WO2021143685A1 - 定位方法及通信设备 - Google Patents

定位方法及通信设备 Download PDF

Info

Publication number
WO2021143685A1
WO2021143685A1 PCT/CN2021/071310 CN2021071310W WO2021143685A1 WO 2021143685 A1 WO2021143685 A1 WO 2021143685A1 CN 2021071310 W CN2021071310 W CN 2021071310W WO 2021143685 A1 WO2021143685 A1 WO 2021143685A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
target
target beam
signal
beams
Prior art date
Application number
PCT/CN2021/071310
Other languages
English (en)
French (fr)
Inventor
王园园
邬华明
司晔
庄子荀
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2022543147A priority Critical patent/JP7461483B2/ja
Priority to BR112022013534A priority patent/BR112022013534A2/pt
Priority to KR1020227027586A priority patent/KR20220127282A/ko
Priority to EP21741140.4A priority patent/EP4093108A4/en
Publication of WO2021143685A1 publication Critical patent/WO2021143685A1/zh
Priority to US17/858,275 priority patent/US20220334213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/01Determining conditions which influence positioning, e.g. radio environment, state of motion or energy consumption
    • G01S5/011Identifying the radio environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0218Multipath in signal reception
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0244Accuracy or reliability of position solution or of measurements contributing thereto
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Definitions

