WO2021143149A1 - 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池 - Google Patents

燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池 Download PDF

Info

Publication number
WO2021143149A1
WO2021143149A1 PCT/CN2020/112382 CN2020112382W WO2021143149A1 WO 2021143149 A1 WO2021143149 A1 WO 2021143149A1 CN 2020112382 W CN2020112382 W CN 2020112382W WO 2021143149 A1 WO2021143149 A1 WO 2021143149A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen concentration
fuel cell
tail exhaust
tail
gas
Prior art date
Application number
PCT/CN2020/112382
Other languages
English (en)
French (fr)
Inventor
梁未栋
邓佳
李勇
易勇
孔庆军
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020101944.9U external-priority patent/CN211530092U/zh
Priority claimed from CN202020568484.0U external-priority patent/CN211904824U/zh
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Publication of WO2021143149A1 publication Critical patent/WO2021143149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the utility model relates to a fuel cell tail exhaust hydrogen concentration detection and mixing dilution device and a fuel cell.
  • the fuel cell system uses the electrochemical reaction between the hydrogen stored in the gas cylinder and the oxygen from the air to generate electricity and provide a source of power for electrical equipment. Hydrogen and oxygen are separated by the fuel cell exchange membrane, but mutual penetration is inevitable; during the reaction, liquid water will accumulate in the hydrogen circuit and needs to be discharged in time. Usually, a purge solenoid valve is used to remove the water in the hydrogen circuit. And impurities are discharged to the outlet of the air path and mixed to reduce the hydrogen concentration and avoid deflagration. Therefore, the fuel cell system needs to install a hydrogen concentration sensor at the outlet of the air path to monitor and control the hydrogen concentration at the outlet in real time. As a combustible gas, hydrogen has an explosion limit of 4% to 75.6%. Therefore, it is necessary to reduce the discharged hydrogen concentration below 4% to avoid the danger.
  • the fuel cell operating temperature is relatively high, and the air outlet gas is high temperature and high humidity.
  • a special hydrogen concentration sensor is required, generally a heated hydrogen concentration sensor, which is very costly and has low performance. Stability results in high maintenance costs for the fuel cell system, and even affects the safety and performance of the fuel cell system.
  • a venturi tube and a waterproof breathable membrane are used to avoid the use of the hydrogen concentration sensor in a high temperature and high humidity environment, but this device increases the flow resistance of the tailpipe, and there is a risk of clogging of the waterproof breathable membrane. It is easy to cause inaccurate detection.
  • the purpose of the utility model is to provide a fuel cell tail exhaust hydrogen concentration detection and mixing and dilution device and a fuel cell, while solving two technical problems in the prior art: 1) complex structure and high cost; 2) lack of reliability .
  • the fuel cell tail exhaust hydrogen concentration detection and mixing dilution device is characterized in that it includes a gas mixing injection dilution unit, wherein: the gas mixing injection dilution unit includes an injection three-way pipe and a dilution gas introduction pipeline, and an injection three-way pipe
  • the main inlet is connected to the upstream section of the tail row main pipe
  • the branch inlet of the ejection tee pipe is connected to one end of the dilution gas introduction pipe
  • the outlet of the ejection tee pipe is connected to the downstream section of the tail row main pipe.
  • An ejection nozzle is set at the junction of the inlet, and the negative pressure is formed at the branch inlet through the action of the ejection nozzle, so that the external cold air enters the tailpipe main pipe through the dilution gas introduction pipe to achieve the effect of dilution.
  • the above also includes a hydrogen concentration detection unit.
  • the hydrogen concentration detection unit includes a tailpipe main line, a sampling branch pipeline, a gas-liquid separator and a hydrogen concentration sensor, wherein the inlet of the sampling branch pipeline is connected to the tailpipe
  • the gas-liquid separator includes an inner shell, a cavity is arranged in the inner shell, and a tail exhaust outlet, a tail exhaust inlet pipe and a condensate outlet pipe are arranged on the inner shell, and the tail exhaust outlet
  • the tail gas inlet pipe and the condensate water outlet pipe are both connected to the cavity
  • the outlet of the sampling branch pipe is connected to the tail gas inlet pipe of the gas-liquid separator
  • a hydrogen concentration sensor is installed on the gas-liquid separator.
