WO2021143768A1 - 动力电池均衡充电方法、装置、控制设备以及存储介质 - Google Patents

动力电池均衡充电方法、装置、控制设备以及存储介质 Download PDF

Info

Publication number
WO2021143768A1
WO2021143768A1 PCT/CN2021/071759 CN2021071759W WO2021143768A1 WO 2021143768 A1 WO2021143768 A1 WO 2021143768A1 CN 2021071759 W CN2021071759 W CN 2021071759W WO 2021143768 A1 WO2021143768 A1 WO 2021143768A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage difference
voltage
cell
charging
battery
Prior art date
Application number
PCT/CN2021/071759
Other languages
English (en)
French (fr)
Inventor
宋世柳
李飞
夏大兴
夏骥
Original Assignee
恒大新能源汽车投资控股集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恒大新能源汽车投资控股集团有限公司 filed Critical 恒大新能源汽车投资控股集团有限公司
Publication of WO2021143768A1 publication Critical patent/WO2021143768A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a method, device, control device, and storage medium for equalizing charging of a power battery.
  • embodiments of the present application propose a power battery equalization charging method, device, control device, and storage medium.
  • the technical solution is as follows.
  • a method for equalizing charging of a power battery includes: determining a first voltage difference between a first battery cell and a second battery cell of the power battery, where the first battery cell is the battery with the highest current voltage.
  • the second cell is the cell with the lowest current voltage; when the first voltage difference is greater than the target voltage difference, the first cell is controlled to discharge; the voltage of the first cell is determined to be The second voltage difference between the first target voltages; the charging current is adjusted based on the second voltage difference; the power battery is charged based on the adjusted charging current.
  • a power battery equalization charging device which includes: a first voltage difference determining module for determining a first voltage difference between a first battery cell and a second battery cell of the power battery; A cell is the cell with the highest current voltage, and the second cell is the cell with the lowest current voltage; a control module is used to control the first voltage difference when the first voltage difference is greater than the target voltage difference.
  • Cell discharge a second voltage difference determination module, used to determine a second voltage difference between the voltage of the first cell and a first target voltage
  • an adjustment module used to determine the second voltage difference based on the second voltage difference
  • the charging current is adjusted; the charging module is used to charge the power battery based on the adjusted charging current.
  • a control device in one aspect, includes one or more processors and one or more memories, and at least one piece of program code is stored in the one or more memories.
  • One or more processors are loaded and executed to realize the operations performed by the power battery equalization charging method.
  • a storage medium is provided, and at least one program code is stored in the storage medium, and the program code is loaded and executed by a processor to implement the operations performed by the method for balanced charging of a power battery.
  • FIG. 1 is a flowchart of a method for equalizing charging of a power battery according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for equalizing charging of a power battery according to an embodiment of the present application
  • Fig. 3 is a logic flow chart of a method for equalizing charging of a power battery according to an embodiment of the present application
  • FIG. 4 is a logic flow chart of a method for equalizing charging of a power battery according to an embodiment of the present application
  • FIG. 5 is a circuit diagram that implements a method for equalizing charging of a power battery provided by an embodiment of the present application
  • FIG. 6 is a schematic diagram of the effect of implementing a method for equalizing charging of a power battery provided by an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a power battery equalizing charging device according to an embodiment of the present application.
  • Fig. 8 is a schematic structural diagram of a control device according to an embodiment of the present application.
  • the power battery includes at least two electric cores, and these electric cores are connected in series or in parallel, and can also be connected in series and then connected in parallel, or connected in parallel and then connected in series.
  • a difference in charging consistency when charging, there may be a problem that the charging degree of each battery cell is different, which is called a difference in charging consistency.
  • the voltage of some cells may be greater than other cells, that is, the first cell with the highest voltage and the second cell with the lowest voltage appear.
  • the first battery cell refers to the battery cell with the highest voltage in the current power battery, or all battery cells whose voltage is greater than the first preset value;
  • the second battery cell refers to the current power battery with the lowest voltage One of the cells, or all cells whose voltage is lower than the second preset value.
  • the charging method of the power battery in the embodiment of the application adopts the principle of proportional integral control to control the consistency difference between the battery cells during charging, and the voltage of each battery cell is controlled under the condition that each battery cell is not overcharged. Basically keep the same, eliminate the difference in charging consistency.
  • FIG. 1 is an equalizing charging method for a power battery provided by an embodiment of the application. Referring to FIG. 1, the method includes the following steps.
  • the control device can determine the first voltage difference between the first battery cell with the highest voltage and the second battery cell with the lowest voltage in the power battery, when the first voltage difference is When the voltage difference is greater than the target voltage, the first cell is controlled to discharge, and the charging current is adjusted based on the second voltage difference between the voltage of the first cell and the first target voltage to ensure that the first cell is overcharged and the second cell continues Charging reduces the first voltage difference between the first battery cell and the second battery cell, and improves the service life of the power battery.
  • adjusting the charging current based on the second voltage difference includes the following steps.
  • the second voltage difference is input into the proportional integral controller, and the proportional integral controller performs proportional integral calculation based on the second voltage difference to obtain the charging current adjustment value.
  • the charging current is adjusted.
  • controlling the discharge of the first cell includes the following steps.
  • the first cell is connected in parallel with an equalizing circuit for discharging, and the equalizing circuit includes a switch and a shunt resistor.
  • the control switch When the first voltage difference is greater than the target voltage difference, the control switch is closed to discharge the first cell.
  • the method further includes: when it is determined that the power battery satisfies the target charging condition, performing a process of adjusting the charging current within the maximum allowable time period of equilibrium.
  • that the power battery satisfies the target charging condition refers to at least one of: the remaining power of the power battery is higher than the first target power and the voltage of the first battery cell is higher than the second target voltage.
  • FIG. 2 is a flowchart of a method for equalizing charging of a power battery provided by an embodiment of the present application
