WO2021143244A1 - 一种双温双闪发空调制冷系统 - Google Patents

一种双温双闪发空调制冷系统 Download PDF

Info

Publication number
WO2021143244A1
WO2021143244A1 PCT/CN2020/122493 CN2020122493W WO2021143244A1 WO 2021143244 A1 WO2021143244 A1 WO 2021143244A1 CN 2020122493 W CN2020122493 W CN 2020122493W WO 2021143244 A1 WO2021143244 A1 WO 2021143244A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
dual
compression chamber
low
flow path
Prior art date
Application number
PCT/CN2020/122493
Other languages
English (en)
French (fr)
Inventor
皇甫启捷
梁祥飞
郑波
黄明月
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021143244A1 publication Critical patent/WO2021143244A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/001Compression cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators

Definitions

  • This application relates to the technical field of refrigeration, and in particular to a dual-temperature dual-flash air-conditioning refrigeration system.
  • the indoor return air passes through the high and low temperature evaporators to release heat.
  • the outlets of the two evaporators are respectively connected to the two compression chambers of the compressor, thereby ensuring that the evaporation temperature of the high temperature evaporator is higher than that of the conventional system.
  • System energy efficiency there is still room for improvement for the above-mentioned refrigeration system.
  • the pressure on the high pressure side of the refrigeration system will increase significantly, which will affect the pressure resistance and reliability of the refrigeration system. Higher requirements are put forward.
  • the compressor discharge temperature has increased significantly, causing the deterioration of compressor oil quality, the increase of compressor cylinder temperature, and the shutdown of high temperature protection.
  • the air conditioning system in the prior art has the problem of a large temperature difference between the return air temperature and the evaporating temperature during operation, resulting in low energy efficiency of the system.
  • the purpose of this application is to provide a dual-temperature dual-flash air conditioning refrigeration system, which reduces the inlet dryness of the high and low temperature evaporator, effectively improves the refrigeration capacity and energy efficiency of the system, and at the same time couples the air supplement enthalpy technology to make the system wider It can run smoothly and safely under all working conditions.
  • a dual-temperature dual-flash air-conditioning refrigeration system which includes: a compressor, including a high-temperature compression chamber, a low-temperature compression chamber, and an auxiliary compression chamber, each of the three compression chambers has independent Intake port; where the exhaust from the low-temperature compression chamber is discharged through the first exhaust pipe, and the exhaust from the auxiliary compression chamber is mixed with the exhaust from the high-temperature compression chamber and then discharged through the second exhaust pipe; the condenser includes a high-temperature condenser and a low-temperature condenser Condenser; evaporator, including high temperature evaporator and low temperature evaporator; flasher, including first flasher and second flasher; throttling device, including first throttling device and second throttling device; control The valve includes a first control valve; wherein: the refrigerant discharge port of the first exhaust pipe is connected to one end of the first heat release branch, and
  • a third throttling device is provided on the first heat release branch on the outlet side of the high-temperature condenser, and the refrigerant with a higher temperature coming out of the high-temperature condenser is throttled and pressure-reduced in the third throttling device, and then combined with the low temperature The refrigerant from the condenser is mixed.
  • This application also provides a second dual-temperature dual-flash air-conditioning refrigeration system, which includes a compressor, including a high-temperature compression chamber, a low-temperature compression chamber, and an auxiliary compression chamber. Each of the three compression chambers has independent suction ports.
  • the exhaust from the compression chamber is discharged through the first exhaust pipe, the exhaust from the auxiliary compression chamber is mixed with the high-temperature compression chamber exhaust and then is discharged through the second exhaust pipe; the first exhaust pipe exhausts and the second exhaust pipe exhausts After being mixed together, they are sent to one end of the heat release flow path; the condenser is arranged on the heat release flow path; the evaporator includes a high temperature evaporator and a low temperature evaporator; a flasher includes a first flasher and a second flasher The throttling device, including a first throttling device and a second throttling device; a control valve, including a first control valve; wherein: the other end of the heat release flow path is connected to one end of the first refrigerant flow path, the first refrigerant flow path The other end is connected to the suction pipe of the low-temperature compression chamber; on the first flow path of the refrigerant, the first throttling device, the first flasher, the high-temperature
  • the evaporator is arranged between the second throttling device and the low-temperature compression chamber, the flash gas outlet of the second flasher is connected to one end of the second refrigerant flow path, and the other end of the second refrigerant flow path is connected to the high-temperature compression chamber. Suction pipe.
  • This application also provides a third dual-temperature dual-flash air conditioning refrigeration system, which includes: a compressor, including a high-temperature compression chamber, a low-temperature compression chamber, and an auxiliary compression chamber.
  • the high-temperature compression chamber, the low-temperature compression chamber, and the auxiliary compression chamber all have independent
  • the suction port of the low-temperature compression chamber is discharged through the first exhaust pipe, and the exhaust from the auxiliary compression chamber is mixed with the high-temperature compression chamber exhaust and then discharged through the second exhaust pipe; condenser, high-temperature evaporator and low-temperature evaporation
  • the compressor, the condenser, the high-temperature evaporator, and the low-temperature evaporator are connected in sequence to form a circulation pipeline;
  • the first flasher, the first flasher is arranged on the pipeline between the condenser and the high-temperature evaporator, the first
  • the flash gas outlet of the flasher is connected with one end of the gas supplementary branch
  • the condenser includes a high-temperature condenser and a low-temperature condenser, the refrigerant discharge port of the first exhaust pipe is connected to one end of the first heat release branch, and the refrigerant discharge port of the second exhaust pipe is connected to the second heat release branch.
  • the branch One end of the branch is connected; the low-temperature condenser is arranged on the second heat-releasing branch; the high-temperature condenser is arranged on the first heat-releasing branch; the other end of the second heat-releasing branch merges with the other end of the first heat-releasing branch Together and connected to one end of the first refrigerant flow path, the other end of the first refrigerant flow path is connected to the suction pipe of the low-temperature compression chamber, the first throttling device, the first flasher, the high-temperature evaporator, and the second flash
  • the generator, the second throttling device, and the low-temperature evaporator are sequentially arranged on the first flow path of the refrigerant.
  • the dual-temperature dual-flash air-conditioning refrigeration system further includes: a first control valve, and the first control valve is arranged on the air supply branch.
  • a connecting branch is connected between the second refrigerant flow path and the supplemental gas branch, and a second control valve is provided on the connecting branch; the connection point of the connecting branch and the supplemental gas branch is located at the first control valve Between the suction port of the auxiliary compressor.
  • an intermediate heat exchanger is arranged on the first flow path of the refrigerant, the intermediate heat exchanger is arranged on the outlet side of the first throttling device, and the second flow path of the refrigerant first flows through the intermediate heat exchanger and exchanges heat with the flow in the middle. After the first flow path of the refrigerant in the device exchanges heat, it is then connected to the suction pipe of the high-temperature compression chamber.
  • the first refrigerant flow path is provided with a third control valve on the inlet side of the first throttling device, the first refrigerant flow path is connected in parallel with a reheating circuit on both sides of the third control valve, and a reheater is provided on the reheating circuit , The reheater and the low-temperature evaporator work together.
  • the dual-temperature dual-flash refrigeration system is coupled with the fresh return air heat exchange system.
  • the new return air heat exchange system is equipped with a total heat exchanger between the exhaust air flow path and the fresh air flow path, and a low-temperature condenser is used as the exhaust air.
  • the final heat exchanger is arranged on the exhaust channel downstream of the total heat exchanger, and the reheater, low-temperature evaporator and high-temperature evaporator are sequentially arranged on the fresh air channel downstream of the total heat exchanger along the flow direction of the airflow.
  • the high-temperature evaporator and the low-temperature evaporator are used to achieve stepped temperature reduction and dehumidification, wherein the high-temperature evaporator is responsible for the sensible heat load, and the low-temperature evaporator is responsible for the cooling and dehumidification.
  • the dual-temperature dual-flash air-conditioning refrigeration system is applied to heat pump air-conditioning.