  • the other end of the above-mentioned dilution gas introduction pipeline is connected to a shell, the shell is provided with a first cavity, one side of the shell is provided with an air inlet, the dilution gas introduction pipeline and the air inlet communicate with the first cavity, and the gas and liquid are separated
  • the inner shell of the device is installed in the first cavity, and a flow channel is also arranged between the inner shell and the outer shell to allow external cold air to enter the dilution gas introduction pipeline.
  • heat dissipation teeth are provided on the surface of the inner shell of the gas-liquid separator, and when external cold air enters and blows on the heat dissipation teeth, the gas-liquid separator is cooled to form a first-level cooling.
  • the internal diameter of the above-mentioned sampling branch pipeline is smaller than the internal diameter of the tailpipe main pipeline and the length of the sampling branch pipeline is at least 0.8 meters. It is made of metal with good heat dissipation performance, so that the high-temperature gas has been heated to room temperature before entering the hydrogen concentration detection unit. Exchange drastically cools down, forming a secondary cooling.
  • the above-mentioned tail exhaust outlet on the inner shell is located in the first cavity and faces the dilution gas introduction pipeline.
  • the above-mentioned hydrogen concentration sensor is a non-heated hydrogen concentration sensor.
  • the above-mentioned ejection nozzle has a wide inlet at the bottom and a narrower outlet at the top.
  • the air inlet provided on one side of the above-mentioned housing is trumpet-shaped.
  • a tail exhaust gas sampling joint is provided between the upstream section of the above-mentioned tail exhaust main pipe and the sampling branch pipeline.
  • the aforementioned tail exhaust gas sampling joint includes:
  • the joint pipe body is connected to the upstream section of the tailpipe main pipe, with a first inlet and a first outlet;
  • the sampling tube is installed obliquely in the middle of the joint tube body, the front end of the sampling tube extends into the joint tube body, and the tail part is located outside the joint tube body to better collect tail exhaust gas.
  • the angle A formed by the axis L2 of the sampling tube and the axis L1 of the joint tube body is in the range of 5 degrees to 85 degrees.
  • the sampling port at the front end of the above-mentioned sampling tube is provided with an inclined cut surface, and the inclined cut surface forms an acute angle B with the axis L2 of the sampling tube.
  • the above-mentioned acute angle B is between 10 degrees and 80 degrees.
  • the aforementioned included angle A is in the range of 15 degrees to 60 degrees
  • the acute angle B is in the range of 15 degrees to 60 degrees.
  • annular installation bosses protrude from the outer surfaces of the two ends of the joint pipe body respectively, the upstream section of the tail row main pipe is sleeved outside the annular installation boss, and the inner wall of the tail row main pipe is closely matched with the annular installation boss.
  • the connection between the main pipe of the row and the pipe body of the joint shall be tightened with a pipe clamp.
  • a fuel cell includes a stack module, an electrical control assembly, a hydrogen circuit system, a cooling circuit system, and an air circuit system.
  • the stack module is formed by stacking several fuel cell units from bottom to top, and the hydrogen
  • the circuit system includes a hydrogen inlet valve assembly, a hydrogen circulation assembly, and a purge valve;
  • the air circuit system includes an air compressor, an air cooler, and a humidifier; and the above-mentioned fuel cell tail exhaust is installed at the outlet of the air circuit system Hydrogen concentration detection and mixing and dilution device.
  • the utility model includes a hydrogen concentration detection unit and a gas mixing ejection dilution unit, wherein the gas mixing ejection dilution unit includes an ejection tee pipe and a dilution gas introduction pipeline, and the main inlet of the ejection tee pipe is connected to the tail row In the upstream section of the main pipe, the branch inlet of the injection tee pipe is connected to one end of the diluent gas introduction pipe, and the outlet of the injection tee pipe is connected to the downstream section of the tail row main pipe.
