WO2022110898A1 - 一种新风空调系统及其热回收方法 - Google Patents

一种新风空调系统及其热回收方法 Download PDF

Info

Publication number
WO2022110898A1
WO2022110898A1 PCT/CN2021/111451 CN2021111451W WO2022110898A1 WO 2022110898 A1 WO2022110898 A1 WO 2022110898A1 CN 2021111451 W CN2021111451 W CN 2021111451W WO 2022110898 A1 WO2022110898 A1 WO 2022110898A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
heat
heat exchange
fresh air
air
Prior art date
Application number
PCT/CN2021/111451
Other languages
English (en)
French (fr)
Inventor
黄泽清
梁祥飞
黄明月
皇甫启捷
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022110898A1 publication Critical patent/WO2022110898A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0035Indoor units, e.g. fan coil units characterised by introduction of outside air to the room
    • F24F1/0038Indoor units, e.g. fan coil units characterised by introduction of outside air to the room in combination with simultaneous exhaustion of inside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/002Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an intermediate heat-transfer fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/30Arrangement or mounting of heat-exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present disclosure generally relates to an air conditioner, and in particular, to a fresh air air conditioning system and a heat recovery method thereof.
  • the air conditioner increases the room temperature by cooling in a hot environment, and reduces the room temperature by heating in a cold environment, and also needs dehumidification operation in transitional seasons to adjust the indoor humidity to maintain a more comfortable and less pathogenic humidity range.
  • One of the main purposes of the present disclosure is to overcome the defect of the above-mentioned related art of the fresh air air conditioner having a low evaporation temperature during the dehumidification process, and to provide a fresh air air conditioning system, which includes a first heat exchange device, and the first heat exchange device is arranged in the fresh air passage. , also includes:
  • a water collecting member located at the bottom of the first heat exchange device, to collect the condensation water of the first heat exchange device
  • the recovery heat exchanger is connected to the water collecting member, and is connected to the working medium of the first heat exchange device, and the working medium exchanges heat with the dew condensation water in the recovery heat exchanger in advance.
  • a second heat exchange device is further included, the first heat exchange device and the second heat exchange device are heat exchangers with opposite phase changes, and the recovery heat exchanger is provided in the first heat exchange device on the working fluid pipeline between the heat exchange device and the second heat exchange device.
  • a compressor is further included, the first heat exchange device and the compressor are communicated through a first pipeline, and the compressor and the second heat exchange device are communicated through a second pipeline , the first heat exchange device and the second heat exchange device are communicated through a third pipeline, and the recovery heat exchanger is placed in the third pipeline.
  • the first heat exchange device is two-stage, including a first heat exchanger and a second heat exchanger, the first heat exchanger and the second heat exchanger are arranged side by side in the In the fresh air channel, the second heat exchange device includes a third heat exchanger.
  • the branch where the first heat exchanger is located is provided with a first throttle valve
  • the branch where the second heat exchanger is located is provided with a second throttle valve
  • a heat recovery device is also included, and the heat recovery device is arranged in the air outlet duct.
  • the heat recovery device includes a fourth heat exchanger in parallel with the third heat exchanger.
  • the fresh air conditioning system further includes:
  • a first four-way valve the openings of which are respectively connected to the air outlet of the compressor, the third heat exchanger, the suction port of the compressor and the first heat exchanger;
  • the openings of the second four-way valve are respectively connected to the air outlet of the compressor, the fourth heat exchanger, the suction port of the compressor and the second heat exchanger.
  • the branches where the third heat exchanger and the fourth heat exchanger are located are provided with a third throttle valve and a fourth throttle valve, respectively.
  • the heat recovery device is a total heat recovery device
  • a heat exchange core body is arranged in the total heat recovery device, and the indoor return air duct and the fresh air duct respectively lead into the heat exchange core body, The indoor return air and fresh air exchange heat through the heat exchange core.
  • the heat exchange core is positioned upstream of the air inlet side of the first heat exchange device.
  • the fresh air conditioning system further includes:
  • a first four-way valve the openings of which are respectively connected to the air outlet of the compressor, the third heat exchanger, the suction port of the compressor and the first heat exchanger;
  • the second four-way valve the opening of which is respectively connected to the air outlet of the compressor, the third heat exchanger, the suction port of the compressor and the second heat exchanger, the first four-way valve
  • a first solenoid valve is provided at the opening communicating with the third heat exchanger.
  • the compressor is provided with two of the suction ports, and one or two of the air outlets.
  • the compressor is provided with a first compression cylinder and a second compression cylinder, the first compression cylinder and the second compression cylinder are respectively connected to the corresponding suction ports, and the second solenoid valve is adjacent to the It communicates between the suction line of the first compression cylinder and the suction line of the second compression cylinder.
  • the present disclosure also discloses a heat recovery method for a fresh air air conditioning system, comprising the following steps:
  • the condensate water generated by the first heat exchange device enters the water collecting piece and enters the recovery heat exchanger;
  • the working fluid exchanges heat with the condensed water in the recovery heat exchanger in advance, and then enters the working fluid pipeline for circulation.
  • the fresh air passes through the first heat exchange device for heat exchange, and during cooling and dehumidification, the air will be exchanged in the first heat exchange during the cooling and dehumidification process.
  • the heat device condenses to form condensate water, and the condensate water is passed into the recovery heat exchanger by the water collecting element, so that the energy of the condensate water can be recycled and reused twice, and the heat exchange of the refrigerant or working medium in the air conditioner can improve the efficiency of the heat exchanger.
  • the subcooling degree of the heat exchanger is recovered to reduce the energy efficiency loss of the air conditioner.
  • FIG. 1 is a schematic structural diagram of a fresh air air conditioning system according to a first embodiment.
  • FIG. 2 is a flow diagram of the fresh air air conditioning system during cooling according to the first embodiment.
  • FIG. 3 is a flow diagram of the fresh air air conditioning system during dehumidification and reheating according to the first embodiment.
  • FIG. 4 is a flow path diagram of the fresh air air conditioning system during heating according to the first embodiment.
  • FIG. 5 is a schematic structural diagram of a fresh air air conditioning system with a compressor having two air outlets according to Embodiment 1.
  • FIG. 5 is a schematic structural diagram of a fresh air air conditioning system with a compressor having two air outlets according to Embodiment 1.
  • FIG. 6 is a flow diagram of a fresh air air conditioning system with a compressor having two air outlets during cooling according to Embodiment 1.
  • FIG. 6 is a flow diagram of a fresh air air conditioning system with a compressor having two air outlets during cooling according to Embodiment 1.
  • FIG. 7 is a flow path diagram of a fresh air air conditioning system with a compressor having two air outlets during dehumidification and reheating according to the first embodiment.
  • FIG. 8 is a flow path diagram of a fresh air air conditioning system with a compressor having two air outlets during heating according to Embodiment 1.
  • FIG. 8 is a flow path diagram of a fresh air air conditioning system with a compressor having two air outlets during heating according to Embodiment 1.
  • FIG. 9 is a schematic structural diagram of the fresh air air conditioning system according to the second embodiment.
  • FIG. 10 is a flow path diagram of the fresh air air conditioning system during cooling according to the second embodiment.
  • FIG. 11 is a flow diagram of the fresh air air conditioning system during dehumidification and reheating according to the second embodiment.
  • FIG. 12 is a flow path diagram of the fresh air air conditioning system during heating according to the second embodiment.
  • Compressor 100 first compression cylinder 101, second compression cylinder 102, first air outlet 103, second air outlet 104, first heat exchanger 201, second heat exchanger 202, third heat exchanger 203, Four heat exchangers 204, recovery heat exchangers 205, first four-way valve 301, second four-way valve 302, first solenoid valve 401, second solenoid valve 402, first throttle valve 501, second throttle valve 502 , the third throttle valve 503 , the fourth throttle valve 504 , the water collecting member 600 , and the total heat recovery device 700 .
  • the present disclosure discloses a fresh air air conditioning system, including a first heat exchange device, a water collecting member 600 and a recovery heat exchange
  • the first heat exchange device is placed in the fresh air channel, and the water collecting member 600 is located at the bottom of the first heat exchange device to collect the condensate water of the first heat exchange device;
  • the recovery heat exchanger 205 is connected to the water collecting member 600, It is connected to the working medium of the first heat exchange device, and the working medium exchanges heat with the condensed water in the recovery heat exchanger 205 in advance.
  • the working medium refers to the medium material through which various heat engines or thermal equipment can complete the mutual conversion of thermal energy and mechanical energy.
  • the common ones are: combustion gas, water vapor, refrigerant and air.
  • the working medium can obtain work by relying on its state change (such as expansion) in the heat engine, and the work can transfer heat through the working medium.
  • the fresh air passes through the first heat exchange device for heat exchange.
  • the air will condense in the first heat exchange device to form condensation water, and the condensation water will be passed through the water collecting member.
  • the recovery heat exchanger 205 is used for secondary recovery and reuse of the energy of the condensed water to exchange heat for the refrigerant or working medium in the air conditioner, so as to improve the subcooling degree of the recovery heat exchanger 205 and reduce the energy efficiency loss of the air conditioner.
  • the first heat exchange device is arranged in the fresh air passage where the outside fresh air enters, and is used in conjunction with the fresh air system to exchange heat for the fresh air and then introduce it into the room.
  • the first heat exchange device can also be arranged in the indoor air return channel, and is only applied to the heat exchange of the indoor air return, and directly performs the closed heat exchange of the indoor air.
  • the humidity in the air will be greater than the range of human health.
  • the indoor air can be closed and dehumidified, or outdoor fresh air can be introduced to improve the air quality and reduce the indoor air humidity.
  • the present disclosure is applicable to, but not limited to, fresh air air conditioning systems.
  • the fresh air air conditioning system further includes a second heat exchange device
  • the first heat exchange device and the second heat exchange device are heat exchangers with opposite phase changes
  • the recovery heat exchanger 205 is provided between the first heat exchange device and the second heat exchange device. on the working fluid pipeline between the second heat exchange devices.
  • the first heat exchange device and the second heat exchange device have opposite phase changes, and are respectively set as an evaporator and a condenser to ensure the realization of the entire circulating heat exchange process of the working fluid.
  • the recovery heat exchanger 205 is configured to utilize the condensation water produced by refrigeration and dehumidification, for the purpose of energy recovery and energy loss reduction.