  • the dual temperature dual flash air conditioning refrigeration system is applied to the heat pump air conditioner, the second flow path is provided with a bypass flow path between the inlet and the outlet of the intermediate heat exchanger, and a fourth control valve is provided on the bypass flow path.
  • the present application provides a dual-temperature dual-flash air-conditioning refrigeration system.
  • the dual-temperature dual-flash air-conditioning refrigeration system adopts three-cylinder air supplementation and enthalpy increase technology, so that the system can run smoothly under a wider range of working conditions, and is extremely harsh It has good performance under the environment (high temperature refrigeration, low temperature heating); two condensers are used to form a double evaporation and double condensation system, which reduces the pressure ratio of the system and further improves energy efficiency.
  • a flasher reduces the inlet dryness and specific enthalpy of the evaporator, improves the refrigeration capacity of the system, and makes the system more energy efficient.
  • Figure 1 Schematic diagram of the refrigeration mode cycle of the dual-temperature dual-flash air-conditioning refrigeration system of the air conditioner in Example 1 of the present application;
  • Figure 2 Schematic diagram of the refrigeration mode cycle of the dual-temperature dual-flash air-conditioning refrigeration system of the air conditioner in Embodiment 2 of the present application;
  • Figure 3 Schematic diagram of the refrigeration mode cycle of the dual-temperature dual-flash air-conditioning refrigeration system of the air conditioner in Embodiment 2 of the present application;
  • Fig. 4 A schematic diagram of the refrigeration mode cycle of the dual-temperature dual-flash air-conditioning refrigeration system of the air conditioner in Embodiment 3 of the present application.
  • the prior art proposes a dual evaporating temperature system to solve the problem of low system energy efficiency caused by the large temperature difference between the return air temperature and the evaporating temperature during the operation of the air conditioning system.
  • the refrigeration system still has problems; when the external environment is relatively harsh (high temperature) Refrigeration or low-temperature heating), the refrigeration system will increase the temperature of the compressor cylinder, which will cause the high-temperature protection to stop. In severe cases, the rotor enameled wire will melt, the rotor coil will be short-circuited, and the compressor will burn out.
  • the pressure of the system is relatively large, the degree of subcooling is reduced, and the flash dryness of the throttling becomes higher, so that the inlet dryness of the high-temperature evaporator is increased, and the capacity of the evaporator is correspondingly reduced.
  • the purpose of this application is to provide a dual-temperature dual-flash air conditioning refrigeration system.
  • the dual-temperature dual-flash air-conditioning refrigeration system adopts air supplementation and enthalpy increase technology, so that the pressure ratio of the system is reduced, and the capacity and energy efficiency are improved to a certain extent.
  • the air supply branch can be selected through the control valve, so that the system can adapt to a wider range of working conditions, and can have excellent system performance in extreme harsh environments such as high temperature cooling and low temperature heating.
  • This embodiment provides a heat pump air conditioner with a dual-temperature dual-flash air-conditioning refrigeration system.
  • the air-conditioning refrigeration system includes a compressor 1 having a high-temperature compression chamber 11, a low-temperature compression chamber 12, and an auxiliary compression chamber 13.
  • the three compression chambers all have independent suction ports.
  • the exhaust gas from the low-temperature compression chamber 12 is discharged through the first exhaust pipe, and the exhaust gas from the auxiliary compression chamber 13 is mixed with the exhaust gas from the high-temperature compression chamber 11 through the second exhaust pipe.
  • the refrigerant discharge port of the first exhaust pipe is connected to one end of the first heat release branch, and the refrigerant discharge port of the second exhaust pipe is connected to one end of the second heat release branch; in the first heat release branch A high-temperature condenser 21 is provided on the road, and a low-temperature condenser 22 is provided on the second heat release branch; the other end of the second heat release branch and the other end of the first heat release branch merge together with the first flow path of refrigerant Connected, the other end of the first refrigerant flow path is connected to the suction pipe of the low-temperature compression chamber 12; on the first refrigerant flow path, a first throttling device 51, a first throttle device 51 and a first throttling device 51 are sequentially arranged along the direction of the refrigerant flowing to the compressor 1.
  • the flash gas outlet of the first flash generator 41 is connected to one end of the supplementary gas branch, and the other end of the supplementary gas branch is connected to the suction port of the auxiliary compression chamber 13; a first control valve 61 is provided on the supplementary gas branch.
  • the second flasher 42 is arranged between the high-temperature evaporator 31 and the second throttling device 52, the low-temperature evaporator 32 is arranged between the second throttling device 52 and the low-temperature compression chamber 12, and the second flasher 42
  • the flash gas outlet is connected to the second refrigerant flow path, and the other end of the second refrigerant flow path is connected to the suction pipe of the high-temperature compression chamber 11.
  • the air conditioning and refrigeration system in this embodiment adopts the technology of supplemental air enthalpy.
  • a compressor 1 with three compression chambers and two condensers 2 form a double condensation system, and two are added before the high and low temperature evaporator 32 in the circulation loop.
  • a flasher is used to reduce the dryness before the entrance of the evaporator. The lower the entrance dryness of the evaporator, the smaller the entrance specific enthalpy of the evaporator, the higher the refrigeration capacity, and the higher the energy efficiency of the system.
  • the first control valve 61 is controlled to choose whether to use the supplementary air branch; compared with the original dual temperature system, this system can not only improve the cooling, heating capacity and energy efficiency, but also It can make the system adapt to a wider range of working conditions, and can have excellent system performance in extremely harsh environments such as high temperature refrigeration and low temperature heating.
  • a third throttling device 53 is provided on the first heat release branch on the outlet side of the high temperature condenser 21 for throttling and depressurizing the higher temperature refrigerant coming out of the high temperature condenser 21.
  • the third throttling device 53 since the temperature of the refrigerant coming out of the high-temperature condenser 21 is relatively high, it is throttled and reduced in pressure by the third throttling device 53 and mixed with the refrigerant coming out of the low-temperature condenser 22, and then passes through the first throttling device 51. The flow enters the first flasher 41 after decompression.
  • the gaseous refrigerant Since the gaseous refrigerant has a small heat exchange capacity in the evaporator, after passing through the first flasher 41, the gaseous refrigerant enters the auxiliary compression chamber 13 through the supplemental gas pipeline, and the separated liquid refrigerant is exchanged through the high-temperature evaporator 31 After heating, the original liquid refrigerant becomes a vapor-liquid two-phase state again. At this time, the refrigerant flashes again through the second flasher 42, and the gaseous refrigerant enters the high-temperature compression chamber 11 of the compressor 1, and is compressed with The exhaust gas from the auxiliary compression chamber 13 is mixed into the low-temperature condenser 22.
  • the liquid refrigerant separated by the second flasher 42 is throttled again and then enters the low-temperature evaporator 32. After the heat exchange is completed, it enters the low-temperature compression chamber 12 of the compressor 1, and directly enters the high-temperature condenser 21 after the compression is completed.
  • the entire refrigeration cycle constitutes a double evaporation and double condensation system. Compared with the original system, the pressure ratio of the system is reduced, and the capacity and energy efficiency are improved to a certain extent.
  • the high-temperature evaporator 31 and the low-temperature evaporator 32 are used to achieve cascade cooling and dehumidification, wherein the high-temperature evaporator 31 is mainly responsible for sensible heat load, and the low-temperature evaporator 32 is mainly responsible for cooling and dehumidification, and the dry and wet are distinct, which reduces the evaporator and The heat exchange temperature difference of the air achieves the purpose of improving energy efficiency.
  • the double flash generator is used to separate the gaseous refrigerant in time, reduce the inlet dryness of the evaporator, improve the heat exchange capacity of the evaporator, and further improve energy efficiency.
  • two evaporators and two condensers 2 are used to form a double evaporation and double condensation system, which reduces the system pressure ratio and improves energy efficiency.
  • a connecting branch is connected between the second refrigerant flow path and the supplemental gas branch, and a second control valve 62 is provided on the connecting branch; the connection point of the connecting branch and the supplemental gas branch is located in the first Between the control valve 61 and the suction port of the auxiliary compressor 1.
  • the air supplement branch may not be used.
