さに応じて設定することを特徴とする。
 本発明の第1の態様に係る駆動装置は、パルス駆動される発光素子と、プロセッサと、前記プロセッサからの電流値指示信号に基づいて電流出力を制御する電流出力制御型のスイッチング電源と、前記スイッチング電源の出力を平滑化するコンデンサと、前記プロセッサからの点灯指示信号に基づいて前記発光素子への電流のオンオフを行うスイッチと、前記コンデンサの電圧を調整する電圧源と、を備えた、点灯と消灯を周期的又は非周期的に繰り返し行う発光装置を駆動する駆動装置であって、前記プロセッサと、アナログスイッチと、前記電圧源と、デジタルスイッチとを含んで構成され、前記プロセッサは、前記発光素子に流れる電流のオン状態における電流値に対応する前記電流値指示信号をアナログ出力により行う第1デジタルアナログコンパレータと、前記点灯指示信号に対応する第1PWM信号を前記スイッチへ出力し、前記発光素子に流れる電流のオンオフを行う第1PWM回路と、前記スイッチング電源の出力を測定するアナログデジタルコンパレータと、測定した前記スイッチング電源の出力電圧を基準電圧として記憶する記憶部と、前記第1PWM回路が出力する前記第1PWM信号と、同じ周期かつ同期した第2PWM信号をアンプ出力信号として前記デジタルスイッチへ出力する第2PWM回路と、前記記憶部に記憶された基準電圧を前記電圧源へ出力する第2デジタルアナログコンパレータと、を有し、前記アナログスイッチは、前記電流値指示信号を前記点灯指示信号と連動させるスイッチであり、前記電圧源は、+端子に入力される前記基準電圧と、-端子に入力される前記スイッチング電源の出力を比較して、両電圧が同じ電圧となるよう電流の出力を行うオペアンプであり、前記デジタルスイッチは、入力される前記アンプ出力信号がハイレベルのとき、前記オペアンプの出力を前記スイッチング電源の出力へ接続するスイッチであり、前記第1PWM回路は前記点灯指示信号をオンし、前記アナログスイッチは、前記第1デジタルアナログコンパレータがアナログ出力する前記発光素子に流れる電流のオン状態における電流値に対応する前記電流値指示信号を、前記点灯指示信号のオンに連動させて同時にオンして、前記発光素子を点灯させ、点灯期間中に、前記アナログデジタルコンパレータは、前記スイッチング電源の出力電圧を測定し、測定した前記スイッチング電源の出力電圧を基準電圧として前記記憶部に記憶させ、前記第1PWM回路は前記点灯指示信号をオフし、前記アナログスイッチは、前記電流値指示信号を、前記点灯指示信号のオフに連動させて同時にオフして、前記発光素子を消灯させ、次の点灯直前に、前記電圧源は、前記電圧源は、+端子に入力される前記基準電圧と、-端子に入力される前記スイッチング電源の出力を比較して、前記第2PWM回路がハイレベルの前記アンプ出力信号を出力して前記デジタルスイッチをオンさせている期間、両電圧が同じ電圧となるよう電流の出力を行うことにより、前記コンデンサの電圧を調整することを特徴とする駆動装置である。
 本発明の各態様によれば、点灯と消灯とを繰り返し行なう発光素子の発光制御において、パルス周期に因らない省電力化と、光パルス波形の調整を行うことが可能となる。
本発明の第1実施形態に係る発光装置の構成例を示すブロック図である。 図1に示す発光装置の動作を説明するためのタイミングチャートである。 本発明の第2実施形態に係る発光装置の構成例を示すブロック図である。 図3に示す発光装置の動作を説明するためのタイミングチャートである。
<第1の実施形態>
 以下、本発明の第1の実施形態について図面を参照して説明する。図1は、本発明の第1実施形態に係る発光装置の構成例を示すブロック図である。
 図1に示す発光装置100は、電流出力制御スイッチング電源10(電流出力制御型のスイッチング電源)、FETスイッチ2(スイッチ)、オペアンプ3(電圧源)、アナログスイッチ4(アナログスイッチ)、マイコン50(プロセッサ)、デジタルスイッチ5(デジタルスイッチ)、出力コンデンサ6(コンデンサ)、発光素子7を含んで構成されている。
 電流出力制御スイッチング電源10は、マイコン50からの電流値指示信号に基づいて電流出力を制御する。
 ここでは、より具体的に、電流出力制御スイッチング電源10の構成について説明する。
 電流出力制御スイッチング電源10は、電流出力制御スイッチング電源10は、典型的な降圧同期整流型を例にしている。すなわち、電流出力制御スイッチング電源10は、バッテリ1に蓄電された直流電圧を入力VINとして、その入力Vinを出力Voutに降圧変換して、変換した出力VOUTを出力する装置である。