  • the fresh air air conditioning system further includes a compressor 100, the first heat exchange device and the compressor 100 are communicated through a first pipeline, the compressor 100 and the second heat exchange device are communicated through a second pipeline, and the first heat exchange device communicates with the compressor 100 through a first pipeline.
  • the first heat exchange device and the second heat exchange device are communicated through a third pipeline, and the recovery heat exchanger 205 is placed in the third pipeline.
  • the recovery heat exchanger 205 is arranged on the third pipeline, which is placed on a different pipeline from the compressor 100. After the working fluid is output from the compressor 100, its energy gradually decreases after transportation and heat exchange.
  • the heat exchanger 205 acts as an energy supplement.
  • the recovery heat exchanger 205 is a casing heat exchanger, and in some embodiments, the refrigerant goes inside and the condensate goes outside, and it can also be configured as water and refrigerant. Other forms of heat exchange heat exchangers.
  • the first heat exchange device is two-stage, including a first heat exchanger 201 and a second heat exchanger 202, and the first heat exchanger 201 and the second heat exchanger 202 are arranged side by side in the fresh air channel,
  • the second heat exchange device includes a third heat exchanger 203 .
  • the first heat exchange device is arranged on the evaporation side, and the first heat exchanger 201 and the second heat exchanger 202 can use an evaporator, preferably a fin-tube heat exchanger, and can also be arranged as air and heat exchangers.
  • Other forms of refrigerant heat exchange such as microchannel heat exchangers, etc.
  • first heat exchanger 201 and the second heat exchanger 202 There is a proper distance between the first heat exchanger 201 and the second heat exchanger 202, and it can be ensured that the wind passing through the former heat exchanger can pass through the latter heat exchanger.
  • Both the first heat exchanger 201 and the second heat exchanger 202 may be placed upstream of the fresh air intake side.
  • a water collecting member 600 is arranged below the two heat exchangers to receive and store condensate water.
  • the fresh air enters the room through the first heat exchange device in sequence after heat exchange in steps.
  • the third heat exchanger 203 may be a heat exchanger of any form, and is configured to flow in the working medium to perform heat exchange, and an air-cooled fin-tube heat exchanger is preferred in this embodiment.
  • the cascade heat exchange enables quantitative control of the heat exchange effect, thereby enabling the multi-stage adjustment of the fresh air temperature to achieve the cascade heat exchange effect, avoiding the problem that the temperature of the fresh air is too low and difficult to adjust after heat exchange;
  • the first heat exchange device can allocate heat exchange efficiency according to needs, reduce the direct influence of the compressor 100 by the evaporation temperature, improve the suction and discharge pressure ratio of the compressor 100, and improve the operating energy efficiency of the system.
  • the branch where the first heat exchanger 201 is located is provided with a first throttle valve 501
  • the branch where the second heat exchanger 202 is located is provided with a second throttle valve 502 .
  • the heat exchanger 201 and the second heat exchanger 202 for step heat exchange are provided, the heat exchange effects of the two heat exchangers on the air are not the same, and the heat exchanger close to the air inlet side can be
  • the heat exchanger is set as the main heat exchanger. In actual operation, the heat exchange temperature and efficiency of the first heat exchanger 201 and the second heat exchanger 202 can be set according to the structure of the air conditioner.
  • the first throttle valve 501 is set to adjust the flow rate of the working medium corresponding to the first heat exchanger 201
  • the second throttle valve 502 is set to adjust the flow rate of the working medium of the second heat exchanger 202 .
  • the gas output is basically kept constant, so the working fluid flow of the first heat exchanger 201 and the second heat exchanger 202 has a trade-off relationship. Temperature adjustment effect.
  • the throttle valve is arranged on the side of the branch where the first heat exchanger 201 is located as required. Since the air conditioning mode has cooling, heating and dehumidification modes, the working fluid is exchanged between the first heat exchanger 201 and the second heat exchanger.
  • the flow direction of the device 202 will be different, and the specific positions of the first throttle valve 501 and the second throttle valve 502 can be reasonably set as required.
  • the fresh air air conditioning system of the present disclosure further includes a heat recovery device, and the heat recovery device is disposed in the air outlet duct.
  • a heat recovery device is also provided in the air outlet, the air outlet is configured to discharge indoor air to the outside, and the heat recovery device can recover a part of the sensible heat of the indoor exhaust air and then discharge it to the outdoors.
  • the temperature of the indoor air is higher than the cooling temperature, so the heat can be recovered, and at the same time, the subcooling degree of the working medium flowing out of the heat recovery device can be increased. From the perspective of circulation, the unit mass of the working medium can be cooled.
  • the amount of energy is increased, and the energy efficiency of the system is also improved. Therefore, using the heat recovery device to recycle the heat of the indoor exhaust air can improve the energy efficiency of the system and reduce energy loss.
  • the indoor exhaust air temperature is higher than the outdoor air, and the indoor exhaust air is discharged to the outside through the heat recovery device to release part of the sensible heat.
  • the indoor exhaust air temperature is higher, thus ensuring that the heat recovery device will not form frost. slave system From the perspective of the present disclosure, the heat energy of the exhaust air and the heat energy of the condensation water are recovered and used effectively, which greatly improves the performance of the system. efficiency.
  • the energy recovered by the sensible heat recovery type is reflected in part of the energy contained in the temperature difference between the fresh air and the exhaust air.
  • the sensible heat recovery type is used in the first embodiment.
  • Embodiments 1 and 2 are provided on the basis of the structure of the first heat exchange device as two stages and including a heat recovery device and a heat recovery heat exchanger 205.
  • the structure of the device is different.
  • the heat recovery device includes a fourth heat exchanger 204 connected in parallel with the third heat exchanger 203 .
  • the fourth heat exchanger 204 is arranged in parallel with the third heat exchanger 203, so that the fourth heat exchanger 204 can be applied to the heat exchange of the working medium circulation loop, so as to improve the heat exchange efficiency of the system, and also The heat from the indoor exhaust air is recovered for reuse.
  • the fresh air air conditioning system further includes a first four-way valve 301 and a second four-way valve 302 .
  • the four openings of the first four-way valve 301 are respectively connected to the air outlet of the compressor 100 , the third heat exchanger 203 , the suction port of the compressor 100 and the first heat exchanger 201 ; the four openings of the second four-way valve 302 The openings are respectively connected to the air outlet of the compressor 100 , the fourth heat exchanger 204 , the suction port of the compressor 100 and the second heat exchanger 202 .
  • both the first four-way reversing valve 301 and the second four-way reversing valve 302 have two communication modes.
  • the first connection mode is: D and C are connected, and E and S are connected.
  • the second connection mode is: D and E are connected, and C and S are connected.
  • the compressor 100 is provided with two suction ports and one or two outlet ports.
  • the two suction ports and the two air outlets are the double-suction double-row compressor 100.
  • the condensation indexes of the third heat exchanger 203 and the fourth heat exchanger 204 can be different, so that the When the fourth heat exchanger 204 uses the indoor exhaust air with a lower temperature as the heat source, the average condensing temperature of the system is reduced, the power consumption of the compressor 100 is also reduced accordingly, and the energy efficiency is further improved.
  • the control logic of the overall fresh air air conditioning system can be controlled more precisely and collaboratively.
  • the two air outlets are the first air outlet 103 and the second air outlet 104, respectively, and output the working fluid along two paths.
  • the compressor 100 is provided with a first compression cylinder 101 and a second compression cylinder 102 , the first compression cylinder 101 communicates with the first air outlet 104 , and the second compression cylinder 102 communicates with the first compression cylinder 102 .
  • the second air outlet 104 and the second solenoid valve 402 are bypassed between the suction line of the first compression cylinder 101 and the suction line of the second compression cylinder 102 .
  • Different improvements have been made to the suction and discharge structures of the compressor 100 for different usage occasions, so as to facilitate switching of the circulation directions of the flow paths under different working modes.
  • the branches where the third heat exchanger 203 and the fourth heat exchanger 204 are located are respectively provided with a third throttle valve 503 and a fourth throttle valve 504 .
  • the functions of the third throttle valve 503 and the fourth throttle valve 504 are the same as those of the first throttle valve 501 and the second throttle valve 502 , in order to adjust the working of the third heat exchanger 203 and the fourth heat exchanger 204 The mass flow thus adjusts the heat transfer effect.
  • the fresh air air conditioning system disclosed in the present disclosure has three operating modes, namely: a cooling mode, a reheating dehumidification mode, and a heating mode.
  • the operation methods of the three modes are described in detail below.
  • Cooling mode (as shown in Figure 2):
  • both the first four-way valve 301 and the second four-way valve 302 are in the first communication mode, the D port is in communication with the C port, and the E port is in communication with the S port.
  • the high-temperature and high-pressure working fluid discharged from the exhaust port of the compressor 100 can enter the third heat exchanger 203 and the fourth heat exchanger 204 to condense and release heat, respectively.
  • the working medium flowing out from the third heat exchanger 203 and the working medium flowing out from the fourth heat exchanger 204 are respectively adjusted by the third throttle valve 503 and the fourth throttle valve 504 and then merged, and then enter the recovery heat exchange together.
  • the condensed water from the water collecting member 600 is cooled to a liquid-phase working medium with a certain degree of subcooling.
  • the subcooled working fluid is divided into two paths, one path is throttled through the first throttle valve 501 to reduce to a certain pressure and then enters the first heat exchanger 201 to evaporate and absorb heat, while the other path is throttled through the second throttle valve 502 to After the lower pressure, it enters the second heat exchanger 202 to evaporate and absorb heat.
  • the second solenoid valve 402 is closed, so that the working fluid flowing out from the first heat exchanger 201 and the second heat exchanger 202 is respectively sucked in by the compressor 100 according to the pipeline shown in the figure, and specifically can be sucked by the first compression cylinder 101 and the second heat exchanger 202.
  • the two compression cylinders 102 are sucked in.
  • the working fluid in the first compression cylinder 101 and the second compression cylinder 102 is compressed to a certain state and then discharged to form a cycle.
  • the third heat exchanger 203 is the main condenser
  • the fourth heat exchanger 204 is a heat recovery condenser
  • the recovery heat exchanger 205 is a heat recovery subcooler
  • the first heat exchanger 201 is a high temperature evaporator
  • the second heat exchanger 202 is a low temperature evaporator.
  • the evaporation pressure of the working fluid in the first heat exchanger 201 is higher than the evaporation pressure of the working fluid in the second heat exchanger 202 .
  • the fourth heat exchanger 204 can recover a part of the heat of the exhaust air, and at the same time can increase the subcooling degree of the outflowing working medium, the flow of which is controlled by the fourth throttle valve 504 .