  • the first control valve 61 is closed and the second control valve 62 is opened, so that the auxiliary compression chamber 13 and the high temperature compression chamber 11 are connected in parallel, and the high temperature evaporation
  • the gaseous refrigerant separated by the flasher 31 through the flasher enters the auxiliary compression chamber 13 and the high-temperature compression chamber 11 to be compressed and discharged.
  • the first control valve 61 is opened, the second control valve 62 is closed, and the air supply branch is opened.
  • the total refrigerant flow of the system increases, and the heat exchange capacity increases.
  • the settings of the first control valve 61 and the second control valve 62 couple dual temperature and parallel circulation, which can not only improve the energy efficiency of the system, but also make the system adapt to a wider range of working conditions. According to the actual situation, choose whether to have supplemental air Of the loop.
  • the heating and cooling modes are exchanged by arranging the four-way valve 10 on the first exhaust pipe and the second exhaust pipe.
  • the flow direction is opposite.
  • the branch circuit for supplementing air and increasing enthalpy is opened, which increases the heating capacity of the system compared with the original system, the heating capacity is increased significantly, and the energy efficiency is improved significantly.
  • the air conditioner provided in this embodiment has a dual-temperature dual-flash air-conditioning refrigeration system to ensure that it has good cooling and heating capabilities and energy efficiency, and it can also make the air conditioner adapt to a wider range of working conditions, and can be used in high temperature and low temperature cooling. It has excellent performance in extreme harsh environments such as heating.
  • this embodiment provides a heat pump air conditioner, which has the dual temperature dual flash air conditioning refrigeration system provided in Embodiment 1.
  • the first flow path is on the outlet side of the first throttling device 51 .
  • an intermediate heat exchanger 7 is arranged in sequence.
  • the second flow path of the refrigerant first flows through the intermediate heat exchanger 7, and flows through the second intermediate heat exchanger 7 After the refrigerant in the flow path exchanges heat, it is connected to the suction pipe of the high-temperature compression chamber 11. Therefore, the second flow path of the refrigerant first flows through the intermediate heat exchanger 7, exchanges heat with the refrigerant flowing in the first flow path, and then is sent to the suction pipe of the high-temperature compression chamber 11.
  • the first flow path is provided with a third control valve 63 on the inlet side of the intermediate heat exchanger, and the first flow path is connected in parallel with a reheat circuit on both sides of the third control valve 63.
  • the reheat circuit is provided with a reheater 8 and a reheater 8. Cooperate with low temperature evaporator 32.
  • the reheater 8 bypasses part of the high-temperature refrigerant from the condenser 2 for heat exchange with the air after the evaporator heat exchange, and heats the air that is about to enter the room. Because the temperature of the low-temperature evaporator 32 is lower, the temperature of the introduced fresh air is also lower, thereby reducing the comfort of the supply air.
  • the reheater 8 is to prevent the supply air from being too low and improve the comfort of the fresh air.
  • the refrigeration system and the fresh return air heat exchange system are coupled together, and the fresh return air heat exchange system is provided with a total heat exchanger 9 and a low temperature condenser 22 between the exhaust air flow path and the fresh air flow path.
  • the final heat exchanger as exhaust air is arranged on the downstream exhaust passage of the total heat exchanger 9, and the reheater 8, the low-temperature evaporator 32, and the high-temperature evaporator 31 are sequentially arranged downstream of the total heat exchanger 9 along the air flow direction. On the new air channel.
  • the total heat exchanger 9 is a heat recovery device that improves energy efficiency. It is used in fresh air fans.
  • the total heat exchanger 9 makes the return air discharged to the outdoor and the indoor air The fresh air exchanges heat and recovers this part of the heat, so as to achieve the purpose of improving energy efficiency.
  • the low temperature condenser 22 in the refrigeration system can be replaced with a heat recovery condenser 23.
  • the air-conditioning and refrigeration system of this embodiment can also add a four-way in the system.
  • the reversing valve is set to a heat pump type, that is, a four-way reversing valve is set between the suction and exhaust pipes of the low-temperature compression chamber (ie, the first exhaust branch) and the first flow path and the first heat release flow path (on the figure). (Not shown), a four-way reversing valve (not shown in the figure) is provided between the suction and exhaust pipes of the high-temperature compression chamber (ie, the second exhaust branch) and the second flow path and the second heat release flow path.
  • the present application can further optimize the second flow path to provide a bypass flow path between the inlet and the outlet of the intermediate heat exchanger 7.
  • a fourth control valve 64 is provided on the bypass flow path. The valve is used to open during heating, short-circuit the intermediate heat exchanger, and during cooling, the circulation flow path is the same as before.
  • some intermediate heat exchangers, reheaters, total heat exchangers and other devices are added to the refrigeration system of the air conditioner in this embodiment, so that the system can be used in air conditioners, fresh air dehumidifiers, etc. Application scenarios.
  • this embodiment provides an air conditioner, which has a dual-temperature dual-flash air-conditioning refrigeration system including: a compressor 1 having a high-temperature compression chamber 11, a low-temperature compression chamber 12, and an auxiliary compression chamber 13.
  • the compressor Each of the three compression chambers of 1 has independent suction ports.
  • the exhaust gas of the low-temperature compression chamber 12 is discharged through the first exhaust pipe, and the exhaust gas of the auxiliary compression chamber 13 is mixed with the exhaust gas of the high-temperature compression chamber 11 through the second row.
  • the exhaust from the first exhaust pipe and the exhaust from the second exhaust pipe are mixed together and then sent into the heat release flow path; a condenser 2 is provided on the heat release flow path; the other end of the heat release flow path is connected with the refrigerant first One end of the flow path is connected, and the other end of the first refrigerant flow path is connected with the suction pipe of the low-temperature compression chamber 12; on the first refrigerant flow path, first throttling devices are sequentially arranged along the direction of refrigerant flow to the compressor 1 51.
  • the dual-temperature dual-flash air-conditioning refrigeration system of the air conditioner of this embodiment is based on Example 1.
  • a single condenser is used instead of its dual condenser.
  • the exhaust gas of the high and low temperature compression chamber is mixed with each other. Because the pressure ratio of the auxiliary compression chamber is small, the exhaust The gas temperature is also low. Therefore, when the compressed gaseous refrigerant is mixed with the exhaust gas of the high and low temperature compression chambers, the total exhaust temperature of the system is greatly reduced, and the cylinder temperature of the compressor is effectively reduced to prevent the compressor from malfunctioning.
  • the deterioration of oil quality improves the stability of system operation, simplifies the system, and makes the system more economical.
  • the dual-temperature dual-flash air-conditioning refrigeration system includes a compressor with a high-temperature compression chamber, a low-temperature compression chamber, and an auxiliary compression chamber.
  • the compression chambers have independent suction ports, where the exhaust gas from the low-temperature compression chamber is discharged through the first exhaust pipe, and the exhaust gas from the auxiliary compression chamber is mixed with the high-temperature compression chamber exhaust gas and then discharged through the second exhaust pipe; the first row
  • the refrigerant discharge port of the gas pipe is connected to one end of the first heat release branch
  • the refrigerant discharge port of the second exhaust pipe is connected to one end of the second heat release branch
  • the other end of the second heat release branch is connected to the first heat release branch.
  • the other end of a heat release branch is joined together and connected to one end of the first refrigerant flow path, and the other end of the first refrigerant flow path is connected to the suction pipe of the low-temperature compression chamber; on the first refrigerant flow path, along the refrigeration
  • the first throttling device, the first flasher, the high-temperature evaporator, the second flasher, the second throttling device and the low-temperature evaporator are arranged in the direction in which the agent flows to the compressor; a condenser is arranged on the heat release branch ; At the same time according to the conditions of the outdoor environment, by setting the control valve to choose whether to use the supplementary air branch.
  • the system can not only improve the cooling, heating capacity and energy efficiency, but also make The system adapts to a wider range of working conditions, and has excellent system performance in extreme harsh environments such as high-temperature refrigeration and low-temperature heating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提供一种双温双闪发空调制冷系统,该双温双闪发空调制冷系统包括具有高温压缩腔、低温压缩腔和辅助压缩腔的压缩机,其中低温压缩腔的排气经第一排气管道排出,辅助压缩腔的排气与高温压缩腔排气混合后经第二排气管道排出;在制冷剂第一流路上,沿着制冷剂向压缩机流动的方向依次设置第一节流装置、第一闪发器、高温蒸发器、第二闪发器、第二节流装置、低温蒸发器;放热支路上设有冷凝器;同时根据室外环境的状况,通过设置控制阀来选择是否采用补气支路,相较于现有技术中的双温系统,该系统不仅能够提高制冷、制热能力和能效,而且还能使得该系统适应更宽的工况,在高温制冷、低温制热等极端恶劣环境下都能有优良的系统性能。