  • FIG. 3 is a logic flowchart of a method for equalizing charging of a power battery provided by an embodiment of the present application
  • FIG. 4 is a flowchart provided by an embodiment of the present application.
  • the control device determines whether the power battery satisfies the target charging condition, and when the power battery satisfies the target charging condition, steps 202-205 are executed within the maximum allowable time of equilibrium.
  • the power battery meeting the target charging condition means that the remaining power of the power battery is higher than the first target power, and the voltage of the first battery cell is higher than the second target voltage.
  • the first battery cell is the battery with the highest current voltage.
  • the maximum allowable time for equalization is the longest time for implementing the power battery equalization charging method provided in the embodiment of this application.
  • the control device can start timing and execute the power battery provided in the embodiment of this application. In the equalizing charging method, when the equalizing charging time recorded by the control device reaches the maximum allowable equalizing time, the charging operation of the power battery is stopped.
  • control device may obtain the voltage of each cell in the power battery, and use the cell with the highest voltage as the first cell.
  • control device can obtain the remaining power (State of Charge, SOC) of the power battery, and the specific obtaining method can adopt the open circuit voltage method, the ampere-hour integration method, the internal resistance method, and the extended Kalman filter algorithm.
  • SOC State of Charge
  • the specific obtaining method can adopt the open circuit voltage method, the ampere-hour integration method, the internal resistance method, and the extended Kalman filter algorithm.
  • neural network algorithms, etc. of course, multiple methods can also be used in combination at the same time, which is not limited in the embodiment of the present application.
  • the first target power level can be set according to actual needs, for example, it can be set to 95%, that is to say, when the overall power battery power reaches 95%, the control device starts to execute the power battery provided in the embodiment of the present application.
  • the equalizing charging method in other words, when the power battery power reaches 95%, it means that the charging phase of the power battery has reached the end of charging.
  • the equalizing charging method of the power battery provided in the embodiments of this application can prevent the first The battery cell is overcharged and the second battery cell is not fully charged.
  • the first target power amount can also be set to any value according to actual conditions, which is not limited in the embodiment of the present application.
  • the second target voltage can also be set according to actual needs.
  • the second target voltage can represent the voltage when the first battery cell is fully charged.
  • the control device can determine the first battery cell. The battery is full.
  • the control device may execute the power battery provided in this embodiment of the application at this time. Equalizing charging method.
  • the control device can also execute the power battery equalization charging method provided in the embodiment of the present application when the remaining power of the power battery is higher than the first target power and the voltage of the first battery cell is higher than the second target voltage.
  • the embodiments of the present disclosure do not limit this.
  • the maximum allowable equalization time is the longest time for the control device to perform the equalization charging method for the power battery provided in the embodiment of the present application. Setting the maximum allowable time for equalization can prevent the second battery cell from being unable to be fully charged in some cases, causing the first battery cell to be continuously discharged or charged, resulting in an excessively long charging time.
  • the maximum allowable equalization time can be set by the user in advance. If the user does not set the maximum allowable equalization time in advance, the control device can directly adopt the default value as the maximum allowable equalization time, for example, 2 hours.
  • the control device determines the first voltage difference between the first cell and the second cell of the power battery, the second cell is the cell with the lowest current voltage, and when the first voltage difference is greater than the target voltage difference , The control device controls the discharge of the first battery cell.
  • the control device may obtain the first voltage difference between the first battery cell with the highest voltage and the second battery cell with the lowest voltage in the power battery, and the first voltage difference reflects the power battery The voltage imbalance between the inner cells.
  • the control device can control the first battery cell to discharge, so as to prevent the first battery cell from being overcharged.
  • each cell in the power battery can be connected in parallel with an equalizing circuit for discharging, and the equalizing circuit includes a switch and a shunt resistor.
  • the control device may control the switch to close, so that the first battery cell is discharged.
  • the charging current I is divided into flowing through the shunt the resistance and the current of the first current I 1 flowing through the cell I 2, if the first cell voltage U max is high, indicates a higher amount of a first cell, then the corresponding I 3 greater, when When I 3 >I 2 , it is equivalent to that the first battery cell is not charged, but is discharging.
  • the voltage of the first cell will neither rise nor fall.
  • control device After the control device obtains the voltage of each cell in the power battery, it can also calculate the voltage difference between each cell. When the voltage difference between any two cells is greater than the target voltage difference, the control voltage The higher battery cell is discharged to ensure that the higher voltage battery cell will not be overcharged, and the lower voltage battery cell can continue to be charged.
  • the control device determines a second voltage difference between the voltage of the first cell and the first target voltage.
  • the control device can calculate the second voltage difference between the voltage of the first cell and the first target voltage in real time, where the first target voltage is the value of the first cell expected by the control device. Voltage.
  • the control device may store the correspondence between the first voltage difference and the first target voltage. When the control device obtains the first voltage difference, it may be based on the correspondence between the first voltage difference and the first target voltage, Determine the corresponding first target voltage.
  • the control device inputs the second voltage difference into the proportional integral controller, and the proportional integral controller performs a proportional integral operation based on the second voltage difference to obtain the charging current adjustment value. Based on the charging current adjustment value, the charging current is adjusted.
  • the proportional integral controller may calculate the second voltage difference based on formula (1) to obtain the charging current adjustment value.
  • ⁇ I is the charging current adjustment value
  • ⁇ V is the second voltage difference value
  • K p is the proportional coefficient
  • K i is the integral coefficient
  • t is the control duration.
  • the control device can also adjust the charging current to I by itself, which can be specifically achieved by adjusting the total resistance in the circuit. The embodiment of the present application does not limit the manner in which the control device controls the charging current.