  • the recovery heat exchanger 205 recovers the heat of the condensate water from the first heat exchanger 201 and the second heat exchanger 202 , and at the same time can further subcool the working fluid from the fourth heat exchanger 204 . From the perspective of circulation, the subcooling degree of the working fluid increases, which increases the cooling capacity per unit mass of the working fluid and improves the energy efficiency of the system.
  • the outdoor fresh air passes through the first heat exchanger 201 and the second heat exchanger 202 in turn and is cooled to a predetermined suitable temperature by the steps and then enters the room.
  • the indoor exhaust air passes through the fourth heat exchanger 204 to recover a part of the sensible heat and then is discharged to the outdoors.
  • the condensate water generated by the first heat exchanger 201 and the second heat exchanger 202 is collected in the water collecting member 600, and then optionally pumped by a pumping device (not shown in the figure) or by gravity.
  • the condensate water is sent to the recovery heat exchanger 205 .
  • the high-temperature and high-pressure working fluid discharged from the exhaust port of the compressor 100 is divided into two paths to enter the D port of the first four-way valve 301 and the D port of the second four-way valve 302 respectively.
  • the first four-way valve 301 is in the first communication mode, and the working medium flows out from the C port of the valve, while the second four-way valve 302 is in the second communication mode, and the working medium flows out from the E port, so that the first four-way valve flows out from the C port.
  • the working fluid flowing out of the C port of 301 enters the third heat exchanger 203 to condense and release heat.
  • the working fluid flowing out of the third heat exchanger 203 is throttled and reduced in pressure by the third throttle valve 503, and then enters the recovery heat exchanger 205, and is cooled by the condensate water from the water collecting member 600 to have a certain degree of subcooling degree of liquid phase.
  • the working fluid flowing out from the E port of the second four-way valve 302 enters the second heat exchanger 202 to condense and release heat, and then is throttled and reduced in pressure through the second throttle valve 502 .
  • the above-mentioned subcooled liquid-phase working medium is combined with the working medium that flows out from the second heat exchanger 202 and is throttled and depressurized by the second throttle valve 502 .
  • the confluent working fluid is further throttled to a lower pressure through the first throttle valve 501 and then enters the first heat exchanger 201 to evaporate and absorb heat.
  • the second solenoid valve 402 is turned on, and the fourth throttle valve 504 is fully closed, so that the working fluid flowing out of the first heat exchanger 201 is divided into two paths, which are respectively separated by the first compression cylinder 101 and the first compression cylinder 101 according to the pipeline shown in FIG.
  • the second compression cylinder 102 sucks in.
  • the working fluid in the two compression cylinders is compressed to a certain state and then discharged to form a cycle.
  • the structure and function of the components are the same as in the cooling mode.
  • the outdoor fresh air passes through the first heat exchanger 201 for cooling and dehumidification in turn, and then passes through the second heat exchanger 202 to be heated to a suitable temperature and then enters the room (the suitable temperature means that the indoor air is in line with human comfort. temperature under conditions).
  • the indoor exhaust air passes through the fourth heat exchanger 204 to recover a part of the sensible heat and then is discharged to the outdoors.
  • Heating mode (as shown in Figure 4):
  • the first four-way valve 301 and the second four-way valve 302 are both in the second communication mode, the D port is connected to the E port, the C port is connected to the S port, and the second solenoid valve 402 is closed and does not allow the working fluid to pass through. .
  • the high-temperature and high-pressure working fluid discharged from the exhaust port of the compressor 100 can enter the first heat exchanger 201 and the second heat exchanger 202 respectively to condense and release heat.
  • the working medium flowing out from the first heat exchanger 201 and the working medium flowing out from the second heat exchanger 202 pass through the first throttling valve 501 and the second throttling valve 502 respectively to adjust the flow and then converge.
  • the recovery heat exchanger 205 does not work.
  • the combined working fluids pass through the recovery heat exchanger 205 and then are divided into two paths, one path is throttled to a certain pressure by the fourth throttle valve 504 and then enters the fourth heat exchanger 204 to evaporate and absorb heat, while the other path passes through the third section.
  • the flow valve 503 is throttled to a lower pressure and then enters the third heat exchanger 203 to evaporate and absorb heat.
  • the second solenoid valve 402 is closed, so that the working fluid flowing out from the fourth heat exchanger 204 and the third heat exchanger 203 is sucked into the first compression cylinder 101 and the second compression cylinder 102 respectively according to the pipeline shown in FIG. 4 .
  • the working fluid in the two compression cylinders is compressed to a certain state and then discharged to form a cycle.
  • the first heat exchanger 201 is a low temperature condenser
  • the second heat exchanger 202 is a high temperature condenser
  • the recovery heat exchanger 205 does not work
  • the fourth heat exchanger 204 is a high temperature evaporator
  • the third heat exchanger 204 is a high temperature evaporator.
  • Heater 203 is a low temperature evaporator.
  • the pressure of the working fluid in the second heat exchanger 202 is higher than the pressure of the working fluid in the first heat exchanger 201 .
  • the outdoor fresh air passes through the second heat exchanger 202 and the first heat exchanger 201 in sequence, and is heated to the indoor temperature by the steps, and then enters the room.
  • the indoor exhaust air passes through the fourth heat exchanger 204 to release a part of the sensible heat and then is discharged to the outside, and the indoor exhaust air temperature is relatively high, thus ensuring that the high temperature evaporator, that is, the fourth heat exchanger 204 will not form frost.
  • the fresh air air conditioning system can effectively switch between cooling, reheating and dehumidifying modes and heating modes through reasonable pipeline arrangement and control of corresponding valves.
  • the fourth heat exchanger 204 on the leeward side in the fresh air passage can be converted into a reheater, so as to achieve no air supply after dehumidification.
  • the heat recovery device is a total heat recovery device 700.
  • the total heat recovery device 700 is provided with a heat exchange core body, and the indoor return air duct and the fresh air duct respectively lead to the heat exchange core body, and the indoor return air and The fresh air exchanges heat through the heat exchange core.
  • the heat recovery device in the second embodiment is of the full heat recovery type, and the energy of the full heat recovery type is larger than that of the sensible heat recovery type, so the full heat recovery type is a more energy-saving device.
  • the heat of the exhausted air is exchanged on both sides of the heat exchange medium in the unit to the air intake, which reduces the load of the main air conditioning equipment and achieves the purpose of energy saving.
  • the heat recovery device replaces the fourth heat exchanger 204 and the matching fourth throttle valve 504 that can only recover the sensible heat of the exhaust air in the first embodiment, and the fresh air passage and the exhaust air passage are also changed accordingly.
  • the heat exchange core is positioned upstream of the air inlet side of the first heat exchange device.
  • the position of the heat recovery device can be reasonably set, so that the first heat exchanger 201 or the second heat exchanger 202 is selected to be arranged downstream of the air inlet side.
  • the fresh air air conditioning system further includes a first four-way valve 301 and a second four-way valve 302 . Due to the difference in the structure of the heat recovery device, the communication flow paths of the two valve bodies in this embodiment are different from those in the first embodiment.
  • the four openings of the first four-way valve 301 are respectively connected to the air outlet of the compressor 100 , the third heat exchanger 203 , the suction port of the compressor 100 and the first heat exchanger 201 ; the second four-way valve 302
  • the four openings of the compressor 100 are respectively connected to the outlet of the compressor 100, the third heat exchanger 203, the suction port of the compressor 100 and the second heat exchanger 202, and between the second four-way valve 302 and the third heat exchanger 203
  • a first solenoid valve 401 is provided.
  • the first solenoid valve 401 is set to ensure proper operation of the reheat dehumidification mode.
  • first four-way valve 301 and the second four-way valve 302 in the second embodiment are different from those in the first embodiment.
  • first heat exchanger 201 and the second heat exchanger The positions of the heater 202 and the first throttle valve 501 and the second throttle valve 502 also change accordingly.
  • Cooling mode (as shown in Figure 10)
  • Embodiment 1 As shown in FIG. 10 , the difference from Embodiment 1 (shown in FIG. 2 ) is that the working fluid of the first four-way valve 301 and the second four-way valve 302 both enter the third heat exchanger 203 , and the working fluid of other parts
  • the flow path is the same as that of the first embodiment.
  • the outdoor fresh air first passes through the heat exchange core of the total heat recovery unit 700 to conduct preliminary heat exchange with the indoor exhaust air, and then passes through the first heat exchanger 201 and the second heat exchanger 202 for cascade cooling, so as to Enter the room at the right temperature.
  • the difference from the first embodiment is that the working fluid flow directions of the first heat exchanger 201 and the second heat exchanger 202 are the same as those of the first embodiment, and are set to be reversed.
  • the second solenoid valve 402 is turned on.
  • the first solenoid valve 401 is closed, so that the working fluid flowing out of the first heat exchanger 201 is divided into two paths, which are respectively sucked into the first compression cylinder 101 and the second compression cylinder 102 according to the pipeline shown in FIG. 11 .
  • the working fluid in the two compression cylinders is compressed to a certain state and then discharged to form a cycle.
  • the outdoor fresh air first passes through the total heat recovery device 700 to recover the heat energy of the indoor exhaust air, then enters the first heat exchanger 201 for cooling and dehumidification, and finally passes through the second heat exchanger 202 to be heated to a suitable temperature and then enters the room .
  • Heating mode (as shown in Figure 12):
  • the difference from the first embodiment is that the working medium enters the third heat exchanger 203 after passing through the recovery heat exchanger 205 , and the working medium flow path of other parts is the same as that of the first embodiment.
  • the outdoor fresh air first passes through the heat exchange core of the total heat recovery device 700 to conduct preliminary heat exchange with the indoor exhaust air, and then passes through the first heat exchanger 201 and the second heat exchanger 202 for step heating, so as to Enter the room at the right temperature.
  • the present disclosure also discloses a heat recovery method for a fresh air air conditioning system, comprising the following steps:
  • the condensate water generated by the first heat exchange device is merged into the water collecting member 600 and enters the recovery heat exchanger 205;
  • the working fluid exchanges heat with the condensate water in the recovery heat exchanger 205 in advance, and then enters the working fluid pipeline for circulation.
  • the air is collected by the first heat exchange device in the cooling and dehumidifying reheating mode, and the condensed water energy is recovered and reused by the recovery heat exchanger 205, thereby effectively reducing the energy consumption of the system.
  • the advantages and positive effects of the fresh air air conditioning system of the present disclosure are that the fresh air passes through the first heat exchange device for heat exchange, and during cooling and dehumidification, the air will condense in the first heat exchange device to form condensation during cooling and dehumidification.
  • Dew water the condensate water is passed into the recovery heat exchanger 205 by the water collecting element, so that the energy of the condensate water can be recycled and reused twice, and the refrigerant or working fluid in the air conditioner can be heat exchanged to improve the recovery heat exchanger. 205 sub-cooling degree, reduce the energy efficiency loss of air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