  • the pipe is set at the junction of the main inlet and the branch inlet.
  • the jet nozzle through the action of the jet nozzle, creates a negative pressure at the branch inlet, so that the external cold air enters the tailpipe main pipe through the dilution gas introduction pipe to achieve the effect of dilution.
  • the ejector tee can realize the inhalation of large flow air through the fluid of the system itself, which is used as the tail exhaust hydrogen concentration dilution and sampling branch pipeline. Refrigeration serves multiple purposes. The number of system components is reduced, the system layout is simplified, the reliability of the system is increased, and the cost is greatly reduced.
  • Figure 1 is a schematic diagram of the structure of the first embodiment of the utility model
  • FIG. 2 is a schematic diagram of the principle of the ejection tee in the first embodiment of the present invention
  • Figure 3 is a front view of the installation of the housing and the gas-liquid separator of the first embodiment of the present invention
  • Figure 4 is a structural cross-sectional view of the installation of the housing and the gas-liquid separator in the first embodiment of the present invention
  • Figure 5 is a cross-sectional view taken along line A-A of Figure 4.
  • Figure 6 is a perspective view of the tail exhaust gas sampling joint of the first embodiment of the present invention.
  • Figure 7 is another perspective view of the tail exhaust gas sampling joint of the first embodiment of the present invention.
  • Figure 8 is a front view of the tail exhaust gas sampling joint of the first embodiment of the present invention.
  • Figure 9 is a cross-sectional view of A-A in Figure 8.
  • Figure 10 is a side view of the tail exhaust gas sampling joint of the first embodiment of the present invention.
  • 11 is a partial connection cross-sectional view of the tail exhaust gas sampling joint of the first embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of the second embodiment of the utility model.
  • this embodiment provides a fuel cell tail exhaust hydrogen concentration detection and hybrid dilution device, a fuel cell tail exhaust hydrogen concentration detection and hybrid dilution device, which is characterized in that it includes a hydrogen concentration detection unit and Gas mixing jet dilution unit, where:
  • the hydrogen concentration detection unit includes a tailpipe main pipe 1, a sampling branch pipe 2, a gas-liquid separator 3, and a hydrogen concentration sensor 4, wherein the inlet of the sampling branch pipe 2 is connected to the tailpipe main pipe 1.
  • the gas-liquid separator 3 includes an inner shell 31, a cavity 32 is provided in the inner shell 31, and a tail exhaust outlet 33, a tail exhaust inlet pipe 34 and a condensate outlet are provided on the inner shell 31
  • the pipe 35, the tail exhaust outlet 33, the tail exhaust inlet pipe 34 and the condensate outlet pipe 35 are all in communication with the cavity 32, and the outlet of the sampling branch pipe 2 is connected to the tail exhaust inlet pipe 34 of the gas-liquid separator 3.
  • the gas mixing ejection and dilution unit includes an ejection tee 5 and a dilution gas introduction line 6.
  • the main inlet 51 of the ejection tee is connected to the upstream section 1a of the tailpipe main line 1
  • the branch inlet of the ejection tee 5 53 is connected to one end of the dilution gas introduction pipeline 6
  • the outlet 52 of the ejection tee 5 is connected to the downstream section 1b of the tail row main pipe 1
  • an ejection nozzle 54 is set at the junction of the main inlet 51 and the branch inlet 53, through
  • the function of the ejection nozzle 54 causes a negative pressure at the branch inlet 53 to make the external cold air enter the tailpipe main pipe 1 through the dilution gas introduction pipe 6 to achieve the effect of dilution.
  • the utility model cancels the original fan and uses the ejector principle, and the ejector tee 5 can realize the inhalation of a large flow of air through the fluid of the system itself, so as to be used as the tail exhaust hydrogen concentration dilution and the refrigeration of the sampling branch pipeline 2 , Serve multiple benefits.
  • the number of system components is reduced, the system layout is simplified, the system reliability is increased, and the cost is greatly reduced.