 そのため、電流出力制御スイッチング電源10は、OSC(オシレータ)11、PMW信号発生回路12、アンプ13、アンプ14、トランジスタQ1、トランジスタQ2、インダクタL1、抵抗器R1を含んで構成されている。
 OSC11の出力であるClock信号に合わせて、PMW信号発生回路12は、トランジスタQ1とトランジスタQ2を交互にOn(オン)にする動作を繰り返す。
 トランジスタQ1がOn(トランジスタQ2はOff(オフ))の時、入力VINから出力VOUTの方向に電流I1が流れる。次にトランジスタQ2がOn(トランジスタQ1はOff)に切り替わると、インダクタの作用でインダクタL1の電流は流れ続け、電流I2が出力VOUTに流れる。トランジスタQ1,Q2のOnの割合(=Duty)によって出力の強弱を制御できる。
 抵抗器R1は電流検出用の抵抗器を示している。オームの法則に従い、通過電流に比例した電圧が抵抗器R1の両端に生じる。アンプ13は抵抗器R1の両端の電圧を入力として、その差電圧を、アンプ14での演算範囲に適応する電圧値に変換して、電圧信号Sig1として出力する。
 アンプ14は、2つの電圧信号である電流値指示信号Ictrlと電圧信号Sig1を比較して、その差を信号Sig2として出力する。
 ここで、電流値指示信号Ictrlは、LDに流したいパルス電流(所望電流)に基づいた電圧信号を示している。そして、電圧信号Sig1は先に述べたように、現在の電流値に基づいた電圧値を示している。つまり、電流値指示信号Ictrlと電圧信号Sig1との差を求めることによって、信号Sig2は、LDへ所望電流を流すために電源出力を上げるべきか、下げるべきかを判断した結果を示している。
 信号Sig2は、PMW信号発生回路12に入力される。PMW信号発生回路12は、信号Sig2の電圧値に基づき、トランジスタQ1,Q2のOnの割合を変化させて、出力量を変化させる。
 すなわち、抵抗器R1、アンプ13で得られた現在の電流値に相当する電圧信号Sig1は、所望の電流値指示電圧Ictrlとアンプ14で比較され、現在の電流値が所望値より低い場合は、トランジスタQ1、Q2のDutyを上げて、電源出力量を増す。
 逆に、現在の電流値が所望値より高い場合は、トランジスタQ1、Q2のDutyを下げて、電源出力量を減らす。
 これらを繰り返して、抵抗器R1を経由して出力される電流値は、電流値指示信号Ictrlに基づく電流値と相似関係になる。電流値指示信号Ictrlがパルス電圧の場合、その電圧に比例したパルス電流が出力VOUTに流れる。
 ただし、出力コンデンサ6(平滑コンデンサ)の容量によって、発光素子7に流れるLD電流は、電流値指示信号Ictrlの変化に対して遅延(パルスのなまり)が生じる。
 続いて、発光装置100の各構成要素について詳述する。
 出力コンデンサ6(コンデンサ)は、電流出力制御スイッチング電源10の出力を平滑化するコンデンサである。
 発光素子7は、レーザーダイオード(Laser Diode:LD)素子であって、パルス駆動される(電流出力制御スイッチング電源10からLD電流が供給される)ことにより、LD光出力を発する発光素子である。
 上述したように、電流出力制御スイッチング電源10は、電流指示値信号Ictrlの電圧に比例した電流出力を行う。すなわち、電流出力制御スイッチング電源10は、マイコン50からの電流値指示信号Ictrlに基づいて電流出力を制御する。
 FETスイッチ2(スイッチ)は点灯指示信号LDENに基づきLDへの電流をOn/Offする。すなわち、FETスイッチ2は、マイコン50からの点灯指示信号に基づいて発光素子7へのLD電流のオンオフを行うスイッチである。
 マイコン50(プロセッサ)は、上述のように、電流値指示信号Ictrlと点灯指示信号LDENとを出力するが、このための構成について図1を参照しつつ説明する。
 マイコン50(プロセッサ)は、CPU51と、第1デジタルアナログコンパレータ52(図中DAC1で示している)と、第1PWM回路53(図中PWM1で示している)と、アナログデジタルコンパレータ54(図中ADCで示している)と、第2PWM回路55(図中PWM2で示している)と、第2デジタルアナログコンパレータ56(図中DAC2で示している)と、を含んで構成されている。
 CPU51は、マイコン50における中央処理装置であって、上記第1デジタルアナログコンパレータ52と、第1PWM回路53と、アナログデジタルコンパレータ54と、第2PWM回路55と、第2デジタルアナログコンパレータ56と、を制御する。ただし、本実施形態において、「CPU51は、第1デジタルアナログコンパレータ52を制御して、~を行わせる。」との記載は、説明の便宜上、「第1デジタルアナログコンパレータ52は、~を行う。」との記載で説明することとする。