一种新风空调系统及其热回收方法,新风空调系统包括第一换热装置,第一换热装置设置于新风通道内,还包括集水件(600)和回收换热器(205),集水件(600)位于所述第一换热装置的底部,以收集所述第一换热装置的凝露水;回收换热器(205)连通所述集水件(600),与所述第一换热装置的工质接通,工质预先在所述回收换热器(205)与凝露水换热。新风经过第一换热装置进行换热,在制冷和除湿时,空气制冷过程中会在第一换热装置凝结形成凝露水,利用集水件(600)将凝露水通入回收换热器(205),以将凝露水的能量进行二次回收再利用,对空调内的冷媒或工质进行换热,提高回收换热器的过冷度,降低空调能效损耗。

Description

一种新风空调系统及其热回收方法
本公开要求于2020年11月27日提交中国专利局、申请号为202011357379.3、发明名称为“一种新风空调系统及其热回收方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开总体来说涉及一种空调,具体而言,涉及一种新风空调系统及其热回收方法。
背景技术
空调在炎热环境下通过制冷提高室温,在寒冷环境通过制热降低室温,而且在过渡季节还需要除湿运行,对室内湿度进行调整,维持较为舒适且不易致病的湿度范围。
常规的空调系统尤其是新风空调系统在过渡季节需要除湿运行时,利用蒸发器的换热将空气中的水分子冷凝,为了保证除湿效果,会出现系统蒸发温度较低的问题,蒸发温度低会带来以下问题:从制冷循环的角度看,在系统冷凝温度一定的条件下:蒸发温度越低,压缩机吸排气压比也就越大,系统的能效越低。
有鉴于此,亟需对现有的空调结构进行改进,以提高系统运行能效。
发明内容
本公开的一个主要目的在于克服上述相关技术的新风空调在除湿过程中蒸发温度较低的缺陷,提供一种新风空调系统,包括第一换热装置,所述第一换热装置设置于新风通道内,还包括:
集水件,位于所述第一换热装置的底部,以收集所述第一换热装置的凝露水;以及,
回收换热器,连通所述集水件,与所述第一换热装置的工质接通,工质预先在所述回收换热器与凝露水换热。
在一些实施方式中,还包括第二换热装置,所述第一换热装置和所述第二换热装置为相变相反的换热器,所述回收换热器设于所述第一换热装置和所述第二换热装置之间的工质管路上。
在一些实施方式中,还包括压缩机,所述第一换热装置和所述压缩机之间通过第一管路连通,所述压缩机和所述第二换热装置通过第二管路连通,所述第一换热装置和所述第二换热装置通过第三管路连通,所述回收换热器置于所述第三管路。
在一些实施方式中,所述第一换热装置为两级,包括第一换热器和第二换热器,所述第一换热器和所述第二换热器并排设置于所述新风通道内,所述第二换热装置包括第三换热器。
在一些实施方式中,所述第一换热器所处的支路设有第一节流阀,所述第二换热器所处的支路设有第二节流阀。
在一些实施方式中,还包括热回收装置,所述热回收装置设置于出风道内。
在一些实施方式中,所述热回收装置包括与所述第三换热器并联的第四换热器。
在一些实施方式中,所述新风空调系统还包括:
第一四通阀,其开口分别连接所述压缩机的出气口、所述第三换热器、所述压缩机的吸气口和所述第一换热器;以及,
第二四通阀,其开口分别连接所述压缩机的出气口、所述第四换热器、所述压缩机的吸气口和所述第二换热器。
在一些实施方式中,所述第三换热器和所述第四换热器所处的支 路分别设有第三节流阀和第四节流阀。
在一些实施方式中,所述热回收装置为全热回收器,所述全热回收器内设有换热芯体,室内回风管道和所述新风管道分别通入所述换热芯体,室内回风和新风通过所述换热芯体换热。
在一些实施方式中,所述换热芯体置于所述第一换热装置的进风侧的上游。
在一些实施方式中,所述新风空调系统还包括:
第一四通阀,其开口分别连通所述压缩机的出气口、所述第三换热器、所述压缩机的吸气口和所述第一换热器;以及,
第二四通阀,其开口分别连通所述压缩机的出气口、所述第三换热器、所述压缩机的吸气口和所述第二换热器,所述第一四通阀连通所述第三换热器的开口处设有第一电磁阀。
在一些实施方式中,所述压缩机设有两个所述吸气口,所述出气口为一个或两个。
在一些实施方式中,所述压缩机设有第一压缩缸和第二压缩缸,所述第一压缩缸和所述第二压缩缸分别连通对应的所述吸气口,第二电磁阀旁通于所述第一压缩缸的吸气管路和所述第二压缩缸的吸气管路之间。
本公开还公开了一种新风空调系统的热回收方法,包括以下步骤:
第一换热装置产生的凝露水汇入集水件,进入回收换热器;
工质预先在回收换热器与凝露水换热,再进入工质管路循环流通。
由上述技术方案可知,本公开的新风空调系统及其热回收方法的优点和积极效果在于:新风经过第一换热装置进行换热,在制冷和除湿时,空气制冷过程中会在第一换热装置凝结形成凝露水,利用集水 件将凝露水通入回收换热器,以将凝露水的能量进行二次回收再利用,对空调内的冷媒或工质进行换热,提高回收换热器的过冷度,降低空调能效损耗。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据实施例一示出的新风空调系统的结构示意图。
图2是根据实施例一示出的新风空调系统制冷时的流路图。
图3是根据实施例一示出的新风空调系统除湿再热时的流路图。
图4是根据实施例一示出的新风空调系统制热时的流路图。
图5是根据实施例一示出的压缩机具有两个出气口的新风空调系统的结构示意图。
图6是根据实施例一示出的压缩机具有两个出气口的新风空调系统制冷时的流路图。
图7是根据实施例一示出的压缩机具有两个出气口的新风空调系统除湿再热时的流路图。
图8是根据实施例一示出的压缩机具有两个出气口的新风空调系统制热时的流路图。
图9是根据实施例二示出的新风空调系统的结构示意图。
图10是根据实施例二示出的新风空调系统制冷时的流路图。
图11是根据实施例二示出的新风空调系统除湿再热时的流路图。
图12是根据实施例二示出的新风空调系统制热时的流路图。
其中,附图标记说明如下:
压缩机100,第一压缩缸101,第二压缩缸102,第一出气口103,第二出气口104,第一换热器201,第二换热器202,第三换热器203,第四换热器204,回收换热器205,第一四通阀301,第二四通阀302,第一电磁阀401,第二电磁阀402,第一节流阀501,第二节流阀502,第三节流阀503,第四节流阀504,集水件600,全热回收器700。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
为了克服相关技术中新风空调系统存在系统能效低和舒适性低的问题,如图1所示,本公开公开了一种新风空调系统,包括第一换热装置、集水件600和回收换热器205,第一换热装置置于新风通道内,集水件600位于第一换热装置的底部,以收集第一换热装置的凝露水;回收换热器205连通集水件600,与第一换热装置的工质接通,工质预先在回收换热器205与凝露水换热。
其中,工质是指各种热机或热力设备借以完成热能与机械能相互转换的媒介物质,常见的有:燃烧气体、水蒸汽、制冷剂以及空气等,实现热能和机械能相互转化的媒介物质称为工质,依靠它在热机中的状态变化(如膨胀)才能获得功,而做功通过工质才能传递热。
本公开的技术方案,新风经过第一换热装置进行换热,在制冷和除湿时,空气制冷过程中会在第一换热装置凝结形成凝露水,利用集水件将凝露水通入回收换热器205,以将凝露水的能量进行二次回收再利用,对空调内的冷媒或工质进行换热,提高回收换热器205的过冷 度,降低空调能效损耗。
可以理解的是,除了上述结构,第一换热装置设置于外界新风进入的新风通道,配合新风系统使用,对新风进行换热然后引入室内。还可以将第一换热装置设于室内回风的通道,仅应用于室内回风的换热,直接进行室内空气的封闭换热。尤其是在夏季闷热潮湿和梅雨季节,空气中的湿度会大于人体健康承受的范围,为了保持室内清爽,可以对室内封闭除湿,也可以引入室外新风,提高空气质量的同时降低室内空气湿度。本公开适用于但不限于新风空调系统。
