WO2023001214A1 - 多电池包充电管理方法、装置、储能设备 - Google Patents

多电池包充电管理方法、装置、储能设备 Download PDF

Info

Publication number
WO2023001214A1
WO2023001214A1 PCT/CN2022/106937 CN2022106937W WO2023001214A1 WO 2023001214 A1 WO2023001214 A1 WO 2023001214A1 CN 2022106937 W CN2022106937 W CN 2022106937W WO 2023001214 A1 WO2023001214 A1 WO 2023001214A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
charging
charging current
voltage
total
Prior art date
Application number
PCT/CN2022/106937
Other languages
English (en)
French (fr)
Inventor
王雷
幸云辉
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Priority to EP22845379.1A priority Critical patent/EP4376250A1/en
Publication of WO2023001214A1 publication Critical patent/WO2023001214A1/zh
Priority to US18/415,945 priority patent/US20240154431A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0063Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with circuits adapted for supplying loads from the battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery pack charging, in particular to a multi-battery pack charging management method, device, and energy storage device.
  • the charging device When the charging device is charging multiple battery packs, there is no interaction between the battery pack and the charging device, and the charging device can only output a constant charging voltage and constant charging current. However, if the charging current and charging voltage are too small, the maximum effect of the charger cannot be exerted, resulting in slow charging speed and long charging time.
  • a multi-battery pack charging management method, device, energy storage device and readable storage medium are proposed.
  • the present application proposes a multi-battery pack charging management method, the method comprising:
  • the total charging current is received, the charging current of each battery pack is determined according to the sampled charging current of each battery pack and the total charging current, and the charging voltage of each battery pack is determined according to the sampled voltage of each battery pack.
  • the present application also proposes a battery pack charging management device, which includes:
  • An acquisition module configured to acquire the sampled temperature, sampled voltage and sampled charging current of each battery pack
  • a determining module configured to determine the target charging current of each battery pack according to the sampled temperature of each battery pack and the sampled voltage of each battery pack;
  • a calculation module configured to calculate a PI total adjustment value according to the target charging current and the sampled charging current of each battery pack;
  • a sending module configured to send the PI total adjustment value to the charging device, so that the charging device adjusts the total charging current according to the PI total adjustment value
  • the charging module is configured to receive the total charging current, determine the charging current of each battery pack according to the sampled charging current of each battery pack and the total charging current, and determine the charging current of each battery pack according to the sampled voltage of each battery pack. Pack charging voltage.
  • the present application proposes an energy storage device, including a memory and a processor, the memory stores a computer program, and the computer program executes the multi-battery pack charging management method described in the present application when running on the processor.
  • the present application proposes a readable storage medium, which stores a computer program, and the computer program executes the multi-battery pack charging management method described in the present application when running on a processor.
  • FIG. 1 shows a schematic flowchart of a multi-battery pack charging management method proposed by an embodiment of the present application.
  • FIG. 2 shows a schematic flowchart of acquiring the sampling temperature of each battery pack in the multi-battery pack charging management method proposed by the embodiment of the present application.
  • FIG. 3 shows a schematic flowchart of determining the target charging current of each battery pack in the multi-battery pack charging management method proposed by the embodiment of the present application.
  • Fig. 4 shows a schematic diagram of a PI adjustment principle proposed by the embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of determining the charging current of each battery pack in the multi-battery pack charging management method proposed by the embodiment of the present application.
  • FIG. 6 shows another schematic flowchart of determining the charging current of each battery pack in the multi-battery pack charging management method proposed by the embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of determining the charging voltage of each battery pack in the multi-battery pack charging management method proposed by the embodiment of the present application.
  • Fig. 8 shows a multi-battery pack charging management system proposed by the embodiment of the present application.
  • FIG. 9 shows a schematic flowchart of another charging management method for multiple battery packs proposed by the embodiment of the present application.
  • FIG. 10 shows another multi-battery pack charging management system proposed by the embodiment of the present application.
  • FIG. 11 shows a schematic structural diagram of a multi-battery pack charging management device proposed by an embodiment of the present application.
  • 10-battery pack charging management device 11-acquiring module; 12-determining module; 13-calculating module; 14-sending module; 15-charging module.
  • the embodiments provided in this application are applicable to energy storage equipment, which includes a battery module, and the battery module includes several single batteries, and several single batteries are connected in series or in parallel to form a battery pack, and several battery packs are connected in series or in parallel The way to form the battery module.
  • the battery module is provided with an interface through which the battery module outputs current or receives current for charging.
  • the battery module of the energy storage device may include a single or multiple single cells, and each single cell can be discharged or charged by receiving current alone or in combination with other single cells.
  • the battery module of the energy storage device includes several single cells, and several single cells are connected in series or in parallel to form a battery pack, and each battery pack can discharge or receive current independently or in combination with other battery packs. to charge.
  • the multi-battery pack charging management method provided in this application is applicable to an energy storage device including several battery packs, and is also applicable to an energy storage device including only a few single batteries. Taking the charging of multiple battery packs as an example below, the method for managing charging of multiple battery packs provided in the present application will be further explained.
  • the battery pack main pack when charging multiple battery packs, if there is a battery pack main pack in the multiple battery packs, the battery pack main pack can be used to: obtain the sampling temperature, sampling voltage and sampling charging current; determine the target charging current of each battery pack according to the sampling temperature of each battery pack and the sampling voltage of each battery pack; calculate the sum of the target charging current of each battery pack and the The difference of the sum of the sampled charging current to obtain the PI total adjustment value; send the PI total adjustment value to the charging device, so that the charging device adjusts the total charging current according to the PI total adjustment value; receive the charging The total current is to determine the charging current of each battery pack according to the sampled charging current of each battery pack and the total charging current, and determine the charging voltage of each battery pack according to the sampled voltage of each battery pack.
  • This application obtains the sampling temperature, sampling voltage and sampling charging current of each battery pack through the main pack of the battery pack, so as to control the output of the charging device by using the sampling temperature, sampling voltage and sampling charging current of each battery pack, while ensuring the safety of electricity use , give full play to the maximum effect of the charging equipment, improve the charging efficiency and shorten the charging time.
  • multiple battery packs when charging multiple battery packs, if the multiple battery packs do not have the above-mentioned battery pack main pack, multiple battery packs can be connected to an intermediate controller, and the intermediate controller is used to perform the above-mentioned multi-battery pack charging.
  • the management method obtains the sampled temperature, sampled voltage and sampled charging current of each battery pack, so as to control the output of the charging device through the sampled temperature, sampled voltage and sampled charging current of each battery pack, while ensuring the safety of electricity use, the charging device is fully utilized.
  • the maximum efficiency improve charging efficiency, shorten charging time.
  • an embodiment of the present application proposes a multi-battery pack charging management method, including steps S100 , S200 , S300 , S400 and S500 .
  • the battery pack During the charging and discharging process of the battery pack, heat accumulation will occur in the battery pack, causing the temperature of the battery pack to rise.
  • the battery pack has a short time from thermal runaway temperature rise to fire and combustion, which is very prone to fire and cause loss of personnel and property. If the battery pack is charged with a large charging current or a high charging voltage, the battery pack will be in a state of high temperature for a long time, which may cause the battery pack to catch fire.
  • the voltage measuring element can be used to obtain the battery pack voltage
  • the temperature sensor can be used to obtain the current battery pack temperature of the battery pack, so as to use the battery pack temperature and battery pack voltage to determine the current target charging current of the battery pack, avoiding the battery pack
  • the charging current is too large, which can effectively reduce the fire of the battery pack and ensure the safety of electricity use.
  • each battery pack includes at least one temperature sensor, a voltage sensor and a current sensor
  • the temperature sensor is used to collect the cell temperature of the battery pack in the charging process in real time (this application records the cell temperature collected in real time as sampling temperature)