  • the control device charges the power battery based on the adjusted charging current.
  • the voltage of the battery cell decreases slowly, that is, the second voltage difference between the voltage of the first battery cell and the first target voltage is also slowly decreasing.
  • the proportional integral controller will also be based on the slowly decreasing first Two voltage difference, control the charging current to decrease slowly.
  • the control device can stop controlling the charging current.
  • I 3 I 2
  • the voltage of the first cell will stabilize near the first target voltage.
  • the second battery cell with lower power does not stop charging, but will continue to be charged with the adjusted charging current.
  • the control device can consider that the power battery has been When it is fully charged, stop charging the power battery.
  • step 201 when the charging time reaches the maximum allowable time of equilibrium, stop charging the power battery, or when the second voltage difference is less than the target voltage
  • the difference value and the charging time reaches the maximum allowable time of equilibrium the power battery will stop charging, which is not limited in the embodiment of the present application.
  • the control device detects that the remaining power of the power battery is higher than the first target power or the voltage of the first battery cell is higher than the second target voltage
  • the control device detects the first power The first voltage difference between the core and the second cell.
  • the proportional-integral controller is used to control the voltage of the first cell at the first target with the aid of the equalization circuit.
  • Near the voltage while keeping the second battery cell in a continuous charging state, it can prevent the first battery cell from overcharging, and it can also make the first voltage difference between the first battery cell and the second battery cell gradually decrease, which improves the power battery. Service life.
  • the user can also set a maximum allowable equalization time in advance to ensure that the charging process of the power battery will not be extended indefinitely and save energy.
  • the maximum allowable equalization duration in this embodiment is set by the user, and its value is 2 hours, the target voltage difference is 0.1V, and the first target voltage is 4.2V.
  • the control device detects that the SOC of the power battery is 95%, the voltage of the first battery is 4.211V, and the voltage of the second battery is 4.025V, the first battery and the second battery
  • the first voltage difference between the cores is 0.186V, the first voltage difference is greater than the target voltage difference, and the control device controls the first battery cell to discharge so that its voltage is stabilized near 4.2V.
  • FIG. 7 is a schematic structural diagram of a power battery equalization charging device provided by an embodiment of the application.
  • the device includes: a first voltage difference determination module 701, a control module 702, a second voltage difference determination module 703, an adjustment module 704, and a charging module 705.
  • the first voltage difference determining module 701 is used to determine the first voltage difference between the first battery cell and the second battery cell of the power battery.
  • the first battery cell is the battery cell with the highest current voltage
  • the second battery cell is The cell with the lowest current voltage.
  • the control module 702 is configured to control the discharge of the first cell when the first voltage difference is greater than the target voltage difference.
  • the second voltage difference determining module 703 is used to determine the second voltage difference between the voltage of the first cell and the first target voltage.
  • the adjustment module 704 is configured to adjust the charging current based on the second voltage difference.
  • the charging module 705 is used to charge the power battery based on the adjusted charging current.
  • the adjustment module includes:
  • the arithmetic unit is used to input the second voltage difference value into the proportional integral controller, and the proportional integral controller performs proportional integral calculation based on the second voltage difference value to obtain the charging current adjustment value.
  • the adjustment unit is used to adjust the charging current based on the charging current adjustment value.
  • the first cell is connected in parallel with an equalizing circuit for discharging, and the equalizing circuit includes a switch and a shunt resistor.
  • the control module is also used to control the switch to close when the first voltage difference is greater than the target voltage difference, so that the first battery cell is discharged.
  • the device further includes:
  • the execution module is used to execute the process of adjusting the charging current within the maximum allowable time period of equilibrium when it is determined that the power battery meets the target charging condition.
  • that the power battery satisfies the target charging condition means that the remaining power of the power battery is higher than the first target power and the voltage of the first battery cell is higher than at least one of the second target voltage.
  • the control device detects that the remaining power of the power battery is higher than the first target power or the voltage of the first battery cell is higher than the second target voltage
  • the control device detects the first power The first voltage difference between the core and the second cell.
  • the proportional-integral controller is used to control the voltage of the first cell at the first target with the aid of the equalization circuit.
  • Near the voltage while keeping the second battery cell in a continuous charging state, it can prevent the first battery cell from overcharging, and it can also make the first voltage difference between the first battery cell and the second battery cell gradually decrease, which improves the power battery. Service life.
  • the user can also set a maximum allowable equalization time in advance to ensure that the charging process of the power battery will not be extended indefinitely and save energy.
  • FIG. 8 is a schematic structural diagram of a control device provided by an embodiment of the present invention.
  • the control device 800 may have relatively large differences due to different configurations or performance, and may include one or more processors (Central Processing Units, CPU) 801 And one or more memories 802, where at least one program code is stored in the memory 802, and the at least one program code is loaded and executed by the processor 801 to implement the power battery equalization charging method provided by the foregoing various method embodiments.
  • the control device may also have components such as a wired or wireless network interface, a keyboard, an input and output interface for input and output, and the control device may also include other components for implementing device functions, which will not be repeated here.
  • a storage medium such as a memory including program code
  • the program code may be executed by a processor in a control device or a server to complete the power battery equalization charging method in the foregoing embodiment.
  • the storage medium may be Read-Only Memory (ROM), Random Access Memory (RAM), Compact Disc Read-Only Memory (CD-ROM), magnetic tape, floppy disk And optical data storage equipment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供了一种动力电池均衡充电方法、装置、控制设备以及存储介质,所述方法包括:确定动力电池的第一电芯和第二电芯之间的第一电压差值,所述第一电芯为当前电压最高的电芯,所述第二电芯为当前电压最低的电芯;当所述第一电压差值大于目标电压差值时,控制所述第一电芯放电;确定所述第一电芯的电压与第一目标电压之间的第二电压差值;基于所述第二电压差值对充电电流进行调整;基于调整后的充电电流对所述动力电池进行充电。