在一些实施方式中,新风空调系统还包括第二换热装置,第一换热装置和第二换热装置为相变相反的换热器,回收换热器205设于第一换热装置和第二换热装置之间的工质管路上。本实施例中,第一换热装置和第二换热装置相变相反,分别设置为蒸发器和冷凝器,保证实现工质的整个循环换热流程。回收换热器205被设置为利用制冷和除湿产生的凝露水,起到能量回收和降低能量损耗的目的。
在一些实施方式中,新风空调系统还包括压缩机100,第一换热装置和压缩机100之间通过第一管路连通,压缩机100和第二换热装置通过第二管路连通,第一换热装置和第二换热装置通过第三管路连通,回收换热器205置于第三管路。本实施例中,将回收换热器205设于第三管路上,与压缩机100置于不同管路,由于工质从压缩机100输出后,其能量经过运输和换热后逐渐降低,回收换热器205起到能量补充作用。具体地,回收换热器205在一些实施方式中是套管换热器,且在一些实施方式中是制冷工质走内侧、凝露水走外侧,同时也可以是被设置为水和制冷剂换热的其他形式的换热器。
在一些实施方式中,第一换热装置为两级,包括第一换热器201和第二换热器202,第一换热器201和第二换热器202并排设置于新风通道内,第二换热装置包括第三换热器203。本实施例中,第一换热装 置设置在蒸发侧,第一换热器201和第二换热器202可采用蒸发器,优选翅片管换热器,同时也可以是被设置为空气和制冷剂换热的其他形式换热器如微通道换热器等。第一换热器201和第二换热器202两者之间有合适的距离,且能够保证从前一个换热器经过的风都能经过后一个换热器。第一换热器201和第二换热器202都可置于新风进风侧的上游。同时这两个换热器的下方布置有集水件600用以接收储存凝露水。新风经第一换热装置依次梯级换热后进入室内。具体地,第三换热器203可以是任意形式的换热器,被设置为工质流入进行换热,本实施例中优选的是风冷翅片管换热器。
梯级换热使得换热效果能够实现量化控制,进而使得新风温度能够进行多级调节,实现梯级换热效果,避免新风经过换热后温度过低较难调节的问题;而且在保证系统制冷量和除湿量的情况下,第一换热装置可根据需要分配将换热效率,降低压缩机100受蒸发温度的直接影响,改善压缩机100的吸排气压比,提升系统运行能效。
在一些实施方式中,第一换热器201所处的支路设有第一节流阀501,第二换热器202所处的支路设有第二节流阀502。本实施例中,由于设置了用于梯级换热的第一换热器201和第二换热器202,两个换热器对空气的换热效果并不相同,可将靠近进风侧的换热器设置为主换热器,实际操作中,可根据空调结构设置第一换热器201和第二换热器202的换热温度和效率。第一节流阀501被设置为调节对应第一换热器201的工质流量,第二节流阀502被设置为调节第二换热器202的工质流量,由于压缩机100的工质出气量基本维持恒定,因此第一换热器201和第二换热器202的工质流量为此消彼长的关系,同时可根据预定的换热效率进行协同控制,以达到更为精确的调温效果。具体地,节流阀根据需要设置于第一换热器201所在支路的一侧,由于空调模式具有制冷、制热和除湿模式,因此工质在第一换热器201和第二换热器202的流向会有不同,可根据需要合理设置第一节流阀501 和第二节流阀502的具体位置。
在一些实施方式中,本公开的新风空调系统还包括热回收装置,热回收装置设置于出风道内。具体结构见下文的实施例一和实施例二。本实施例中,在出风道内还设置了热回收装置,出风道被设置为将室内空气排出室外,热回收装置能够将室内排风回收一部分显热后排出至室外。在制冷模式下,室内空气的温度高于制冷温度,因此热量可进行回收,同时还能使热回收装置流出的工质过冷度增大,从循环的角度看,使得工质的单位质量制冷量得到提高,系统能效也得到提升。因此,利用热回收装置将室内排风的热量加以回收利用,可提高系统能效,降低能量损耗。在制热模式下,室内排风温度高于室外,室内排风则经过热回收装置释放一部分显热后排出至室外,室内排风温度较高,从而保证了热回收装置不会结霜。从系统
Figure PCTCN2021111451-appb-000001
的角度看,本公开回收了排风的热能和凝露水的热能并进行了有效利用,大大地提高了该系统的
Figure PCTCN2021111451-appb-000002
效率。
热回收设备有两类包括显热回收型和全热回收型。显热回收型回收的能量体现于新风和排风的温差上所含的部分能量,实施例一中用到的是显热回收型。
下面,以第一换热装置为两级,且包括热回收装置和回收换热器205的结构基础上,提供以下实施例一和实施例二,实施例一和实施例二的区别在于热回收装置的结构不同。
实施例一
如图1-4所示,本实施例中,热回收装置包括与第三换热器203并联的第四换热器204。本实施例,将第四换热器204设置为与第三换热器203并联,可将第四换热器204应用于工质循环回路的换热,提高系统的换热效率,而且还能回收室内排风的热量加以再次利用。
在一些实施方式中,新风空调系统还包括第一四通阀301和第二 四通阀302。第一四通阀301的四个开口分别连接压缩机100的出气口、第三换热器203、压缩机100的吸气口和第一换热器201;第二四通阀302的四个开口分别连接压缩机100的出气口、第四换热器204、压缩机100的吸气口和第二换热器202。
具体地,如图2和图4所示,第一四通换向阀301和第二四通换向阀302均有两种连通模式。第一连通模式为:D与C导通,E与S导通。第二连通模式为:D与E导通,C与S导通。
在一些实施方式中,压缩机100设有两个吸气口,出气口为一个或两个。两个吸气口和两个出气口为双吸双排压缩机100,在制冷模式和再热除湿模式时,第三换热器203和第四换热器204的冷凝指标可以不同,从而在第四换热器204以具有较低温度的室内排风为热源时,系统的平均冷凝温度有所降低,压缩机100功耗也相应减少,能效得到进一步地提高。相比只有一个双吸单排压缩机,整体新风空调系统的控制逻辑可以更为精确地协同控制。如图5-8所示,两个出气口分别为第一出气口103和第二出气口104,分别沿两路输出工质。
在一些实施方式中,如图5-8所示,压缩机100设有第一压缩缸101和第二压缩缸102,第一压缩缸101连通第一出气口104,第二压缩缸102连通第二出气口104,第二电磁阀402旁通于第一压缩缸101的吸气管路和第二压缩缸102的吸气管路之间。针对不同使用场合对压缩机100的吸气和排气结构做了不同的改进,以方便切换不同工作模式下的流路循环方向。
在一些实施方式中,第三换热器203和第四换热器204所处的支路分别设有第三节流阀503和第四节流阀504。第三节流阀503和第四节流阀504的作用和第一节流阀501和第二节流阀502的作用相同,为了调节第三换热器203和第四换热器204的工质流量从而调节换热效果。
本公开公开的新风空调系统具有三种运行模式,分别为:制冷模式、再热除湿模式和制热模式。下面具体描述三种模式的运行方法。
1.制冷模式(如图2所示):
首先,此时的第一四通阀301和第二四通阀302均处于第一连通模式,D口和C口连通,E口和S口连通。从压缩机100的排气口排出的高温高压工质得以分别进入第三换热器203和第四换热器204冷凝放热。从第三换热器203流出的工质与从第四换热器204流出的工质分别经第三节流阀503和第四节流阀504调节流量后汇合,然后一同进入到回收换热器205中,被来自于集水件600的凝露水冷却为具有一定过冷度的液相工质。之后,过冷工质分成两路,一路经过第一节流阀501节流降低至一定压力后进入第一换热器201蒸发吸热,而另一路则经过第二节流阀502节流至更低压力后进入第二换热器202蒸发吸热。最后,第二电磁阀402闭合,使得从第一换热器201和第二换热器202流出的工质按照图示管路分别由压缩机100吸入,具体可被第一压缩缸101和第二压缩缸102吸入。第一压缩缸101和第二压缩缸102内的工质被压缩至一定状态后排出,以此构成循环。
在制冷模式中,第三换热器203为主冷凝器,第四换热器204为热回收冷凝器,回收换热器205为热回收过冷器,第一换热器201为高温蒸发器,第二换热器202为低温蒸发器。其中第一换热器201内工质的蒸发压力高于第二换热器202内工质的蒸发压力。第四换热器204能够回收一部分排风的热量,同时还能使流出的工质过冷度增大,其流量通过第四节流阀504控制。而回收换热器205则回收了第一换热器201和第二换热器202的凝露水热量,同时还可以使从第四换热器204的工质进一步过冷。从循环的角度看,工质的过冷度增大,使得工质的单位质量制冷量提高,系统能效也得到提升。