  • the voltage sensor is used to collect the battery voltage of the battery pack in the charging process in real time (this application records the battery voltage collected in real time as the sampling voltage)
  • the current sensor is used to collect the charging current of the battery pack in the charging process in real time ( In this application, the charging current collected in real time is recorded as the sampling charging current).
  • the present application installs temperature sensors at multiple preset positions of each battery pack when measuring the cell temperature of the battery pack, and uses the temperature sensor Multiple cell temperature values are obtained, and the sampling temperature of the corresponding battery pack is determined according to the average value of the cell temperatures at the multiple preset locations. Through multi-point measurement, the temperature acquisition deviation is reduced, so that the sampling temperature of each battery pack is close to the actual temperature of the battery cell.
  • the sampling temperature of each battery pack is obtained in step S100 , including steps S110 - S130 .
  • S110 Obtain cell temperature values of a predetermined number of preset locations in the i-th battery pack, where 1 ⁇ i ⁇ I, where I is the total number of battery packs.
  • S120 Calculate an average value of the battery core temperatures at the predetermined number of preset locations.
  • steps S110, S120 and S130 can be executed sequentially once to determine the sampling temperature of one battery pack, and then sequentially executed once to determine the sampling temperature of another battery pack, until all battery packs are determined. It is also possible to execute step S110 one time first, then step S120 one time, and finally execute step S130 one time to determine the sampling temperature of all battery packs.
  • S200 Determine the target charging current of each battery pack according to the sampled temperature of each battery pack and the sampled voltage of each battery pack.
  • step S200 may include the following steps S210-S230.
  • S210 Determine the first charging current corresponding to the sampling temperature of the i-th battery pack according to the comparison table of battery pack temperature and target charging current, 1 ⁇ i ⁇ I, where I is the total number of battery packs.
  • S220 Determine the second charging current corresponding to the sampled voltage of the i-th battery pack according to the comparison table of the battery pack voltage and the target charging current.
  • S230 Use the smallest current value of the first charging current and the second charging current as the target charging current of the i-th battery pack.
  • steps S210, S220 and S230 may be performed sequentially once to determine the target charging current of one battery pack, and then sequentially performed once to determine the target charging current of another battery pack until Determine the sampling temperature of all battery packs; it is also possible to first execute step S210 once, then execute step S220 once, and finally execute step S230 once to determine the target charging current of all battery packs.
  • taking the minimum current value of the first charging current and the second charging current as the target charging current, and charging the battery pack with the target charging current can prevent the battery pack from being caused by overvoltage during the charging process. It can also avoid fire caused by overheating of the battery pack during charging, and take into account the safety of electricity while charging efficiently.
  • comparison table of battery pack temperature and target charging current can be standard comparison tables in the industry, or can be obtained by performing performance tests on different power-consuming products in advance. Chart.
  • S300 Calculate the difference between the sum of the target charging currents of the respective battery packs and the sum of the sampled charging currents of the respective battery packs to obtain a PI total adjustment value.
  • the total PI adjustment value can be determined according to the calculation formula of the PI total adjustment value, that is, the total PI adjustment value can be determined according to the following formula:
  • PI total adjustment value K*difference value, where: K is the proportional coefficient, the proportional coefficient can be set according to the actual adjustment needs, the difference is the difference between the total target current and the total sampling charging current, when the total target current is greater than the total When sampling the charging current, the difference is a positive number, and the corresponding PI total adjustment value is also a positive number. When the total target current is less than the total sampled charging current, the difference is a negative number, and the corresponding PI total adjustment value is also negative number.
  • the PI total adjustment value is taken as an example, but in practical applications, the PI total adjustment value can be a negative number, that is, when the charging current of each battery pack in the energy storage device is too large , the charging current of each battery pack needs to be lowered, and the total PI adjustment value at this time is negative, and in other embodiments, the PI adjustment value may be 0.
  • the target charging current of battery pack A in the energy storage device is 10A
  • its sampling current is 9A
  • the target charging current of battery pack B is 10A
  • its sampling current is 11A
  • the total target charging current sum is 20A
  • the total sampled charging current is 20A
  • the total adjusted value of the PI is 0 at this time.
  • the total PI adjustment value is dynamically changed, and the total PI adjustment value changes with the difference between the sum of the target charging currents of each battery pack and the sum of the sampled charging currents of each battery pack.
  • S400 Send the PI total adjustment value to a charging device, so that the charging device adjusts a total charging current according to the PI total adjustment value.
  • the PI adjustment function of the PI overall adjustment module can be used to adjust the total charging current output by the charging device, so that the total charging current output by the charging device is close to the target charging of each battery pack sum of currents.
  • the PI adjustment process is very fast and stable, which can effectively ensure that the total charging current output by the charging device quickly reaches the sum of the target charging currents of each battery pack, and the total charging current output by the charging device quickly reaches the target charging current of each battery pack
  • the process of summing is very stable, avoiding the sudden change of the total charging current output by the charging equipment, causing interference to the charging process.
  • the PI adjustment in this embodiment is a PI adjustment in a broad sense, for example, it may be to determine the PI total adjustment value through a proportional (P)-integral (I) regulator, or it may be through a proportional (P) The regulator determines the PI total adjustment value, etc., which can be set according to actual needs.
  • S500 Receive the total charging current, determine the charging current of each battery pack according to the sampled charging current of each battery pack and the total charging current, and determine the charging voltage of each battery pack according to the sampled voltage of each battery pack .
  • determining the charging current of each battery pack according to the sampled charging current of each battery pack and the total charging current in step S500 includes the following steps S510-S530.
  • S510 Calculate the difference between the target charging current of the i-th battery pack and the sampled charging current of the i-th battery pack to determine the current difference of the i-th battery pack, 1 ⁇ i ⁇ I, I is the total number of battery packs.
  • Executing step S510 one time can obtain one current difference of one battery pack.
  • S520 Determine a first target current adjustment value of the i-th battery pack according to the current difference of each battery pack and the PI total adjustment value.
  • the first target current adjustment value ⁇ I i of the i-th battery pack can be determined by using the following formula:
  • the sum of the first target current adjustment values of each battery pack is the PI total adjustment value, and the larger the current difference of the battery pack is, the larger the corresponding first target current adjustment value is.
  • the current adjustment value performs PI adjustment on the charging current of the battery pack, so as to ensure that when the current difference of the battery pack is larger, the larger first target current adjustment value can be used to quickly adjust the sampling charging current of the battery pack close to the corresponding target charging current.
  • steps S540 and S550 may also be used to replace steps S510-S530.
  • S540 Obtain a second target current regulation value of the i-th battery pack, the second target current regulation value of the i-th battery pack is preset, 1 ⁇ i ⁇ I, where I is the total number of battery packs.
  • Each PI adjustment of each battery pack has its fixed value.
  • the preset charging current of each battery pack is adjusted to 0.5A, and 0.5A is the second target current adjustment value corresponding to the battery pack.
  • the second target current adjustment value of the battery pack is 0A.
  • the PI adjustment of the charging current of the battery pack is performed using the second target current adjustment value of each battery pack to ensure that the sampled charging current of the battery pack can quickly and stably approach the corresponding target charging current, thereby making each battery pack
  • the battery pack can obtain the corresponding target charging current to charge itself, so as to realize efficient and safe charging of each battery pack.
  • the PI total adjustment value is 0, that is, the charging current of the charging device is not adjusted, it will be adjusted accordingly according to the sampling current of each battery pack, that is, the adjustment is performed according to the above steps S540 and S550.
  • Each battery pack is adjusted according to the preset PI adjustment value.
  • the PI adjustment value of battery pack A and battery pack B can be set to be 0.5A, then when the charging device outputs a charging current of 20A, the charging current of battery pack A becomes 9.5A, and the charging current of battery pack B becomes 9.5A. 10.5A. Because the PI adjustment process is fast and stable, the charging current of each battery pack can be quickly adjusted to the corresponding target charging current to ensure charging safety.