  • the embodiment of the present invention relates to the field of communication technology, and in particular to a positioning method and communication equipment.
  • the positioning technology related to the NR and LTE systems mainly implements positioning by measuring related positioning reference signals.
  • upstream positioning is used as an example.
  • the terminal device can transmit a positioning reference signal according to the beam configured by the network side device.
  • the network side device can measure the positioning reference signal according to the measurement information (such as , Arrival time) to determine the location of the terminal device.
  • the network side device when the network side device does not know the location of the terminal device and the location of the neighboring cell, if the beam of the terminal device transmitting the positioning reference signal is the NLOS path, the network side device cannot determine whether the beam is the NLOS path, resulting in the final Unable to pinpoint the location of the terminal device.
  • the embodiments of the present invention provide a positioning method and a communication device to solve the problem of inaccurate positioning in related positioning solutions.
  • an embodiment of the present invention provides a positioning method applied to a first device.
  • the method includes: determining first information; wherein the first information includes at least one of the following: direction information of a target beam, and the target Energy change information of the beam, LOS path indication information, and beam identification information; the above first information is used to determine the positioning information of the first device; the above LOS path indication information is used to indicate whether the target beam is a LOS path; the above beam identification information Is the identification information of the above-mentioned target beam.
  • an embodiment of the present invention provides a positioning method applied to a second device, and the method includes: obtaining first information from a first device; determining the positioning information of the first device according to the first information; wherein The first information includes at least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, and beam identification information; the LOS path indication information is used to indicate whether the target beam is a LOS path; The beam identification information is identification information of the target beam.
  • an embodiment of the present invention provides a communication device, the communication device is a first device, and the first device includes:
  • the determining module is configured to determine first information; wherein, the first information includes at least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, beam identification information; the first information is used for To determine the positioning information of the first device; the LOS path indication information is used to indicate whether the target beam is a LOS path; the beam identification information is the identification information of the target beam.
  • an embodiment of the present invention provides a communication device, the communication device is a second device, and the second device includes:
  • the obtaining module is configured to obtain first information from the first device; the determining module is configured to determine the positioning information of the first device according to the first information obtained by the obtaining module; wherein, the first information includes at least one of the following : Target beam direction information, energy change information of the target beam, LOS path indication information, beam identification information; the LOS path indication information is used to indicate whether the target beam is a LOS path; the beam identification information is the identification of the target beam information.
  • an embodiment of the present invention provides a communication device.
  • the communication device is a first device.
  • the first device includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor, When the above computer program is executed by the above processor, the steps of the above positioning method as in the first aspect are realized.
  • an embodiment of the present invention provides a communication device.
  • the communication device is a second device.
  • the second device includes a processor, a memory, and a computer program that is stored in the memory and can run on the processor.
  • the computer program is executed by the above-mentioned processor, the steps of the above-mentioned positioning method as in the second aspect are realized.
  • an embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above positioning method are implemented.
  • the second device after the second device obtains the first information from the first device, since the first information includes at least one of the following information of the target beam: direction information, energy change information, LOS path indication information, and beam identification information , So that the second device can accurately locate the specific position of the target beam, and then can obtain the positioning information of the first device with higher accuracy, which improves the communication efficiency and effectiveness.
  • FIG. 1 is a schematic diagram of a possible structure of a communication system involved in an embodiment of the present invention
  • FIG. 2 is one of the schematic flowcharts of a positioning method provided by an embodiment of the present invention.
  • FIG. 3 is a second schematic flowchart of a positioning method provided by an embodiment of the present invention.
  • FIG. 4 is one of the schematic structural diagrams of a communication device provided by an embodiment of the present invention.
  • FIG. 5 is the second structural diagram of a communication device provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the hardware structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the hardware structure of a server provided by an embodiment of the present invention.
  • the propagation conditions of wireless communication systems are divided into LOS and non-NLOS environments.
  • wireless signals travel in a straight line between the sender and receiver without obstruction. This requires that there are no objects that block radio waves in the first Fresnel zone. If the conditions are not met , The signal strength will drop significantly.
  • the size of the aforementioned Fresnel zone depends on the frequency of radio waves and the distance between transceivers.
  • the positioning solution provided by the embodiment of the present invention can determine whether the target beam is a LOS path or a non-LOS path.
  • SRS information configured by LTE RRC for the UE is basic information (see 36.331SoundingRS-UL-Config, including bandwidth, frequency hopping cyclic shift, etc.), and there is no reference power or QCL configuration for SRS power configuration.
  • the R15sounding signal does not support the positioning function and has no positioning-related configuration. Its configuration mainly serves the following usecases: beamManagement, codebook, nonCodebook and antennaSwitching. The configuration considered for channel detection, only considers the serving cell.
  • R16 is configured for the QCL reference signal and the path loss reference signal of the SRS signal transmitted by the UE to point to the serving cell and the neighboring cell, and it is assumed that the SRS configuration is performed by RRC. However, since the serving cell does not know the location of the neighboring cell and the UE, the configured QCL may not be appropriate. When the SRS configuration is not appropriate, the UE will transmit the signal according to the configured reference, or change the transmission direction. At this time, the serving cell and neighboring cells or LMF do not know, and the configuration cannot be updated to a valid configuration. In addition, when the configured QCL and reference measurement fail, there is no effective solution.
  • the first information reported by the first device to the second device includes at least one of the following information about the target beam: direction information, energy change information, LOS path indication information, and beam identification information, so that The second device can accurately locate the specific azimuth of the target beam, thereby being able to obtain positioning information of the first device with higher accuracy, which improves communication efficiency and effectiveness.
  • the positioning scheme provided by the embodiments of the present invention can be applied to the reporting of the actual angle of the transmitted UE SRS in the uplink positioning; it can also be applied to the reporting of the measured UE PRS measurement angle in the downlink positioning; it can also report the RSTD or the time of arrival (Time of Arrive, TOA) or Angle of Arrive (AOA) or Angle of Departure (Angle of Departure, AOD) adjacent beam energy changes.
  • TOA Time of Arrive
  • AOA Angle of Arrive
  • AOD Angle of Departure
  • A/B can mean A or B
  • the "and/or" in this article is only an association relationship describing associated objects, indicating that there may be three A relationship, for example, A and/or B, can mean that: A alone exists, A and B exist at the same time, and B exists alone.
  • the words “first”, “second”, etc. are used for the same items or similar items that have basically the same function or effect.
  • words such as “first” and “second” do not limit the quantity and execution order.
  • the first device and the second device are used to distinguish different devices, rather than to describe a specific order of the devices.
  • the technical solution provided by the present invention can be applied to various communication systems, for example, a 5G communication system, a future evolution system or a variety of communication convergence systems, and so on. It can include a variety of application scenarios, such as Machine to Machine (M2M), D2M, macro and micro communications, enhanced Mobile Broadband (eMBB), ultra-high reliability and ultra-low latency communications (ultra Scenarios such as Reliable&Low Latency Communication (uRLLC) and Massive Machine Type Communication (mMTC). These scenarios include but are not limited to: communication between a terminal device and a terminal device, or a communication between a network-side device and a network-side device, or a communication between a network-side device and a terminal device, and other scenarios.
  • M2M Machine to Machine
  • D2M Digital to Machine
  • macro and micro communications such as enhanced Mobile Broadband (eMBB), ultra-high reliability and ultra-low latency communications (ultra Scenarios such as Reliable&Low Latency Communication (uRLLC) and
  • the embodiments of the present invention can be applied to communication between a network-side device and a terminal device in a 5G communication system, or a communication between a terminal device and a terminal device, or a communication between a network-side device and a network-side device.
  • FIG. 1 shows a schematic diagram of a possible structure of a communication system involved in an embodiment of the present invention.
  • the communication system includes a first device 100 and a second device 200. Only one first device 100 and second device 200 are shown in FIG. 1.
  • the above-mentioned first device 100 may be a terminal device or a network-side device; the above-mentioned second device 200 may be a receiving device or a server.
  • the first device 100 is a terminal device, and the second device 200 may be a network-side device; or, the first device 100 is a terminal device, and the second device 200 may be a server; or, the first device 100 is a network-side device, and the first device 100 is a network-side device.
  • the second device 200 may be a server.
  • the aforementioned network side equipment may be a base station, a core network equipment, a transmission and reception point (Transmission and Reception Point, TRP), a relay station, or an access point, etc.
  • the network-side equipment can be the base station transceiver station (BTS) in the Global System for Mobile communication (GSM) or Code Division Multiple Access (CDMA) network, or it can be broadband
  • the NB (NodeB) in Wideband Code Division Multiple Access (WCDMA) may also be the eNB or eNodeB (evolutional NodeB) in LTE.
  • the network side device may also be a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN) scenario.
  • the network side device may also be a network side device in a 5G communication system or a network side device in a future evolution network.
  • the words do not constitute a limitation to the present invention.
  • the above-mentioned terminal device may be a wireless terminal device or a wired terminal device.
  • the wireless terminal device may be a device that provides voice and/or other service data connectivity to the user, a handheld device with wireless communication function, a computing device, or a wireless terminal device connected to a wireless terminal.
  • a wireless terminal device can communicate with one or more core networks via a radio access network (RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or “cellular” phone) and a mobile phone.
  • the computer of the terminal device can be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network, and personal communication service (PCS) Telephones, cordless phones, Session Initiation Protocol (SIP) phones, Wireless Local Loop (WLL) stations, Personal Digital Assistants (PDAs) and other devices.
  • PCS personal communication service
  • IP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDAs Personal Digital Assistants
  • Wireless terminal devices can also be mobile Equipment, User Equipment (UE), UE terminal equipment, access terminal equipment, wireless communication equipment, terminal equipment unit, terminal equipment station, mobile station (Mobile Station), mobile station (Mobile), remote station (Remote Station) ), remote station, remote terminal equipment (Remote Terminal), subscriber unit (Subscriber Unit), subscriber station (Subscriber Station), user agent (User Agent), terminal equipment, etc.
  • UE User Equipment
  • FIG. 1 shows that the terminal device is a mobile phone as an example.
  • the aforementioned server may be one server, a server cluster composed of multiple servers, or a cloud computing service center.
  • the foregoing server may be referred to as a location server, and the foregoing location server may be: a location server (LoCation Services, LCS), or a location management function server (Location Management Function, LMF), or an enhanced service mobile positioning center (Enhanced Service) Serving Mobile Location Centre, ESMLC).
  • LCS Location Services
  • LMF Location Management Function
  • ESMLC enhanced service mobile positioning center
  • FIG. 2 shows a schematic flowchart of a positioning method provided by an embodiment of the present invention.
  • the positioning method may include the following steps 201:
  • Step 201 The first device determines the first information.
  • the above-mentioned first information is used to determine the positioning information of the first device.
  • the foregoing first information includes at least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, and beam identification information.
  • the above-mentioned LOS path indication information is used to indicate whether the above-mentioned target beam is a LOS path; the above-mentioned beam identification information is identification information of the above-mentioned target beam.
  • the above-mentioned first information includes at least one of the following: direction information of the target beam, energy change information of the target beam, and LOS path indication information, Beam identification information.
  • the foregoing first information includes at least one of the following: energy change information of the target beam, and LOS path indication information.
  • the above-mentioned first information is transmitted in the position information or the measurement result of the target signal.
  • the above-mentioned location information may be the location information of the first device.
  • the above-mentioned location information may be the location information of the terminal device.
  • the target beam may be the measurement beam corresponding to the measurement result of the target signal reported by the first device, that is, the target beam may be: when the first device is used as the receiving end The receiving beam for receiving the above-mentioned target signal.
  • the measurement result is the measurement result obtained by the first device after measuring the target signal through the target beam;
  • the target signal is a downlink signal, which includes at least one of the following: DL-Positioning Reference Signal (DL-Positioning Reference Signal, DL).
  • DL-Positioning Reference Signal DL-Positioning Reference Signal, DL).
  • -PRS synchronization signal block
  • CSI Reference Signal CSI Reference Signal
  • CSI-RS tracking reference signal
  • TRS Track Reference Signal
  • the target beam is a beam corresponding to the target signal transmitted by the first device, that is, the target beam may be a beam used to transmit the target signal when the first device is the transmitting end.
  • the above-mentioned target signal is an uplink reference signal, which includes at least one of the following: a sounding reference signal (Sounding Reference Signal, SRS), and a demodulation reference signal (Demodulation Reference Signal, DMRS).
  • SRS Sounding Reference Signal
  • DMRS demodulation Reference Signal
  • the above-mentioned target beam may be a beam corresponding to reported information configured on the network side or a beam corresponding to a measurement result reported by the UE.
  • the transmit beam when the target beam is a transmit beam, the transmit beam may be all or part of the beam transmitted by the terminal device this time. It should be noted that the part of the beams transmitted above may be the beams selected by the terminal device itself or may be configured on the network side, which is not limited in the embodiment of the present invention.
  • the first device may report beam identification information.
  • the above beam identification information may be combined with (the direction information of the target beam, the energy change information of the target beam, and the LOS path indication information). At least one of) is used in combination, or may be used alone, which is not limited in the embodiment of the present invention.
  • the above-mentioned beam identification information may be a transmitting beam ID.
  • the aforementioned transmit beam ID may be pre-configured (that is, configured with different IDs for different beams or different beam directions) or pre-appointed or implicitly configured, and may also be used to indicate limited beam directions. It should be noted that the aforementioned transmit beam ID can be used together with the posture information of the terminal device.
  • the aforementioned beam identification information may also be indication information of the aforementioned uplink reference signal or downlink reference signal.
  • the above-mentioned target beam is a receiving beam
  • the above-mentioned receiving beam may be all or part of the beam received by the terminal device this time.
  • the partial beams received above may be beams selected by the terminal device itself or may be configured on the network side, which is not limited in the embodiment of the present invention.
  • the aforementioned beam identification information may be a target beam ID.
  • the target beam ID there is a corresponding relationship between the target beam ID and the direction information of the target beam, that is, different beam IDs correspond to different beam directions. It can be understood that the foregoing target beam ID is used to indicate the direction information of the target beam.
  • the above-mentioned beam identification information may be a receiving beam ID.
  • the aforementioned receiving beam ID can be configured (that is, configured with different beam IDs for different beams, and different beams have different beam directions), pre-appointed or implicitly configured, or can be used to indicate limited Beam direction. It should be noted that the above-mentioned receiving beam ID can be used together with the posture information of the terminal device.
  • the direction information of the received beam can be indicated only by the beam identification information.
  • the aforementioned beam identification information may only indicate the LOS path receiving beam or the NLOS path receiving beam.
  • the foregoing first information further includes: measurement information of the foregoing target signal.
  • the measurement information of the target signal includes at least one of the following: round trip time (RTT) time information, TOA time information, time difference of arrival (TDOA) time information, reference signal time difference (Reference) Signal Received Power (RSTD) information, reference signal received power (Reference Signal Time Difference, RSRP) information.
  • RTT round trip time
  • TDOA time difference of arrival
  • RSTD Reference signal time difference
  • RSTD Reference Signal Received Power
  • RSRP Reference Signal Time Difference
  • the TOA time information may be the arrival time of the target signal measured by the first device through the target beam
  • the TDOA time information may be the arrival time difference information between the target signal measured by the target beam and the reference signal.
  • the corresponding signal measurement result may be Only the receiving beam ID needs to be reported.
  • the receiving beam ID is used to indicate the receiving direction information of the receiving beam, and the corresponding relationship between the receiving direction information and the receiving beam ID may be pre-configured or pre-agreed.
  • the corresponding signal measurement result when the target beam is a transmit beam, when the first device reports all or part of the transmit beam direction information and/or transmit beam ID, the corresponding signal measurement result may be Only the transmission beam ID needs to be reported, and the transmission beam ID is used to indicate the transmission direction information of the transmission beam, and the correspondence relationship between the transmission direction information and the transmission beam ID may be pre-configured or pre-agreed.
  • the direction information of the target beam is used to indicate at least one of the following of the target beam of the first device: azimuth angle, elevation angle, and beam width.
  • the above-mentioned azimuth angle can be considered as the angle of the target beam.
  • the first device converts the angle of the target beam into an angle relative to geographic north, that is, the above-mentioned azimuth angle Is the angle between the target beam and the geographic north, and further, the counterclockwise direction can be set as positive, where the geographic north is determined by the compass of the first device; and/or the azimuth angle is the target beam
  • the direction information of the target beam may also include measurement error information of the azimuth; where the direction information of the target beam is used to indicate the target
  • the direction information of the target beam may also include measurement error information of the elevation angle; in the case where the direction information of the target beam is used to indicate the beam width of the target beam, the direction information of the target beam is also The measurement error information of the beam width may be included.
  • the measurement error indicated by any of the above-mentioned measurement error information can be a fixed error range, or can be an error range flexibly set based on actual application scenarios, or can be a pre-agreed or protocol-configured error granularity.