对于空气侧而言,室外新风依次经过第一换热器201和第二换热 器202被梯级冷却至预定合适温度后进入室内。室内排风则经过第四换热器204回收一部分显热后排出至室外。此外,运行过程中第一换热器201和第二换热器202产生的凝露水汇集于集水件600内,然后可选的通过泵送装置(图中未示出)或者依靠重力将凝露水输送至回收换热器205中。
2.再热除湿模式(如图3所示):
首先,从压缩机100排气口排出的高温高压工质分作两路分别进入第一四通阀301的D口和第二四通阀302的D口。此时第一四通阀301处于第一连通模式,工质从阀的C口流出,而第二四通阀302处于第二连通模式,工质从E口流出,使得从第一四通阀301的C口流出的工质进入到第三换热器203冷凝放热。从第三换热器203流出的工质经第三节流阀503节流降压后,进入到回收换热器205中,被来自于集水件600的凝露水冷却为具有一定过冷度的液相工质。而从第二四通阀302的E口流出的工质则进入第二换热器202冷凝放热,之后经第二节流阀502节流降压。上述过冷液相工质与从第二换热器202流出经第二节流阀502节流降压的工质汇合。之后,汇合的工质经过第一节流阀501进一步节流至更低压力后进入第一换热器201蒸发吸热。最后,第二电磁阀402导通,第四节流阀504全闭,使得从第一换热器201流出的工质分成两路,按照图3所示管路分别被第一压缩缸101和第二压缩缸102吸入。两个压缩缸内的工质被压缩至一定状态后排出,以此构成循环。
再热模式中,各部件的结构和功能和制冷模式下相同。对于空气侧而言,室外新风依次先经过第一换热器201降温除湿,然后再经过第二换热器202被加热至合适的温度后进入室内(合适的温度指室内出风符合人体舒适性条件下的温度)。室内排风则经过第四换热器204回收一部分显热后排出至室外。
3.制热模式(如图4所示):
首先,此时的第一四通阀301和第二四通阀302均处于第二连通模式,D口和E口连通,C口和S口连通,第二电磁阀402闭合不允许工质通过。从压缩机100排气口排出的高温高压工质得以分别进入第一换热器201和第二换热器202冷凝放热。从第一换热器201流出的工质和从第二换热器202流出的工质分别经过第一节流阀501和第二节流阀502调节流量后汇合。制热模式下集水件600中没有凝露水,回收换热器205不起作用。前述汇合后的工质经过回收换热器205后分成两路,一路经过第四节流阀504节流至一定压力后进入第四换热器204蒸发吸热,而另一路则经过第三节流阀503节流至更低压力后进入第三换热器203蒸发吸热。最后,第二电磁阀402闭合,使得从第四换热器204和第三换热器203流出的工质按照图4所示管路分别被第一压缩缸101和第二压缩缸102吸入。两个压缩缸内的工质被压缩至一定状态后排出,以此构成循环。
制热模式下,第一换热器201为低温冷凝器,第二换热器202为高温冷凝器,回收换热器205不起作用,第四换热器204为高温蒸发器,第三换热器203为低温蒸发器。其中第二换热器202内工质的压力高于第一换热器201内工质的压力。
对于空气侧而言,室外新风依次经过第二换热器202和第一换热器201被梯级加热至室内温度后进入室内。室内排风则经过第四换热器204释放一部分显热后排出至室外,室内排风温度较高,从而保证了高温蒸发器即第四换热器204不会结霜。
实施例一的技术方案,新风空调系统通过合理管路布置、以及相应阀的控制可以实现制冷、再热除湿模式和制热模式地有效切换。在过渡季节,仅通过第一四通阀301和第二四通阀302的切换就可将新风通道内的背风侧的第四换热器204转变为再热器,从而实现除湿后 送风不降温的目的同时还不用添加额外的再热器,降低了系统的复杂性,简化了系统结构。
实施例二
如图9-12所示,热回收装置为全热回收器700,全热回收器700内设有换热芯体,室内回风管道和新风管道分别通入换热芯体,室内回风和新风通过换热芯体换热。实施例二中的热回收装置为全热回收型,全热回收型的能量要大于显热回收型的能量,因此全热回收型是更加节能的设备。把排出去的风的热量在机组里面的换热介质两侧进行热交换到进风里面,减少主空调设备负荷,达到节能的目的。相比实施例一,实施例二的热回收装置的结构和作用都有了改进。热回收装置代替了实施例一中只能回收排风显热的第四换热器204和配套的第四节流阀504,同时新风通道和排风通道也做了相应的改变。
在一些实施方式中,换热芯体置于第一换热装置的进风侧的上游。根据新风空调系统的流路需要,可以合理设置热回收装置的位置,从而选择第一换热器201或第二换热器202设置于进风侧的下游。
在一些实施方式中,新风空调系统还包括第一四通阀301和第二四通阀302。由于热回收装置的结构不同,本实施例的两个阀体的连通流路和实施例一不同。具体地,第一四通阀301的四个开口分别连接压缩机100的出气口、第三换热器203、压缩机100的吸气口和第一换热器201;第二四通阀302的四个开口分别连接压缩机100的出气口、第三换热器203、压缩机100的吸气口和第二换热器202,第二四通阀302和第三换热器203之间设有第一电磁阀401。第一电磁阀401被设置为保证再热除湿模式的合理运行。
应当注意的是,图示中本实施例二中的第一四通阀301和第二四通阀302的位置与实施例一不同,与之对应地,第一换热器201和第 二换热器202,以及第一节流阀501和第二节流阀502的位置也随之发生变化。
关于实施例二的运行原理,与实施例一的区别如下:
1.制冷模式(如图10所示)
如图10所示,与实施例一(图2所示)不同的是,第一四通阀301和第二四通阀302的工质均进入第三换热器203,其它部分的工质流路与实施例一相同。
对于空气侧而言,室外新风先通过全热回收器700的换热芯体,与室内排风进行初步换热,然后再通过第一换热器201和第二换热器202梯级冷却,以合适温度进入室内。
2.再热除湿模式(如图11所示):
与实施例一(图3)不同的是,第一换热器201和第二换热器202的工质流向与实施例一相同,均设置为反向,最后,第二电磁阀402导通,第一电磁阀401闭合,使得从第一换热器201流出的工质分成两路,按照图11所示管路分别被第一压缩缸101和第二压缩缸102吸入。两个压缩缸内的工质被压缩至一定状态后排出,以此构成循环。
对于空气侧而言,室外新风先经过全热回收器700回收室内排风的热能,然后进入第一换热器201降温除湿,最后经过第二换热器202被加热至合适的温度后进入室内。
3.制热模式(如图12所示):
与实施例一(图4)不同之处在于,工质经过回收换热器205后,进入第三换热器203,其它部分的工质流路与实施例一相同。
对于空气侧而言,室外新风先通过全热回收器700的换热芯体,与室内排风进行初步换热,然后再通过第一换热器201和第二换热器 202梯级加热,以合适温度进入室内。
本公开还公开了一种新风空调系统的热回收方法,包括以下步骤:
第一换热装置产生的凝露水汇入集水件600,进入回收换热器205;
工质预先在回收换热器205与凝露水换热,再进入工质管路循环流通。
本公开的技术方案,空气经过第一换热装置制冷和除湿再热模式中的凝露水进行收集,利用回收换热器205将产生的凝露水能量再次回收利用,有效降低系统能耗。
由上述技术方案可知,本公开的新风空调系统的优点和积极效果在于:新风经过第一换热装置进行换热,在制冷和除湿时,空气制冷过程中会在第一换热装置凝结形成凝露水,利用集水件将凝露水通入回收换热器205,以将凝露水的能量进行二次回收再利用,对空调内的冷媒或工质进行换热,提高回收换热器205的过冷度,降低空调能效损耗。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说 将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (15)