Description

一种双温双闪发空调制冷系统
本申请要求于2020年01月19日提交至中国国家知识产权局、申请号为202010060451.X、发明名称为“一种双温双闪发空调制冷系统”的专利申请的优先权。
技术领域
本申请涉及制冷技术领域,具体涉及一种双温双闪发空调制冷系统。
背景技术
常规制冷空调系统在夏季制冷时,为了满足除湿需求,通常需要将蒸发器温度降至比回风露点温度低较大的幅度。而从制冷系统能效的角度,在系统冷凝温度一定的条件下:蒸发温度越低,也就是压缩机吸排气压比越大,系统的能效越低。为了解决空调系统运行时回风温度与蒸发温度温差大导致的系统能效低的问题,人们提出了一种双蒸发温度系统,即两个高、低温蒸发器分别布置在单独或同一个放热通道内,室内回风先后经过高、低温蒸发器进行放热,同时两个蒸发器出口分别与压缩机的两个压缩腔相连,从而保证了高温蒸发器的蒸发温度高于常规系统蒸发温度,提升系统能效。但是对于上述的制冷系统仍存在一定的提升空间,当外界的环境较为恶劣时(高温制冷或者低温制热),制冷系统的高压侧的压力会显著升高,对制冷系统的耐压性和可靠性提出更高的要求,压缩机排气温度提高明显,造成压缩机油质变差,压缩机缸体温度升高,出现高温保护停机,严重时会造成转子漆包线融化,转子线圈短路,压缩机烧毁。另一方面,系统的压比较大,过冷度减小,节流的闪发干度变高,从而使得高温蒸发器的入口干度增加,蒸发器的能力也相应减小。因此,现有技术中的空调系统在运行时存在回风温度与蒸发温度温差大而导致系统能效低的问题。
发明内容
本申请的目的在于提供一种双温双闪发空调制冷系统,减小高、低温蒸发器入口干度,有效提升系统的制冷能力与能效,同时耦合补气增焓技术,使得系统在更宽的工况下均能平稳安全的运行。
为达上述目的,本申请采用如下技术方案:一种双温双闪发空调制冷系统,其包括:压缩机,包括高温压缩腔、低温压缩腔和辅助压缩腔,三个压缩腔均具有独立的吸气口;其中低温压缩腔的排气经第一排气管道排出,辅助压缩腔的排气与高温压缩腔排气混合后经第二排气管道排出;冷凝器,包括高温冷凝器和低温冷凝器;蒸发器,包括高温蒸发器和低温蒸发器;闪发器,包括第一闪发器和第二闪发器;节流装置,包括第一节流装置和第二节流装置;控制阀,包括第一控制阀;其中:第一排气管道的制冷剂排出口与第一放热支路的一端连接,第二排气管道的制冷剂排出口与第二放热支路的一端连接;低温冷凝器设置在第二放热支路上;高温冷凝器设置在第一放热支路上;第二放热支路的另一端与第一放热支路的另一端汇合在一起并与制冷剂第一流路的一端连接,制冷剂第一流路的另一端与低温压缩腔的吸气管道连接;在制冷剂第一流路上,沿着制冷剂向压缩机流动的方向依次设置有第一节流装置、第一闪发器、高温蒸发器、第二闪发器、第二节流装置、低温蒸发器;其中第一闪发器设置在第一节流装置与高温蒸发器之间,第一闪发器的闪发气体出口连接补气支路的一端,补气支路的另一端连通辅助压缩腔的吸气口;补气支路上设有第一控制阀;第二闪发器设置在高温蒸发器与第二节流装置之间,低温蒸发器设置在第二节流装置与低温压缩腔之间,第二闪发器的闪发气体出口与制冷剂第二流路的一端连接,制冷剂第二流路的另一端连接高温压缩腔的吸气管道。
进一步地,在高温冷凝器出口侧的第一放热支路上设置有第三节流装置,高温冷凝器出来温度较高的制冷剂在第三节流装置中节流降压之后,再与低温冷凝器出来的制冷剂混合。
本申请还提供了第二种双温双闪发空调制冷系统,其包括:压缩机,包括高温压缩腔、低温压缩腔和辅助压缩腔,三个压缩腔均具有独立的吸气口,其中低温压缩腔的排气经第一排气管道排出,辅助压缩腔的排气与高温压缩腔排气混合后经第二排气管道排出;第一排气管道排气与第二排气管道排气混合在一起后被送进放热流路的一端;冷凝器,设置 在放热流路上;蒸发器,包括高温蒸发器和低温蒸发器;闪发器,包括第一闪发器和第二闪发器;节流装置,包括第一节流装置和第二节流装置;控制阀,包括第一控制阀;其中:放热流路的另一端与制冷剂第一流路的一端连接,制冷剂第一流路的另一端与低温压缩腔的吸气管道连接;在制冷剂第一流路上,沿着制冷剂向压缩机流动的方向依次设置第一节流装置、第一闪发器、高温蒸发器、第二闪发器、第二节流装置、低温蒸发器;其中第一闪发器设置在第一节流装置与高温蒸发器之间,第一闪发器的闪发气体出口连接补气支路的一端,补气支路的另一端连通辅助压缩腔的吸气口;在补气支路上设有第一控制阀;第二闪发器设置在高温蒸发器与第二节流装置之间,低温蒸发器设置在第二节流装置与低温压缩腔之间,第二闪发器的闪发气体出口连接制冷剂第二流路的一端,制冷剂第二流路的另一端连接高温压缩腔的吸气管道。
本申请还提供了第三种双温双闪发空调制冷系统,其包括:压缩机,包括高温压缩腔、低温压缩腔和辅助压缩腔,高温压缩腔、低温压缩腔和辅助压缩腔均具有独立的吸气口;低温压缩腔的排气经第一排气管道排出,辅助压缩腔的排气与高温压缩腔排气混合后经第二排气管道排出;冷凝器、高温蒸发器和低温蒸发器,压缩机、冷凝器、高温蒸发器和低温蒸发器依次连接以形成循环管路;第一闪发器,第一闪发器设置在冷凝器和高温蒸发器之间的管路上,第一闪发器的闪发气体出口与补气支路的一端连接,补气支路的另一端与辅助压缩腔的吸气口连通;第二闪发器,第二闪发器设置在高温蒸发器和低温蒸发器之间的管路上,第二闪发器的闪发气体出口与制冷剂第二流路的一端连接,制冷剂第二流路的另一端与高温压缩腔的吸气管道连接。
进一步地,冷凝器包括高温冷凝器和低温冷凝器,第一排气管道的制冷剂排出口与第一放热支路的一端连接,第二排气管道的制冷剂排出口与第二放热支路的一端连接;低温冷凝器设置在第二放热支路上;高温冷凝器设置在第一放热支路上;第二放热支路的另一端与第一放热支路的另一端汇合在一起并与制冷剂第一流路的一端连接,制冷剂第一流路的另一端与低温压缩腔的吸气管道连接,第一节流装置、第一闪发器、高温蒸发器、第二闪发器、第二节流装置以及低温蒸发器依次设置在制冷剂第一流路上。
进一步地,双温双闪发空调制冷系统还包括:第一控制阀,第一控制阀设置在补气支路上。
进一步地,在制冷剂第二流路与补气支路之间连接有连接支路,在连接支路上设有第二控制阀;连接支路与补气支路的连接点位于第一控制阀与辅助压缩机吸气口之间。
进一步地,制冷剂第一流路上设置有中间换热器,中间换热器设置在在第一节流装置出口侧,制冷剂第二流路先流经中间换热器并与流在中间换热器中的制冷剂第一流路换热后,再连接高温压缩腔的吸气管道。
进一步地,制冷剂第一流路在第一节流装置的入口侧设置有第三控制阀,制冷剂第一流路在第三控制阀两侧并联一再热回路,再热回路上设有再热器,再热器与低温蒸发器工作配合在一起。