  • determining the charging voltage of each battery pack according to the sampled voltage of each battery pack in step S500 includes the following steps S560-S580.
  • S560 Determine whether the sampled voltage of the i-th battery pack reaches a preset voltage threshold.
  • step S570 is performed, and when the sampled voltage of the i-th battery pack reaches the voltage threshold, step S580 is performed.
  • S570 Control the voltage difference between the charging voltage of the i-th battery pack and the sampling voltage of the i-th battery pack to be within a preset voltage difference range.
  • S580 Control the charging voltage of the i-th battery pack to be consistent with the sampling voltage of the i-th battery pack.
  • the sampling voltage of the i-th battery pack does not reach the preset voltage threshold, it means that the i-th battery pack is not fully charged, and the charging voltage of the i-th battery pack can be controlled to match the charging voltage of the i-th battery pack.
  • the voltage difference of the sampled voltage is within the preset voltage difference range.
  • the value range of the preset voltage adjustment value can be 0.8V ⁇ 1.2V, that is, to ensure that the charging voltage input from the charging device to the i-th battery pack is the same as that of the i-th battery pack.
  • the charging voltage of the i-th battery pack can be controlled to be consistent with the sampling voltage of the i-th battery pack, that is, to ensure that the charging device is input to the i-th
  • the difference between the charging voltage of the first battery pack and the sampling voltage of the i-th battery pack is equal to 0, so that the i-th battery pack stops charging.
  • a voltage regulation module can be added between each battery pack and the charging device, so as to control the input voltage of the charging device through the voltage regulation module connected to each battery pack. to the charging voltage of the corresponding battery pack.
  • the multi-battery pack charging management system includes a voltage regulation module 810, the voltage regulation module 810 is connected to the charging device 820 and the battery pack 830 respectively, the voltage regulation module 810 corresponds to the battery pack 830 one by one, that is, one voltage regulation module 810 is connected One battery pack 830 , each battery pack 830 is connected to a voltage regulation module 810 , and the voltage regulation module 810 controls the charging voltage input to the corresponding battery pack 830 by the charging device.
  • FIG. 9 proposes another multi-battery pack charging management method.
  • the multi-battery pack charging management method proposed in this embodiment also includes step S399 before step S400 , after step S399 is added, step S400 is replaced by steps S401 and S402.
  • another multi-battery pack charging management method includes the following steps:
  • S200 Determine the target charging current of each battery pack according to the sampled temperature of each battery pack and the sampled voltage of each battery pack;
  • S401 Summing the load currents of the respective battery packs and the PI total adjustment value, and updating the PI total adjustment value with a value obtained by the summation.
  • S402 Send the updated PI total adjustment value to the charging device, so that the charging device adjusts the total charging current according to the PI total adjustment value.
  • S500 Receive the total charging current, determine the charging current of each battery pack according to the sampled charging current of each battery pack and the total charging current, and determine the charging voltage of each battery pack according to the sampled voltage of each battery pack .
  • the load connected to the battery pack can directly obtain the power of the charging device through the connected battery pack, and use the power provided by the charging device to perform normal work.
  • the load current of each battery pack corresponding to the connected load can be obtained, and the load current of each battery pack can be Summing the PI total adjustment value, updating the PI total adjustment value with the value obtained by the summation, and sending the updated PI total adjustment value to the charging device, so that the charging device adjusts the charging total adjustment value according to the updated PI total adjustment value. current.
  • This embodiment realizes that when multiple battery packs are efficiently and safely charged, the loads connected to the battery packs are guaranteed to work normally, and the normal work load does not affect the charging process of multiple battery packs, so that the loads connected to the battery packs When charging, it can still maintain efficient and safe charging.
  • the load current of each battery pack is summed with the PI total adjustment value, and the PI total adjustment value is updated with the value obtained by the summation, and the updated PI total adjustment value is sent to the charging device , after the charging device adjusts the input charging current according to the PI total adjustment value updated by the value, the charging current will be divided into two parts, one part will directly supply power to the load, and the other part will charge the battery pack.
  • the PI total adjustment value before the value update is called the first PI total adjustment value
  • the PI total adjustment value after the value update is called the second PI total adjustment value to further illustrate this embodiment: if Charge battery pack A and battery pack B at the same time.
  • the target currents of battery pack A and battery pack B are 10A respectively, so the total target current is 20A.
  • the sampling charging currents of battery pack A and battery pack B are 9A respectively, then the total The sampled charging current is 18A.
  • the second PI total adjustment Value first PI total adjustment value + 5A, that is, the second PI total adjustment value is 6A
  • the charging current output by the charging device is 24A, the 24A
  • 5A of current will be used to directly supply power to the load, and the remaining 19A of current will charge the A battery pack and the B battery pack respectively according to the distribution method in other above-mentioned embodiments.
  • a part of the charging current sent by the charging device is directly supplied to the load.
  • the A battery pack when the A battery pack is connected to the load and is not being charged, the A battery pack outputs current to charge the load.
  • the input interface of the A battery pack receives the charging current, and part of the charging current will flow directly to the load, and the other part will flow to the A battery pack.
  • the multi-battery pack charging management system includes a voltage regulation module 810, the voltage regulation module 810 is connected to the charging device 820 and the battery pack 830 respectively, the voltage regulation module 810 corresponds to the battery pack 830 one by one, that is, one voltage regulation module 810 is connected One battery pack 830 , each battery pack 830 is connected to a voltage regulation module 810 , and the voltage regulation module 810 controls the charging voltage input to the corresponding battery pack 830 by the charging device.
  • the battery pack 830 is connected to at least one load 840 .
  • the multi-battery pack charging management device 10 includes: an acquisition module 11, a determination module 12, a calculation module 13, a sending module 14 and a charging module 15.
  • the acquisition module 11 is configured to acquire the sampled temperature, sampled voltage and sampled charging current of each battery pack; the determination module 12 is configured to determine the temperature of each battery pack according to the sampled temperature of each battery pack and the sampled voltage of each battery pack The target charging current; the calculation module 13 is configured to calculate the PI total adjustment value according to the target charging current and the sampled charging current of each battery pack; the sending module 14 is configured to send the PI total adjustment value to the charging device so that the charging device adjusts the total charging current according to the PI total adjustment value; the charging module 15 is configured to receive the total charging current, and determine each The charging current of a battery pack is determined, and the charging voltage of each battery pack is determined according to the sampling voltage of each battery pack.
  • the multi-battery pack charging management device further includes: a voltage regulation module configured to control the charging voltage input to the battery packs.
  • the voltage regulating module is in one-to-one correspondence with the battery pack.
  • the multi-battery pack charging management device 10 disclosed in this embodiment is used to implement the multi-battery pack charging management described in the above-mentioned embodiments through the cooperation of the acquisition module 11, the determination module 12, the calculation module 13, the sending module 14 and the charging module 15.
  • the methods, implementations and beneficial effects involved in the above embodiments are also applicable to this embodiment, and will not be repeated here.
  • the present application relates to an energy storage device, including a memory and a processor, the memory stores a computer program, and the computer program executes the multi-battery pack charging management method described in the present application when running on the processor .
  • the present application relates to a readable storage medium, which stores a computer program, and the computer program executes the multi-battery pack charging management method described in the present application when running on a processor.
  • each block in a flowchart or block diagram may represent a module, program segment, or part of code that includes one or more Executable instructions.
  • the functions noted in the block may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or they may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flow diagrams, and combinations of blocks in the block diagrams and/or flow diagrams can be implemented by a dedicated hardware-based system that performs the specified function or action may be implemented, or may be implemented by a combination of special purpose hardware and computer instructions.
  • each functional module or unit in each embodiment of the present application may be integrated to form an independent part, each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a smart phone, a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种多电池包充电管理方法包括:根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;计算各个电池包的目标充电电流之和与各个电池包的采样充电电流之和的差值以获得PI总调节值;将PI总调节值发送给充电设备,以使充电设备根据PI总调节值调整充电总电流;根据每一个电池包的采样充电电流和充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。