  1. 一种新风空调系统,包括第一换热装置,所述第一换热装置设置于新风通道内,还包括:
    集水件(600),位于所述第一换热装置的底部,以收集所述第一换热装置的凝露水;以及,
    回收换热器(205),连通所述集水件(600),与所述第一换热装置的工质接通,工质预先在所述回收换热器(205)与凝露水换热。
  2. 根据权利要求1所述的新风空调系统,其中,还包括第二换热装置,所述第一换热装置和所述第二换热装置为相变相反的换热器,所述回收换热器(205)设于所述第一换热装置和所述第二换热装置之间的工质管路上。
  3. 根据权利要求2所述的新风空调系统,其中,还包括压缩机,所述第一换热装置和所述压缩机(100)之间通过第一管路连通,所述压缩机(100)和所述第二换热装置通过第二管路连通,所述第一换热装置和所述第二换热装置通过第三管路连通,所述回收换热器(205)置于所述第三管路。
  4. 根据权利要求3所述的新风空调系统,其中,所述第一换热装置为两级,包括第一换热器(201)和第二换热器(202),所述第一换热器(201)和所述第二换热器(202)并排设置于所述新风通道内,所述第二换热装置包括第三换热器(203)。
  5. 根据权利要求4所述的新风空调系统,其中,所述第一换热器(201)所处的支路设有第一节流阀(501),所述第二换热器(202)所处的支路设有第二节流阀(502)。
  6. 根据权利要求4所述的新风空调系统,其中,还包括热回收装置,所述热回收装置设置于出风道内。
  7. 根据权利要求6所述的新风空调系统,其中,所述热回收装置包括与所述第三换热器(203)并联的第四换热器(204)。
  8. 根据权利要求7所述的新风空调系统,其中,所述新风空调系统还包括:
    第一四通阀(301),其开口分别连接所述压缩机(100)的出气口、所述第三换热器(203)、所述压缩机(100)的吸气口和所述第一换热器(201);以及,
    第二四通阀(302),其开口分别连接所述压缩机(100)的出气口、所述第四换热器(204)、所述压缩机(100)的吸气口和所述第二换热器(202)。
  9. 根据权利要求7所述的新风空调系统,其中,所述第三换热器(203)和所述第四换热器(204)所处的支路分别设有第三节流阀(503)和第四节流阀(504)。
  10. 根据权利要求6所述的新风空调系统,其中,所述热回收装置为全热回收器(700),所述全热回收器(700)内设有换热芯体,室内回风管道和所述新风管道分别通入所述换热芯体,室内回风和新风通过所述换热芯体换热。
  11. 根据权利要求10所述的新风空调系统,其中,所述换热芯体置于所述第一换热装置的进风侧的上游。
  12. 根据权利要求4所述的新风空调系统,其中,所述新风空调系统还包括:
    第一四通阀(301),其开口分别连通所述压缩机(100)的出气口、所述第三换热器(203)、所述压缩机(100)的吸气口和所述第一换热器(201);以及,
    第二四通阀(302),其开口分别连通所述压缩机(100)的出气 口、所述第三换热器(203)、所述压缩机(100)的吸气口和所述第二换热器(202),所述第一四通阀(301)连通所述第三换热器(203)的开口处设有第一电磁阀(401)。
  13. 根据权利要求3所述的新风空调系统,其中,所述压缩机(100)设有两个吸气口,出气口为一个或两个。
  14. 根据权利要求13所述的新风空调系统,其中,所述压缩机(100)设有第一压缩缸(101)和第二压缩缸(102),所述第一压缩缸(101)和所述第二压缩缸(102)分别连通对应的所述吸气口,第二电磁阀(402)旁通于所述第一压缩缸(101)的吸气管路和所述第二压缩缸(102)的吸气管路之间。
  15. 一种新风空调系统的热回收方法,包括以下步骤:
    第一换热装置产生的凝露水汇入集水件(600),进入回收换热器(205);
    工质预先在回收换热器(205)与凝露水换热,再进入工质管路循环流通。
PCT/CN2021/111451 2020-11-27 2021-08-09 一种新风空调系统及其热回收方法 WO2022110898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011357379.3A CN112413738B (zh) 2020-11-27 2020-11-27 一种新风空调系统及其热回收方法
CN202011357379.3 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022110898A1 true WO2022110898A1 (zh) 2022-06-02