进一步地,双温双闪发制冷系统与新回风换热系统耦合在一起,新回风换热系统在排风流路与新风流路之间设有全热交换器,低温冷凝器作为排风的末级换热器设置在全热交换器下游的排风通道上,再热器、低温蒸发器以及高温蒸发器沿着气流流动方向依次设置在全热交换器下游的新风通道上。
进一步地,高温蒸发器和低温蒸发器用于实现梯级降温除湿,其中高温蒸发器负责显热负荷,低温蒸发器负责降温除湿。
进一步地,双温双闪发空调制冷系统应用于热泵空调。
进一步地,双温双闪发空调制冷系统应用于热泵空调,第二流路在中间换热器的入口和出口之间设置旁通流路,该旁通流路上设置有第四控制阀。
本申请提供的一种双温双闪发空调制冷系统,该双温双闪发空调制冷系统采用三缸补气增焓技术,使得系统在更宽的工况下均能平稳运行,在极端恶劣环境下(高温制冷、低温制热)均具有良好的性能;采用两个冷凝器,组成双蒸发、双冷凝系统,降低系统的压比,进一步提高能效,同时在高、低温蒸发器前均设置一个闪发器,降低蒸发器的入口干度与比焓,提高系统的制冷能力,使系统具有更高的能效。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1:本申请实施例1中空调的双温双闪发空调制冷系统制冷模式循环示意图;
图2:本申请实施例2中空调的双温双闪发空调制冷系统制冷模式循环示意图;
图3:本申请实施例2中空调的双温双闪发空调制冷系统制冷模式循环示意图;
图4:本申请实施例3中空调的双温双闪发空调制冷系统制冷模式循环示意图。
图中:
1、压缩机;11、高温压缩腔;12、低温压缩腔;13、辅助压缩腔;2、冷凝器;21、高温冷凝器;22、低温冷凝器;23、热回收冷凝器;31、高温蒸发器;32、低温蒸发器;41、第一闪发器;42、第二闪发器;51、第一节流装置;52、第二节流装置;53、第三节流装置;61、第一控制阀;62、第二控制阀;63、第三控制阀;64、第四控制阀;7、中间换热器;8、再热器;9、全热交换器;10、四通阀。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种,但是不排除包含至少一种的情况。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
现有技术提出了一种双蒸发温度系统来解决空调系统运行时回风温度与蒸发温度温差大导致的系统能效低的问题,但是该制冷系统仍存问题;当外界的环境较为恶劣时(高温制冷或者低温制热),该制冷系统会出现压缩机缸体温度升高的现象,引发高温保护停机,严重时会造成转子漆包线融化,转子线圈短路,压缩机烧毁的问题。另一方面,系统的压比较大,过冷度减小,节流的闪发干度变高,从而使得高温蒸发器的入口干度增加,蒸发器的能力也相应减小。
本申请的目的在于提供一种双温双闪发空调制冷系统,该双温双闪发空调制冷系统采用补气增焓技术,使系统的压比减小,能力、能效均有一定程度的提高,同时根据室外环境的状况,通过控制阀选择是否采用补气支路,使得该系统适应更宽的工况,在高温制冷、低温制热等极端恶劣环境下都能有优良的系统性能。
实施例1
本实施例提供一种具有双温双闪发空调制冷系统的热泵空调,该空调制冷系统包括一具有高温压缩腔11、低温压缩腔12和辅助压缩腔13的压缩机1,该压缩机1的三个压缩腔均具有独立的吸气口,其中低温压缩腔12的排气经第一排气管道排出,辅助压缩腔13的排气与高温压缩腔11排气混合后经第二排气管道排出;第一排气管道的制冷剂排出口与第一放热支路的一端连接,第二排气管道的制冷剂排出口与第二放热支路的一端连接;在第一放热支路上设置有高温冷凝器21,在第二放热支路上设置有低温冷凝器22;第二放热支路的另一端与第一放热支路的另一端汇合在一起与制冷剂第一流路连接,制冷剂第一流路的另一端与 低温压缩腔12的吸气管道连接;在制冷剂第一流路上,沿着制冷剂向压缩机1流动的方向依次设置第一节流装置51、第一闪发器41、高温蒸发器31、第二闪发器42、第二节流装置52、低温蒸发器32;其中第一闪发器41设置在第一节流装置51与高温蒸发器31之间,第一闪发器41的闪发气体出口连接补气支路的一端,补气支路的另一端连通辅助压缩腔13的吸气口;在补气支路上设有第一控制阀61;第二闪发器42设置在高温蒸发器31与第二节流装置52之间,低温蒸发器32设置在第二节流装置52与低温压缩腔12之间,第二闪发器42的闪发气体出口连接制冷剂第二流路,制冷剂第二流路的另一端连接高温压缩腔11的吸气管道。
本实施例中的空调制冷系统采用补气增焓技术,具有三个压缩腔的压缩机1与两个冷凝器2,组成双冷凝系统,并在其循环回路中高、低温蒸发器32之前增加两个闪发器,用来降低蒸发器入口前干度,蒸发器的入口干度越低,蒸发器的入口比焓越小,制冷能力越高,系统的能效就越高。同时根据室外环境的状况,通过第一控制阀61门的控制来选择是否采用补气支路;相较于较原先的双温系统,该系统不仅能够提高制冷、制热能力和能效,而且还能使得该系统适应更宽的工况,在高温制冷、低温制热等极端恶劣环境下都能有优良的系统性能。
优选地,在高温冷凝器21出口侧的第一放热支路上设置有第三节流装置53,用于将高温冷凝器21出来的温度较高的制冷剂节流降压。在制冷模式运行时,由于高温冷凝器21出来的制冷剂温度较高,通过第三节流装置53节流降压后与低温冷凝器22出来的制冷剂混合,经过第一节流装置51节流降压后进入第一闪发器41。由于气态制冷剂在蒸发器中换热能力很小,因此通过第一闪发器41后,气制冷剂通过补气管路进入辅助压缩腔13,而分离出的液态制冷剂经过高温蒸发器31换热后,原本的液态制冷剂再次变成汽液两相状态,此时制冷剂经过第二闪发器42再次闪发后,气态制冷剂进入压缩机1的高温压缩腔11,经压缩后与辅助压缩腔13的排气混合进入低温冷凝器22。而第二闪发器42分离出的液态制冷剂被再次节流后进入低温蒸发器32,完成换热后进入压缩机1的低温压缩腔12,压缩完成后直接进入高温冷凝器21,从而完成整个 制冷循环,其组成了双蒸发双冷凝系统,与原系统相比,系统的压比减小,能力、能效均有一定程度的提高。
其中,优选地,高温蒸发器31和低温蒸发器32用于实现梯级降温除湿,其中高温蒸发器31主要负责显热负荷,低温蒸发器32主要负责降温除湿,干湿分明,降低了蒸发器与空气的换热温差,从而达到提升能效的目的。另一方面,采用双闪发器及时分离气态制冷剂,降低蒸发器的入口干度,提高蒸发器的换热能力,进一步地提升能效。同时,采用两个蒸发器两个冷凝器2组成双蒸发、双冷凝系统,减小系统压比,提高能效。