  • the embodiment of the invention does not limit this.
  • the above-mentioned first device has at least one of the following capabilities: the ability to acquire geographic north direction information, the GCS direction recognition ability, and the ability to calibrate direction information.
  • the energy change information of the target beam includes: signal energy information of the signal measured by the target beam.
  • the energy change information of the target beam includes: signal energy information of a signal reported by the transmit beam of the first device.
  • the energy change information of the target beam includes: energy information of N beams, the N beams include the target beam, and N is a positive integer.
  • the energy change information of the target beam may be a Gaussian function parameter, and the Gaussian function parameter is obtained based on the energy information of the N beams.
  • the energy changes of the above N beams have a certain probability of being a Gaussian-like distribution model, where, if the target beam is a beam corresponding to the LOS path, the energy of the target beam has a certain probability of being the peak point or inflection point of the Gaussian-like distribution.
  • the above-mentioned Gaussian function may be a T-ary Gaussian function, and T is at least any one of the following: 1, 2, 3.
  • the aforementioned Gaussian function may be a single-mode or mixed Gaussian function. That is, the above-mentioned Gaussian function parameters may be T single-mode Gaussian function parameters or mixed Gaussian function parameters. It should be noted that the components of the mixed Gaussian function must not exceed N.
  • the aforementioned Gaussian function parameter may be the mean value of the energy of the aforementioned N beams, or the variance of the energy of the aforementioned N beams, or the mean square error of the energy of the aforementioned N beams. This is not limited.
  • the energy change information of the target beam includes: energy information of each beam in the N beams, or energy difference information between the N beams and the target beam.
  • the energy difference information between the N beams and the target beam includes: the energy difference information between the N-1 beams other than the target beam in the N beams and the target beam, and the target beam Energy difference information with the target beam (that is, the difference is 0). Further, since the energy difference between the target beam and the target beam is 0, the first device and the second device can be based on the difference between the N-1 beams and the target beam among the N beams. The positive or negative difference determines the energy level of the above N beams, and then determines the energy level trend of the N-1 beams other than the target beam in the above N beams, thereby locating the position information of the first device .
  • the energy value of the above N beams is different from the energy value of the target beam, if the energy difference between a certain beam and the target beam is negative, it means that the energy of the beam is lower than the energy of the target beam.
  • the energy difference between a beam and the target beam is positive, which indicates that the energy of the beam is higher than the energy of the target beam.
  • the foregoing N beams include the foregoing target beams and N-1 spatially adjacent beams of the foregoing target beams.
  • the above-mentioned first device may also report to the second device indication information for indicating spatially adjacent beams of the target beam.
  • the energy difference information between the N beams and the target beam includes: energy difference information between the energy of the target beam and the beam adjacent to the corresponding space.
  • the above-mentioned target beam may be a receiving beam designated by Qcl or TCI, or the strongest receiving beam.
  • the above-mentioned target beam may be a beam corresponding to the reported information configured by the network side device or a beam corresponding to the measurement result reported by the terminal device.
  • the energy change information of the target beam includes: the fixed target beam of the first device receives the energy information of M transmit beams, and M is a positive integer.
  • the energy change information of the target beam may be the signal energy information measured by the fixed receiving beam of the first device receiving different transmitting beams.
  • the energy change information of the target beam may be signal energy information measured by different receiving beams of the first device.
  • the LOS path indication information is determined based on the direction information of the target beam and/or the energy change information of the target beam.
  • the first device may determine whether the target beam is a LOS path, and then generate a corresponding response based on whether the target beam is a LOS path.
  • LOS path indication information In this way, after the first device reports the LOS path indication information to the second device, the second device can obtain whether the target beam is a LOS path based on the LOS path indication information.
  • the above-mentioned LOS path indication information may indicate whether the above-mentioned target beam is a LOS path through bit 0 or bit 1.
  • the foregoing LOS path indication information includes LOS quality information; wherein, the foregoing LOS quality information is used to characterize the credibility or quality of the LOS path determination result of the target beam.
  • the terminal device can report the LOS quality information to the second device. After the second device receives the LOS quality information, it can perform position positioning based on the LOS quality information when locating the position of the first device.
  • the above-mentioned LOS quality information may indicate the credibility or instruction of the LOS result judgment through Xbit.
  • the second device at the opposite end may determine that the target beam is a LOS path. If the LOS quality information is missing from the first information reported by the first device, then The second device at the opposite end may determine that the target beam is the NLOS path.
  • the identification information of the target beam is the identification information of the target signal, wherein the target signal is transmitted through the target beam.
  • the above-mentioned beam identification information is: beam identification information corresponding to the above-mentioned direction information.
  • the beam identification information is: beam identification information corresponding to the energy change information.
  • the terminal device may report the transmission direction information together with the corresponding transmission beam identification information.
  • the identification information of the target beam includes at least one of the following: real-time streaming protocol (Time Streaming Protocol, TRP) indication information, cell indication information, and measurement signal indication information.
  • real-time streaming protocol Time Streaming Protocol, TRP
  • TRP Real-time streaming protocol
  • the above-mentioned measurement signal indication information includes: a downlink positioning reference signal resource set identifier DL-PRS resource set ID, and a downlink positioning reference signal resource identifier DL-PRS resource ID.
  • the above-mentioned measurement signal is SSB
  • the above-mentioned measurement signal indication information includes: SSB ID.
  • the measurement signal is TRS
  • the measurement signal indication information includes TRS indication information.
  • the measurement signal is a CSI-RS
  • the measurement signal indicates the information, and when the measurement signal includes the CSI-RS indicator information.
  • the second device after the second device obtains the first information from the first device, since the first information includes at least one of the following information of the target beam: direction information, energy change information, LOS path indication information, and beam
  • the identification information enables the second device to accurately locate the specific position of the target beam, thereby being able to obtain the positioning information of the first device with higher accuracy, which improves communication efficiency and effectiveness.
  • the method further includes the following steps A1 and A2:
  • Step A1 The first device obtains measurement configuration information from the network side device.
  • Step A2 The first device measures the above-mentioned first information according to the above-mentioned measurement configuration information.
  • the aforementioned measurement configuration information is used to indicate the first information that the first device needs to measure.
  • the first device may receive measurement configuration information configured by the network side device for the first device.
  • the first device may select the corresponding first information based on the measurement configuration information. That is, the information of the target beam included in the above-mentioned first information is related to the above-mentioned measurement configuration information.
  • the above-mentioned measurement configuration information may include at least one of the following: indication information used to indicate the target signal of the above-mentioned first device, used to request the above-mentioned first device to measure the above-mentioned target Signal request information, request information used to request the first device to measure the received energy of the target signal, request information used to request the first device to measure the receiving direction information of the target signal, used to request the first device to measure The request information of the LOS path of the target beam.
  • the first device measures the target signal, that is, the first information includes measurement information of the target signal; or, if the measurement configuration information If the request information for requesting the first device to measure the received energy of the target signal is included, the first device measures the received energy of the target signal through the target beam, that is, the first information includes energy change information of the target beam.
  • the above-mentioned measurement configuration information may include at least one of the following: indication information used to indicate the target signal of the above-mentioned first device, and used to request the above-mentioned first device to transmit the above-mentioned target signal Signal request information, request information used to request the first device to transmit the transmission energy of the target signal, request information used to request the transmission direction information of the target signal of the first device, and request information sent by the first device Indication information of all or part of the beam.
  • the method further includes the following step B1:
  • Step B1 The first device obtains the reported configuration information from the network side device.
  • the aforementioned report configuration information is used to indicate the first information that the first device needs to report.
  • the first device may obtain report configuration information configured by the network side device for the first device.
  • the above step 201 may include the following step B2:
  • Step B2 The first device determines the first information according to the reported configuration information.
  • the first device may select the first information that needs to be reported based on the reported configuration information. That is, the information of the target beam included in the above-mentioned first information is related to the above-mentioned report configuration information.
  • the report configuration information may include at least one of the following: indication information used to indicate the target signal of the first device, used to request the first device to report the target signal.
  • the request information of the measurement result is used to request the first device to report the receiving energy of the target signal.
  • the request information is used to request the first device to report the receiving direction information of the target signal.
  • the request information is used to request the first device to report the receiving direction information of the target signal.
  • the device reports the request information of the LOS path of the above-mentioned target beam.
  • the report configuration information may include at least one of the following: indication information used to indicate the target signal of the first device, used to request the first device to report the target signal
  • the transmission-related beam information is used to request the first device to report the request information of the transmission energy of the target signal, the request information used to request the first device to report the transmission direction information of the target signal, and the request information is used to request the first device to report the transmission direction information of the target signal.
  • the device reports the request information of the LOS path of the above-mentioned target beam.
  • the first device determines the above-mentioned first information, it can be implemented through the measurement scheme corresponding to the above step A1 and step A2, or through the reporting scheme corresponding to the above step B1 and step B2, or It is realized by a combination of the measurement scheme corresponding to step A1 and step A2 and the reporting scheme corresponding to step B1 and step B2, which is not limited in the embodiment of the present invention.
  • the method may further include the following steps:
  • Step C1 The second device configures the first configuration information for the first device.
  • Step C2 The first device obtains the first configuration information from the second device.
  • the foregoing first configuration information includes: first indication information used to indicate the foregoing reference beam.
  • the direction information of the target beam may be: the angle between the direction of the target beam and the direction of the reference beam, or the difference between the beam ID corresponding to the direction of the target beam and the beam ID corresponding to the direction of the reference beam.
  • the method further includes the following steps:
  • Step C3 The second device configures the third configuration information.
  • the foregoing third configuration information is used to indicate the content of the foregoing first information.
  • the foregoing third configuration information may be used to indicate which item of the direction information of the target beam is reported by the first device, such as the foregoing direction angle.
  • the method may further include the following steps:
  • Step D1 The first device obtains the second information.
  • Step D2 The second device obtains the second information.
  • the second information includes at least: transmission angle information of the target signal.
  • the server may obtain transmission angle information of the target signal received or sent by the base station.
  • the first device may obtain transmission angle information about the signal of the third device, and then combine the transmission angle information of its own beam with the signal of the third device.
  • the transmission angle information is judged and selected.
  • the terminal device can obtain the server's signal transmission angle information on the network side device before determining the first information.
  • the terminal device can combine with itself
  • the angle information of the beam and the angle information of the network side device are ignored or reselected, and the reselected beam is reported to the server or the network side device.
  • the method may further include the following step 301:
  • Step 301 The first device sends the first information to the second device.
  • the method may further include the following steps:
  • Step 302 The second device obtains the first information from the first device.
  • Step 303 The second device determines the positioning information of the first device according to the first information.
  • the second device may combine the first information, local information or related information uploaded by the network side device to determine whether the target signal is a LOS path. If the target signal is a non-LOS path, the second device may configure a new QCL Information or request the first device to report all or part of the beam angle information. For example, the beam indicated by the above new QCL information is a beam with a LOS path.
  • the third device is a network-side device.
  • the terminal device is a signal receiving or measuring device
  • the above-mentioned local information includes: The configuration information about the transmission signal of the network side device in the positioning server, the configuration information includes at least direction information or beam information; the related information of the network side device includes: the network side device reports the signal or the transmission direction information of the target beam or Beam information.
  • the second device may determine whether the receiving beam of the target signal is a LOS beam based on the above information. If it is not a LOS beam, the second device may configure the first device to measure and report related signal measurement information under the LOS beam; or, if The second device needs information to determine the LOS beam and the signal it receives. The second device can request the first device to report all or part of the beam angle information or received signal information.
  • the above-mentioned local information includes: The configuration information about the receiving beam of the network side device in the server, the configuration information includes at least direction information or beam information; the above-mentioned network side device related information: the network side device reports the signal or the transmission direction information or beam information of the target beam.
  • the second device can determine whether the receiving beam of the target signal is a LOS beam based on the above information. If it is not a LOS beam, the second device can configure the network side device to measure and report related signal measurement information under the LOS beam; or, If the second device needs information to determine the LOS beam and the signal it receives, the second device may request the first device to report all or part of the beam angle information or received signal information.
  • step 301 may include the following step 301a or step 301b:
  • Step 301a When the first device is a terminal device and the second device is a network-side device, the first device reports the first information to the aforementioned network-side device through RRC signaling.
  • Step 301b In the case where the second device is a server, the first device reports the first information to the server through Lightweight Presentation Protocol (LPP), NRPP or evolution protocol.
  • LPF Lightweight Presentation Protocol
  • NRPP New Radio Protocol
  • the terminal device may report it through LPP, NRPP or its evolution protocol; or, if the above-mentioned first information is provided by the terminal device to the base station, the terminal device may use RRC Reporting; or, if the above-mentioned first information is provided by the base station to the server, the base station may report through LPPa, NRPPa or its evolution protocol.
  • the second device assumes that the information of the target beam remains unchanged.
  • the method may further include the following step 304:
  • Step 304 If the first information includes the information of the target beam, the second device determines whether the target signal is a LOS signal according to the information of the target beam.
  • the aforementioned target beam information includes at least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, and beam identification information.
  • the aforementioned target beam information may be azimuth angle information and/or elevation angle information and/or beam width information.
  • the aforementioned target beam information may be beam identification information, where the beam identification information may indicate the direction information of the target beam through a predetermined indication relationship.
  • the above-mentioned target beam information may be direction information and beam identification information, where this example may be used to agree on the relationship between beam identification information and direction information, or the beam identification information may be understood as reference signal identification information. Corresponds to the angle relationship corresponding to the measured signal or the transmitted signal.
  • the aforementioned target beam information is energy change information of the target beam or energy change information of N-1 adjacent beams and the target beam.
  • the aforementioned target beam information is energy change information and beam identification information of the target beam, where this example can be used to agree on the relationship between beam identification information and energy information, and beam identification information can also be understood as reference signal identification Information to correspond to the energy relationship corresponding to the measured signal or the transmitted signal.
  • the aforementioned target beam information is LOS path indication information.
  • the beam identification information may be a unique identification mark of the transmitting and/or receiving beam, corresponding to a specific beam.
  • the beam identification information may be indication information of SRS signals or other uplink signals, such as SRS resource ID and/or SRS resource set ID.
  • the beam identification information may be the indication information PRS resource ID and/or PRS resource set ID of the PRS signal or other downlink signals.
  • only the identification identifier of the downlink or uplink signal may be used to indicate the beam information of the uplink and downlink positioning at the same time.
  • the direction information of the receiving beam can be indicated by only the beam identification information or the default information; or, if the received energy change information of the two adjacent receiving beams If it is unchanged or does not exceed the change threshold, it is not necessary to upload the above-mentioned target beam information.
  • the positioning methods shown in the figures of the above methods are all exemplified in conjunction with a figure in the embodiment of the present invention.
  • the positioning methods shown in the figures of the above methods can also be implemented in combination with any other figures that can be combined as illustrated in the above embodiments, and will not be repeated here.
  • an embodiment of the present invention provides a communication device, the communication device is a first device, and the first device 400 includes: a determining module 401, wherein: the determining module 401 is configured to determine first information;
  • the first information includes at least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, and beam identification information; the first information is used to determine the positioning information of the first device;
  • the LOS path indication information is used to indicate whether the target beam is a LOS path; the beam identification information is identification information of the target beam.
  • the identification information of the target beam is the identification information of the target signal, wherein the target signal is transmitted through the target beam.