Family

ID=74842728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111451 WO2022110898A1 (zh) 2020-11-27 2021-08-09 一种新风空调系统及其热回收方法

Country Status (2)

Country Link
CN (1) CN112413738B (zh)
WO (1) WO2022110898A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087740A (zh) * 2021-11-24 2022-02-25 广东美的制冷设备有限公司 新风设备及其控制方法、计算机可读存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112413738B (zh) * 2020-11-27 2022-05-17 珠海格力电器股份有限公司 一种新风空调系统及其热回收方法
CN114992921B (zh) * 2021-07-09 2024-04-16 苏州市悦泰制冷设备有限公司 一种具有冷凝水回收结构的制冷设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320018A1 (de) * 1983-06-03 1984-12-06 Ochs, Dieter, 8858 Neuburg Klimageraet zur klimatisierung von raeumen
CN101162119A (zh) * 2006-10-10 2008-04-16 杨舰辉 制冷系统节能方法及装置
CN102589059B (zh) * 2012-02-11 2014-02-05 吕智 双效热泵型全热回收新风处理机
CN103982958A (zh) * 2014-05-04 2014-08-13 南京师范大学 一种两级预冷式除湿装置及其方法
WO2014140706A1 (en) * 2013-03-15 2014-09-18 Seas Société De L'eau Aérienne Suisse Sa Atmospheric water generation systems
CN105066406A (zh) * 2015-08-11 2015-11-18 珠海格力电器股份有限公司 凝结水回收装置、回收方法及除湿机
CN105115089A (zh) * 2015-10-14 2015-12-02 珠海格力电器股份有限公司 空调系统
CN108413539A (zh) * 2018-06-05 2018-08-17 河北工业大学 应用于地铁环控系统的智能通风空调系统及其运行方法
CN111765568A (zh) * 2020-07-02 2020-10-13 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN111811042A (zh) * 2020-08-14 2020-10-23 珠海格力电器股份有限公司 空调器系统及具有其的空调
CN112413738A (zh) * 2020-11-27 2021-02-26 珠海格力电器股份有限公司 一种新风空调系统及其热回收方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2715029Y (zh) * 2004-07-15 2005-08-03 广州市华德工业有限公司 全热回收空调机组
CN207395030U (zh) * 2017-06-06 2018-05-22 江苏格瑞力德空调制冷设备有限公司 一种带热回收功能的新型溶液调湿新风机组
CN111780254A (zh) * 2020-07-02 2020-10-16 珠海格力电器股份有限公司 一种空调系统及其控制方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3320018A1 (de) * 1983-06-03 1984-12-06 Ochs, Dieter, 8858 Neuburg Klimageraet zur klimatisierung von raeumen
CN101162119A (zh) * 2006-10-10 2008-04-16 杨舰辉 制冷系统节能方法及装置
CN102589059B (zh) * 2012-02-11 2014-02-05 吕智 双效热泵型全热回收新风处理机
WO2014140706A1 (en) * 2013-03-15 2014-09-18 Seas Société De L'eau Aérienne Suisse Sa Atmospheric water generation systems
CN103982958A (zh) * 2014-05-04 2014-08-13 南京师范大学 一种两级预冷式除湿装置及其方法
CN105066406A (zh) * 2015-08-11 2015-11-18 珠海格力电器股份有限公司 凝结水回收装置、回收方法及除湿机
CN105115089A (zh) * 2015-10-14 2015-12-02 珠海格力电器股份有限公司 空调系统
CN108413539A (zh) * 2018-06-05 2018-08-17 河北工业大学 应用于地铁环控系统的智能通风空调系统及其运行方法
CN111765568A (zh) * 2020-07-02 2020-10-13 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN111811042A (zh) * 2020-08-14 2020-10-23 珠海格力电器股份有限公司 空调器系统及具有其的空调
CN112413738A (zh) * 2020-11-27 2021-02-26 珠海格力电器股份有限公司 一种新风空调系统及其热回收方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114087740A (zh) * 2021-11-24 2022-02-25 广东美的制冷设备有限公司 新风设备及其控制方法、计算机可读存储介质

Also Published As

Publication number Publication date
CN112413738B (zh) 2022-05-17
CN112413738A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
WO2022110898A1 (zh) 一种新风空调系统及其热回收方法
CN211739588U (zh) 一种可提高换热性能的空调
WO2019091241A1 (zh) 空调制冷循环系统及空调器
WO2021143244A1 (zh) 一种双温双闪发空调制冷系统
CN106440433A (zh) 具有多制冷剂回路的高效空调机组
CN208595631U (zh) 一种新风除湿空调系统
CN108679747A (zh) 一种新风除湿空调系统
CN103615836A (zh) 一种螺杆式全热回收风冷热泵空调机组
CN113899105B (zh) 一种发动机驱动空气源热泵
CN110319721A (zh) 一种机房热管空调系统
CN110986200B (zh) 一种新风除湿系统及空调器
CN112229003B (zh) 一种空调系统及其控制方法
WO2024016748A1 (zh) 泵体组件、压缩机、双温空调系统
WO2021012332A1 (zh) 一种可全热回收并精确调节热回收量的空调系统
CN215930175U (zh) 一种制冷系统
CN108759157B (zh) 一次节流双级压缩热泵系统
CN215930176U (zh) 一种制冷系统
CN203595316U (zh) 一种螺杆式全热回收风冷热泵空调机组
CN215638112U (zh) 一种制冷系统
WO2022116599A1 (zh) 空调系统
WO2019128517A1 (zh) 空调器系统
CN215638113U (zh) 一种制冷系统
CN114608075A (zh) 调温除湿空调系统及其控制方法
CN210004512U (zh) 恒温除湿空调器
CN111089354B (zh) 除湿系统、新风除湿机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896404

Country of ref document: EP

Kind code of ref document: A1