 第1デジタルアナログコンパレータ52(DAC1)は、LD(発光素子7)の駆動電流値(LD電流)の指示を行うためのアナログ出力で、電流出力制御スイッチング電源10の出力電流値の指示を行う。
 ここで、電流値指示信号Ictrlは、アナログスイッチ4によって点灯指示信号LDENに合わせて変化する。
 パルスOn(点灯指示信号LDEN=H)のとき、電流値指示信号Ictrlは、DAC1での値(第1デジタルアナログコンパレータ52が出力するアナログ値)になる。
 一方、パルスOff(点灯指示信号LDEN=L)のとき、電流値指示信号Ictrlは、GNDレベルになり、電流出力制御スイッチング電源10に対して出力電流をゼロにさせる。
 すなわち、第1デジタルアナログコンパレータ52は、発光素子7に流れる電流のオン状態における電流値に対応する電流値指示信号Ictrlをアナログ出力により行う。
 ここで、アナログスイッチ4は、電流値指示信号Ictrlを点灯指示信号LDENと連動させるスイッチである。
 第1PWM回路53(PWM1)は、パルスタイミングを生成し、点灯指示信号LDEN信号を出力してFETスイッチ2に指示を行い、LDの電流のOn/Offを行う。
 すなわち、第1PWM回路53は、点灯指示信号LDENに対応する第1PWM信号をFETスイッチ2へ出力し、発光素子7に流れる電流のオンオフを行う。
 ここで、アナログスイッチ4は、第1PWM回路53が点灯指示信号LDENをオンして発光素子7を点灯させる際、第1デジタルアナログコンパレータ52がアナログ出力する発光素子7に流れる電流(LD電流)のオン状態における電流値に対応する電流値指示信号Ictrlを、点灯指示信号LDENのオンに連動させて同時にオンする。
 また、アナログスイッチ4は、第1PWM回路53が点灯指示信号LDENをオフして発光素子7を消灯させる際、電流値指示信号Ictrlを、点灯指示信号LDENのオフに連動させて同時にオフする。
 アナログデジタルコンパレータ54(ADC)は、電流出力制御スイッチング電源10の出力電圧(VOUT)を測定するアナログデジタルコンバータである。
 すなわち、アナログデジタルコンパレータ54は、電流出力制御スイッチング電源10(スイッチング電源)の出力VOUTを測定する。
 第2PWM回路55(PWM2)は、第1PWM回路53(PWM1)と同じ周期、かつ同期して、第1PWM回路53の出力に先立ったタイミングでパルスを出力し、オペアンプ3の出力のOn/Off信号(アンプ出力信号AMPEN)を生成する。
 すなわち、第2PWM回路55は、第1PWM回路53が出力する第1PWM信号と、同じ周期かつ同期した第2PWM信号をアンプ出力信号AMPENとしてデジタルスイッチ5へ出力する。
 ここで、デジタルスイッチ5は、入力されるアンプ出力信号AMPENが例えばH(ハイ)レベルのとき、オペアンプ3の出力を電流出力制御スイッチング電源10(スイッチング電源)の出力VOUTへ接続するスイッチである、
 また、オペアンプ3(電圧源)は、+端子と-端子の電圧を比較して、両電圧が同じ電圧になるように電流の出力(電流ソースと呼ばれる)または入力(電流シンクと呼ばれる。慣例的に吸い込みとも表現される。)を行うオペアンプで、アンプ出力信号AMPENがハイレベルのときにのみ、電流出力制御スイッチング電源10(スイッチング電源)の出力VOUTに接続される。
 すなわち、オペアンプ3は、+端子に入力される基準電圧と、-端子に入力される電流出力制御スイッチング電源10(スイッチング電源)の出力VOUTを比較して、両電圧が同じ電圧となるよう電流の出力を行うオペアンプである。
 ここで、CPU51に内蔵される記憶部は、アナログデジタルコンパレータ54(ADC)が測定した電流出力制御スイッチング電源10の出力電圧(VOUT)を基準電圧として記憶する。
 また、第2デジタルアナログコンパレータ56(DAC2)は、オペアンプ3の+端子に対して、出力電圧VOUTの調整目標電圧(記憶部に記憶された基準電圧)を出力する。
 すなわち、第2デジタルアナログコンパレータ56(DAC2)は、記憶部に記憶された基準電圧をオペアンプ3(電圧源)の+端子へ出力する。
 以上説明したマイコン50(プロセッサ)と、アナログスイッチ4と、オペアンプ3(電圧源)と、デジタルスイッチ5とを含んで構成される駆動装置は、図2に示すパルス発光タイミング(点灯と消灯を周期的又は非周期的に繰り返し行う発光装置におけるタイミング)において、次のように作用する。