  • the first information further includes: measurement information of the target signal; wherein, the measurement information of the target signal includes at least one of the following: RTT time information, TOA time information, TDOA time information, RSTD information, RSRP information .
  • the beam identification information is: beam identification information corresponding to the direction information.
  • the beam identification information is: beam identification information corresponding to the energy change information.
  • the target beam is a measurement beam corresponding to a measurement result of the target signal reported by the first device; wherein the measurement result is a measurement result obtained by the first device after measuring the target signal through the target beam;
  • the target signal is a downlink signal and includes at least one of the following: DL-PRS, SSB, CSI-RS, TRS.
  • the target beam is a beam corresponding to the target signal transmitted by the first device; wherein, the target signal is an uplink reference signal, and includes at least one of the following: SRS and DMRS.
  • the above-mentioned first information is transmitted in position information or signal measurement information.
  • the above-mentioned direction information is used to indicate at least one of the following of the target beam of the above-mentioned first device: an azimuth angle, an elevation angle, and a beam width.
  • the above-mentioned azimuth angle is the included angle of the above-mentioned target beam with respect to geographic north; and/or, the above-mentioned azimuth angle is the direction information of the angle of the above-mentioned target beam with respect to the reference beam; and/or, the above-mentioned elevation angle is the above-mentioned target beam The angle relative to the vertical.
  • the above-mentioned first device has at least one of the following capabilities: an ability to acquire geographic north direction information, a GCS direction recognition ability, and an ability to calibrate direction information.
  • the energy change information of the target beam includes: energy information of N beams, the N beams include the target beam, and N is a positive integer.
  • the energy change information of the target beam is a Gaussian function parameter, and the Gaussian function parameter is obtained based on the energy information of N beams; wherein the Gaussian function is a T-ary Gaussian function, and T is at least any one of the following: 1, 2, 3.
  • the energy change information of the target beam includes: energy information of each beam in the N beams, or energy difference information between the N beams and the target beam.
  • the foregoing N beams include the foregoing target beams and N-1 spatially adjacent beams of the foregoing target beams.
  • the energy change information of the target beam includes: energy information of M transmit beams received by the fixed target beam of the first device.
  • the above-mentioned LOS path indication information is determined based on the above-mentioned direction information or the above-mentioned energy information.
  • the above-mentioned LOS path indication information indicates whether the above-mentioned target beam is a LOS path through bit 0 or bit 1.
  • the LOS path indication information includes LOS quality information; the LOS quality information is used to characterize the credibility or quality of the LOS path judgment result of the target beam.
  • the first device further includes: an obtaining module 402, wherein: the obtaining module 402 is used to obtain measurement configuration information from the network side device; And/or the above-mentioned obtaining module 402 is also used to obtain the reported configuration information from the network side device, and the above-mentioned determining module 401 is specifically used to determine the above-mentioned first information according to the obtained measurement configuration information. Configure the information to determine the first information.
  • the above-mentioned obtaining module 402 is further configured to obtain first configuration information from a network side device; wherein, the above-mentioned first configuration information includes: first indication information used to indicate the above-mentioned reference beam.
  • the aforementioned acquiring module 402 is configured to acquire second information, and the aforementioned second information includes at least: transmission angle information of the aforementioned target signal.
  • the first device further includes: a sending module 403, where the sending module 403 is configured to report the first information determined by the determining module 401 to the second device.
  • the sending module 403 is further configured to report the first information to the network-side device through RRC signaling when the first device is a terminal device and the second device is a network-side device; or When the second device is a server, the first information is reported to the server through LPP, NRPP, or an evolution protocol.
  • the first information determined by the first device includes at least one of the following information of the target beam: direction information, energy change information, LOS path indication information, and beam identification information
  • the second device can accurately locate the specific position of the target beam, thereby being able to obtain highly accurate positioning information of the first device, which improves communication efficiency And efficiency.
  • the first device provided in the embodiment of the present invention can implement any process shown in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the modules that must be included in the first device 400 are indicated by solid line boxes, such as the determination module 401; the modules that may or may not be included in the first device 400 are indicated by dashed boxes, such as Obtaining module 402.
  • another communication device is a second device.
  • the second device 500 includes: an acquisition module 501 and a determination module 502.
  • the first device obtains the first information;
  • the determining module 502 is configured to determine the positioning information of the first device according to the first information obtained by the obtaining module 501; wherein the above-mentioned first information includes at least one of the following: direction information of the target beam, The energy change information of the target beam, direct LOS path indication information, and beam identification information;
  • the LOS path indication information is used to indicate whether the target beam is a LOS path;
  • the beam identification information is the identification information of the target beam.
  • the identification information of the target beam is the identification information of the target signal, wherein the target signal is transmitted through the target beam.
  • the above-mentioned first information further includes: measurement information of the above-mentioned target signal; wherein, the above-mentioned measurement information of the target signal includes at least one of the following: DL-PRS, SSB, CSI-RS, and TRS.
  • the beam identification information is: beam identification information corresponding to the direction information
  • the beam identification information is: beam identification information corresponding to the energy change information.
  • the second device assumes that the information of the target beam remains unchanged.
  • the above-mentioned direction information is used to indicate at least one of the following of the target beam of the above-mentioned first device: an azimuth angle, an elevation angle, and a beam width.
  • the above-mentioned azimuth angle is the included angle of the above-mentioned target beam with respect to geographic north; and/or, the above-mentioned azimuth angle is the direction information of the angle of the above-mentioned target beam with respect to the reference beam; and/or, the above-mentioned elevation angle is the above-mentioned target beam The angle relative to the vertical.
  • the energy change information of the target beam includes: energy information of N beams, the N beams include the target beam, and N is a positive integer.
  • the energy change information of the target beam is a Gaussian function parameter, and the Gaussian function parameter is obtained based on the energy information of N beams; wherein the Gaussian function is a T-ary Gaussian function, and T is at least any one of the following: 1, 2, 3.
  • the energy change information of the target beam includes: energy information of each beam in the N beams, or energy difference information between the N beams and the target beam.
  • the foregoing N beams include the foregoing target beams and N-1 spatially adjacent beams of the foregoing target beams.
  • the energy change information of the target beam includes: energy information of M transmit beams received by the fixed target beam of the first device.
  • the above-mentioned LOS path indication information is determined based on the above-mentioned direction information or the above-mentioned energy change information.
  • the LOS path indication information includes LOS quality information; the LOS quality information is used to characterize the credibility or quality of the LOS path judgment result of the target beam.
  • the determination module 502 is further configured to determine that the target beam is a LOS path if the LOS path indication information includes LOS quality information; the LOS quality information is used to characterize the credibility of the LOS path determination result of the target beam If the above-mentioned LOS path indication information lacks the above-mentioned LOS quality information, it is determined that the above-mentioned target beam is the NLOS path.
  • the above-mentioned second device further includes: a configuration module 503, wherein: the configuration module 503 is configured to configure first configuration information for the first device; wherein, the above-mentioned first configuration information includes: The first indication information indicating the foregoing reference beam.
  • the aforementioned acquiring module 501 is further configured to acquire second information, and the aforementioned second information includes at least: transmission angle information of the aforementioned target signal.
  • the first information includes at least one of the following information of the target beam: direction information, energy change information, LOS path indication information, and
  • the beam identification information enables the second device to accurately locate the specific position of the target beam, thereby being able to obtain positioning information of the first device with higher accuracy, which improves communication efficiency and effectiveness.
  • the modules that must be included in the second device 500 are indicated by solid lines, such as the determination module 502; the modules that may or may not be included in the second device 500 are indicated by dashed frames, such as Configuration module 503.
  • the second device provided in the embodiment of the present invention can implement any process shown in the foregoing method embodiment. To avoid repetition, details are not described herein again.
  • the terminal device 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, and a display unit 106, a user input unit 107, an interface unit 108, a memory 109, a processor 110, and a power supply 111 and other components.
  • a radio frequency unit 101 a radio frequency unit 101
  • a network module 102 an audio output unit 103
  • an input unit 104 e.g., a microphone
  • a sensor 105 e.g., a display unit 106
  • a user input unit 107 e.g., a user input unit 107
  • an interface unit 108 e.g., a memory 109
  • a processor 110 e.g., a processor 110, and a power supply 111 and other components.
  • the structure of the terminal device 100 shown in FIG. 6 does not constitute a limitation on the terminal device.
  • the terminal device 100 may include more or
  • the processor 110 is configured to determine first information; wherein, the first information includes at least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, and beam identification information; One piece of information is used to determine the positioning information of the first device; the LOS path indication information is used to indicate whether the target beam is a LOS path; the beam identification information is identification information of the target beam.
  • the first information determined by the terminal device includes at least one of the following information of the target beam: direction information, energy change information, LOS path indication information, and beam identification information, when the terminal device detects the above After the first information is reported to the second device, the second device can accurately locate the specific position of the target beam, thereby being able to obtain the positioning information of the terminal device with higher accuracy, which improves communication efficiency and effectiveness.
  • the radio frequency unit 101 can be used for receiving and sending signals in the process of sending and receiving information or talking. Specifically, the downlink data from the base station is received and processed by the processor 110; in addition, Uplink data is sent to the base station.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 101 can also communicate with the network and other devices through a wireless communication system.
  • the terminal device 100 provides users with wireless broadband Internet access through the network module 102, such as helping users to send and receive emails, browse web pages, and access streaming media.
  • the audio output unit 103 can convert the audio data received by the radio frequency unit 101 or the network module 102 or stored in the memory 109 into an audio signal and output it as sound. Moreover, the audio output unit 103 may also provide audio output related to a specific function performed by the terminal device 100 (for example, call signal reception sound, message reception sound, etc.).
  • the audio output unit 103 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 104 is used to receive audio or video signals.
  • the input unit 104 may include a graphics processing unit (GPU) 1041 and a microphone 1042, and the graphics processor 1041 is configured to monitor images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frame can be displayed on the display unit 106.
  • the image frame processed by the graphics processor 1041 may be stored in the memory 109 (or other storage medium) or sent via the radio frequency unit 101 or the network module 102.
  • the microphone 1042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be sent to a mobile communication base station via the radio frequency unit 101 for output in the case of a telephone call mode.
  • the terminal device 100 further includes at least one sensor 105, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 1061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 1061 and the display panel 1061 when the terminal device 100 is moved to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three-axis), and can detect the magnitude and direction of gravity when stationary, and can be used to identify the posture of the terminal device (such as horizontal and vertical screen switching, related games) , Magnetometer attitude calibration), vibration recognition related functions (such as pedometer, percussion), etc.; sensor 105 can also include fingerprint sensors, pressure sensors, iris sensors, molecular sensors, gyroscopes, barometers, hygrometers, thermometers, Infrared sensors, etc., will not be repeated here.
  • the display unit 106 is used to display information input by the user or information provided to the user.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), etc.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 107 may be used to receive inputted numeric or character information, and generate key signal input related to user settings and function control of the terminal device 100.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072.
  • the touch panel 1071 also called a touch screen, can collect the user's touch operations on or near it (for example, the user uses any suitable objects or accessories such as fingers, stylus, etc.) on the touch panel 1071 or near the touch panel 1071. operate).
  • the touch panel 1071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into contact coordinates, and then sends it To the processor 110, the command sent by the processor 110 is received and executed.
  • the touch panel 1071 can be implemented in multiple types such as resistive, capacitive, infrared, and surface acoustic wave.
  • the user input unit 107 may also include other input devices 1072.
  • other input devices 1072 may include, but are not limited to, a physical keyboard, function keys (such as volume control buttons, switch buttons, etc.), trackball, mouse, and joystick, which will not be repeated here.
  • the touch panel 1071 can be overlaid on the display panel 1061.
  • the touch panel 1071 detects a touch operation on or near it, it transmits it to the processor 110 to determine the type of the touch event, and then the processor 110 determines the type of the touch event according to the touch.
  • the type of event provides corresponding visual output on the display panel 1061.
  • the touch panel 1071 and the display panel 1061 are used as two independent components to implement the input and output functions of the terminal device 100, in some embodiments, the touch panel 1071 and the display panel 1061 can be combined.
  • the input and output functions of the terminal device 100 are realized by integration, which is not specifically limited here.
  • the interface unit 108 is an interface for connecting an external device with the terminal device 100.
  • the external device may include a wired or wireless headset port, an external power source (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, audio input/output (I/O) port, video I/O port, headphone port, etc.
  • the interface unit 108 can be used to receive input from an external device (for example, data information, power, etc.) and transmit the received input to one or more elements in the terminal device 100 or can be used to connect to the terminal device 100 and external devices. Transfer data between devices.
  • the memory 109 can be used to store software programs and various data.
  • the memory 109 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system, an application program required by at least one function (such as a sound playback function, an image playback function, etc.), etc.; Data created by the use of mobile phones (such as audio data, phone book, etc.), etc.
  • the memory 109 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 110 is the control center of the terminal device 100. It uses various interfaces and lines to connect the various parts of the entire terminal device 100, runs or executes software programs and/or modules stored in the memory 109, and calls and stores them in the memory 109.
  • the data of the terminal device 100 executes various functions and processing data of the terminal device 100, so as to monitor the terminal device 100 as a whole.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, where the application processor mainly processes the operating system, user interface, application programs, etc., and the modem
  • the adjustment processor mainly deals with wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 110.
  • the terminal device 100 may also include a power source 111 (such as a battery) for supplying power to various components.
  • a power source 111 such as a battery
  • the power source 111 may be logically connected to the processor 110 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal device 100 includes some functional modules not shown, which will not be repeated here.
  • An embodiment of the present invention also provides a first device, including a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • a computer program stored in the memory and capable of running on the processor.
  • an embodiment of the present invention further provides a terminal device, including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • a terminal device including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the computer program is executed by the processor, the computer program in the foregoing embodiment is implemented.
  • the process of the positioning method can achieve the same technical effect. In order to avoid repetition, it will not be repeated here.
  • FIG. 7 is a schematic diagram of the hardware structure of a server implementing an embodiment of the present invention.
  • the server 800 includes a processor 801, a transceiver 802, a memory 803, a user interface 804, and a bus interface.
  • the transceiver 802 is configured to acquire first information from the first device; the processor 801 is configured to determine the positioning information of the first device according to the first information acquired by the acquiring module; wherein, the first information includes At least one of the following: direction information of the target beam, energy change information of the target beam, LOS path indication information, beam identification information; the LOS path indication information is used to indicate whether the target beam is a LOS path; the beam identification information is the above Identification information of the target beam.
  • the server after the server obtains the first information from the first device, since the first information includes at least one of the following information of the target beam: direction information, energy change information, LOS path indication information, and beam identification information, As a result, the server can accurately locate the specific position of the target beam, thereby being able to obtain the positioning information of the first device with higher accuracy, which improves the communication efficiency and effectiveness.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together. .
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 802 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 804 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • server 800 also includes some functional modules not shown, which will not be repeated here.
  • An embodiment of the present invention also provides a second device, including a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor to implement the positioning method in the foregoing embodiment. The process, and can achieve the same technical effect, in order to avoid repetition, I will not repeat it here.
  • an embodiment of the present invention also provides a server, including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • a server including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the computer program is executed by the processor, the positioning in the above embodiment is implemented.
  • the process of the method and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, multiple processes of the positioning method in the above-mentioned embodiment are realized, and the same can be achieved. In order to avoid repetition, I won’t repeat them here.
  • the aforementioned computer-readable storage medium includes read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disks, or optical disks.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which can be a mobile phone, a computer, a server, an air conditioner, or a network side device, etc.) to execute the method described in the multiple embodiments of the present invention.
  • a terminal device which can be a mobile phone, a computer, a server, an air conditioner, or a network side device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Optical Communication System (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Communication Control (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明实施例提供一种定位方法及通信设备,涉及通信技术领域,该方法包括:确定第一信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述第一信息用于确定上述第一设备的定位信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。