Description

多电池包充电管理方法、装置、储能设备 技术领域
本申请涉及电池包充电领域,尤其涉及一种多电池包充电管理方法、装置、储能设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
充电设备为多个电池包充电时,电池包与充电设备没有交互,充电设备只能输出恒定的充电电压,恒定的充电电流,此时,如果充电电流和充电电压过大可能导致电池包因过流或过压而爆炸,引发用电事故,但是,充电电流和充电电压过小又无法发挥充电器的最大功效,导致充电速度慢,充电时间长。
发明内容
根据本申请的各种实施例,提出了一种多电池包充电管理方法、装置、储能设备和可读存储介质。
本申请提出一种多电池包充电管理方法,所述方法包括:
获取各个电池包的采样温度、采样电压和采样充电电流;
根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;
计算所述各个电池包的目标充电电流之和与所述各个电池包的采样充电电流之和的差值以获得PI总调节值;
将所述PI总调节值发送给充电设备,以使所述充电设备根据所述PI总调节值调整充电总电流;
接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
本申请还提出一种电池包充电管理装置,所述装置包括:
获取模块,被配置为获取各个电池包的采样温度、采样电压和采样充电电流;
确定模块,被配置为根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;
计算模块,被配置为根据所述各个电池包的目标充电电流和采样充电电流计算PI总调节值;
发送模块,被配置为将所述PI总调节值发送给充电设备,以使所述充电设备根据所述PI总调节值调整充电总电流;
充电模块,被配置为接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
本申请提出一种储能设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序在所述处理器上运行时执行本申请所述的多电池包充电管理方法。
本申请提出一种可读存储介质,其存储有计算机程序,所述计算机程序在处理器上运行时执行本申请所述的多电池包充电管理方法。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对本申请保护范围的限定。在各个附图中,类似的构成部分采用类似的编号。
图1示出了本申请实施例提出的一种多电池包充电管理方法的流程示意图。
图2示出了本申请实施例提出的多电池包充电管理方法的获取各个电池包的采样温度的流程示意图。
图3示出了本申请实施例提出的多电池包充电管理方法的确定每一个电池包的目标充电电流的流程示意图。
图4示出了本申请实施例提出的一种PI调节原理示意图。
图5示出了本申请实施例提出的多电池包充电管理方法的确定每一个电池包的充电电流的一种流程示意图。
图6示出了本申请实施例提出的多电池包充电管理方法的确定每一个电池包的充电电流的另一种流程示意图。
图7示出了本申请实施例提出的多电池包充电管理方法的确定每一个电池包的充电电压的流程示意图。
图8示出了本申请实施例提出的一种多电池包充电管理系统。
图9示出了本申请实施例提出的另一种多电池包充电管理方法的流程示意图。
图10示出了本申请实施例提出的另一种多电池包充电管理系统。
图11示出了本申请实施例提出的一种多电池包充电管理装置的结构示意图。
主要元件符号说明:10-电池包充电管理装置;11-获取模块;12-确定模块;13-计算模块;14-发送模块;15-充电模块。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
在下文中,可在本申请的各种实施例中使用的术语“包括”、“具有”及其同源词仅意在表示特定特征、数字、步骤、操作、元件、组件或前述项的组合,并且不应被理解为首先排除一个或更多个其它特征、数字、步骤、操作、元件、组件或前述项的组合的存在或增加一个或更多个特征、数字、步骤、操作、元件、组件或前述项的组合的可能性。
此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
除非另有限定,否则在这里使用的所有术语(包括技术术语和科学术语)具有与本申请的各种实施例所属领域普通技术人员通常理解的含义相同的含义。所述术语(诸如在一般使用的词典中限定的术语)将被解释为具有与在相关技术领域中的语境含义相同的含义并且将不被解释为具有理想化的含义或过于正式的含义,除非在本申请的各种实施例中被清楚地限定。
本申请提供的实施例适用于储能设备,该储能设备包括电池模块,该电池模块包括若干单体电池,若干单体电池通过串联或者并联的方式组成电池包,若干电池包通过串联或者并联的方式组成该电池模块。该电池模块设置有接口,该电池模块通过该接口输出电流或者接收电流进 行充电。在其他实施例中,储能设备的电池模块可以包括单个或者多个单体电池,每一单体电池能够单独或者与其他单体电池组合向外放电或者接收电流进行充电。在其他实施例中,储能设备的电池模块包括若干单体电池,若干单体电池通过串联或者并联的方式组成电池包,每一电池包可以单独或者与其他电池包组合向外放电或者接收电流进行充电。
本申请中提供的多电池包充电管理方法适用于包括若干电池包的储能设备,也适用于仅包括若干单体电池的储能设备。下面以多电池包充电为例,对本申请提供的多电池包充电管理方法进行进一步地解释。
本申请公开的多电池包充电管理方法,在为多个电池包充电时,若多个电池包中有一个电池包主包,电池包主包可以用于:获取各个电池包的采样温度、采样电压和采样充电电流;根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;计算所述各个电池包的目标充电电流之和与所述各个电池包的采样充电电流之和的差值以获得PI总调节值;将所述PI总调节值发送给充电设备,以使所述充电设备根据所述PI总调节值调整充电总电流;接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。本申请通过电池包主包获取各个电池包的采样温度、采样电压和采样充电电流,以利用各个电池包的采样温度、采样电压和采样充电电流控制充电设备的输出,在保证用电安全的同时,发挥充电设备的最大功效,提升充电效率,缩短充电时间。
可以理解,在为多个电池包充电时,若多个电池包中并不具有上述电池包主包,可以将多个电池包与一个中间控制器连接,中间控制器用于执行上述多电池包充电管理方法,获取各个电池包的采样温度、采样电压和采样充电电流,以通过各个电池包的采样温度、采样电压和采样充电电流控制充电设备的输出,在保证用电安全的同时,发挥充电设备的最大功效,提升充电效率,缩短充电时间。
本申请的一个实施例,请参见图1,提出一种多电池包充电管理方法,包括步骤S100、S200、S300、S400和S500。
S100:获取各个电池包的采样温度、采样电压和采样充电电流。
在电池包充电和放电的过程中,电池包均会发生热量堆积导致电池包温度上升。电池包从发生热失控温度升高到起火燃烧时间较短,非常容易发生火灾,造成人员财产损失。若一直以较大的充电电流大或者较高的充电电压对电池包进行充电,电池包将长时间处于温度较高的状态,极可能引起电池包起火燃烧。
为了克服上述问题,可以利用电压测量元件获取电池包电压,并利用温度传感器获取电池包当前的电池包温度,以利用电池包温度和电池包电压确定该电池包当前的目标充电电流,避免电池包的充电电流过大,有效减少电池包起火,保证用电安全。
示范性的,每一个电池包至少包括一个温度传感器、一个电压传感器和一个电流传感器,温度传感器用于实时采集电池包在充电过程中的电芯温度(本申请将实时采集的电芯温度记为采样温度),电压传感器用于实时采集电池包在充电过程中的电池电压(本申请将实时采集的电池电压记为采样电压),电流传感器用于实时采集电池包在充电过程中的充电电流(本申请将实时采集的充电电流记为采样充电电流)。