Description

动力电池均衡充电方法、装置、控制设备以及存储介质
交叉引用
本发明要求在2020年01月19日提交中国专利局、申请号为202010057501.9、发明名称为“动力电池均衡充电方法、装置、控制设备以及存储介质”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本申请涉及电池技术领域,特别涉及一种动力电池均衡充电方法、装置、控制设备以及存储介质。
背景技术
近年来,国内外知名企业不断加码新能源汽车领域,新能源汽车已经成为我国经济增长的重要发展方向。电动汽车的动力电池的充电均衡是动力电池非常重要的功能,均衡充电能够保证动力电池的电芯充满而又不至于过充,而均衡充电够降低动力电池的电芯之间的电压差异以提升的整体寿命,因此均衡充电对动力电池的寿命和维护至关重要。相关技术中虽然有一些动力电池的充电均衡方法,但是并不能满足动力电池的需要。
发明内容
为了解决相关技术中对于动力电池的充电均衡技术中存在的多个问题中的至少一个问题,本申请实施例提出了一种动力电池均衡充电方法、装置、控制设备以及存储介质。所述技术方案如下。
一方面,提供了一种动力电池均衡充电方法,方法包括:确定动力电池的第一电芯和第二电芯之间的第一电压差值,所述第一电芯为当前电压最高的电芯,所述第二电芯为当前电压最低的电芯;当所述第一电压差值大于目 标电压差值时,控制所述第一电芯放电;确定所述第一电芯的电压与第一目标电压之间的第二电压差值;基于所述第二电压差值对充电电流进行调整;基于调整后的充电电流对所述动力电池进行充电。
一方面,提供了一种动力电池均衡充电装置,包括:第一电压差值确定模块,用于确定动力电池的第一电芯和第二电芯之间的第一电压差值,所述第一电芯为当前电压最高的电芯,所述第二电芯为当前电压最低的电芯;控制模块,用于当所述第一电压差值大于目标电压差值时,控制所述第一电芯放电;第二电压差值确定模块,用于确定所述第一电芯的电压与第一目标电压之间的第二电压差值;调整模块,用于基于所述第二电压差值对充电电流进行调整;充电模块,用于基于调整后的充电电流对所述动力电池进行充电。
一方面,提供了一种控制设备,所述控制设备包括一个或多个处理器和一个或多个存储器,所述一个或多个存储器中存储有至少一条程序代码,所述程序代码由所述一个或多个处理器加载并执行以实现所述动力电池均衡充电方法所执行的操作。
一方面,提供了一种存储介质,所述存储介质中存储有至少一条程序代码,所述程序代码由处理器加载并执行以实现所述动力电池均衡充电方法所执行的操作。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例的一种动力电池均衡充电方法的流程图;
图2是本申请实施例的一种动力电池均衡充电方法的流程图;
图3是本申请实施例的一种动力电池均衡充电方法的逻辑流程图;
图4是本申请实施例的一种动力电池均衡充电方法的逻辑流程图;
图5是实现本申请实施例提供的一种动力电池均衡充电方法的电路图;
图6是实现本申请实施例提供的一种动力电池均衡充电方法的效果示意图;
图7是本申请实施例的一种动力电池均衡充电装置的结构示意图;
图8是本申请实施例的一种控制设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
动力电池包括至少两个电芯,且这些电芯之间串联或并联在一起,也可以先串联后并联,或是先并联后串联。这样导致在充电时,可能存在各个电芯的充电程度不同的问题,称为充电一致性差异。也就是说,在充电时可能出现部分电芯的电压大于其他电芯,也就是出现了电压最高的第一电芯和电压最低的第二电芯。此时如果在第一电芯充满时就停止充电,则会出现第一电芯充满而第二电芯未充满;如果要在第一电芯充满时继续充电以使第二电芯也充满,则第二电芯都充满时第一电芯出现过充。
在本申请实施例中,第一电芯是指当前动力电池中电压最高的一个电芯,或是电压大于第一预设值的所有电芯;第二电芯是指当前动力电池中电压最低的一个电芯,或是电压低于第二预设值的所有电芯。
本申请实施例的动力电池充电方法是采用比例积分控制原理,对电芯之间在充电时的一致性差异进行控制,在每个电芯均不过充的条件下,控制每个电芯的电压基本保持一致,消除充电一致性差异。
图1为本申请实施例提供的一种动力电池均衡充电方法,参见图1,方法包括以下步骤。
101、确定动力电池的第一电芯和第二电芯之间的第一电压差值,第一电芯为当前电压最高的电芯,第二电芯为当前电压最低的电芯。
102、当第一电压差值大于目标电压差值时,控制第一电芯放电。
103、确定第一电芯的电压与第一目标电压之间的第二电压差值。
104、基于第二电压差值对充电电流进行调整。
105、基于调整后的充电电流对动力电池进行充电。
通过本申请实施例提供的动力电池均衡充电方法,控制设备可以确定动力电池中电压最高的第一电芯和电压最低的第二电芯之间的第一电压差值,当第一电压差值大于目标电压差值时控制第一电芯放电,基于第一电芯的电压与第一目标电压之间的第二电压差值调整充电电流,保证第一电芯不过充,第二电芯继续充电,降低第一电芯和第二电芯之间的第一电压差值,提升动力电池的使用寿命。
在一种可能的实施方式中,基于第二电压差值对充电电流进行调整,包括以下步骤。
将第二电压差值输入到比例积分控制器中,由比例积分控制器基于第二电压差值进行比例积分运算,获取充电电流调整值。
基于充电电流调整值,对充电电流进行调整。
在一种可能的实施方式中,当第一电压差值大于目标电压差值时,控制第一电芯放电,包括以下步骤。