Description

定位方法及通信设备
相关申请的交叉引用
本申请主张在2020年01月14日在中国提交的中国专利申请号202010039189.0的优先权,其全部内容通过引用包含于此。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种定位方法及通信设备。
背景技术
在通信系统的上行定位协议中,NR和LTE系统相关的定位技术,主要是通过测量相关的定位参考信号来实现定位的。以NR系统为例,在相关定位方案中,以上行定位为例,终端设备可以按照网络侧设备配置的波束发射定位参考信号,然后,网络侧设备可以根据测量该定位参考信号的测量信息(如,到达时间),确定终端设备的位置。
如此,在网络侧设备不知道终端设备的位置和邻小区的位置的情况下,若终端设备发射定位参考信号的波束为NLOS径,由于网络侧设备无法确定该波束是否为NLOS径,从而导致最终无法精确定位出终端设备的位置。
发明内容
本发明实施例提供一种定位方法及通信设备,以解决相关定位方案所存在的定位不精确的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本发明实施例提供了一种定位方法,应用于第一设备,该方法包括:确定第一信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述第一信息用于确定上述第一设备的定位信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
第二方面,本发明实施例提供了一种定位方法,应用于第二设备,该方法包括:从第一设备获取第一信息;根据上述第一信息,确定上述第一设备的定位信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
第三方面,本发明实施例提供了一种通信设备,该通信设备为第一设备,该第一设备包括:
确定模块,用于确定第一信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述第一信息用于确定上述第一设备的定位信息;上述LOS径指示信息用于指示上述目 标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
第四方面,本发明实施例提供了一种通信设备,该通信设备为第二设备,该第二设备包括:
获取模块,用于从第一设备获取第一信息;确定模块,用于根据上述获取模块获取的上述第一信息,确定上述第一设备的定位信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
第五方面,本发明实施例提供了一种通信设备,该通信设备为第一设备,该第一设备包括处理器、存储器及存储在上述存储器上并可在上述处理器上运行的计算机程序,上述计算机程序被上述处理器执行时实现如第一方面上述的定位方法的步骤。
第六方面,本发明实施例提供一种通信设备,该通信设备为第二设备,该第二设备包括处理器、存储器及存储在上述存储器上并可在上述处理器上运行的计算机程序,上述计算机程序被上述处理器执行时实现如第二方面上述的定位方法的步骤。
第七方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述定位方法的步骤。
在本发明实施例中,第二设备从第一设备获取到第一信息后,由于第一信息包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,从而使得第二设备能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的第一设备的定位信息,提高了通信效率以及效能。
附图说明
图1为本发明实施例所涉及的通信系统的一种可能的结构示意图;
图2为本发明实施例提供的一种定位方法的流程示意图之一;
图3为本发明实施例提供的一种定位方法的流程示意图之二;
图4为本发明实施例提供的一种通信设备的结构示意图之一;
图5为本发明实施例提供的一种通信设备的结构示意图之二;
图6为本发明实施例提供的一种终端设备的硬件结构示意图;
图7为本发明实施例提供的一种服务器的硬件结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面对本发明实施例中所涉及的部分术语进行解释,以方便读者理解:
1、视线(line of sight,LOS)
目前,无线通信系统的传播条件分成LOS和非NLOS两种环境。视距条件下,无线信号无遮挡地在发信端与接收端之间直线传播,这要求在第一菲涅尔区(First Fresnel zone)内没有对无线电波造成遮挡的物体,如果条件不满足,信号强度就会明显下降。其中,上 述菲涅尔区的大小取决于无线电波的频率及收发信机间距离。
在NR定位中,接收和测量信号的到达时间或到达角,是否为直射径直接影响最终的定位精度,本发明实施例提供的定位方案能够判别出目标波束为LOS径还是非LOS径。
2、相关定位方法
LTE RRC配置给UE的SRS信息大多数都是基本信息(可见于36.331SoundingRS-UL-Config,包括带宽、跳频循环移位等),SRS功率配置没有参考功率或者QCL配置。
R15sounding信号不支持定位功能,没有定位相关的配置,它的配置主要服务以下usecase:beamManagement,codebook,nonCodebook and antennaSwitching.为信道探测考虑的配置,仅考虑服务小区。
R16针对UE发射SRS信号的QCL参考信号和路损参考信号指向服务小区和邻区进行配置,且假设SRS配置由RRC进行。但是,由于服务小区不知道邻区、UE的位置,配置的QCL未必合适。当SRS配置不合适时,UE会根据配置的参考去发射信号,或者更改发射方向,此时,服务小区和邻区或LMF不知道,不能将配置更新为有效配置。此外,当配置的QCL和参考测量失败时,也没有有效的解决办法。
本发明实施例提供的定位方案,第一设备向第二设备上报的第一信息中包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,从而使得第二设备能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的第一设备的定位信息,提高了通信效率以及效能。
本发明实施例提供的定位方案可以应用于上行定位的UE SRS的发射波束实际角度上报;也可以应用于下行定位的测量UE PRS测量角度的上报;还可以上报RSTD或到达时间(Time of arrive,TOA)或到达角(Angle of arrive,AOA)或离开角(Angle of departure,AOD)的相邻波束的能量变化。
3、其他术语
需要说明的是,本文中的“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
需要说明的是,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能或作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。例如,第一设备和第二设备是用于区别不同的设备,而不是用于描述设备的特定顺序。
需要说明的是,本发明实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
需要说明的是,本申请实施例中,“的(英文:of)”,“相应的(英文:corresponding,relevant)”和“对应的(英文:corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。本申请实施例中的“多个”的含义是指两个或两个以上。
以下将结合相关附图对本发明实施例提供的定位方法进行介绍。
本发明提供的技术方案可以应用于各种通信系统,例如,5G通信系统,未来演进系统或者多种通信融合系统等等。可以包括多种应用场景,例如,机器对机器(Machine to Machine,M2M)、D2M、宏微通信、增强型移动互联网(enhance Mobile Broadband,eMBB)、超高可靠性与超低时延通信(ultra Reliable&Low Latency Communication,uRLLC)以及海量物联网通信(Massive Machine Type Communication,mMTC)等场景。这些场景包括但不限于:终端设备与终端设备之间的通信,或网络侧设备与网络侧设备之间的通信,或网络侧设备与终端设备间的通信等场景中。本发明实施例可以应用于与5G通信系统中的网络侧设备与终端设备之间的通信,或终端设备与终端设备之间的通信,或网络侧设备与网络侧设备之间的通信。
图1示出了本发明实施例所涉及的通信系统的一种可能的结构示意图。如图1所示,该通信系统包括第一设备100和第二设备200。图1中仅示出一个第一设备100和第二设备200。
示例性的,上述的第一设备100可以为终端设备,也可以为网络侧设备;上述的第二设备200可以为接收设备,也可以为服务器。例如,第一设备100为终端设备,第二设备200可以为网络侧设备;或者,第一设备100为终端设备,第二设备200可以为服务器;或者,第一设备100为网络侧设备,第二设备200可以为服务器。
其中,上述的网络侧设备可以为基站、核心网设备、发射接收节点(Transmission and Reception Point,TRP)、中继站或接入点等。网络侧设备可以是全球移动通信系统(Global System for Mobile communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。网络侧设备还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。网络侧设备还可以是5G通信系统中的网络侧设备或未来演进网络中的网络侧设备。然用词并不构成对本发明的限制。
上述终端设备可以为无线终端设备也可以为有线终端设备,该无线终端设备可以是指向用户提供语音和/或其他业务数据连通性的设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的PLMN网络中的终端设备等。无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据,以及个人通信业务(Personal Communication Service,PCS)电话、无绳电话、会话发起协议(Session Initiation Protocol,SIP)话机、无线本地环路(Wireless Local Loop,WLL)站、个人数字助理(Personal Digital Assistant,PDA)等设备,无线终端设备也可以为移动设备、用户设备(User Equipment,UE)、UE终端设备、接入终端设备、无线通信设备、终端设备单元、终端设备站、移动站(Mobile Station)、移动台(Mobile)、远程站(Remote Station)、远方站、远程终端设备(Remote Terminal)、订户单元(Subscriber Unit)、订户站(Subscriber Station)、用户代理(User Agent)、终端设备装置等。作为 一种实例,在本发明实施例中,图1以终端设备是手机为例示出。
上述服务器可以是一台服务器,也可以是由多台服务器组成的服务器集群,或者是一个云计算服务中心。示例性的,上述服务器可以称为定位服务器,上述定位服务器可以为:定位服务器(LoCation Services,LCS),或者,定位管理功能服务器(Location Management Function,LMF),或者,增强服务移动定位中心(Enhanced Serving Mobile Location Centre,ESMLC)。
结合上述内容,图2示出了本发明实施例提供的一种定位方法的流程示意图,如图2所示,该定位方法可以包括如下步骤201:
步骤201:第一设备确定第一信息。
在本发明实施例中,上述第一信息用于确定第一设备的定位信息。
在本发明实施例中,上述第一信息包括以下至少一项:目标波束的方向信息,目标波束的能量变化信息,LOS径指示信息,波束识别信息。其中,上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
可选地,在本发明实施例中,在第一设备为终端设备的情况下,上述第一信息包括以下至少一项:目标波束的方向信息,目标波束的能量变化信息,LOS径指示信息,波束识别信息。在第一设备为网络侧设备的情况下,上述第一信息包括以下至少一项:目标波束的能量变化信息,LOS径指示信息。
可选地,在本发明实施例中,上述第一信息在位置信息或目标信号的测量结果中传输。
示例性的,上述的位置信息可以为第一设备的位置信息。
示例性的,在第一设备为网络侧设备、且网络设备上报终端设备的位置信息给服务器的情况下,上述的位置信息可以为终端设备的位置信息。
可选地,在本发明实施例中,上述目标波束可以为上述第一设备上报的上述目标信号的测量结果所对应的测量波束,即,上述目标波束可以为:第一设备作为接收端时用于接收上述目标信号的接收波束。其中,上述测量结果为上述第一设备通过上述目标波束测量上述目标信号后得到的测量结果;上述目标信号为下行信号,至少包括以下至少一项:下行定位参考信号(DL-Positioning Reference Signal,DL-PRS),同步信号块(Synchronization Signal and PBCH block,SSB),信道状态信息参考信号(CSI Reference Signal,CSI-RS),跟踪参考信号(Tracking Reference Signal,TRS)。
可选地,在本发明实施例中,上述目标波束为上述第一设备发射上述目标信号所对应的波束,即,上述目标波束可以为:第一设备作为发射端时用于发送上述目标信号的发射波束。其中,上述目标信号为上行参考信号,至少包括以下至少一项:探测参考信号(Sounding Reference Signal,SRS),解调参考信号(Demodulation Reference Signal,DMRS)。
可选地,在上述目标波束为接收波束的情况下,上述目标波束可以为网络侧配置的上报信息所对应的波束或UE上报的测量结果所对应的波束。
可选地,在本发明实施例中,在上述目标波束为发射波束的情况下,上述发射波束可以为终端设备此次发射的全部或部分波束。应注意的是,上述发射的部分波束可 以是终端设备自行选择的波束也可以是网络侧配置的,本发明实施例对此不做限定。
可选地,在本发明实施例中,第一设备可以上报波束识别信息,应注意的是,上述波束识别信息可以和(上述目标波束的方向信息、目标波束的能量变化信息以及LOS径指示信息中的至少一个)联合使用,也可以单独使用,本发明实施例对此不做限定。
可选地,在本发明实施例中,上述波束识别信息可以为发射波束ID。进一步的,上述发射波束ID可以是预配置的(即,配置不同的ID为不同的波束或不同的波束方向)或预先约定的或隐式配置的,也可以用来指示有限的波束方向。应注意的是,上述发射波束ID可以配合终端设备的姿态信息一起使用。
可选地,上述波束识别信息还可以为上述上行参考信号或下行参考信号的指示信息。
可选地,在本发明实施例中,在上述目标波束为接收波束的情况下,上述接收波束可以为终端设备此次接收的全部或部分波束。应注意的是,上述接收的部分波束可以是终端设备自行选择的波束也可以是网络侧配置的,本发明实施例对此不做限定。
可选地,在本发明实施例中,上述的波束识别信息可以为目标波束ID。进一步的,上述目标波束ID与目标波束的方向信息存在对应关系,即,不同的波束ID对应不同的波束方向。可以理解,上述目标波束ID用于指示目标波束的方向信息。
可选地,在本发明实施例中,上述波束识别信息可以为接收波束ID。进一步的,上述接收波束ID可以是配置(即,配置不同的波束ID为不同的波束,且不同的波束的波束方向不同)的或者预先约定的或者隐式配置的,也可以用来指示有限的波束方向。应注意的是,上述接收波束ID可以配合终端设备的姿态信息一起使用。
进一步的,若相邻两次得接收波束的信息不变,接收波束的方向信息可仅通过波束识别信息来指示。
进一步的,上述波束识别信息可以仅指示LOS径接收波束或者NLOS径接收波束。
可选地,在本发明实施例中,上述第一信息还包括:上述目标信号的测量信息。其中,上述目标信号的测量信息包括以下至少一项:往返延时(Round trip time,RTT)的时间信息,TOA时间信息,到达时间差(Time difference of arrive,TDOA)时间信息,参考信号时间差(Reference Signal Received Power,RSTD)信息,参考信号接收功率(Reference Signal Time Difference,RSRP)信息。示例性的,上述TOA时间信息可以为第一设备通过目标波束测量的目标信号的到达时间,上述的TDOA时间信息可以为上述目标波束测量的目标信号与参考信号的到达时间差信息。
可选地,在本发明实施例中,在上述目标波束为接收波束的情况下,当第一设备上报所有或部分接收波束的方向信息和/或接收波束ID时,对应的信号测量结果中可以仅需要上报接收波束ID,该接收波束ID用于表示接收波束的接收方向信息,该接收方向信息和接收波束ID的对应关系可以为预先配置或者预先约定的。
可选地,在本发明实施例中,在上述目标波束为发射波束的情况下,当第一设备上报所有或部分发射波束的方向信息和/或发射波束ID时,对应的信号测量结果中可以仅需要上报发射波束ID,该发射波束ID用于表示发射波束的发射方向信息,该发射方向信息和发射波束ID的对应关系可以为预先配置或者预先约定的。
可选地,在本发明实施例中,上述目标波束的方向信息用于指示上述第一设备的 目标波束的以下至少一项:方位角,仰角,波束宽度。
示例性的,上述的方位角可以认为是目标波束的角度,第一设备在获取到目标波束的角度后,再将,再将目标波束的角度转化为相对于地理北的角度,即上述方位角为上述目标波束相对于地理北的夹角,进一步的,可以设定逆时针方向为正,其中,上述地理北是由第一设备的指南针判定的;和/或,上述方位角为上述目标波束相对于参考波束的角度的方向信息,进一步的,上述参考波束可以是终端设备选择的或网络侧配置的;和/或,上述仰角为上述目标波束相对于垂直方向的夹角,如,仰角=0度,即目标波束的方向为垂直方向,仰角=90度,即目标波束为水平方向。
示例性的,在上述目标波束的方向信息用于指示目标波束的方位角的情况下,上述目标波束的方向信息还可以包括方位角的测量误差信息;在上述目标波束的方向信息用于指示目标波束的仰角的情况下,上述目标波束的方向信息还可以包括仰角的测量误差信息;在上述目标波束的放的方向信息用于指示目标波束的波束宽度的情况下,上述目标波束的方向信息还可以包括波束宽度的测量误差信息。
应注意的是,上述的任一测量误差信息所指示的测量误差可以为固定误差范围,也可以是基于实际应用场景灵活设定的误差范围,还可以是预先约定或协议配置的误差粒度,本发明实施例对此不做限定。
可选地,在本发明实施例中,上述第一设备具备以下至少一项能力:获取地理北方向信息能力,GCS方向识别能力,校准方向信息的能力。
可选地,在本发明实施例中,上述目标波束的能量变化信息包括:通过上述目标波束测量的信号的信号能量信息。
可选地,在本发明实施例中,在目标波束为发射波束的情况下,上述目标波束的能量变化信息包括:第一设备的发射波束上报的信号的信号能量信息。
可选地,在本发明实施例中,上述目标波束的能量变化信息包括:N个波束的能量信息,上述N个波束包括上述目标波束,N为正整数。
可选地,在本发明实施例中,上述目标波束的能量变化信息可以为高斯函数参数,上述高斯函数参数是基于上述N个波束的能量信息得到的。示例性的,上述N个波束的能量变化有一定的概率是类高斯分布模型,其中,若目标波束是LOS径对应的波束,目标波束的能量有一定概率为类高斯分布的峰值点或拐点。
示例性的,上述高斯函数可以为T元高斯函数,T至少为以下任一项:1,2,3。
示例性的,上述高斯函数可以为单模或混合高斯函数。即,上述高斯函数参数可以为T个单模高斯函数参数,或者混合高斯函数参数。需要说明的是,混合高斯函数的分量不得超过N。
示例性的,上述的高斯函数参数可以为上述N个波束的能量的均值,也可以为上述N个波束的能量的方差,还可以是上述N个波束的能量的均方差,本发明实施例对此不做限定。
可选地,在本发明实施例中,上述目标波束的能量变化信息包括:上述N个波束中每个波束的能量信息,或者,上述N个波束与上述目标波束的能量差值信息。
示例性的,上述N个波束与上述目标波束的能量差值信息包括:上述N个波束中除上述目标波束以外的其他N-1个波束分别与上述目标波束的能量差值信息,以及目 标波束与目标波束间的能量差值信息(即差值为0)。进一步的,由于目标波束与目标波束的能量差值为0,因此,第一设备和第二设备便可基于上述N个波束中除上述目标波束以外的其他N-1个波束与目标波束间的差值的正负,确定出上述N个波束的能量高低,进而确定出上述N个波束中除上述目标波束以外的其他N-1个波束的能量高低走势,从而定位出第一设备的位置信息。
例如,将上述N个波束的能量值分别于目标波束的能量值作差,若某一波束与目标波束间的能量差值为负,则表明该波束的能量低于目标波束的能量,若某一波束与目标波束间的能量差值为正,则表明该波束的能量高于目标波束的能量。
可选地,在本发明实施例中,上述N个波束包括上述目标波束和N-1个上述目标波束的空间相邻波束。
进一步可选地,在第一设备向第二设备上报第一信息的情况下,上述第一设备还可以向第二设备上报用于指示该目标波束的空间相邻波束的指示信息。
进一步可选地,上述N个波束与上述目标波束的能量差值信息包括:目标波束的能量与对应空间相邻波束的能量差值信息。
进一步可选地,在上述目标波束为接收波束的情况下,上述目标波束可以为Qcl或TCI指定的接收波束,或者,最强接收波束。