  • the ejector tee 5 is a purely mechanical structure and does not require electric drive.
  • the negative pressure generated at the branch inlet 53 by the high-speed airflow of the tail exhaust of the main line 1 is used to improve its durability and reliability.
  • the other end of the above-mentioned dilution gas introduction pipeline 6 is connected to a housing 7.
  • the housing 7 is provided with a first cavity 71, and one side of the housing 7 is provided with an air inlet 72.
  • the dilution gas introduction pipeline 6, the air inlet 72 and the first cavity are provided.
  • the cavity 71 is in communication
  • the inner shell 31 of the gas-liquid separator 3 is installed in the first cavity 71
  • a flow channel 73 is also provided between the inner shell 31 and the outer shell 7 so that the external cold air enters the dilution gas introduction pipeline 6 , Compact structure, small size and reasonable layout.
  • radiating teeth 36 are provided on the surface of the inner casing 31 of the gas-liquid separator 3, and when the external cold air enters and blows on the radiating teeth 36, the gas-liquid separator 3 is cooled to form a one-stage cooling.
  • the above-mentioned sampling branch pipeline 2 has an inner diameter smaller than the inner diameter of the tailpipe main pipeline 1 and the sampling branch pipeline 2 has a length of at least 0.8 meters and is made of a metal material with good heat dissipation performance, so that the high-temperature gas has passed through the hydrogen concentration detection unit before entering the hydrogen concentration detection unit.
  • the room temperature heat exchange greatly reduces the temperature, forming a secondary cooling.
  • the gas mixing ejection dilution unit of the present invention sucks the tail exhaust gas to be tested in the upstream section 1a of the tail exhaust main pipe 1, and the tail exhaust gas passes through the ejection nozzle 54 of the ejection three-way pipe 5.
  • the kinetic energy of the gas increases, thereby forming a negative pressure at the junction of the branch inlet 53, introduces a large amount of air, and then the tail exhaust gas and the introduced air are mixed and diluted and discharged from the three-way outlet.
  • the gas-liquid separator 3 is removed from the sampling branch pipeline Take the high-temperature and high-humidity exhaust gas into the cavity 32 of the inner shell 31 with heat dissipation teeth 36, and the exhaust gas after drastically cooling down and humidity is the hydrogen concentration sensor 4. The accuracy is guaranteed, and then the air discharged from the tail exhaust outlet 33 is mixed with the ejected air and enters the dilution gas introduction pipeline 6.
  • the above-mentioned tail exhaust outlet 33 on the inner shell 31 is located in the first cavity 71 and faces the dilution gas introduction pipe 6, which simplifies the exhaust pipe and facilitates the sampling tail exhaust from the gas-liquid separator 3 to enter the dilution The gas is introduced into the pipeline 6.
  • the above-mentioned hydrogen concentration sensor 4 is a non-heated hydrogen concentration sensor, and it is easy to obtain materials.
  • the above-mentioned ejection nozzle 54 has a wide inlet at the bottom and a narrower outlet at the top, so that the ejection effect is better.
  • the air inlet 72 provided on one side of the housing 7 is horn-shaped, which is convenient to attract a large amount of air.
  • a tail exhaust gas sampling joint 100 is provided between the upstream section 1a of the above-mentioned tail exhaust main pipe 1 and the sampling branch pipe 2, and the tail exhaust gas sampling joint 100 includes: a joint pipe body 101, connected to the upstream section 1a of the tailpipe main line 1, with a first inlet 1011 and a first outlet 1012; a sampling tube 102, installed diagonally in the middle of the connector body 101, and the front end 1021 of the sampling tube 102 It extends into the joint pipe body 101, and the tail part 1022 is located outside the joint pipe body 101, so as to better collect the tail exhaust gas, realize a small amount of sampling in the tail exhaust gas, and improve the accuracy of detection.
  • the angle A formed by the axis L2 of the sampling pipe 102 and the axis L1 of the joint pipe body 101 is in the range of 5 degrees to 85 degrees. With this inclined design, the tail exhaust gas can enter the sampling pipe 102 more easily.