 図2は、図1に示す発光装置の動作を説明するためのタイミングチャートである。図2においては、図1に示す発光装置100における電流値指示信号Ictrl、点灯指示信号LDEN、アンプ出力信号AMPEN、出力VOUTの電圧値[V]、LD電流の電流値[A]、LD光出力[W]それぞれの波形の時間経過を表している。
 ここで、パルス発光タイミングとは、発光装置100が、パルスON(発光素子7が点灯する点灯期間中)と、パルスOFF(発光素子7が消灯する消灯期間中)を周期的または非周期的に繰り返し行うことを言う。
 パルスOnは、点灯指示信号LDEN=Hのとき、電流値指示信号Ictrlの指示値に基づいて電流出力制御スイッチング電源10(スイッチング電源)の出力VOUTで発光素子7(LD)にLD電流が流れる。電流出力制御スイッチング電源10は、自身で電流値検出を行いながら、パルスOnの間、一定の電流を出力する。
 また、パルスOff時は、電流値指示信号Ictrlがゼロ(GNDレベル)になっているため、電流出力制御スイッチング電源10は出力を停止している。
 その間に、意図しない漏れ電流や、コンデンサの自己放電などで、出力電圧VOUTが低下した場合でも、オペアンプ3を介して、パルス点灯に先立って、アンプ出力信号AMPEN=Hの期間に、出力コンデンサ6(コンデンサ)の電圧VOUTを調整することで、パルス点灯の冒頭から適正な電圧で発光素子7(LD)にLD電流として定電流を流すことが可能になる。
 ここで、適正な電圧とは、1つ前のパルス点灯時の電流出力制御スイッチング電源10の出力電圧VOUT(図中破線の〇で囲まれた出力VOUTの電圧値)とする。
 アナログデジタルコンパレータ54(ADC)は、出力電圧VOUTを測定し、その値(基準電圧)を記憶部に保存し、保存された値をそのまま第2デジタルアナログコンパレータ56(DAC2)の+端子に設定する。
 これにより、オペアンプ3(電圧源)は出力コンデンサ6(コンデンサ)へ充電または放電を行って、後続パルスの開始時点で、定電流(LD電流)に相当する電圧(出力電圧VOUT)になる。
 以上説明したシーケンス処理によって、LD電流は理想の矩形波となり、LD光出力もLD電流に応じた望ましい波形となる。
 実施形態1においては、出力VOUTにおいて消灯期間中に降圧した電圧を点灯直前にオペアンプ3(電圧源)により調整する。
 これにより、特許文献1の課題である「パルス発光周期(パルスのON・OFFの繰り返しからなる期間)が一定ではない場合(点灯と消灯とを非周期に繰り返し行う場合)では、パルス開始時点での出力開始電圧が消灯期間の長さの影響を受ける。パルス間隔が広く開いてしまったときは、リークや自然放電の時間が長くなり他のパルス間隔に比べて出力コンデンサの電圧が低くなってしまう問題」を解決できる。
 また、図2に示すように、LD電流波形において、パルス開始時の出力VOUTが既にVfと一致しているため、LD電流は急峻に立ち上がる。また、LD電流波形において、オーバーシュートもない。
 これにより、特許文献2の課題である「パルス点灯(ON)しながら、途中で電圧源から電流源への切替を行っているため、その切り替わり時点で、電圧源の出力電圧と電流源によってLDの端子間に生じる電圧(Vf)で差が発生する。さらに、電圧源、電流源の出力は、それぞれ別々のスイッチ(SW2,SW11-1)で切り替えているため、同時でも、どちらを先にしても、パルスの途中でのLD駆動電流の段差を避けることができない。従って、光パルスの途中で光量に段差が生じる問題」を解決できる。
 すなわち、本実施形態によれば、パルス消灯の際に、出力に出力コンデンサ6(平滑コンデンサ)を有する電流出力制御スイッチング電源10(電流出力制御型のスイッチング電源)への電流値指示信号IctrlおよびLD電流(LDへの電流)をON、OFFするFETスイッチ2(スイッチ)への点灯指示信号LDENを同時にOFFすることによって、所定電流駆動時の電圧が平滑コンデンサに残る。
 このとき、次のパルスの開始時点までに平滑コンデンサ自身や周辺の部品によるリーク放電され、パルス消灯期間中に駆動に適切な電圧を下回ることがあるが、付加したオペアンプ3(電圧源)によって、平滑コンデンサの電圧を次のパルスに必要な電圧に調整することで、パルス発光周期が一定で無くても確実に、平滑コンデンサの電圧を調整できる。これにより、LD電流は理想の矩形波となり、LD光出力もLD電流に応じた望ましい波形となる。
<第2の実施形態>
 第2の実施形態については第1の実施形態との対比で説明する。第1の実施形態で説明に用いた図1と図2に対して、図3と図4がそれぞれ対応する。
 図3は、本発明の第2実施形態に係る発光装置の構成例を示すブロック図である。また、図4は、図3に示す発光装置の動作を説明するためのタイミングチャートである。