第一电芯并联有用于放电的均衡电路,均衡电路包括开关和分流电阻。
当第一电压差值大于目标电压差值时,控制开关闭合,使得第一电芯放电。
在一种可能的实施方式中,方法还包括:当确定动力电池满足目标充电条件时,在均衡最大允许时长内执行对充电电流进行调整的过程。
在一种可能的实施方式中,动力电池满足目标充电条件是指:动力电池的剩余电量高于第一目标电量以及第一电芯的电压高于第二目标电压中的至少一个。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
图2是本申请实施例提供的一种动力电池均衡充电方法流程图,图3是本申请实施例提供的一种动力电池均衡充电方法的逻辑流程图,图4是本申请实施例提供的一种动力电池均衡充电方法的逻辑流程图,参见图2、图3和图4,方法包括以下步骤。
201、控制设备确定动力电池是否满足目标充电条件,当动力电池满足目标充电条件时,在均衡最大允许时长内执行步骤202-205。
其中,动力电池满足目标充电条件是指:动力电池的剩余电量高于第一目标电量以及第一电芯的电压高于第二目标电压中的至少一个,第一电芯为当前电压最高的电芯,均衡最大允许时长为执行本申请实施例提供的动力电池均衡充电方法的最长时长,当动力电池满足上述目标充电条件之后,控制设备就可以开始计时并执行本申请实施例提供的动力电池均衡充电方法,当控制设备记录的均衡充电时长达到均衡最大允许时长后,停止对动力电池的充电操作。
在一种可能的实施方式中,控制设备可以获取动力电池中每个电芯的电压,将电压最高的电芯作为第一电芯。
在一种可能的实施方式中,控制设备可以获取动力电池的剩余电量(State of Charge,SOC),具体的获取方法可以采用开路电压法、安时积分法、内阻法、扩展卡尔曼滤波算法以及神经网络算法等,当然也可以同时将多种方法结合使用,本申请实施例对此不做限定。
需要说明的是,第一目标电量可以根据实际需要进行设定,例如可以设 置为95%,也就是说当动力电池整体的电量达到95%时控制设备才开始执行本申请实施例提供的动力电池均衡充电方法,换句话说,当动力电池的电量达到95%也就意味着动力电池的充电阶段已经到达了充电末期,在充电末期执行本申请实施例提供的动力电池均衡充电方法可以防止第一电芯过充以及第二电芯充不满的情况。当然,也可以根据实际情况将第一目标电量设置为任一数值,本申请实施例对此不做限定。
第二目标电压也可以根据实际需要进行设定,该第二目标电压可以表示第一电芯充满时的电压,当第一电芯的电压达到第二目标电压时,控制设备可以确定该第一电芯已经充满。
在一种可能的实施方式中,当动力电池的剩余电量高于第一目标电量或第一电芯的电压高于第二目标电压时,此时控制设备可以执行本申请实施例提供的动力电池均衡充电方法。当然,控制设备也可以在当动力电池的剩余电量高于第一目标电量且第一电芯的电压高于第二目标电压时,执行本申请实施例提供的动力电池均衡充电方法。本公开实施例对此不做限定。
均衡最大允许时长为控制设备执行本申请实施例提供的动力电池均衡充电方法的最长时间。设定均衡最大允许时长可以避免在某些情况下第二电芯始终无法充满,导致第一电芯连续放电或充电,造成整个充电时间过长的情况。均衡最大允许时长可以由用户提前设定,如果用户没有提前设定均衡最大允许时长,那么控制设备可以直接采取默认值作为均衡最大允许时长,例如2小时。
202、控制设备确定动力电池的第一电芯和第二电芯之间的第一电压差值,第二电芯为当前电压最低的电芯,当第一电压差值大于目标电压差值时,控制设备控制第一电芯放电。
在一种可能的实施方式中,控制设备可以获取动力电池中电压最高的第一电芯和电压最低的第二电芯之间的第一电压差值,该第一电压差值反映了动力电池内电芯之间电压不平衡的情况。当第一电压差值大于目标电压差值 时,控制设备可以控制第一电芯进行放电,从而避免第一电芯过充。
如图5所示,动力电池中每个电芯上均可以并联有用于放电的均衡电路,均衡电路包括开关和分流电阻。当第一电压差值大于目标电压差值时,控制设备可以控制开关闭合,使得第一电芯放电。
具体来说,当控制设备控制开关闭合后,均衡电路与第一电芯形成了一个闭合回路,在该闭合回路中有第一电芯的放电电流I 3,如果将第一电芯的电压记作U max,分流电阻的阻值记作R 0,根据欧姆定律,可以得到I 3=U max/R 0,如果将充电电流记作I,在闭合开关后,充电电流I分为了流经分流电阻的电流I 1和流过第一电芯的电流I 2,如果第一电芯的电压U max较高,表示第一电芯的电量较高,那么相应的I 3也就越大,当I 3>I 2时,那么相当于第一电芯并没有充电,而是在放电,第一电芯放电释放的能量由分流电阻转化为热能而消耗掉,这样可以使得第一电芯的电压降低,当第一电芯的电压下降导致I 3也随之下降,直至I 3=I 2时,流经第一电芯的电流为0,第一电芯既没有处于放电状态也没有处于充电状态,在这种情况下,第一电芯的电压不会上升也不会降低。上述描述是以U max较高为例进行说明的,如果U max较低,即I 3<I 2时,表示第一电芯电量较低,那么第一电芯实际上还是会以I 3-I 2的电流进行充电,直至I 3=I 2时,第一电芯停止充电。
当然,控制设备在获取动力电池中每个电芯的电压之后,也可以计算每个电芯之间的电压差值,当任意两个电芯的电压差值大于目标电压差值时,控制电压较高的电芯进行放电,以保证电压较高的电芯不会过充,电压较低的电芯可以继续充电。
203、控制设备确定第一电芯的电压与第一目标电压之间的第二电压差值。