  • the sampling port 10210 of the front end 1021 of the sampling tube 102 is provided with an inclined cut surface 10211.
  • the inclined cut surface 10211 forms an acute angle B with the axis L2 of the sampling tube 102.
  • the inclined cut surface 10211 has the function of guiding and increasing the contact area, making it easier to make The tail exhaust gas further enters the sampling pipe 102.
  • the above-mentioned acute angle B is between 10 degrees and 80 degrees, and the angle is reasonable, which is convenient for collecting tail exhaust gas.
  • the above-mentioned included angle A is in the range of 15 degrees to 60 degrees, and the acute angle B is in the range of 15 degrees to 60 degrees.
  • the design of this angle is more optimized, and it is easier for the tail exhaust gas to enter the sampling tube 102 more easily.
  • annular mounting bosses 1013 protrude from the outer surfaces of both ends of the joint pipe body 101, the upstream section 1a of the tail row main pipe 1 is sleeved outside the annular mounting boss 1013, and the inner wall of the tail row main pipe 1 is connected to the ring mounting
  • the boss 1013 is tightly matched, and the connection between the tail row main pipe 1 and the joint pipe body 101 is tightened with a pipe clamp 106, which makes the installation and connection more simple and convenient.
  • a fuel cell includes a stack module, an electrical control assembly, a hydrogen circuit system, a cooling circuit system, and an air circuit system.
  • the stack module consists of several fuel cell units stacked from bottom to top.
  • the hydrogen circuit system includes a hydrogen inlet valve assembly, a hydrogen circulation assembly and a purge valve;
  • the air circuit system includes an air compressor, an air cooler, and a humidifier; an embodiment is installed at the outlet of the air circuit system A device for detecting and mixing and diluting hydrogen concentration in the tail exhaust of a fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本实用新型公开了燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池,包括氢气浓度检测单元和气体混合引射稀释单元,其中:所述的氢气浓度检测单元包括尾排主管路、抽样分支管路、气液分离器和氢气浓度传感器,气体混合引射稀释单元包括引射三通管和稀释气体引入管路,引射三通管的主入口连接尾排主管路的上游段,引射三通管的分支入口连接稀释气体引入管路的一端,引射三通管的出口连接尾排主管路的下游段,在主入口与分支入口的交接处设置引射喷咀,通过引射喷咀的作用使分支入口处形成负压,使外部冷空气通过稀释气体引入管路进入尾排主管路达到稀释的作用,它结构简单,成本较低、可靠性高。