进一步的,考虑到单点测量电池包的电芯温度可能存在偏差,本申请在测量电池包的电芯温度时,在每一个电池包的多个预设位置点安装温度传感器,利用该温度传感器获得多个电芯温度值,根据该多个预设位置点的电芯温度的平均值确定相应电池包的采样温度。通过多点测量,降低温度采集偏差,使得每一个电池包的采样温度接近电芯的实际温度。
示范性的,请参见图2,步骤S100中获取各个电池包的采样温度,包括步骤S110~S130。
S110:获取第i个电池包中预定数目个预设位置点的电芯温度值,1≤i≤I,I为电池包总数。
S120:计算所述预定数目个预设位置点的电芯温度的平均值。
S130:将所述平均值作为所述第i个电池包的采样温度。
可以理解,在获取各个电池包的采样温度时,步骤S110、S120和S130可以先依次执行一次确定一个电池包的采样温度,再依次执行一次确定另一个电池包的采样温度,直至确定全部电池包的采样温度;还可以先执行I次步骤S110,再执行I次步骤S120,最后执行I次步骤S130以确定全部电池包的采样温度。
S200:根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流。
示范性的,请参见图3,步骤S200可以包括以下步骤S210~S230。
S210:根据电池包温度与目标充电电流的对照表确定第i个电池包的采样温度对应的第一充电电流,1≤i≤I,I为电池包总数。
S220:根据电池包电压与目标充电电流的对照表确定所述第i个电池包的采样电压对应的第二充电电流。
S230:将所述第一充电电流和所述第二充电电流中最小的电流值作为所述第i个电池包的目标充电电流。
可以理解,在确定每一个电池包的目标充电电流时,步骤S210、S220和S230可以先依次执行一次确定一个电池包的目标充电电流,再依次执行一次确定另一个电池包的目标充电电流,直至确定全部电池包的采样温度;还可以先执行I次步骤S210,再执行I次步骤S220,最后执行I次步骤S230以确定全部电池包的目标充电电流。
可以理解,将所述第一充电电流和所述第二充电电流中最小的电流值作为目标充电电流,以目标充电电流对电池包进行充电,既可以避免电池包在充电过程中因为过压引起火灾,又可以避免电池包在充电过程中因为过热而引起火灾,在高效充电的同时,兼顾用电安全性。
可以理解,电池包温度与目标充电电流的对照表、电池包电压与目标充电电流的对照表可以是行业内的标准对照表,也可以通过对不同的用电产品预先进行性能测试,而获得的对照表。
S300:计算所述各个电池包的目标充电电流之和与所述各个电池包的采样充电电流之和的差值以获得PI总调节值。
示范性的,若同时对A电池包和B电池包进行充电,A电池包和B电池包的目标电流分别是10A,则总目标电流为20A,A电池包和B电池包的采样充电电流分别是9A,则总采样充电电流是18A,进而,可以根据PI总调节值计算公式确定PI总调节值,即PI总调节值可以根据以下公式确定:
PI总调节值=K*差值,其中:K为比例系数,该比例系数可以根据实际调节需要进行设置,该差值为总目标电流与总采样充电电流的差值,当总目标电流大于总采样充电电流时,该差值为正数,对应的该PI总调节值也为正数,当总目标电流小于总采样充电电流时,该差值为负数,对应的该PI总调节值也为负数。
本实施例中以PI总调节值为正数进行举例,但是在实际应用中,该PI总调节值可以是负数,即当该储能设备中的各电池包均出现充电电流过大的情况时,需要将各电池包的充电电流下调,此时的PI总调节值为负数,同时在其他实施例中,该PI调节值可能为0。例如,该储能设备中的A电池包的目标充电电流10A,其采样电流为9A,B电池包的目标充电电流为10A,其采样电流为11A,则该总目标充电电流之和为20A,而该总采样充电电流为20A,此时该PI总调节值为0。
由上述可知,PI总调节值是动态变化的,PI总调节值随着各个电池包的目标充电电流之和与所述各个电池包的采样充电电流之和的差值变化而变化。
S400:将所述PI总调节值发送给充电设备,以使所述充电设备根据所 述PI总调节值调整充电总电流。
示范性的,请参见图4,可以通过PI总调节模块的PI调节功能,即利用PI总调节值调节充电设备输出的充电总电流,使得充电设备输出的充电总电流接近各个电池包的目标充电电流之和。可以理解,PI调节过程非常快速且稳定,可以有效保证充电设备输出的充电总电流快速到达各个电池包的目标充电电流之和,并且充电设备输出的充电总电流快速到达各个电池包的目标充电电流之和的过程非常稳定,避免充电设备输出的充电总电流突然变化,对充电过程造成干扰。需要说明的是,本实施例中的PI调节是广义上的PI调节,例如,可以是通过比例(P)-积分(I)调节器确定该PI总调节值,也可以是通过比例(P)调节器确定该PI总调节值等,具体可根据实际需求来设定。
S500:接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
示范性的,请参见图5,步骤S500中根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流包括以下步骤S510~S530。
S510:计算所述第i个电池包的目标充电电流和所述第i个电池包的采样充电电流之间的差值以确定所述第i个电池包的电流差,1≤i≤I,I为电池包总数。
执行I次步骤S510可以获得I个电池包的I个电流差。
S520:根据各个电池包的电流差和所述PI总调节值确定所述第i个电池包的第一目标电流调节值。
示范性的,可以利用以下公式确定第i个电池包的第一目标电流调节值ΔI i
Figure PCTCN2022106937-appb-000001
可以理解,各个电池包的第一目标电流调节值之和为PI总调节值,电池包的电流差越大,则对应的第一目标电流调节值越大,利用每一个电池包的第一目标电流调节值对该电池包的充电电流进行PI调节,进而保证在电池包的电流差越大时,可以利用较大的第一目标电流调节值快速调节电池包的采样充电电流接近对应的目标充电电流。
S530:以所述第i个电池包的第一目标电流调节值和所述第i个电池包的采样充电电流之和作为所述第i个电池包的充电电流对所述第i个电 池包进行充电,各个电池包的充电电流之和等于所述充电总电流。
示范性的,请参见图6,还可以用以下步骤S540和S550替换步骤S510~S530。
S540:获取第i个电池包的第二目标电流调节值,所述第i个电池包的第二目标电流调节值预先设定,1≤i≤I,I为电池包总数。
每一电池包的每一次PI调节均具有其固定值,例如,预设电池包每一次充电电流调节0.5A,0.5A为电池包对应的第二目标电流调节值,在电池包的充电电流达到目标充电电流时,则该电池包的第二目标电流调节值则为0A。
S550:以所述第i个电池包的第二目标电流调节值和所述第i个电池包的采样充电电流之和作为所述第i个电池包的充电电流对所述第i个电池包进行充电,所述各个电池包的第二目标电流调节值之和为所述PI总调节值,各个电池包的充电电流之和等于所述充电总电流。
可以理解,利用每一个电池包的第二目标电流调节值对该电池包的充电电流进行PI调节,保证电池包的采样充电电流可以快速且稳定的接近对应的目标充电电流,进而使得每一个电池包的可以获得对应的目标充电电流为自身进行充电,实现对各个电池包进行高效且安全的充电。需要注意的是,若PI总调节值为0,即充电设备的充电电流不调整,则会根据各电池包的采样电流进行相应的调节,即按照上述步骤S540和S550进行调节。每一电池包按照预设的PI调节值进行调节,如当A电池包的采样充电电流为9A,目标充电电流为10A,B电池包的采样充电电流为11A,目标充电电流为10A,在本实施例中,可以设置A电池包和B电池包的PI调节值均为0.5A,则当充电设备输出20A的充电电流时,A电池包的充电电流变为9.5A,B电池包的充电电流为10.5A。因为PI调节的过程快速且稳定,因此可以迅速将各电池包的充电电流调节至对应的目标充电电流以保证充电安全。
示范性的,请参见图7,步骤S500中根据每一个电池包的采样电压确定每一个电池包的充电电压包括以下步骤S560~S580。