在一种可能的实施方式中,控制设备可以实时计算第一电芯的电压和第一目标电压之间的第二电压差值,其中,第一目标电压为控制设备期望的第一电芯的电压。控制设备中可以存储有第一电压差值和第一目标电压的对应关系,当控制设备获取到第一电压差值时,可以基于第一电压差值与第一目 标电压之间的对应关系,确定相应的第一目标电压。
204、控制设备将第二电压差值输入到比例积分控制器中,由比例积分控制器基于第二电压差值进行比例积分运算,获取充电电流调整值。基于充电电流调整值,对充电电流进行调整。
在一种可能的实施方式中,比例积分控制器可以基于公式(1)对第二电压差值进行计算,获取充电电流调整值。
Figure PCTCN2021071759-appb-000001
其中,ΔI为充电电流调整值,ΔV为第二电压差值,K p为比例系数,K i为积分系数,t为控制时长。
在一种可能的实施方式中,控制设备可以基于充电电流调整值,对充电电流进行调整,例如,当前充电电流为I 1,充电电流调整值为ΔI,调整后的充电电流为I,那么可以得到I=I 1+ΔI,之后控制设备可以将调整后的充电电流发送至充电控制器,由充电控制器将充电电流调整为I。当然,控制设备也可以自行将充电电流调整为I,具体可以通过调整电路中的总电阻来实现,本申请实施例对于控制设备控制充电电流的方式不做限定。
205、控制设备基于调整后的充电电流对动力电池进行充电。
为了便于理解,还是以图5为例进行说明,当I 3=I 2时,表明第一电芯的电量已经较高,充电电流不会对第一电芯进行充电,控制设备对充电电流进行调整之后,实际上也就是调整了图5中的充电电流I,调整了充电电流I,也即是同时调整了电流I 1和电流I 2,由于分流电阻的阻值R 0不变,那么在这一瞬间I 3也不变,如果控制设备将充电电流I减小,相应的I 2也会减小,那么此时I 3>I 2,第一电芯开始放电,在放电过程中第一电芯的电压缓慢降低,也即是第一电芯的电压与第一目标电压之间的第二电压差值也在缓慢减小, 相应的,比例积分控制器也会基于缓慢减小的第二电压差值,控制充电电流缓慢减小。当第二电压差值小于目标阈值时,控制设备可以停止控制充电电流,当I 3=I 2时,第一电芯的电压就会稳定在第一目标电压附近。于此同时,电量较低的第二电芯并没有停止充电,而是会继续以调整后的充电电流充电,当第二电芯的电压达到第一目标电压时,控制设备可以认为动力电池已经被充满,停止对动力电池的充电,当然也可以如步骤201中所说的,当充电时间达到均衡最大允许时长时,停止对动力电池进行充电,或,是当第二电压差值小于目标电压差值且充电时间达到均衡最大允许时长时,停止对动力电池进行充电,本申请实施例对此不做限定。
通过本申请实施例提供的动力电池均衡充电方法,当控制设备检测到动力电池的剩余电量高于第一目标电量或第一电芯的电压高于第二目标电压时,控制设备检测第一电芯和第二电芯之间的第一电压差值,当第一电压差值大于目标电压差值时,通过比例积分控制器,借助均衡电路,将第一电芯的电压控制在第一目标电压附近,同时使得第二电芯保持继续充电状态,可以防止第一电芯过充,也可以使得第一电芯和第二电芯之间的第一电压差值逐渐减小,提高动力电池的使用寿命。除此之外,用户还可以提前设置一个均衡最大允许时长,来保证动力电池的充电过程不会无限延长,节约电能。
下面以一个具体的实施例来说明本申请实施例的有益效果。
在该实施例中的均衡最大允许时长是用户自行设定的,其取值为2小时,目标电压差值为0.1V,第一目标电压为4.2V。如图6所示,当控制设备检测到动力电池的SOC为95%,此时第一电芯的电压为4.211V,第二电芯的电压为4.025V时,第一电芯和第二电芯之间的第一电压差值为0.186V,第一电压差值大于目标电压差值,控制设备控制第一电芯放电,使其电压稳定在4.2V附近。
图7为本申请实施例提供的一种动力电池均衡充电装置结构示意图,装置包括:第一电压差值确定模块701、控制模块702、第二电压差值确定模块703、调整模块704以及充电模块705。
第一电压差值确定模块701,用于确定动力电池的第一电芯和第二电芯之间的第一电压差值,第一电芯为当前电压最高的电芯,第二电芯为当前电压最低的电芯。
控制模块702,用于当第一电压差值大于目标电压差值时,控制第一电芯放电。
第二电压差值确定模块703,用于确定第一电芯的电压与第一目标电压之间的第二电压差值。
调整模块704,用于基于第二电压差值对充电电流进行调整。
充电模块705,用于基于调整后的充电电流对动力电池进行充电。
在一种可能的实施方式中,调整模块,包括:
运算单元,用于将第二电压差值输入到比例积分控制器中,由比例积分控制器基于第二电压差值进行比例积分运算,获取充电电流调整值。
调整单元,用于基于充电电流调整值,对充电电流进行调整。
在一种可能的实施方式中,第一电芯并联有用于放电的均衡电路,均衡电路包括开关和分流电阻。
控制模块还用于当第一电压差值大于目标电压差值时,控制开关闭合,使得第一电芯放电。
在一种可能的实施方式中,装置还包括:
执行模块,用于当确定动力电池满足目标充电条件时,在均衡最大允许时长内执行对充电电流进行调整的过程。
在一种可能的实施方式中,动力电池满足目标充电条件是指:动力电池的剩余电量高于第一目标电量以及第一电芯的电压高于第二目标电压中的至 少一个。