Description

燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池 技术领域:
本实用新型涉及燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池。
背景技术:
燃料电池系统利用储存在气瓶中的氢气与来自空气的氧气之间发生电化学反应来产生电能,为用电设备提供动力来源。氢气与氧气由燃料电池交换膜隔开,但是不可避免的存在互相渗透的现象;在反应过程中,氢气路会聚集液态水,需要及时的排出,通常会利用吹扫电磁阀将氢气路的水及杂质排出到空气路出口混合以降低氢气浓度,避免发生爆燃。所以,燃料电池系统需要在空气路出口安装氢气浓度传感器,来对出口的氢气浓度进行实时监控和控制。氢气作为一种可燃气体,其爆炸极限为4%~75.6%。因此需要将排出的氢气浓度降到4%以下才会避免危险。
通常的,燃料电池运行温度较高,空气路出口气体为高温高湿,在这种使用环境下,需要使用特殊的氢气浓度传感器,一般为加热型氢气浓度传感器,使用成本非常高,而且性能不稳定,造成燃料电池系统维修保养成本高,甚至会影响燃料电池系统的安全性和使用性能。
在专利CN 208076472U中,使用了一种文丘里管和防水透气膜来避免氢浓度传感器在高温高湿环境下使用,但是该装置使尾排管流阻加大,且存在防水透气膜堵塞风险,易造成检测不准的现象。
在专利CN 108493467A中,使用了大量的阀类来控制燃料电池尾气含氢量,部件数量多,控制较为复杂,且没有解决普通氢气浓度传感器在高温高湿环境下的使用。
申请人已经提出了一项解决上述技术的专利申请,见公告号为:CN109768307A、专利名称为:燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车,它使用风扇来冷却稀释气体引入管路并且接入到尾排主管,首先增加了电器件风扇不仅增加了成本同时增加了噪声源,并且相比于纯结构件系统 来说可靠性有所欠缺,其次尾排主管风量大,不免会导致风扇堵转烧机。
发明内容:
本实用新型的目的是提燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池,同时解决现有技术中存在的两个技术问题:1)结构复杂、成本高;2)可靠性有所欠缺。
本实用新型的目的是通过下述技术方案予以实现的:
燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:包括气体混合引射稀释单元,其中:气体混合引射稀释单元包括引射三通管和稀释气体引入管路,引射三通管的主入口连接尾排主管路的上游段,引射三通管的分支入口连接稀释气体引入管路的一端,引射三通管的出口连接尾排主管路的下游段,在主入口与分支入口的交接处设置引射喷咀,通过引射喷咀的作用使分支入口处形成负压,使外部冷空气通过稀释气体引入管路进入尾排主管路达到稀释的作用。
上述的还包括氢气浓度检测单元,所述的氢气浓度检测单元包括尾排主管路、抽样分支管路、气液分离器和氢气浓度传感器,其中所述的抽样分支管路的入口连接在尾排主管路的上游段,所述的气液分离器包括内壳体,内壳体内设置空腔,内壳体上设置尾排气出口、尾排气入口管和冷凝水出口管,尾排气出口、尾排气入口管和冷凝水出口管都与空腔连通,抽样分支管路的出口连接气液分离器的尾排气入口管,在气液分离器上安装氢气浓度传感器。
上述所述的稀释气体引入管路的另一端连接一个外壳,外壳里面设置第一空腔,外壳的一侧设置空气入口,稀释气体引入管路、空气入口与第一空腔连通,气液分离器的内壳体安装在第一空腔里,在内壳体与外壳之间还设置流道以便外部冷空气进入到稀释气体引入管路。
上述在气液分离器的内壳体的表面设置散热齿,当外部冷空气进入吹在散热齿上对气液分离器进行冷却,形成一级降温。
上述的抽样分支管路内径小于尾排主管路的内径且抽样分支管路的长度至少0.8米并且采用散热性能良好的金属材质制造,使高温气体在进入氢气浓度检测单元前已经过与室温热交换大幅降温,形成二级降温。