S560:判断第i个电池包的采样电压是否达到预设的电压阈值。
1≤i≤I,I为电池包总数。在所述第i个电池包的采样电压未达到所述电压阈值时,执行步骤S570,在所述第i个电池包的采样电压达到所述电压阈值时,执行步骤S580。
S570:控制所述第i个电池包的充电电压与所述第i个电池包的采样电压的压差在预设压差范围内。
S580:控制所述第i个电池包的充电电压和所述第i个电池包的采样 电压一致。
可以理解,若第i个电池包的采样电压未达到预设的电压阈值,表示第i个电池包还未充满,可以控制所述第i个电池包的充电电压与所述第i个电池包的采样电压的压差在预设压差范围内,例如,预设电压调节值的取值范围可以是0.8V~1.2V,即保证充电设备输入至第i个电池包的充电电压与第i个电池包的采样电压之间存在一定的压差,进而保证对第i个电池包进行稳压充电;若第i个电池包的采样电压达到预设的电压阈值,表示第i个电池包处于充满状态,为了避免第i个电池包过压引发爆炸事故,可以将控制所述第i个电池包的充电电压和所述第i个电池包的采样电压一致,即保证充电设备输入至第i个电池包的充电电压与第i个电池包的采样电压之差等于0,从而使得第i个电池包停止充电。
可以理解的,为了控制充电设备输入至各个电池包的充电电压的大小,可以在每一个电池包与充电设备之间增加电压调节模块,以通过每一个电池包连接的电压调节模块控制充电设备输入至相应电池包的充电电压。
可以理解的,本实施例对应的多电池包充电管理系统,如图8所示。该多电池充电管理系统包括电压调节模块810,该电压调节模块810分别与充电设备820、电池包830相连接,该电压调节模块810与该电池包830一一对应,即一个电压调节模块810连接一个电池包830,每一个电池包830连接一个电压调节模块810,电压调节模块810控制充电设备输入至相应电池包830的充电电压。
本申请的另一个实施例,请参见图9,提出另一种多电池包充电管理方法,本实施例提出的多电池包充电管理方法与上述实施例相比,在步骤S400之前还包括步骤S399,增加步骤S399后,步骤S400被步骤S401和S402替代。示范性的,另一种多电池包充电管理方法包括以下步骤:
S100:获取各个电池包的采样温度、采样电压和采样充电电流;
S200:根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;
S300:计算所述各个电池包的目标充电电流之和与所述各个电池包的采样充电电流之和的差值以获得PI总调节值;
S399:获取每一个电池包对应连接负载的负载电流。
S401:将所述各个电池包的负载电流与所述PI总调节值求和,以求和得到的数值更新所述PI总调节值。
S402:将更新后的所述PI总调节值发送给所述充电设备,以使所述充 电设备根据所述PI总调节值调整充电总电流。
S500:接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
根据电池包的工作原理,即在电池包处于充电状态时,与电池包连接的负载可以通过连接的电池包直接获得充电设备的电能,利用充电设备的提供的电能进行正常工作。根据上述原理,本实施例在为多个电池包充电时,若多个电池包中一些电池包连接负载,可以获取每一个电池包对应连接负载的负载电流,将所述各个电池包的负载电流与PI总调节值求和,以求和得到的数值更新所述PI总调节值,将更新后的PI总调节值发送给充电设备,以使充电设备根据更新后的PI总调节值调整充电总电流。本实施例实现在对多个电池包进行高效且安全的充电时,保证与电池包连接的负载正常工作,并且正常工作负载不影响多个电池包的充电过程,进而使得在电池包连接的负载时,仍然可以保持高效且安全的充电。需要说明的是,将各个电池包的负载电流与该PI总调节值求和,以求和得到的数值更新该PI总调节值,并将该数值更新后的PI总调节值发送给该充电设备,在充电设备根据该数值更新后的PI总调节值调整输入的充电电流后,该充电电流将分成两部分,一部分直接向负载供电,另一部分将对电池包充电。具体地,将数值更新前的PI总调节值称之为第一PI总调节值,将数值更新后的PI总调节值称之为第二PI总调节值来对本实施例进行进一步地说明:若同时对A电池包和B电池包进行充电,A电池包和B电池包的目标电流分别是10A,则总目标电流为20A,A电池包和B电池包的采样充电电流分别是9A,则总采样充电电流是18A,若第一PI总调节值确定为1A,此时A电池包接入负载,该负载的需求电流(本申请中称之为负载电流)为5A,则第二PI总调节值=第一PI总调节值+5A,即第二PI总调节值为6A,将该6A的第二PI总调节值发送给该充电设备后,该充电设备输出的充电电流为24A,该24A的充电电流中,将有5A的电流用于直接向负载供电,其余的19A电流将按照上述其他实施例中的分配方式分别对A电池包和B电池包充电。将充电设备发送的充电电流中的一部分电流直接给负载供电,在具体实施例中是这样实现的:当A电池包接入负载且未进行充电时,A电池包输出电流给该负载充电,当A电池包接入负载且正在进行充电时,A电池包的输入接口接收充电电流,该充电电流将有一部分直接流向负载,另一部分流向A电池包。
可以理解的,本实施例对应的多电池包充电管理系统,如图10所示。该多电池充电管理系统包括电压调节模块810,该电压调节模块810 分别与充电设备820、电池包830相连接,该电压调节模块810与该电池包830一一对应,即一个电压调节模块810连接一个电池包830,每一个电池包830连接一个电压调节模块810,电压调节模块810控制充电设备输入至相应电池包830的充电电压。该电池包830连接至少一个负载840。
本申请的再一个实施例,提出一种多电池包充电管理装置,请参见图11,多电池包充电管理装置10包括:获取模块11、确定模块12、计算模块13、发送模块14和充电模块15。
获取模块11,被配置为获取各个电池包的采样温度、采样电压和采样充电电流;确定模块12,被配置为根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;计算模块13,被配置为根据所述各个电池包的目标充电电流和采样充电电流计算PI总调节值;发送模块14,被配置为将所述PI总调节值发送给充电设备,以使所述充电设备根据所述PI总调节值调整充电总电流;充电模块15,被配置为接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
在其他实施例中,该多电池包充电管理装置,还包括:电压调节模块,被配置为控制输入至所述电池包的充电电压。该电压调节模块与该电池包一一对应。
本实施例公开的多电池包充电管理装置10通过获取模块11、确定模块12、计算模块13、发送模块14和充电模块15的配合使用,用于执行上述实施例所述的多电池包充电管理方法,上述实施例所涉及的实施方案以及有益效果在本实施例中同样适用,在此不再赘述。
可以理解,本申请涉及一种储能设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序在所述处理器上运行时执行本申请所述的多电池包充电管理方法。
可以理解,本申请涉及一种可读存储介质,其存储有计算机程序,所述计算机程序在处理器上运行时执行本申请所述的多电池包充电管理方法。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和结构图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部 分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,结构图和/或流程图中的每个方框、以及结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
另外,在本申请各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是智能手机、个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (11)