进一步可选地,在上述目标波束为接收波束的情况下,上述目标波束可以为网络侧设备配置的上报信息所对应的波束或终端设备上报的测量结果所对应的波束。
可选地,在本发明实施例中,上述目标波束的能量变化信息包括:上述第一设备的固定目标波束接收M个发射波束的能量信息,M为正整数。
示例性的,在目标波束为接收波束的情况下,上述目标波束的能量变化信息可以为第一设备的固定接收波束接收不同发射波束所测量的信号能量信息。或者,上述目标波束的能量变化信息可以为第一设备的不同接收波束所测量的信号能量信息。
可选地,在本发明实施例中,上述LOS径指示信息是基于上述目标波束的方向信息和/或上述目标波束的能量变化信息确定的。
示例性的,第一设备在测量出目标波束的方向信息和/或上述目标波束的能量变化信息后,可以确定出上述目标波束是否为LOS径,然后,基于上述目标波束是否为LOS径生成相应的LOS径指示信息。如此,第一设备向第二设备上报上述LOS径指示信息后,便可使得第二设备基于该LOS径指示信息获取上述目标波束是否为LOS径。
可选地,在本发明实施例中,上述LOS径指示信息可以通过bit 0或bit 1指示上述目标波束是否为LOS径。
可选地,在本发明实施例中,上述LOS径指示信息包括LOS质量信息;其中,上述LOS质量信息用于表征上述目标波束的LOS径判断结果的可信度或质量。
示例性的,在上述第一设备为终端设备的情况下,若终端设备有一定的能力可以判断出目标波束是LOS径,还是非LOS径,其也不能百分百肯定自己的判断结果正确,因此,终端设备可以向第二设备上报LOS质量信息,第二设备在接收到LOS质量信息后,便可在定位第一设备的位置时基于该LOS质量信息进行位置定位。
示例性的,上述LOS质量信息可以通过Xbit指示LOS结果判断的可信度或指令。
示例性的,若第一设备上报的第一信息中包含LOS质量信息,则对端第二设备可以判定上述目标波束为LOS径,若第一设备上报的第一信息中缺失LOS质量信息,则对端第二设备可以判定上述目标波束为NLOS径。
可选地,在本发明实施例中,上述目标波束的识别信息为上述目标信号的识别信息,其中,上述目标信号通过上述目标波束传输。
可选地,在本发明实施例中,若上述第一信息包括上述方向信息,上述波束识别信息为:与上述方向信息对应的波束识别信息。
可选地,在本发明实施例中,若上述第一信息包括上述能量变化信息,上述波束识别信息为:与上述能量变化信息对应的波束识别信息。
示例性的,在本发明实施例提供的定位方法为上行定位时,终端设备可以将发射方向信息与对应的发射波束识别信息一起上报。
可选地,在本发明实施例中,上述目标波束的识别信息包括以下至少一项:实时流协议(Time Streaming Protocol,TRP)指示信息,小区指示信息,测量信号指示信息。
示例性的,当上述测量信号为PRS时,上述测量信号指示信息包括:下行定位参考信号资源集标识DL-PRS resource set ID,下行定位参考信号资源标识DL-PRS resource ID。当上述测量信号为SSB时,上述测量信号指示信息包括:SSB ID。当上述测量信号为TRS时,上述测量信号指示信息包括TRS指示信息。当上述测量信号为CSI-RS时,上述测量信号指示信息,当测量信号包括CSI-RS指示信息。
本发明实施例提供的定位方法,第二设备从第一设备获取到第一信息后,由于第一信息包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,从而使得第二设备能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的第一设备的定位信息,提高了通信效率以及效能。
可选地,在本发明实施例中,在上述第一设备为终端设备的情况下,在步骤201之前,该方法还包括如下步骤A1和步骤A2:
步骤A1:第一设备从网络侧设备获取测量配置信息。
步骤A2:第一设备根据上述测量配置信息,测量上述第一信息。
其中,上述的测量配置信息用于指示第一设备需要测量的第一信息。
示例性的,第一设备可以接收网络侧设备为第一设备配置的测量配置信息。
示例性的,第一设备可以基于该测量配置信息,选择对应的第一信息。即上述的第一信息中包含的目标波束的信息与上述测量配置信息相关。
在一种示例中,针对第一设备为接收端,上述的测量配置信息可以包括以下至少一项:用于指示上述第一设备的目标信号的指示信息,用于请求上述第一设备测量上述目标信号的请求信息,用于请求上述第一设备测量上述目标信号的接收能量的请求信息,用于请求上述第一设备测量上述目标信号的接收方向信息的请求信息,用于请求上述第一设备测量上述目标波束的LOS径的请求信息。例如,若上述测量配置信息包括用于请求上述第一设备测量上述目标信号的请求信息,则第一设备测量目标信号,即第一信息中包含目标信号的测量信息;或者,若上述测量配置信息包括用于请求上述第一设备测量上述目标信号的接收能量的请求信息,则第一设备通过目标波束测量 目标信号的接收能量,即第一信息中包含目标波束的能量变化信息。
在一种示例中,针对第一设备为发射端,上述的测量配置信息可以包括以下至少一项:用于指示上述第一设备的目标信号的指示信息,用于请求上述第一设备发射上述目标信号的请求信息,用于请求上述第一设备发射上述目标信号的发送能量的请求信息,用于请求上述第一设备上述目标信号的发射方向信息的请求信息,用于请求上述第一设备发送的全部或部分波束的指示信息。
可选地,在本发明实施例中,在上述第一设备为终端设备的情况下,在步骤201之前,该方法还包括如下步骤B1:
步骤B1:第一设备从网络侧设备获取上报配置信息。
其中,上述上报配置信息用于指示第一设备需要上报的第一信息。
示例性的,第一设备可以获取网络侧设备为第一设备配置的上报配置信息。
进一步的,结合上述步骤B1,上述步骤201可以包括如下步骤B2:
步骤B2:第一设备根据上报配置信息,确定第一信息。
示例性的,第一设备可以基于该上报配置信息,选择需要上报的第一信息。即上述的第一信息中包含的目标波束的信息与上述上报配置信息相关。
在一种示例中,针对第一设备为接收端,上述上报配置信息可以包括以下至少一项:用于指示上述第一设备的目标信号的指示信息,用于请求上述第一设备上报上述目标信号的测量结果的请求信息,用于请求上述第一设备上报上述目标信号的接收能量的请求信息,用于请求上述第一设备上报上述目标信号的接收方向信息的请求信息,用于请求上述第一设备上报上述目标波束的LOS径的请求信息。
在一种示例中,针对第一设备为发射端,上述上报配置信息可以包括以下至少一项:用于指示上述第一设备的目标信号的指示信息,用于请求上述第一设备上报上述目标信号的发射相关的波束信息,用于请求上述第一设备上报上述目标信号的发送能量的请求信息,用于请求上述第一设备上报上述目标信号的发射方向信息的请求信息,用于请求上述第一设备上报上述目标波束的LOS径的请求信息。
需要说明的是,第一设备在确定上述第一信息时,可以通过上述步骤A1和步骤A2对应的测量方案来实现,也可以通过上述的步骤B1和步骤B2对应的上报方案来实现,还可以通过上述的步骤A1和步骤A2对应的测量方案和上述的步骤B1和步骤B2对应的上报方案的组合方案来实现,本发明实施例对此不做限定。
可选地,在本发明实施例中,在上述步骤201之前,该方法还可以包括如下步骤:
步骤C1:第二设备为第一设备配置第一配置信息。
步骤C2:第一设备从第二设备获取第一配置信息。
其中,上述第一配置信息包括:用于指示上述参考波束的第一指示信息。
进一步的,上述目标波束的方向信息可以为:该目标波束的方向与参考波束的方向的夹角,或者,该目标波束的方向对应波束ID与参考波束的方向对应波束ID的差值。
进一步可选地,在本发明实施例中,该方法还包括如下步骤:
步骤C3:第二设备配置第三配置信息。
示例性的,上述第三配置信息用于指示上述第一信息内容。例如,上述第三配置信息 可以用于指示第一设备上报目标波束的方向信息中的哪一项,如,上述方向角。
可选地,在本发明实施例中,在上述步骤201之前,该方法还可以包括如下步骤:
步骤D1:第一设备获取第二信息。
步骤D2:第二设备获取第二信息。
其中,上述第二信息至少包括:上述目标信号的传输角度信息。
示例性的,在第二设备为服务器的情况下,服务器会获取基站接收或发送的目标信号的传输角度信息。
可选地,在本发明实施例中,第一设备在确定第一信息之前,可以获取关于第三设备的信号的传输角度信息,然后,结合自己的波束的传输角度信息和第三设备的信号的传输角度信息进行判断和选择。例如,在第一设备为终端设备、第二设备为服务器的情况下,终端设备在确定第一信息之前,可以获取服务器关于网络侧设备的信号的传输角度信息,此时,终端设备可以结合自己的波束的角度信息以及网络侧设备的角度信息,忽略或重选接收波束,并上报重选波束给服务器或网络侧设备。
可选地,在本发明实施例中,如图3所示,上述步骤201之后,该方法还可以包括如下步骤301:
步骤301:第一设备向第二设备发送第一信息。
进一步的,该方法可以还包括如下步骤:
步骤302:第二设备从第一设备获取第一信息。
步骤303:第二设备根据上述第一信息,确定上述第一设备的定位信息。
示例性的,第二设备可以结合第一信息,以及本地信息或网络侧设备上传的相关信息,判断目标信号是否为LOS径,若目标信号为非LOS径,则第二设备可以配置新的QCL信息或请求第一设备上报所有或部分波束的角度信息。例如,上述新的QCL信息指示的波束为LOS径的波束。
在一种示例中,当第一设备为终端设备、第二设备是定位服务器的情况下,第三设备为网络侧设备,若终端设备为接收或测量信号设备,则上述本地信息包括:存储在定位服务器中的关于上述网络侧设备的发射信号的配置信息,该配置信息至少包括方向信息或波束信息;上述网络侧设备的相关信息包括:该网络侧设备上报信号或目标波束的传输方向信息或波束信息。
具体的,第二设备可以根据上述信息判断目标信号的接收波束是否为LOS波束,若不是LOS波束,第二设备可以配置第一设备测量和上报该LOS波束下的相关信号测量信息;或者,若第二设备需要信息判断LOS波束和其接收的信号,第二设备可以请求第一设备上报所有或部分波束角度信息或接收信号信息。
在另一种示例中,当第一设备是终端设备、第二设备是定位服务器的情况下,若第三设备是网络侧设备,且终端设备为发送信号设备,上述本地信息包括:存储在定位服务器中的关于网络侧设备的接收波束的配置信息,该配置信息至少包括方向信息或波束信息;上述网络侧设备的相关信息:网络侧设备上报信号或目标波束的传输方向信息或波束信息。
具体的,第二设备根可以据上述信息判断目标信号的接收波束是否为LOS波束,若不是LOS波束,则第二设备可以配置网络侧设备测量和上报LOS波束下的相关信 号测量信息;或者,若第二设备需要信息判断LOS波束和其接收的信号,则第二设备可以请求第一设备上报所有或部分波束角度信息或接收信号信息。
进一步可选地,在本发明实施例中,上述步骤301可以包括如下步骤301a或者步骤301b:
步骤301a:在第一设备为终端设备、第二设备为网络侧设备的情况下,第一设备通过RRC信令向上述网络侧设备上报第一信息。
步骤301b:在上述第二设备为服务器的情况下,第一设备通过轻量级表示协议(Lightweight Presentation Protocol,LPP)、NRPP或演进协议向上述服务器上报上述第一信息。
示例性的,若上述第一信息由终端设备提供给服务器,则终端设备可以通过LPP、NRPP或其演进协议上报;或者,若上述第一信息由终端设备提供给基站,则终端设备可以通过RRC进行上报;或者,若上述第一信息由基站提供给服务器,则基站可以通过LPPa、NRPPa或其演进协议进行上报。
可选地,在本发明实施例中,若上述第一信息中缺失上述目标波束的信息,则上述第二设备假设上述目标波束的信息不变。
可选地,在本发明实施例中,该方法还可以包括如下步骤304:
步骤304:若上述第一信息中包含上述目标波束的信息,则第二设备根据上述目标波束的信息,确定上述目标信号是否为LOS信号。
示例性的,上述的目标波束的信息包括以下至少一项:目标波束的方向信息,目标波束的能量变化信息,LOS径指示信息,波束识别信息。
示例性的,上述的目标波束的信息可以为方位角信息和/或仰角信息和/或波束宽度信息。
示例性的,上述的目标波束的信息可以为波束识别信息,其中,波束识别信息可以通过预先约定的指示关系指示目标波束的方向信息。
示例性的,上述的目标波束的信息可以为方向信息和波束识别信息,其中,此示例可以用于约定波束识别信息和方向信息的关系,也可以将波束识别信息理解为参考信号识别信息,来对应测量信号或发射信号对应的角度关系。
示例性的,上述的目标波束的信息为目标波束的能量变化信息或N-1个相邻波束和目标波束的能量变化信息。
示例性的,上述的目标波束的信息为目标波束的能量变化信息和波束识别信息,其中,此示例可以用于约定波束识别信息和能量信息的关系,也可以将波束识别信息理解为参考信号识别信息,来对应测量信号或发射信号对应的能量关系。
示例性的,上述的目标波束的信息为LOS径指示信息。
示例性的,波束识别信息可以为发射和/或接收波束的唯一识别标示,对应特定的波束。
示例性的,上行定位中,波束识别信息可以SRS信号或其他上行信号的指示信息,如SRS resource ID和/或SRS resource set ID。
示例性的,下行定位中,波束识别信息可以PRS信号或其他下行信号的指示信息PRS resource ID和/或PRS resource set ID。
示例性的,RTT定位时,可仅使用下行或上行信号的识别标识来同时表示上下行定位的波束信息。
示例性的,若相邻两次的接收波束的方向信息不变,接收波束的方向信息可仅通过波束识别信息或缺省信息指示;或者,若相邻两次的接收波束的接收能量变化信息不变或不超出变化阈值,可以不上传上述目标波束的信息。
需要说明的是,本发明实施例中,上述各个方法附图所示的定位方法均是以结合本发明实施例中的一个附图为例示例性的说明的。具体实现时,上述各个方法附图所示的定位方法还可以结合上述实施例中示意的其它可以结合的任意附图实现,此处不再赘述。
如图4所示,本发明实施例提供的一种通信设备,该通信设备为第一设备,该第一设备400包括:确定模块401,其中:确定模块401,用于确定第一信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述第一信息用于确定上述第一设备的定位信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
可选地,上述目标波束的识别信息为上述目标信号的识别信息,其中,上述目标信号通过上述目标波束传输。
可选地,上述第一信息还包括:上述目标信号的测量信息;其中,上述目标信号的测量信息包括以下至少一项:RTT的时间信息,TOA时间信息,TDOA时间信息,RSTD信息,RSRP信息。
可选地,若上述第一信息包括上述方向信息,上述波束识别信息为:与上述方向信息对应的波束识别信息。
可选地,若上述第一信息包括上述能量变化信息,上述波束识别信息为:与上述能量变化信息对应的波束识别信息。
可选地,上述目标波束为上述第一设备上报的上述目标信号的测量结果所对应测量波束;其中,上述测量结果为上述第一设备通过上述目标波束测量上述目标信号后得到的测量结果;上述目标信号为下行信号,至少包括以下至少一项:DL-PRS,SSB,CSI-RS,TRS。
可选地,上述目标波束为上述第一设备发射上述目标信号所对应的波束;其中,上述目标信号为上行参考信号,至少包括以下至少一项:SRS,DMRS。
可选地,上述第一信息在位置信息或信号测量信息中传输。
可选地,上述方向信息用于指示上述第一设备的目标波束的以下至少一项:方位角,仰角,波束宽度。
可选地,上述方位角为上述目标波束相对于地理北的夹角;和/或,上述方位角为上述目标波束相对于参考波束的角度的方向信息;和/或,上述仰角为上述目标波束相对于垂直方向的夹角。
可选地,上述第一设备具备以下至少一项能力:获取地理北方向信息能力,GCS方向识别能力,校准方向信息的能力。
可选地,上述目标波束的能量变化信息包括:N个波束的能量信息,上述N个波束包括上述目标波束,N为正整数。
可选地,上述目标波束的能量变化信息为高斯函数参数,上述高斯函数参数是基于N个波束的能量信息得到的;其中,上述高斯函数为T元高斯函数,T至少为以下任一项:1,2,3。
可选地,上述目标波束的能量变化信息包括:上述N个波束中每个波束的能量信息,或者,上述N个波束与上述目标波束的能量差值信息。
可选地,上述N个波束包括上述目标波束和N-1个上述目标波束的空间相邻波束。
可选地,上述目标波束的能量变化信息包括:上述第一设备的固定目标波束接收M个发射波束的能量信息。
可选地,上述LOS径指示信息是基于上述方向信息或上述能量信息确定的。
可选地,上述LOS径指示信息通过bit 0或bit 1指示上述目标波束是否为LOS径。
可选地,上述LOS径指示信息包括LOS质量信息;上述LOS质量信息用于表征上述目标波束的LOS径判断结果的可信度或质量。
可选地,如图4所示,第一设备还包括:获取模块402,其中:获取模块402,用于从网络侧设备获取测量配置信息,确定模块401,具体用于根据上述获取模块402接收到的上述测量配置信息,确定上述第一信息;和/或,上述获取模块402,还用于从网络侧设备获取上报配置信息,上述确定模块401,具体用于根据获取模块402接收到的上报配置信息,确定第一信息。
可选地,上述获取模块402,还用于从网络侧设备获取第一配置信息;其中,上述第一配置信息包括:用于指示上述参考波束的第一指示信息。
可选地,上述获取模块402,用于获取第二信息,上述第二信息至少包括:上述目标信号的传输角度信息。
可选地,如图4所示,第一设备还包括:发送模块403,其中:发送模块403,用于向上述第二设备上报确定模块401确定出的第一信息。
可选地,上述发送模块403还用于在上述第一设备为终端设备、上述第二设备为网络侧设备的情况下,通过RRC信令向上述网络侧设备上报第一信息;或者,在上述第二设备为服务器的情况下,通过LPP、NRPP或演进协议向上述服务器上报上述第一信息。
本发明实施例提供的第一设备,由于第一设备确定的第一信息包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,因此,当第一设备将上述第一信息上报至第二设备后,便可使得第二设备能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的第一设备的定位信息,提高了通信效率以及效能。
本发明实施例提供的第一设备能够实现上述方法实施例所示的任一过程,为避免重复,此处不再赘述。
需要说明的是,如图4所示,第一设备400中一定包括的模块用实线框示意,如确定模块401;第一设备400中可以包括也可以不包括的模块用虚线框示意,如获取模块402。
如图5所示,本发明实施例提供的另一种通信设备,该通信设备为第二设备,该第二设备500包括:获取模块501和确定模块502,其中:获取模块501,用于从第一设备获 取第一信息;确定模块502,用于根据获取模块501获取的第一信息,确定第一设备的定位信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,直射LOS径指示信息,波束识别信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
可选地,上述目标波束的识别信息为上述目标信号的识别信息,其中,上述目标信号通过上述目标波束传输。
可选地,上述第一信息还包括:上述目标信号的测量信息;其中,上述目标信号的测量信息包括以下至少一项:DL-PRS,SSB,CSI-RS,TRS。
可选地,当上述第一信息包括上述方向信息的情况下,上述波束识别信息为:与上述方向信息对应的波束识别信息;
可选地,当上述第一信息包括上述能量变化信息的情况下,上述波束识别信息为:与上述能量变化信息对应的波束识别信息。
可选地,若上述第一信息中缺失上述目标波束的信息,则上述第二设备假设上述目标波束的信息不变。
可选地,上述方向信息用于指示上述第一设备的目标波束的以下至少一项:方位角,仰角,波束宽度。
可选地,上述方位角为上述目标波束相对于地理北的夹角;和/或,上述方位角为上述目标波束相对于参考波束的角度的方向信息;和/或,上述仰角为上述目标波束相对于垂直方向的夹角。
可选地,上述目标波束的能量变化信息包括:N个波束的能量信息,上述N个波束包括上述目标波束,N为正整数。
可选地,上述目标波束的能量变化信息为高斯函数参数,上述高斯函数参数是基于N个波束的能量信息得到的;其中,上述高斯函数为T元高斯函数,T至少为以下任一项:1,2,3。
可选地,上述目标波束的能量变化信息包括:上述N个波束中每个波束的能量信息,或者,上述N个波束与上述目标波束的能量差值信息。
可选地,上述N个波束包括上述目标波束和N-1个上述目标波束的空间相邻波束。
可选地,上述目标波束的能量变化信息包括:上述第一设备的固定目标波束接收M个发射波束的能量信息。
可选地,上述LOS径指示信息是基于上述方向信息或上述能量变化信息确定的。
可选地,上述LOS径指示信息包括LOS质量信息;上述LOS质量信息用于表征上述目标波束的LOS径判断结果的可信度或质量。
可选地,上述确定模块502,还用于若上述LOS径指示信息包括LOS质量信息,则确定上述目标波束为LOS径;上述LOS质量信息用于表征上述目标波束的LOS径判断结果的可信度或质量;若上述LOS径指示信息缺失上述LOS质量信息,则确定上述目标波束为NLOS径。
可选地,如图5所示,上述第二设备还包括:配置模块503,其中:配置模块503,用于为第一设备配置第一配置信息;其中,上述第一配置信息包括:用于指示上述参考波束的第一指示信息。
可选地,上述获取模块501,还用于获取第二信息,上述第二信息至少包括:上述目标信号的传输角度信息。