 第1の実施形態では、LD電流を理想の矩形波とする事ができた。しかし、特許文献3で述べられた通り、発光素子7(LD)の温度特性として、同じ電流値では、温度が低いほうが出力される光が強くなる。従って、LD電流が理想の矩形では、光パルスにオーバーシュートが見られた(図2参照)。
 そこで、第1の実施形態に対して、下記の演算を基準電圧に対して加える。
 第1の実施形態では、第2デジタルアナログコンパレータ56(DAC2)の+端子に設定される値(基準電圧)は、ADCで測定された値をそのまま設定していた。
 すなわち、1つ前のパルス点灯時の電流出力制御スイッチング電源10の出力電圧VOUT(図2中破線の〇で囲まれた出力VOUTの電圧値)を、アナログデジタルコンパレータ54(ADC)で測定し、その値(基準電圧値)を記憶部に保存し、保存された値をそのまま第2デジタルアナログコンパレータ56(DAC2)の+端子に設定していた。
 これにより、オペアンプ3(電圧源)は出力コンデンサ6(コンデンサ)へ充電または放電を行って、後続パルスの開始時点で、定電流(LD電流)に相当する電圧(出力電圧VOUT)にしていた。
 これに対し、第2の実施形態では、1つ前のパルス点灯時の電流出力制御スイッチング電源10の出力電圧VOUT(図4中破線の〇で囲まれた出力VOUTの電圧値)を、アナログデジタルコンパレータ54(ADC)で測定し、その値(基準電圧値)を記憶部に保存し、「基準電圧値より低い電圧」を第2デジタルアナログコンパレータ562(DAC2)の+端子に設定する。
 これにより、オペアンプ3(電圧源)は「基準電圧値より低い電圧」を出力し、後続パルスの開始時点で、出力電圧VOUTを「基準電圧値より低い電圧」にする。
 これにより、パルス開始時の電圧VOUTを基準電圧より下げる作用を行い、パルス冒頭でLDの電流の立ち上がりを緩やかにする。従って、LDから出力される光のオーバーシュートを抑制することができる(図4参照)。
 なお、「基準値より低い電圧」は、消灯期間の時間の長さに応じて設定されるのが好ましい。
 例えば、消灯期間の期間tが設定可能な最長の期間tmaxのとき、出力コンデンサ6の放電量が最も大きくなり、出力電圧VOUTは最小値である出力電圧VOUTminとなる。一方、消灯期間の期間tが設定可能な最短の期間tminのとき、出力コンデンサ6の放電量が最も小さくなり、「基準電圧より低い値」である出力電圧VOUTmaxとなる。
 そのため、「基準値より低い電圧」を、期間tminと期間tmaxの間において検出し、検出された「基準値より低い電圧」を用いたときに、LDから出力される光のオーバーシュートが抑制できることを確認する。そして、確認できた消灯期間の時間の長さに対応する「基準値より低い電圧」に設定する。
 なお、基準値より低い電圧を、消灯期間の時間の長さに応じて設定されるとする代わりに、アンプ出力信号AMPENがHレベルである期間に応じて設定してもよい。
 以上、本発明の好ましい実施形態を説明したが、本発明はこれら実施形態およびその変形例に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 上記各態様の発光装置、駆動装置によれば、点灯と消灯とを繰り返し行なう発光素子の発光制御において、パルス周期に因らない省電力化と、光パルス波形の調整を行うことが可能となる。
2 FETスイッチ(スイッチ)
3 オペアンプ
4 アナログスイッチ
5 デジタルスイッチ(デジタルスイッチ)
6 出力コンデンサ(コンデンサ)
7 発光素子
10 電流出力制御スイッチング電源(電流出力制御型のスイッチング電源)
50 マイコン(プロセッサ)
51 CPU
52 第1デジタルアナログコンパレータ
53 第1PWM回路
54 アナログデジタルコンパレータ
55 第2PWM回路
56,562 第2デジタルアナログコンパレータ
Ictrl 電流値指示信号
LDEN 点灯指示信号
AMPEN アンプ出力信号

Claims (4)

  1.  点灯と消灯を周期的又は非周期的に繰り返し行う発光装置であって、
     パルス駆動される発光素子と、
     プロセッサと、
     前記プロセッサからの電流値指示信号に基づいて電流出力を制御する電流出力制御型のスイッチング電源と、
     前記スイッチング電源の出力を平滑化するコンデンサと、
     前記プロセッサからの点灯指示信号に基づいて前記発光素子への電流のオンオフを行うスイッチと、
     前記コンデンサの電圧を調整する電圧源と、
     を備え、
     前記プロセッサは、
     記憶部を有し、
     前記電流値指示信号および前記点灯指示信号を同時にオンして、前記発光素子を点灯させ、