需要说明的是,一般并行压缩循环适用于大压比以及高闪发干度的工况,而双温循环在小的压缩比和大温差变下提效显著。因此优选地,在制冷剂第二流路与补气支路之间连接有连接支路,在连接支路上设有第二控制阀62;连接支路与补气支路的连接点位于第一控制阀61与辅助压缩机1吸气口之间。当室外的环境比较适宜时,压比小时,可以不采用补气支路,此时第一控制阀61关闭,第二控制阀62打开,使辅助压缩腔13与高温压缩腔11并联,高温蒸发器31经过闪发器分离出的气态制冷剂分别进入辅助压缩腔13与高温压缩腔11压缩排出。而当外界的环境比较恶劣时(高温制冷),此时第一控制阀61打开,第二控制阀62关闭,补气支路打开,系统总的制冷剂流量增加,换热能力增加。第一控制阀61、第二控制阀62的设置将双温与并行循环进行耦合,不仅能够提升系统的能效,而且使得系统适应的工况更为广泛,根据实际情况,选择是否带有补气的循环。
基于本实施例提供的热泵空调,通过在第一排气管道和第二排气管道上设置四通阀10来实现制热和制冷模式的交换,其在制热模式下运行时,制冷剂的流向相反,在室外环境温度较低(低温制热时),补气增焓的支路打开,使得该系统相较于原系统的制热量增加,制热量提升幅度明显,能效提升显著。
本实施例提供的空调,其具有的双温双闪发空调制冷系统,保证其具有良好的制冷、制热能力和能效,而且还能使得该空调适应更宽的工况,在高温制冷、低温制热等极端恶劣环境下都能有优良的性能。
实施例2
如图2所示,本实施例提供一种热泵空调,其具有实施例1提供的双温双闪发空调制冷系统,在此基础上优选地,第一流路在第一节流装置51出口侧,沿着制冷剂流向第一节流装置51出口方向,依次设置有中间换热器7,制冷剂第二流路先流经中间换热器7,与流在中间换热器7中的第一流路中的制冷剂进行换热后,再连接高温压缩腔11的吸气管道。由此制冷剂第二流路先流经中间换热器7,与流在第一流路中的制冷剂换热后,再被送进高温压缩腔11的吸气管道。
第一流路在中间换热器的入口侧设置有第三控制阀63,第一流路在第三控制阀63两侧并联一再热回路,再热回路上设有再热器8,再热器8与低温蒸发器32相配合。再热器8是将冷凝器2出来的高温制冷剂旁通一部分,用于与蒸发器换热后的空气进行热交换,加热即将进入室内的空气。因为低温蒸发器32的温度较低,使得引进的新风温度也较低,从而会降低送风的舒适度,再热器8是为了使送风空气不至于太低,提高新风舒适度。
如图3所示进一步优选地,制冷系统与新回风换热系统耦合在一起,新回风换热系统在排风流路与新风流路之间设有全热交换器9,低温冷凝器22作为排风的末级换热器设置在全热交换器9下游排风通道上,再热器8、低温蒸发器32、高温蒸发器31沿着气流流动方向依次设置在全热交换器9下游的新风通道上。全热交换器9则是一种提高能效的热回收装置,用于新风机中,由于引入的新风与室内空气之间存在温差,全热交换器9使排向室外的回风与引入室内的新风换热,回收这部分的热量,从而达到提高能效的目的。进一步优选地,可以将制冷系统中的低温冷凝器22替换成热回收冷凝器23。
进一步地,本实施例空调制冷系统还可以在系统中增加四通。换向阀设置为热泵式,即在低温压缩腔的吸、排气管道(即第一排气支路)与第一流路、第一放热流路之间设置一四通换向阀(图上未示出),在高温压缩腔的吸、排气管道(即第二排气支路)与第二流路、第二放热流路之间设置一四通换向阀(图上未示出),由于热泵系统如何通过四通换向阀的设置实现制冷剂的换向功能是本领域的技术常识,本申请此 处不再赘述。值得一提的是,为适应热泵空调的制冷剂在制热时的逆向流动,本申请还可进一步优化第二流路在中间换热器7的入口和出口之间设置旁通流路,该旁通流路上设置有第四控制阀64。该阀用于制热时开启,短路中间换热器,制冷时,循环流路与之前一致。
本实施例提供的空调,其制冷系统中在实施例1的基础上增加了一些中间换热器、再热器、全热交换器等装置,使该系统可以用在空调、新风除湿机等相关应用场景。
实施例3
如图4所示,本实施例提供一种空调,其具有的双温双闪发空调制冷系统包括:具有高温压缩腔11、低温压缩腔12和辅助压缩腔13的压缩机1,该压缩机1的三个压缩腔均具有独立的吸气口,其中低温压缩腔12的排气经第一排气管道排出,辅助压缩腔13的排气与高温压缩腔11排气混合后经第二排气管道排出;第一排气管道排气与第二排气管道排气混合在一起后被送进放热流路;在放热流路上设置有一冷凝器2;放热流路的另一端与制冷剂第一流路的一端连接,制冷剂第一流路的另一端与低温压缩腔12的吸气管道连接;在制冷剂第一流路上,沿着制冷剂向压缩机1流动的方向依次设置第一节流装置51、第一闪发器41、高温蒸发器31、第二闪发器42、第二节流装置52、低温蒸发器32;其中第一闪发器41设置在第一节流装置51与高温蒸发器31之间,第一闪发器41的闪发气体出口连接补气支路的一端,补气支路的另一端连通辅助压缩腔13的吸气口;在补气支路上设有第一控制阀61;第二闪发器42设置在高温蒸发器31与第二节流装置52之间,低温蒸发器32设置在第二节流装置52与低温压缩腔12之间,第二闪发器42的闪发气体出口与制冷剂第二流路的一端连接,制冷剂第二流路的另一端连接高温压缩腔11的吸气管道。
本实施例的空调的双温双闪发空调制冷系统基于实施例1,使用单凝器替代其双冷凝器,高低温压缩腔的排气相互混合,由于辅助压缩腔的压比很小,排气温度也较低,因此压缩后的气态制冷剂与高、低温压缩腔的排气混合时,大大地降低了系统总的排气温度,有效降低了压缩 机的缸体温度,防止压缩机的油质变差,提高了系统运行的稳定性,简化系统,使系统更具经济性。
综上,本申请提供一种双温双闪发空调制冷系统,该双温双闪发空调制冷系统一包括具有高温压缩腔、低温压缩腔和辅助压缩腔的压缩机,该压缩机的三个压缩腔均具有独立的吸气口,其中低温压缩腔的排气经第一排气管道排出,辅助压缩腔的排气与高温压缩腔排气混合后经第二排气管道排出;第一排气管道的制冷剂排出口与第一放热支路的一端连接,第二排气管道的制冷剂排出口与第二放热支路的一端连接,第二放热支路的另一端与第一放热支路的另一端汇合在一起并与制冷剂第一流路的一端连接,制冷剂第一流路的另一端与低温压缩腔的吸气管道连接;在制冷剂第一流路上,沿着制冷剂向压缩机流动的方向依次设置有第一节流装置、第一闪发器、高温蒸发器、第二闪发器、第二节流装置以及低温蒸发器;放热支路上设有冷凝器;同时根据室外环境的状况,通过设置控制阀来选择是否采用补气支路,相较于现有技术中的双温系统,该系统不仅能够提高制冷、制热能力和能效,而且还能使得该系统适应更宽的工况,在高温制冷、低温制热等极端恶劣环境下都能有优良的系统性能。
本申请提供了一种双温双闪发空调制冷系统,并不仅仅限于说明书和实施方式中所描述。故凡依本申请专利范围的构造、特征及原理所做的等效变化或修饰,均应包括于本申请专利申请范围内。