通过本申请实施例提供的动力电池均衡充电装置,当控制设备检测到动力电池的剩余电量高于第一目标电量或第一电芯的电压高于第二目标电压时,控制设备检测第一电芯和第二电芯之间的第一电压差值,当第一电压差值大于目标电压差值时,通过比例积分控制器,借助均衡电路,将第一电芯的电压控制在第一目标电压附近,同时使得第二电芯保持继续充电状态,可以防止第一电芯过充,也可以使得第一电芯和第二电芯之间的第一电压差值逐渐减小,提高动力电池的使用寿命。除此之外,用户还可以提前设置一个均衡最大允许时长,来保证动力电池的充电过程不会无限延长,节约电能。
图8是本发明实施例提供的一种控制设备的结构示意图,该控制设备800可因配置或性能不同而产生比较大的差异,可以包括一个或一个以上处理器(Central Processing Units,CPU)801和一个或一个以上的存储器802,其中,该存储器802中存储有至少一条程序代码,该至少一条程序代码由该处理器801加载并执行以实现上述各个方法实施例提供的动力电池均衡充电方法。当然,该控制设备还可以具有有线或无线网络接口、键盘以及输入输出接口等部件,以便进行输入输出,该控制设备还可以包括其他用于实现设备功能的部件,在此不做赘述。
在示例性实施例中,还提供了一种存储介质,例如包括程序代码的存储器,上述程序代码可由控制设备或服务器中的处理器执行以完成上述实施例中的动力电池均衡充电方法。例如,该存储介质可以是只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)、磁带、软盘和光数据存储设备等。
在本发明实施例中,应该理解到,术语“第一”、“第二”等仅用于描 述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
上述仅为本发明的可选实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种动力电池均衡充电方法,其中,包括:
    确定动力电池的第一电芯和第二电芯之间的第一电压差值,所述第一电芯为当前电压最高的电芯,所述第二电芯为当前电压最低的电芯;
    当所述第一电压差值大于目标电压差值时,控制所述第一电芯放电;
    确定所述第一电芯的电压与第一目标电压之间的第二电压差值;
    基于所述第二电压差值对充电电流进行调整;
    基于调整后的充电电流对所述动力电池进行充电。
  2. 根据权利要求1所述的方法,其中,所述基于所述第二电压差值对充电电流进行调整,包括:
    将所述第二电压差值输入到比例积分控制器中,由所述比例积分控制器基于所述第二电压差值进行比例积分运算,获取充电电流调整值;
    基于所述充电电流调整值,对所述充电电流进行调整。
  3. 根据权利要求1所述的方法,其中,所述当所述第一电压差值大于目标电压差值时,控制所述第一电芯放电,包括:
    所述第一电芯并联有用于放电的均衡电路,所述均衡电路包括开关和分流电阻;
    当所述第一电压差值大于所述目标电压差值时,控制所述开关闭合,使得所述第一电芯放电。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    当确定所述动力电池满足目标充电条件时,在均衡最大允许时长内执行对所述充电电流进行调整的过程。
  5. 根据权利要求4所述的方法,其中,所述动力电池满足目标充电条件是指:所述动力电池的剩余电量高于第一目标电量以及所述第一电芯的电压高于第二目标电压中的至少一个。
  6. 一种动力电池均衡充电装置,其中,包括:
    第一电压差值确定模块,用于确定动力电池的第一电芯和第二电芯之间的第一电压差值,所述第一电芯为当前电压最高的电芯,所述第二电芯为当前电压最低的电芯;
    控制模块,用于当所述第一电压差值大于目标电压差值时,控制所述第一电芯放电;
    第二电压差值确定模块,用于确定所述第一电芯的电压与第一目标电压之间的第二电压差值;
    调整模块,用于基于所述第二电压差值对充电电流进行调整;
    充电模块,用于基于调整后的充电电流对所述动力电池进行充电。
  7. 根据权利要求6所述的装置,其中,所述调整模块,包括:
    运算单元,用于将所述第二电压差值输入到比例积分控制器中,由所述比例积分控制器基于所述第二电压差值进行比例积分运算,获取充电电流调整值;
    调整单元,用于基于所述充电电流调整值,对所述充电电流进行调整。
  8. 根据权利要求6所述的装置,其中,所述第一电芯并联有用于放电的均衡电路,所述均衡电路包括开关和分流电阻;
    所述控制模块还用于当所述第一电压差值大于所述目标电压差值时,控制所述开关闭合,使得所述第一电芯放电。
  9. 一种控制设备,其中,所述控制设备包括一个或多个处理器和一个或 多个存储器,所述一个或多个存储器中存储有至少一条程序代码,所述程序代码由所述一个或多个处理器加载并执行以实现如权利要求1至权利要求5任一项所述的动力电池均衡充电方法所执行的操作。
  10. 一种存储介质,其中,所述存储介质中存储有至少一条程序代码,所述程序代码由处理器加载并执行以实现如权利要求1至权利要求5任一项所述的动力电池均衡充电方法所执行的操作。
PCT/CN2021/071759 2020-01-19 2021-01-14 动力电池均衡充电方法、装置、控制设备以及存储介质 WO2021143768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010057501.9 2020-01-19
CN202010057501.9A CN111245051B (zh) 2020-01-19 2020-01-19 动力电池均衡充电方法、装置、控制设备以及存储介质