     点灯期間中に、
     前記スイッチング電源の出力電圧を測定し、
     測定した前記スイッチング電源の出力電圧を基準電圧として前記記憶部に記憶させ、
     前記電流値指示信号および前記点灯指示信号を同時にオフして、前記発光素子を消灯させ、
     次の点灯直前に、
     前記記憶部に記憶された基準電圧に基づいて、前記電圧源の出力を制御することで前記コンデンサの電圧を調整する
     ことを特徴とする発光装置。
  2.  消灯期間中に、
     前記プロセッサは、前記記憶部に記憶された基準電圧より低い電圧を出力電圧として前記電圧源から出力させることを特徴とする請求項1に記載の発光装置。
  3.  前記基準電圧より低い電圧は、前記消灯期間の時間の長さに応じて設定することを特徴とする請求項2に記載の発光装置。
  4.  パルス駆動される発光素子と、
     プロセッサと、
     前記プロセッサからの電流値指示信号に基づいて電流出力を制御する電流出力制御型のスイッチング電源と、
     前記スイッチング電源の出力を平滑化するコンデンサと、
     前記プロセッサからの点灯指示信号に基づいて前記発光素子への電流のオンオフを行うスイッチと、
     前記コンデンサの電圧を調整する電圧源と、
     を備えた、
     点灯と消灯を周期的又は非周期的に繰り返し行う発光装置を駆動する駆動装置であって、
     前記プロセッサと、アナログスイッチと、前記電圧源と、デジタルスイッチとを含んで構成され、
     前記プロセッサは、
     前記発光素子に流れる電流のオン状態における電流値に対応する前記電流値指示信号をアナログ出力により行う第1デジタルアナログコンパレータと、
     前記点灯指示信号に対応する第1PWM信号を前記スイッチへ出力し、前記発光素子に流れる電流のオンオフを行う第1PWM回路と、
     前記スイッチング電源の出力を測定するアナログデジタルコンパレータと、
     測定した前記スイッチング電源の出力電圧を基準電圧として記憶する記憶部と、
     前記第1PWM回路が出力する前記第1PWM信号と、同じ周期かつ同期した第2PWM信号をアンプ出力信号として前記デジタルスイッチへ出力する第2PWM回路と、
     前記記憶部に記憶された基準電圧を前記電圧源へ出力する第2デジタルアナログコンパレータと、
     を有し、
     前記アナログスイッチは、前記電流値指示信号を前記点灯指示信号と連動させるスイッチであり、
     前記電圧源は、+端子に入力される前記基準電圧と、-端子に入力される前記スイッチング電源の出力を比較して、両電圧が同じ電圧となるよう電流の出力を行うオペアンプであり、
     前記デジタルスイッチは、入力される前記アンプ出力信号がハイレベルのとき、前記オペアンプの出力を前記スイッチング電源の出力へ接続するスイッチであり、
     前記第1PWM回路は前記点灯指示信号をオンし、前記アナログスイッチは、前記第1デジタルアナログコンパレータがアナログ出力する前記発光素子に流れる電流のオン状態における電流値に対応する前記電流値指示信号を、前記点灯指示信号のオンに連動させて同時にオンして、前記発光素子を点灯させ、
     点灯期間中に、
     前記アナログデジタルコンパレータは、前記スイッチング電源の出力電圧を測定し、測定した前記スイッチング電源の出力電圧を基準電圧として前記記憶部に記憶させ、
     前記第1PWM回路は前記点灯指示信号をオフし、前記アナログスイッチは、前記電流値指示信号を、前記点灯指示信号のオフに連動させて同時にオフして、前記発光素子を消灯させ、
     次の点灯直前に、
     前記電圧源は、前記電圧源は、+端子に入力される前記基準電圧と、-端子に入力される前記スイッチング電源の出力を比較して、前記第2PWM回路がハイレベルの前記アンプ出力信号を出力して前記デジタルスイッチをオンさせている期間、両電圧が同じ電圧となるよう電流の出力を行うことにより、前記コンデンサの電圧を調整する
     ことを特徴とする駆動装置。
PCT/JP2020/001497 2020-01-17 2020-01-17 発光装置、および駆動装置 WO2021144962A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/001497 WO2021144962A1 (ja) 2020-01-17 2020-01-17 発光装置、および駆動装置
JP2021570600A JP7343618B2 (ja) 2020-01-17 2020-01-17 発光装置、および駆動装置