本发明实施例提供的第二设备,第二设备从第一设备获取到第一信息后,由于第一信息包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,从而使得第二设备能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的第一设备的定位信息,提高了通信效率以及效能。
需要说明的是,如图5所示,第二设备500中一定包括的模块用实线框示意,如确定模块502;第二设备500中可以包括也可以不包括的模块用虚线框示意,如配置模块503。
本发明实施例提供的第二设备能够实现上述方法实施例所示任一过程,为避免重复,此处不再赘述。
以第一设备为终端设备为例。图6为实现本发明各个实施例的一种终端设备的硬件结构示意图,该终端设备100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、处理器110、以及电源111等部件。本领域技术人员可以理解,图6中示出的终端设备100的结构并不构成对终端设备的限定,终端设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本发明实施例中,终端设备100包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端设备、可穿戴设备、以及计步器等。
其中,处理器110,用于确定第一信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述第一信息用于确定上述第一设备的定位信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
本发明实施例提供的终端设备,由于终端设备确定的第一信息包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,因此,当终端设备将上述第一信息上报至第二设备后,便可使得第二设备能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的终端设备的定位信息,提高了通信效率以及效能。
应理解的是,本发明实施例中,射频单元101可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器110处理;另外,将上行的数据发送给基站。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元101还可以通过无线通信系统与网络和其他设备通信。
终端设备100通过网络模块102为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元103可以将射频单元101或网络模块102接收的或者在存储器109中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元103还可以提供与终端设备100执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元103包括扬声器、蜂鸣器以及受话器等。
输入单元104用于接收音频或视频信号。输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元106上。经图形处理器1041处理后的图像帧可以存储在存储器109(或其它存储介质)中或者经由射频单元101或网络模块102进行发送。麦克风1042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元101发送到移动通信基站的格式输出。
终端设备100还包括至少一种传感器105,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板1061的亮度,接近传感器可在终端设备100移动到耳边时,关闭显示面板1061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器105还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元106用于显示由用户输入的信息或提供给用户的信息。显示单元106可包括显示面板1061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板1061。
用户输入单元107可用于接收输入的数字或字符信息,以及产生与终端设备100的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板1071上或在触控面板1071附近的操作)。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器110,接收处理器110发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板1071。除了触控面板1071,用户输入单元107还可以包括其他输入设备1072。具体地,其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板1071可覆盖在显示面板1061上,当触控面板1071检测到在其上或附近的触摸操作后,传送给处理器110以确定触摸事件的类型,随后处理器110根据触摸事件的类型在显示面板1061上提供相应的视觉输出。虽然在图6中,触控面板1071与显示面板1061是作为两个独立的部件来实现终端设备100的输入和输出功能,但是在某些实施例中,可以将触控面板1071与显示面板1061集成而实现终端设备100的输入和输出功能,具体此处不做限定。
接口单元108为外部装置与终端设备100连接的接口。例如,外部装置可以包括 有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元108可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备100内的一个或多个元件或者可以用于在终端设备100和外部装置之间传输数据。
存储器109可用于存储软件程序以及各种数据。存储器109可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器110是终端设备100的控制中心,利用各种接口和线路连接整个终端设备100的各个部分,通过运行或执行存储在存储器109内的软件程序和/或模块,以及调用存储在存储器109内的数据,执行终端设备100的各种功能和处理数据,从而对终端设备100进行整体监控。处理器110可包括一个或多个处理单元;可选地,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
终端设备100还可以包括给各个部件供电的电源111(比如电池),可选地,电源111可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备100包括一些未示出的功能模块,在此不再赘述。
本发明实施例还提供一种第一设备,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例中的定位方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选的,本发明实施例还提供一种终端设备,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例中的定位方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
以第二设备为服务器为例。图7为实现本发明实施例的一种服务器的硬件结构示意图,该服务器800包括:处理器801、收发机802、存储器803、用户接口804和总线接口。
其中,收发机802,用于从第一设备获取第一信息;处理器801,用于根据上述获取模块获取的上述第一信息,确定上述第一设备的定位信息;其中,上述第一信息包括以下至少一项:目标波束的方向信息,上述目标波束的能量变化信息,LOS径指示信息,波束识别信息;上述LOS径指示信息用于指示上述目标波束是否为LOS径;上述波束识别信息为上述目标波束的识别信息。
本发明实施例提供的服务器,服务器从第一设备获取到第一信息后,由于第一信息包括目标波束的以下至少一项信息:方向信息、能量变化信息、LOS径指示信息以及波束识别信息,从而使得服务器能够精确的定位出目标波束的具体方位,进而能够获取到精确度较高的第一设备的定位信息,提高了通信效率以及效能。
本发明实施例中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
另外,服务器800还包括一些未示出的功能模块,在此不再赘述。
本发明实施例还提供一种第二设备,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例中的定位方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
可选的,本发明实施例还提供一种服务器,包括处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述实施例中的定位方法的过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中的定位方法的多个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,上述的计算机可读存储介质包括只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络侧设备等)执行本发明多个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种定位方法,其中,应用于第一设备,该方法包括:
    确定第一信息;
    其中,所述第一信息包括以下至少一项:目标波束的方向信息,所述目标波束的能量变化信息,直射LOS径指示信息,波束识别信息;
    所述第一信息用于确定所述第一设备的定位信息;
    所述LOS径指示信息用于指示所述目标波束是否为LOS径;
    所述波束识别信息为所述目标波束的识别信息。
  2. 根据权利要求1所述的方法,其中,所述目标波束的识别信息为目标信号的识别信息,所述目标信号通过所述目标波束传输。
  3. 根据权利要求1或2所述的方法,其中,所述第一信息还包括:目标信号的测量信息;
    其中,所述目标信号的测量信息包括以下至少一项:往返延时RTT的时间信息,到达时间TOA时间信息,到达时间差TDOA时间信息,参考信号时间差RSTD信息,参考信号接收功率RSRP信息。
  4. 根据权利要求1所述的方法,其中,若所述第一信息包括所述方向信息,所述波束识别信息为:与所述方向信息对应的波束识别信息。
  5. 根据权利要求1所述的方法,其中,若所述第一信息包括所述能量变化信息,所述波束识别信息为:与所述能量变化信息对应的波束识别信息。
  6. 根据权利要求1至5任一项所述的方法,其中,所述目标波束为所述第一设备上报的目标信号的测量结果所对应测量波束;
    其中,所述测量结果为所述第一设备通过所述目标波束测量所述目标信号后得到的测量结果;所述目标信号为下行信号,至少包括以下至少一项:下行定位参考信号DL-PRS,同步信号块SSB,信道状态信息参考信号CSI-RS,跟踪参考信号TRS。
  7. 根据权利要求1至5任一项所述的方法,其中,所述目标波束为所述第一设备发射目标信号所对应的波束;
    其中,所述目标信号为上行参考信号,至少包括以下至少一项:探测参考信号SRS,解调参考信号DMRS。
  8. 根据权利要求1至7任一项所述的方法,其中,所述第一信息在位置信息或信号测量信息中传输。
  9. 根据权利要求1或4所述的方法,其中,所述方向信息用于指示所述第一设备的目标波束的以下至少一项:方位角,仰角,波束宽度。
  10. 根据权利要求9所述的方法,其中,所述方位角为所述目标波束相对于地理北的夹角;
    和/或,所述方位角为所述目标波束相对于参考波束的角度的方向信息;
    和/或,所述仰角为所述目标波束相对于垂直方向的夹角。
  11. 根据权利要求10所述的方法,其中,所述确定第一信息之前,所述方法还包括:
    从第二设备获取第一配置信息;
    其中,所述第一配置信息包括:用于指示所述参考波束的第一指示信息。
  12. 根据权利要求10或11所述的方法,其中,所述第一设备具备以下至少一项能力:获取地理北方向信息能力,GCS方向识别能力,校准方向信息的能力。
  13. 根据权利要求1所述的方法,其中,所述目标波束的能量变化信息包括:N个波束的能量信息,所述N个波束包括所述目标波束,N为正整数。
  14. 根据权利要求13所述的方法,其中,所述目标波束的能量变化信息为高斯函数参数,所述高斯函数参数是基于所述N个波束的能量信息得到的;
    其中,所述高斯函数为T元高斯函数,T至少为以下任一项:1,2,3。
  15. 根据权利要求13所述的方法,其中,所述目标波束的能量变化信息包括:所述N个波束中每个波束的能量信息,或者,所述N个波束与所述目标波束的能量差值信息。
  16. 根据权利要求13至15任一项所述的方法,其中,所述N个波束包括所述目标波束和N-1个所述目标波束的空间相邻波束。
  17. 根据权利要求1所述的方法,其中,所述目标波束的能量变化信息包括:所述第一设备的固定目标波束接收M个发射波束的能量信息。
  18. 根据权利要求1所述的方法,其中,所述LOS径指示信息是基于所述方向信息或所述能量变化信息确定的。
  19. 根据权利要求1所述的方法,其中,所述LOS径指示信息包括LOS质量信息;所述LOS质量信息用于表征所述目标波束的LOS径判断结果的可信度或质量。
  20. 根据权利要求1至19任一项所述的方法,其中,在所述第一设备为终端设备的情况下,所述确定第一信息之前,所述方法还包括:
    从网络侧设备获取测量配置信息;
    根据所述测量配置信息,确定所述第一信息;
    和/或,
    所述确定第一信息之前,所述方法还包括:
    从网络侧设备获取上报配置信息;
    所述确定第一信息,包括:
    根据所述上报配置信息,确定第一信息。
  21. 根据权利要求1所述的方法,其中,所述确定第一信息之前,所述方法还包括:
    获取第二信息,所述第二信息至少包括:目标信号的传输角度信息。
  22. 根据权利要求1所述的方法,其中,所述确定第一信息之后,所述方法还包括:
    向第二设备发送所述第一信息。
  23. 一种定位方法,其中,应用于第二设备,该方法包括:
    从第一设备获取第一信息;
    根据所述第一信息,确定所述第一设备的定位信息;
    其中,所述第一信息包括以下至少一项:目标波束的方向信息,所述目标波束的能量变化信息,直射LOS径指示信息,波束识别信息;
    所述LOS径指示信息用于指示所述目标波束是否为LOS径;
    所述波束识别信息为所述目标波束的识别信息。
  24. 根据权利要求23所述的方法,其中,所述目标波束的识别信息为目标信号的识别信息,所述目标信号通过所述目标波束传输。
  25. 根据权利要求23所述的方法,其中,所述第一信息还包括:目标信号的测量信息;
    其中,所述目标信号的测量信息包括以下至少一项:下行定位参考信号DL-PRS,同步信号块SSB,信道状态信息参考信号CSI-RS,跟踪参考信号TRS。
  26. 根据权利要求23所述的方法,其中,当所述第一信息包括所述方向信息的情况下,所述波束识别信息为:与所述方向信息对应的波束识别信息。
  27. 根据权利要求23所述的方法,其中,当所述第一信息包括所述能量变化信息的情况下,所述波束识别信息为:与所述能量变化信息对应的波束识别信息。
  28. 根据权利要求23所述的方法,其中,若所述第一信息中缺失所述目标波束的信息,则第二设备假设所述目标波束的信息不变。
  29. 根据权利要求23或26所述的方法,其中,所述方向信息用于指示所述第一设备的目标波束的以下至少一项:方位角,仰角,波束宽度。
  30. 根据权利要求29所述的方法,其中,所述方位角为所述目标波束相对于地理北的夹角;
    和/或,所述方位角为所述目标波束相对于参考波束的角度的方向信息;
    和/或,所述仰角为所述目标波束相对于垂直方向的夹角。
  31. 根据权利要求30所述的方法,其中,所述从第一设备获取第一信息之前,所述方法还包括:
    为第一设备配置第一配置信息;
    其中,所述第一配置信息包括:用于指示所述参考波束的第一指示信息。
  32. 根据权利要求23或31所述的方法,其中,所述目标波束的能量变化信息包括:N个波束的能量信息,所述N个波束包括所述目标波束,N为正整数。
  33. 根据权利要求32所述的方法,其中,所述目标波束的能量变化信息为高斯函数参数,所述高斯函数参数是基于所述N个波束的能量信息得到的;
    其中,所述高斯函数为T元高斯函数,T至少为以下任一项:1,2,3。
  34. 根据权利要求32所述的方法,其中,所述目标波束的能量变化信息包括:所述N个波束中每个波束的能量信息,或者,所述N个波束与所述目标波束的能量差值信息。
  35. 根据权利要求32至34任一项所述的方法,其中,所述N个波束包括所述目标波束和N-1个所述目标波束的空间相邻波束。
  36. 根据权利要求23所述的方法,其中,所述目标波束的能量变化信息包括:所述第一设备的固定目标波束接收M个发射波束的能量信息。
  37. 根据权利要求23所述的方法,其中,所述从第一设备接收第一信息之后,所述方法还包括:
    若所述LOS径指示信息包括LOS质量信息,则所述第二设备确定所述目标波束 为LOS径;所述LOS质量信息用于表征所述目标波束的LOS径判断结果的可信度或质量;
    若所述LOS径指示信息缺失所述LOS质量信息,则所述第二设备确定所述目标波束为NLOS径。
  38. 根据权利要求23所述的方法,其中,所述根据所述第一信息,确定所述第一设备的定位信息之前,所述方法还包括:
    获取第二信息,所述第二信息至少包括:目标信号的传输角度信息。
  39. 一种通信设备,所述通信设备为第一设备,其中,所述第一设备包括:
    确定模块,用于确定第一信息;
    其中,所述第一信息包括以下至少一项:目标波束的方向信息,所述目标波束的能量变化信息,LOS径指示信息,波束识别信息;
    所述第一信息用于确定所述第一设备的定位信息;
    所述LOS径指示信息用于指示所述目标波束是否为LOS径;
    所述波束识别信息为所述目标波束的识别信息。
  40. 一种通信设备,所述通信设备为第二设备,其中,所述第二设备包括:
    获取模块,用于从第一设备获取第一信息;
    确定模块,用于根据所述获取模块获取的所述第一信息,确定所述第一设备的定位信息;
    其中,所述第一信息包括以下至少一项:目标波束的方向信息,所述目标波束的能量变化信息,LOS径指示信息,波束识别信息;
    所述LOS径指示信息用于指示所述目标波束是否为LOS径;
    所述波束识别信息为所述目标波束的识别信息。
  41. 一种通信设备,所述通信设备为第一设备,其中,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至22中任一项所述的定位方法的步骤。
  42. 一种通信设备,所述通信设备为第二设备,其中,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求23至38中任一项所述的定位方法的步骤。
  43. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1至22中任一项或者权利要求23至38中任一项所述的定位方法的步骤。
PCT/CN2021/071310 2020-01-14 2021-01-12 定位方法及通信设备 WO2021143685A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022543147A JP7461483B2 (ja) 2020-01-14 2021-01-12 測位方法及び通信機器
BR112022013534A BR112022013534A2 (pt) 2020-01-14 2021-01-12 Método de posicionamento e dispositivo de comunicação.
KR1020227027586A KR20220127282A (ko) 2020-01-14 2021-01-12 측위 방법 및 통신 장치
EP21741140.4A EP4093108A4 (en) 2020-01-14 2021-01-12 POSITIONING METHOD AND COMMUNICATION DEVICE
US17/858,275 US20220334213A1 (en) 2020-01-14 2022-07-06 Positioning method and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010039189.0 2020-01-14
CN202010039189.0A CN113194531B (zh) 2020-01-14 2020-01-14 定位方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/858,275 Continuation US20220334213A1 (en) 2020-01-14 2022-07-06 Positioning method and communication device