Claims (13)

  1. 一种双温双闪发空调制冷系统,其特征在于,其包括:
    压缩机(1),包括高温压缩腔(11)、低温压缩腔(12)和辅助压缩腔(13),三个压缩腔均具有独立的吸气口;其中,所述低温压缩腔(12)的排气经第一排气管道排出,所述辅助压缩腔(13)的排气与所述高温压缩腔(11)排气混合后经第二排气管道排出;
    冷凝器(2),包括高温冷凝器(21)和低温冷凝器(22);
    蒸发器,包括高温蒸发器(31)和低温蒸发器(32);
    闪发器,包括第一闪发器(41)和第二闪发器(42);
    节流装置,包括第一节流装置(51)和第二节流装置(52);
    控制阀,包括第一控制阀(61);
    其中:
    所述第一排气管道的制冷剂排出口与第一放热支路的一端连接,第二排气管道的制冷剂排出口与第二放热支路的一端连接;所述低温冷凝器(22)设置在第二放热支路上;所述高温冷凝器(21)设置在第一放热支路上;
    所述第二放热支路的另一端与第一放热支路的另一端汇合在一起并与制冷剂第一流路的一端连接,所述制冷剂第一流路的另一端与低温压缩腔(12)的吸气管道连接;
    在所述制冷剂第一流路上,沿着制冷剂向压缩机(1)流动的方向依次设置有所述第一节流装置(51)、所述第一闪发器(41)、所述高温蒸发器(31)、所述第二闪发器(42)、所述第二节流装置(52)以及所述低温蒸发器(32);
    其中,所述第一闪发器(41)设置在所述第一节流装置(51)与所述高温蒸发器(31)之间,所述第一闪发器(41)的闪发气体出口连接补气支路的一端,所述补气支路的另一端连通所述辅助压缩腔(13)的吸气口;所述补气支路上设有所述第一控制阀(61);
    所述第二闪发器(42)设置在所述高温蒸发器(31)与所述第二节流装置(52)之间,所述低温蒸发器(32)设置在所述第二节流装置(52)与所述低温压缩腔(12)之间,所述第二闪发器(42)的闪发气体出口 与制冷剂第二流路的一端连接,所述制冷剂第二流路的另一端连接所述高温压缩腔(11)的吸气管道。
  2. 如权利要求1所述的双温双闪发空调制冷系统,其特征在于:所述第一放热支路在所述高温冷凝器(21)出口侧设置有第三节流装置(53)。
  3. 一种双温双闪发空调制冷系统,其特征在于,其包括:
    压缩机(1),包括高温压缩腔(11)、低温压缩腔(12)和辅助压缩腔(13),三个压缩腔均具有独立的吸气口,其中低温压缩腔(12)的排气经第一排气管道排出,所述辅助压缩腔(13)的排气与所述高温压缩腔(11)排气混合后经第二排气管道排出;所述第一排气管道排气与第二排气管道排气混合在一起后被送进放热流路的一端;
    冷凝器(2),设置在所述放热流路上;
    蒸发器,包括高温蒸发器(31)和低温蒸发器(32);
    闪发器,包括第一闪发器(41)和第二闪发器(42);
    节流装置,包括第一节流装置(51)和第二节流装置(52);
    控制阀,包括第一控制阀(61);
    其中:
    所述放热流路的另一端与制冷剂第一流路的一端连接,所述制冷剂第一流路的另一端与所述低温压缩腔(12)的吸气管道连接;
    在所述制冷剂第一流路上,沿着制冷剂向压缩机(1)流动的方向依次设置所述第一节流装置(51)、所述第一闪发器(41)、所述高温蒸发器(31)、所述第二闪发器(42)、所述第二节流装置(52)、所述低温蒸发器(32);其中
    所述第一闪发器(41)设置在所述第一节流装置(51)与所述高温蒸发器(31)之间,所述第一闪发器(41)的闪发气体出口连接补气支路的一端,所述补气支路的另一端连通辅助压缩腔(13)的吸气口;所述补气支路上设有所述第一控制阀(61);
    所述第二闪发器(42)设置在所述高温蒸发器(31)与所述第二节流装置(52)之间,所述低温蒸发器(32)设置在所述第二节流装置(52)与所述低温压缩腔(12)之间,所述第二闪发器(42)的闪发气体出口 连接制冷剂第二流路的一端,所述制冷剂第二流路的另一端连接所述高温压缩腔(11)的吸气管道。
  4. 一种双温双闪发空调制冷系统,其特征在于,包括:
    压缩机(1),包括高温压缩腔(11)、低温压缩腔(12)和辅助压缩腔(13),所述高温压缩腔(11)、所述低温压缩腔(12)和所述辅助压缩腔(13)均具有独立的吸气口;所述低温压缩腔(12)的排气经第一排气管道排出,所述辅助压缩腔(13)的排气与所述高温压缩腔(11)排气混合后经第二排气管道排出;
    冷凝器(2)、高温蒸发器(31)和低温蒸发器(32),所述压缩机(1)、所述冷凝器(2)、所述高温蒸发器(31)和所述低温蒸发器(32)依次连接以形成循环管路;
    第一闪发器(41),所述第一闪发器(41)设置在所述冷凝器(2)和所述高温蒸发器(31)之间的管路上,所述第一闪发器(41)的闪发气体出口与补气支路的一端连接,所述补气支路的另一端与所述辅助压缩腔(13)的吸气口连通;
    第二闪发器(42),所述第二闪发器(42)设置在所述高温蒸发器(31)和所述低温蒸发器(32)之间的管路上,所述第二闪发器(42)的闪发气体出口与制冷剂第二流路的一端连接,所述制冷剂第二流路的另一端与所述高温压缩腔(11)的吸气管道连接。
  5. 根据权利要求3所述的双温双闪发空调制冷系统,其特征在于,所述冷凝器(2)包括高温冷凝器(21)和低温冷凝器(22);
    所述第一排气管道的制冷剂排出口与第一放热支路的一端连接,第二排气管道的制冷剂排出口与第二放热支路的一端连接;所述低温冷凝器(22)设置在第二放热支路上;所述高温冷凝器(21)设置在第一放热支路上;
    所述第二放热支路的另一端与第一放热支路的另一端汇合在一起并与制冷剂第一流路的一端连接,所述制冷剂第一流路的另一端与低温压缩腔(12)的吸气管道连接,所述第一节流装置(51)、所述第一闪发器(41)、所述高温蒸发器(31)、所述第二闪发器(42)、所述第二节流装置(52)以及所述低温蒸发器(32)依次设置在所述制冷剂第一流路上。
  6. 根据权利要求4所述的双温双闪发空调制冷系统,其特征在于,所述双温双闪发空调制冷系统还包括:
    第一控制阀(61),所述第一控制阀(61)设置在所述补气支路上。
  7. 如权利要求1至6中任一项所述的双温双闪发空调制冷系统,其特征在于:
    在所述制冷剂第二流路与补气支路之间连接有连接支路,在所述连接支路上设有第二控制阀(62);所述连接支路与所述补气支路的连接点位于所述第一控制阀(61)与所述辅助压缩腔(13)吸气口之间。
  8. 如权利要求7所述的双温双闪发空调制冷系统,其特征在于:所述制冷剂第一流路上设置有中间换热器(7),所述中间换热器(7)设置在所述第一节流装置(51)出口侧,所述制冷剂第二流路先流经所述中间换热器(7)并与流在所述中间换热器(7)中的所述制冷剂第一流路换热后,再连接所述高温压缩腔(11)的吸气管道。
  9. 如权利要求8所述的双温双闪发空调制冷系统,其特征在于:所述制冷剂第一流路在所述第一节流装置(51)的入口侧设置有第三控制阀(63),所述制冷剂第一流路在第三控制阀(63)两侧并联一再热回路,所述再热回路上设有再热器(8),所述再热器(8)与低温蒸发器(32)工作配合在一起。
  10. 如权利要求9所述的双温双闪发空调制冷系统,其特征在于:所述双温双闪发制冷系统与新回风换热系统耦合在一起,所述新回风换热系统在排风流路与新风流路之间设有全热交换器(9),所述低温冷凝器(22)作为排风的末级换热器设置在全热交换器(9)下游的排风通道上,所述再热器(8)、所述低温蒸发器(32)以及所述高温蒸发器(31)沿着气流流动方向依次设置在全热交换器(9)下游的新风通道上。
  11. 如权利要求10所述的双温双闪发空调制冷系统,其特征在于:所述高温蒸发器(31)和低温蒸发器(32)用于实现梯级降温除湿,其中所述高温蒸发器(31)负责显热负荷,低温蒸发器(32)负责降温除湿。
  12. 如权利要求1-6中任一项所述的双温双闪发空调制冷系统,其特征在于:所述双温双闪发空调制冷系统应用于热泵空调。
  13. 如权利要求8所述的双温双闪发空调制冷系统,其特征在于:所述双温双闪发空调制冷系统应用于热泵空调,所述第二流路在中间换热器(7)的入口和出口之间设置旁通流路,该旁通流路上设置有第四控制阀(64)。
PCT/CN2020/122493 2020-01-19 2020-10-21 一种双温双闪发空调制冷系统 WO2021143244A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010060451.X 2020-01-19
CN202010060451.XA CN111237928B (zh) 2020-01-19 2020-01-19 一种双温双闪发空调制冷系统