US17/678,293 US20220181844A1 (en) 2020-01-17 2022-02-23 Light-emitting device and driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/001497 WO2021144962A1 (ja) 2020-01-17 2020-01-17 発光装置、および駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/678,293 Continuation US20220181844A1 (en) 2020-01-17 2022-02-23 Light-emitting device and driving device

Publications (1)

Publication Number Publication Date
WO2021144962A1 true WO2021144962A1 (ja) 2021-07-22

Family

ID=76864129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001497 WO2021144962A1 (ja) 2020-01-17 2020-01-17 発光装置、および駆動装置

Country Status (3)

Country Link
US (1) US20220181844A1 (ja)
JP (1) JP7343618B2 (ja)
WO (1) WO2021144962A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231330A (ja) * 2008-03-19 2009-10-08 Fujitsu Ltd 光スイッチ駆動回路
JP2014078679A (ja) * 2012-09-20 2014-05-01 Casio Comput Co Ltd 駆動装置、発光装置及び投影装置
JP2014103319A (ja) * 2012-11-21 2014-06-05 Ricoh Co Ltd 光源駆動回路、光走査装置及び画像形成装置
JP2014229691A (ja) * 2013-05-21 2014-12-08 株式会社リコー 光源駆動回路、光走査装置及び画像形成装置
JP2018041938A (ja) * 2016-09-09 2018-03-15 株式会社リコー 光源駆動装置、画像形成装置、光量制御方法
US20180183208A1 (en) * 2016-12-23 2018-06-28 Axon Enterprise, Inc. Systems and Methods for Calibrating, Operating, and Setting a Laser Diode in a Weapon
JP2018202811A (ja) * 2017-06-08 2018-12-27 株式会社リコー 光源制御装置及び画像形成装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080019A (ja) 2010-10-06 2012-04-19 On Semiconductor Trading Ltd 発光素子駆動回路
JP5363620B1 (ja) 2012-06-18 2013-12-11 シャープ株式会社 Led駆動装置、及びテレビジョン受像機
JP2014063590A (ja) 2012-09-20 2014-04-10 Casio Comput Co Ltd 駆動装置、発光装置及び投影装置
JP6358780B2 (ja) 2013-05-17 2018-07-18 ローム株式会社 発光装置の制御回路、それを用いた発光装置および電子機器
WO2016142154A1 (en) 2015-03-09 2016-09-15 Philips Lighting Holding B.V. Led driver
JP6553415B2 (ja) 2015-06-05 2019-07-31 ローム株式会社 スイッチングコンバータ、それを用いた照明装置
JP6551735B2 (ja) 2015-06-09 2019-07-31 パナソニックIpマネジメント株式会社 調光点灯回路及び照明器具
JP2017021938A (ja) 2015-07-08 2017-01-26 パナソニックIpマネジメント株式会社 調光制御ユニット、照明システム、及び設備機器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231330A (ja) * 2008-03-19 2009-10-08 Fujitsu Ltd 光スイッチ駆動回路