  1. 一种多电池包充电管理方法,所述方法包括:
    获取各个电池包的采样温度、采样电压和采样充电电流;
    根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;
    计算所述各个电池包的目标充电电流之和与所述各个电池包的采样充电电流之和的差值以获得PI总调节值;
    将所述PI总调节值发送给充电设备,以使所述充电设备根据所述PI总调节值调整充电总电流;
    接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
  2. 根据权利要求1所述的多电池包充电管理方法,其中,所述获取各个电池包的采样温度包括:
    获取第i个电池包中预定数目个预设位置点的电芯温度值,1≤i≤I,I为电池包总数;
    计算所述预定数目个预设位置点的电芯温度的平均值;
    将所述平均值作为所述第i个电池包的采样温度。
  3. 根据权利要求1所述的多电池包充电管理方法,其中,所述根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流,包括:
    根据电池包温度与目标充电电流的对照表确定第i个电池包的采样温度对应的第一充电电流,1≤i≤I,I为电池包总数;
    根据电池包电压与目标充电电流的对照表确定所述第i个电池包的采样电压对应的第二充电电流;
    将所述第一充电电流和所述第二充电电流中最小的电流值作为所述第i个电池包的目标充电电流。
  4. 根据权利要求1所述的多电池包充电管理方法,其中,所述根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,包括:
    计算第i个电池包的目标充电电流和所述第i个电池包的采样充电电流之间的差值以确定所述第i个电池包的电流差,1≤i≤I,I为电池包总数;
    根据各个电池包的电流差和所述PI总调节值确定所述第i个电池包的 第一目标电流调节值;
    以所述第i个电池包的第一目标电流调节值和所述第i个电池包的采样充电电流之和作为所述第i个电池包的充电电流对所述第i个电池包进行充电,各个电池包的充电电流之和等于所述充电总电流。
  5. 根据权利要求1所述的多电池包充电管理方法,其中,所述根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,包括:
    获取第i个电池包的第二目标电流调节值,所述第i个电池包的第二目标电流调节值预先设定,1≤i≤I,I为电池包总数;
    以所述第i个电池包的第二目标电流调节值和所述第i个电池包的采样充电电流之和作为所述第i个电池包的充电电流对所述第i个电池包进行充电,所述各个电池包的第二目标电流调节值之和为所述PI总调节值,各个电池包的充电电流之和等于所述充电总电流。
  6. 根据权利要求1所述的多电池包充电管理方法,其中,所述根据每一个电池包的采样电压确定每一个电池包的充电电压,包括:
    判断第i个电池包的采样电压是否达到预设的电压阈值,1≤i≤I,I为电池包总数;
    在所述第i个电池包的采样电压未达到所述电压阈值时,控制所述第i个电池包的充电电压与所述第i个电池包的采样电压的压差在预设压差范围内;
    在所述第i个电池包的采样电压达到所述电压阈值时,控制所述第i个电池包的充电电压和所述第i个电池包的采样电压一致。
  7. 根据权利要求1所述的多电池包充电管理方法,其中,所述将所述PI总调节值发送给充电设备之前,还包括:
    获取每一个电池包对应连接负载的负载电流;
    所述将所述PI总调节值发送给充电设备的步骤,包括:
    将所述各个电池包的负载电流与所述PI总调节值求和,以求和得到的数值更新所述PI总调节值;
    将更新后的所述PI总调节值发送给所述充电设备。
  8. 一种电池包充电管理装置,所述装置包括:
    获取模块,用于获取各个电池包的采样温度、采样电压和采样充电电流;
    确定模块,被配置为根据每一个电池包的采样温度和每一个电池包的采样电压确定每一个电池包的目标充电电流;
    计算模块,被配置为根据所述各个电池包的目标充电电流和采样充电 电流计算PI总调节值;
    发送模块,被配置为将所述PI总调节值发送给充电设备,以使所述充电设备根据所述PI总调节值调整充电总电流;
    充电模块,被配置为接收所述充电总电流,根据每一个电池包的采样充电电流和所述充电总电流确定每一个电池包的充电电流,并根据每一个电池包的采样电压确定每一个电池包的充电电压。
  9. 根据权利要求8所述的多电池包充电管理装置,所述装置还包括:
    电压调节模块,被配置为控制输入至所述电池包的充电电压。
  10. 根据权利要求9所述的多电池包充电管理装置,所述电压调节模块与所述电池包一一对应。
  11. 一种储能设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序在所述处理器上运行时执行权利要求1至7任一项所述的多电池包充电管理方法。
PCT/CN2022/106937 2021-07-22 2022-07-21 多电池包充电管理方法、装置、储能设备 WO2023001214A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22845379.1A EP4376250A1 (en) 2021-07-22 2022-07-21 Multi-battery-pack charging management method and apparatus, and energy storage device
US18/415,945 US20240154431A1 (en) 2021-07-22 2024-01-18 Charging management method and apparatus for multiple battery packs, and energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110833046.1A CN113437778B (zh) 2021-07-22 2021-07-22 多电池包充电管理方法、装置、储能设备和可读存储介质
CN202110833046.1 2021-07-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/415,945 Continuation US20240154431A1 (en) 2021-07-22 2024-01-18 Charging management method and apparatus for multiple battery packs, and energy storage device