Publications (1)

Publication Number Publication Date
WO2021143768A1 true WO2021143768A1 (zh) 2021-07-22

Family

ID=70874726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071759 WO2021143768A1 (zh) 2020-01-19 2021-01-14 动力电池均衡充电方法、装置、控制设备以及存储介质

Country Status (2)

Country Link
CN (1) CN111245051B (zh)
WO (1) WO2021143768A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117549796A (zh) * 2023-12-27 2024-02-13 中航锂电(洛阳)有限公司 一种电池被动均衡的控制方法及车辆

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111245051B (zh) * 2020-01-19 2021-08-13 恒大恒驰新能源汽车科技(广东)有限公司 动力电池均衡充电方法、装置、控制设备以及存储介质
CN112092671A (zh) * 2020-09-28 2020-12-18 恒大新能源汽车投资控股集团有限公司 充电控制方法、装置、设备及存储介质
CN113422399A (zh) * 2021-04-16 2021-09-21 长城汽车股份有限公司 车辆供电系统、方法及车辆
CN113263957B (zh) * 2021-05-17 2022-06-24 重庆大学 一种动力电池系统能量优化装置和方法
CN114598003A (zh) * 2022-03-17 2022-06-07 上海沃兰特航空技术有限责任公司 充电方法、装置及存储介质
TWI823405B (zh) * 2022-05-26 2023-11-21 光陽工業股份有限公司 電動車的充電控制系統

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026226A (zh) * 2016-05-19 2016-10-12 东软集团股份有限公司 电池均衡方法、装置及电池系统
CN108513689A (zh) * 2017-03-30 2018-09-07 深圳市大疆创新科技有限公司 充电控制方法、系统、充电器、智能电池和可移动平台
CN108767928A (zh) * 2018-06-29 2018-11-06 深圳市安科讯实业有限公司 多电池平衡方法及装置
CN110277807A (zh) * 2018-03-13 2019-09-24 宁德时代新能源科技股份有限公司 充电电流控制方法及装置、电池管理系统、运载工具、设备和计算机可读存储介质
CN111245051A (zh) * 2020-01-19 2020-06-05 恒大新能源汽车科技(广东)有限公司 动力电池均衡充电方法、装置、控制设备以及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8904587B1 (en) * 2012-12-31 2014-12-09 Ray Charles Patterson Hand held electric shoe polisher

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106026226A (zh) * 2016-05-19 2016-10-12 东软集团股份有限公司 电池均衡方法、装置及电池系统
CN108513689A (zh) * 2017-03-30 2018-09-07 深圳市大疆创新科技有限公司 充电控制方法、系统、充电器、智能电池和可移动平台
CN110277807A (zh) * 2018-03-13 2019-09-24 宁德时代新能源科技股份有限公司 充电电流控制方法及装置、电池管理系统、运载工具、设备和计算机可读存储介质
CN108767928A (zh) * 2018-06-29 2018-11-06 深圳市安科讯实业有限公司 多电池平衡方法及装置
CN111245051A (zh) * 2020-01-19 2020-06-05 恒大新能源汽车科技(广东)有限公司 动力电池均衡充电方法、装置、控制设备以及存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117549796A (zh) * 2023-12-27 2024-02-13 中航锂电(洛阳)有限公司 一种电池被动均衡的控制方法及车辆

Also Published As

Publication number Publication date
CN111245051B (zh) 2021-08-13
CN111245051A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
WO2021143768A1 (zh) 动力电池均衡充电方法、装置、控制设备以及存储介质
WO2017167002A1 (zh) 一种磷酸铁锂电池的充电方法及装置
WO2022166524A1 (zh) 电池充电控制方法、系统、车辆、可读存储介质及设备
JP7185437B2 (ja) 電池管理装置、電池管理方法、電力貯蔵システム
WO2021184514A1 (zh) 伴随电池寿命衰减合理调整锂电池放电截止电压的方法
CN108417917B (zh) 一种锂离子电池快速充电方法
CN109904850B (zh) 一种分布式储能直流微电网中储能单元的充放电控制方法
US20170110892A1 (en) Method of balancing battery power
US8022670B2 (en) Method for charging battery module
KR102577586B1 (ko) 배터리에 포함된 물질의 확산 특성을 이용하여 배터리의 충전을 제어하는 장치 및 방법
CN113013938B (zh) 一种多支路并联的并网型电池储能系统荷电状态均衡方法
JP2013094045A (ja) 電池の充電のためのシステムおよび方法
WO2023001214A1 (zh) 多电池包充电管理方法、装置、储能设备
CN116231795B (zh) 一种分布式储存电池综合管理控制系统
WO2021249150A1 (zh) 混联电池充放电方法及混联电池系统
CN117013665B (zh) 储能系统调节方法、计算机介质、储能系统及发电系统
CN114465260B (zh) 一种光伏储能电池均衡的控制方法
WO2023125252A1 (zh) 充电控制方法、电子设备和计算机可读存储介质
WO2017169127A1 (ja) 二次電池システム
CN117013555A (zh) 基于电动汽车v2g双向充电的配电网无功优化控制方法
CN106532147B (zh) 一种电池组容量优化方法
CN113113950A (zh) 一种电池充电控制方法、装置和系统
CN117353430B (zh) 一种基于储能温升特性约束的储能运行控制方法
CN115800423B (zh) 储能系统和储能系统的调节方法
CN113328499B (zh) 一种电池组容量均衡方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741588

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21741588

Country of ref document: EP

Kind code of ref document: A1