JP2014078679A (ja) * 2012-09-20 2014-05-01 Casio Comput Co Ltd 駆動装置、発光装置及び投影装置
JP2014103319A (ja) * 2012-11-21 2014-06-05 Ricoh Co Ltd 光源駆動回路、光走査装置及び画像形成装置
JP2014229691A (ja) * 2013-05-21 2014-12-08 株式会社リコー 光源駆動回路、光走査装置及び画像形成装置
JP2018041938A (ja) * 2016-09-09 2018-03-15 株式会社リコー 光源駆動装置、画像形成装置、光量制御方法
US20180183208A1 (en) * 2016-12-23 2018-06-28 Axon Enterprise, Inc. Systems and Methods for Calibrating, Operating, and Setting a Laser Diode in a Weapon
JP2018202811A (ja) * 2017-06-08 2018-12-27 株式会社リコー 光源制御装置及び画像形成装置

Also Published As

Publication number Publication date
JPWO2021144962A1 (ja) 2021-07-22
JP7343618B2 (ja) 2023-09-12
US20220181844A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP5409399B2 (ja) Led、oled又はレーザダイオードのような負荷のための駆動回路
TWI406591B (zh) 離線發光二極體照明電路
KR20170007735A (ko) 디밍 장치에서 led 수명 및 색 품질을 향상시키는 방법 및 시스템
US8334661B2 (en) Feedback control circuit and power converting circuit
JP5190390B2 (ja) 発光素子点灯制御装置
JP2009542188A (ja) 負荷を一定電流で駆動する駆動回路
US8552663B2 (en) Controller for controlling an LED assembly, lighting application and method for controlling an LED assembly
JP2013149479A (ja) 発光素子駆動装置
JP6252231B2 (ja) Led点灯装置
JP5579804B2 (ja) 負荷駆動装置およびその制御方法
JP2009295791A (ja) Led駆動装置
JP5030011B2 (ja) 高圧放電灯点灯装置
JP2005347133A (ja) Led点灯駆動回路
JP2017050110A (ja) 半導体光源駆動装置、制御装置及び半導体光源駆動装置の駆動方法
WO2021144962A1 (ja) 発光装置、および駆動装置
CN112602378B (zh) 点亮电路及车辆用灯具
JP2021086763A (ja) 点灯装置
JP6287429B2 (ja) Led点灯装置
JP4193798B2 (ja) 放電管点灯装置
TWI727457B (zh) 發光元件驅動裝置及其中之調光控制電路及調光控制方法
GB2417840A (en) Power control of a discharge lamp
JP6245506B2 (ja) 点灯装置
US8941321B2 (en) Discharge lamp lighting device, and illumination apparatus and vehicle including same
KR100526240B1 (ko) 복합디밍제어방식의 냉음극형광램프용 인버터
JP7388991B2 (ja) 定電流回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914582

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021570600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914582

Country of ref document: EP

Kind code of ref document: A1