Publications (1)

Publication Number Publication Date
WO2021143685A1 true WO2021143685A1 (zh) 2021-07-22

Family

ID=76863575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071310 WO2021143685A1 (zh) 2020-01-14 2021-01-12 定位方法及通信设备

Country Status (7)

Country Link
US (1) US20220334213A1 (zh)
EP (1) EP4093108A4 (zh)
JP (1) JP7461483B2 (zh)
KR (1) KR20220127282A (zh)
CN (1) CN113194531B (zh)
BR (1) BR112022013534A2 (zh)
WO (1) WO2021143685A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023053409A1 (ja) * 2021-09-30 2023-04-06 株式会社Nttドコモ 端末及び無線通信方法
CN115884365A (zh) * 2021-09-30 2023-03-31 大唐移动通信设备有限公司 直射径或非直射径指示信息的发送方法、接收方法及设备
CN114885284B (zh) * 2022-07-12 2022-09-20 南通飞旋智能科技有限公司 基于计算机视觉与无线通信的智能定位方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792278A (zh) * 2016-09-09 2019-05-21 索尼公司 用于基于rf的通信和位置确定的通信设备及方法
US20190320408A1 (en) * 2018-04-11 2019-10-17 Qualcomm Incorporated Navigation and positioning system using radio beam
US20190361111A1 (en) * 2018-05-25 2019-11-28 Qualcomm Incorporated Determining transmission timing of a positioning beacon from a time of reception of a reference signal

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107210797A (zh) * 2015-01-22 2017-09-26 华为技术有限公司 获取ue位置的方法和装置
EP3306337A1 (en) * 2016-10-10 2018-04-11 Fraunhofer Gesellschaft zur Förderung der Angewand User equipment localization in a mobile communication network
US11122455B2 (en) * 2017-02-28 2021-09-14 Lg Electronics Inc. Method for positioning terminal in wireless communication system and apparatus therefor
CN107015196B (zh) 2017-04-07 2019-09-24 哈尔滨工业大学 一种基于功率延迟分布与波达角测距的单节点室内定位方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109792278A (zh) * 2016-09-09 2019-05-21 索尼公司 用于基于rf的通信和位置确定的通信设备及方法
US20190320408A1 (en) * 2018-04-11 2019-10-17 Qualcomm Incorporated Navigation and positioning system using radio beam
US20190361111A1 (en) * 2018-05-25 2019-11-28 Qualcomm Incorporated Determining transmission timing of a positioning beacon from a time of reception of a reference signal

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER IIS, FRAUNHOFER HHI: "NR beam management supporting multi-gNB measurements for positioning", 3GPP DRAFT; R1-1813583, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 10 November 2018 (2018-11-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 8, XP051479922 *
See also references of EP4093108A4 *

Also Published As

Publication number Publication date
BR112022013534A2 (pt) 2022-09-06
EP4093108A1 (en) 2022-11-23
US20220334213A1 (en) 2022-10-20
JP2023511289A (ja) 2023-03-17
KR20220127282A (ko) 2022-09-19
CN113194531A (zh) 2021-07-30
JP7461483B2 (ja) 2024-04-03
EP4093108A4 (en) 2023-06-21
CN113194531B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2021143685A1 (zh) 定位方法及通信设备
KR101842565B1 (ko) 관리되지 않는 네트워크에서의 액세스 포인트 위치 탐색 기법
US20220014335A1 (en) Method for reporting positioning measurement information, terminal, and network device
US11444675B2 (en) Beam failure recovery request transmission method, reception method, devices and system
US20220159479A1 (en) Method for determining quasi co-located (qcl) information, method for configuring qcl information, and related devices
WO2021088970A1 (zh) 探测参考信号发射设置方法、信息配置方法、定位方法和相关设备
CN110958636B (zh) Csi报告的上报方法、终端设备及网络设备
CN110719154B (zh) 一种波束失败恢复请求传输方法及设备
WO2021068930A1 (zh) 测量上报配置方法、设备及系统
WO2020134188A1 (zh) 上行信号发送方法及设备
WO2020155949A9 (zh) 一种用户定位的方法、网元、系统及存储介质
WO2019218910A1 (zh) 多载波系统中的波束失败恢复方法及装置
CN116406520A (zh) 定位方式的触发方法及通信装置
CN110011766B (zh) 波束失败检测方法、终端及网络设备
WO2019157915A1 (zh) Csi资源类型的确定方法、终端和网络侧设备
WO2022268197A1 (zh) 定位处理方法、定位参考信号发送方法、装置及设备
US20210377771A1 (en) Information processing method, device, and system
WO2020239087A1 (zh) 信息的上报方法、信息的获取方法、终端及网络侧设备
WO2021088816A1 (zh) 信干噪比测量方法、装置、设备及介质
WO2022016465A1 (zh) 定位测量方法、定位测量装置及存储介质
US20230019838A1 (en) Measurement method, terminal device, and network side device
WO2024027664A1 (zh) 载波相位定位方法、装置、设备及介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741140

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543147

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013534

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021741140

Country of ref document: EP

Effective date: 20220816

ENP Entry into the national phase

Ref document number: 112022013534

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220707