Publications (1)

Publication Number Publication Date
WO2023001214A1 true WO2023001214A1 (zh) 2023-01-26

Family

ID=77761448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106937 WO2023001214A1 (zh) 2021-07-22 2022-07-21 多电池包充电管理方法、装置、储能设备

Country Status (4)

Country Link
US (1) US20240154431A1 (zh)
EP (1) EP4376250A1 (zh)
CN (1) CN113437778B (zh)
WO (1) WO2023001214A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437778B (zh) * 2021-07-22 2022-11-25 深圳市正浩创新科技股份有限公司 多电池包充电管理方法、装置、储能设备和可读存储介质
CN114030384B (zh) * 2021-11-19 2024-01-09 广州小鹏汽车科技有限公司 电池组的充电控制方法、电池管理系统、装置及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051027A (zh) * 2012-12-26 2013-04-17 Tcl通讯(宁波)有限公司 移动终端及其在不同温度下充电的充电方法和充电系统
CN112104015A (zh) * 2020-08-18 2020-12-18 深圳易马达科技有限公司 电池充电方法、装置、终端设备及存储介质
CN113098099A (zh) * 2021-04-13 2021-07-09 北京雷石天地电子技术有限公司 麦克风及其充电单元、充电方法
CN113131550A (zh) * 2020-01-15 2021-07-16 Oppo广东移动通信有限公司 充电控制方法、系统、设备以及计算机可读存储介质
CN113437778A (zh) * 2021-07-22 2021-09-24 深圳市正浩创新科技股份有限公司 多电池包充电管理方法、装置、储能设备和可读存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108365657B (zh) * 2018-03-20 2020-06-19 北京小米移动软件有限公司 充电电流的控制方法、装置和存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103051027A (zh) * 2012-12-26 2013-04-17 Tcl通讯(宁波)有限公司 移动终端及其在不同温度下充电的充电方法和充电系统
CN113131550A (zh) * 2020-01-15 2021-07-16 Oppo广东移动通信有限公司 充电控制方法、系统、设备以及计算机可读存储介质
CN112104015A (zh) * 2020-08-18 2020-12-18 深圳易马达科技有限公司 电池充电方法、装置、终端设备及存储介质
CN113098099A (zh) * 2021-04-13 2021-07-09 北京雷石天地电子技术有限公司 麦克风及其充电单元、充电方法
CN113437778A (zh) * 2021-07-22 2021-09-24 深圳市正浩创新科技股份有限公司 多电池包充电管理方法、装置、储能设备和可读存储介质

Also Published As

Publication number Publication date
US20240154431A1 (en) 2024-05-09
EP4376250A1 (en) 2024-05-29
CN113437778B (zh) 2022-11-25
CN113437778A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2023001214A1 (zh) 多电池包充电管理方法、装置、储能设备
CN109586373B (zh) 一种电池充电方法和装置
EP3664247B1 (en) Charging time computation method and charge control device
US9711976B2 (en) Lead storage battery system
US8421416B2 (en) Battery charge compensation
WO2017167002A1 (zh) 一种磷酸铁锂电池的充电方法及装置
KR102160272B1 (ko) 배터리 관리 장치 및 이를 이용한 lfp 셀의 과전압 보호 방법
US20140361732A1 (en) Storage battery control device, storage battery control method, program, power storage system and power supply system
US11316212B2 (en) Method, system and device for active balance control of battery pack
JP2013509851A (ja) 電流および温度の測定値に基づいて充電または放電の終了を決定するためのバッテリの充電または放電方法
EP2629396A1 (en) Charging apparatus
US8022670B2 (en) Method for charging battery module
US20160285136A1 (en) Control system for secondary battery
KR102431801B1 (ko) Soc 인덱스를 이용한 배터리 밸런싱 장치 및 방법
CN110277807B (zh) 充电电流控制方法及装置、电池管理系统、运载工具、设备和计算机可读存储介质
CN114156552A (zh) 一种考虑老化的串联电池组的均衡控制策略
US20180041045A1 (en) Regulating device control system, regulating device control method, and recording medium
CN117154906B (zh) 一种具有制冷功能的无线充电调控方法
WO2017169127A1 (ja) 二次電池システム
CN103208657A (zh) 基于握手技术通信的蓄电池组在线均衡活化装置
EP4187751A1 (en) Charging apparatus, charging method, and computer-readable storage medium
CN117751296A (zh) 控制充电信号以对可充电的电池单元或电池进行充电的方法和装置
KR102256117B1 (ko) 배터리 수명 상태 추정 장치 및 방법
KR20230017598A (ko) 복수의 배터리 셀들을 충전하는 방법 및 그 방법을 수행하는 제어 장치
CN117353430B (zh) 一种基于储能温升特性约束的储能运行控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22845379

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022845379

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022845379

Country of ref document: EP

Effective date: 20240222