Publications (1)

Publication Number Publication Date
WO2021143244A1 true WO2021143244A1 (zh) 2021-07-22

Family

ID=70866762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122493 WO2021143244A1 (zh) 2020-01-19 2020-10-21 一种双温双闪发空调制冷系统

Country Status (2)

Country Link
CN (1) CN111237928B (zh)
WO (1) WO2021143244A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780748B (zh) * 2019-03-14 2021-04-06 哈尔滨工业大学 补气型超低环温空气源热泵机组及其制热制冷运行方法
CN111237928B (zh) * 2020-01-19 2021-02-26 珠海格力电器股份有限公司 一种双温双闪发空调制冷系统
CN111609593B (zh) * 2020-04-24 2021-06-25 珠海格力电器股份有限公司 一种双温空调系统、控制方法和空调器
CN111707015B (zh) * 2020-07-02 2024-02-27 珠海格力节能环保制冷技术研究中心有限公司 空调系统及空调系统的控制方法
CN112128852B (zh) * 2020-09-14 2024-04-12 珠海格力电器股份有限公司 一种双冷凝温度热泵系统和控制方法
CN112268321B (zh) * 2020-10-26 2021-12-03 珠海格力电器股份有限公司 混合工质制冷系统及除湿机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174672A (ja) * 2010-02-25 2011-09-08 Panasonic Corp 冷凍サイクル装置および温水暖房装置
CN107576090A (zh) * 2017-08-21 2018-01-12 珠海格力电器股份有限公司 一种制冷系统
CN107860151A (zh) * 2017-10-31 2018-03-30 珠海格力电器股份有限公司 热泵系统及具有其的空调器
CN111237928A (zh) * 2020-01-19 2020-06-05 珠海格力电器股份有限公司 一种双温双闪发空调制冷系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10465962B2 (en) * 2015-11-16 2019-11-05 Emerson Climate Technologies, Inc. Compressor with cooling system
CN106500393B (zh) * 2016-11-10 2023-09-29 青岛海尔中央空调有限公司 具有三级离心式压缩机的多联机热泵系统
US11187445B2 (en) * 2018-07-02 2021-11-30 Heatcraft Refrigeration Products Llc Cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174672A (ja) * 2010-02-25 2011-09-08 Panasonic Corp 冷凍サイクル装置および温水暖房装置
CN107576090A (zh) * 2017-08-21 2018-01-12 珠海格力电器股份有限公司 一种制冷系统
CN107860151A (zh) * 2017-10-31 2018-03-30 珠海格力电器股份有限公司 热泵系统及具有其的空调器
CN111237928A (zh) * 2020-01-19 2020-06-05 珠海格力电器股份有限公司 一种双温双闪发空调制冷系统

Also Published As

Publication number Publication date
CN111237928A (zh) 2020-06-05
CN111237928B (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2021143244A1 (zh) 一种双温双闪发空调制冷系统
ES2929389T3 (es) Sistema de bomba de calor de división múltiple (multi-split) con frecuencia variable de recuperación de calor y su método de control
CN112503680B (zh) 一种多级热泵热回收的全工况高效新风机
CN101713599B (zh) 空调热泵装置
WO2022110898A1 (zh) 一种新风空调系统及其热回收方法
CN111998565A (zh) 一种双温空调系统及其控制方法
KR100225636B1 (ko) 냉난방겸용 공기조화기
WO2021172868A1 (en) Heat pump
CN110986200B (zh) 一种新风除湿系统及空调器
WO2024016748A1 (zh) 泵体组件、压缩机、双温空调系统
CN111059732A (zh) 一种空调器及其控制方法
CN215930175U (zh) 一种制冷系统
CN215930176U (zh) 一种制冷系统
CN215638113U (zh) 一种制冷系统
CN212362480U (zh) 一种双温空调系统
JP2998740B2 (ja) 空気調和機
JP2002340436A (ja) 多室形空気調和機
JP3723244B2 (ja) 空気調和機
KR20200114123A (ko) 공기조화 장치
CN111765568B (zh) 一种空调系统及其控制方法
CN111780254B (zh) 一种空调系统及其控制方法
CN113465220B (zh) 一种制冷系统及控制方法
JP2998739B2 (ja) 空気調和機
CN218209864U (zh) 新风设备
WO2024140367A1 (zh) 一种空调器及空调器的运行方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914037

Country of ref document: EP

Kind code of ref document: A1