上述的内壳体上的尾排气出口位于第一空腔里且朝向稀释气体引入管路。
上述所述氢气浓度传感器为非加热型氢气浓度传感器。
上述的引射喷咀底部入口宽,顶部出口收窄。
上述的外壳的一侧设置空气入口是喇叭状。
上述的尾排主管路的上游段与抽样分支管路之间设有尾排气体取样接头。
上述的尾排气体取样接头包括:
接头管体,连接在尾排主管路的上游段上,带有第一入口和第一出口;
取样管,斜插安装在接头管体的中部,取样管的前端部部伸入到接头管体里面,尾部位于接头管体的外部,以便更好收集尾排气。
上述的取样管的轴线L2与接头管体的轴线L1形成的夹角A在5度至85度的范围。
上述的取样管的前端部的取样口处设置倾斜切面,倾斜切面与取样管的轴线L2形成锐角B。
上述的锐角B在10度至80度之间。
上述的夹角A在15度至60度的范围,锐角B在15度至60度之间。
上述的在接头管体的两端外表面分别凸出有环形安装凸台,尾排主管路的上游段套在环形安装凸台外面,尾排主管路的内壁与环形安装凸台紧密配合,尾排主管路与接头管体的相接处用管箍箍紧。
一种燃料电池,包括电堆模块、电气控制组件、氢气路系统、冷却回路系统和空气路系统,所述的电堆模块由若干个燃料电池单体由下至上堆叠而成, 所述的氢气路系统包括进氢阀门组件、氢气循环组件和吹扫阀;所述的空气路系统包括空气压缩机、空气冷却器、加湿器;在空气路系统的出口安装有上述所述的燃料电池尾排氢气浓度检测及混合稀释装置。
本实用新型与现有技术相比,具有如下效果:
1、本实用新型的包括氢气浓度检测单元和气体混合引射稀释单元,其中气体混合引射稀释单元包括引射三通管和稀释气体引入管路,引射三通管的主入口连接尾排主管路的上游段,引射三通管的分支入口连接稀释气体引入管路的一端,引射三通管的出口连接尾排主管路的下游段,在主入口与分支入口的交接处设置引射喷咀,通过引射喷咀的作用使分支入口处形成负压,使外部冷空气通过稀释气体引入管路进入尾排主管路达到稀释的作用。取消原来的风扇利用引射器原理,简化结构,降低成本,引射三通管即可通过系统本身的流体来实现大流量空气的吸入,从而用作尾排氢气浓度稀释和抽样分支管路的制冷,一举多得。减少了系统零部件的数量简化系统布置,增加了系统的可靠性,同时大幅降低成本。
2、本实用新型的其它优点在实施例部分展开详细描述。
附图说明:
图1是本实用新型实施例一的结构原理图;
图2是本实用新型实施例一的引射三通管的原理示意图;
图3是本实用新型实施例一外壳与气液分离器的安装起来的主视图;
图4是本实用新型实施例一外壳与气液分离器的安装起来的结构剖视图;
图5是图4的A-A剖视图;
图6是本实用新型实施例一的尾排气体取样接头的立体图;
图7是本实用新型实施例一的尾排气体取样接头另一角度立体图;
图8是本实用新型实施例一的尾排气体取样接头的正视图;
图9是图8中A-A的剖视图;
图10是本实用新型实施例一的尾排气体取样接头的侧视图;
图11是本实用新型实施例一的尾排气体取样接头的局部连接剖视图;
图12为本实用新型实施例二的结构示意图。
具体实施方式:
下面通过具体实施例并结合附图对本实用新型作进一步详细的描述。
实施例一:
如图1至图11所示,本实施例提供一种燃料电池尾排氢气浓度检测及混合稀释装置,燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:它包括氢气浓度检测单元和气体混合引射稀释单元,其中:
所述的氢气浓度检测单元包括尾排主管路1、抽样分支管路2、气液分离器3和氢气浓度传感器4,其中所述的抽样分支管路2的入口连接在尾排主管路1的上游段1a,所述的气液分离器3包括内壳体31,内壳体31内设置空腔32,内壳体31上设置尾排气出口33、尾排气入口管34和冷凝水出口管35,尾排气出口33、尾排气入口管34和冷凝水出口管35都与空腔32连通,抽样分支管路2的出口连接气液分离器3的尾排气入口管34,在气液分离器3上安装氢气浓度传感器4;
气体混合引射稀释单元包括引射三通管5和稀释气体引入管路6,引射三通管的主入口51连接尾排主管路1的上游段1a,引射三通管5的分支入口53连接稀释气体引入管路6的一端,引射三通管5的出口52连接尾排主管路1的下游段1b,在主入口51与分支入口53的交接处设置引射喷咀54,通过引射喷咀54的作用使分支入口53处形成负压,使外部冷空气通过稀释气体引入管路6进入尾排主管路1达到稀释的作用。
本实用新型取消原来的风扇利用引射器原理,引射三通管5即可通过系统本身的流体来实现大流量空气的吸入,从而用作尾排氢气浓度稀释和抽样分支管路2的制冷,一举多得。减少了系统零部件的数量简化系统布置,增加了系 统的可靠性,同时大幅降低成本。同时,引射三通管5是纯机械结构,无需电力驱动,利用主管路1的尾排气的高速气流在分支入口53产生的负压,提高其耐用可靠性。
上述的稀释气体引入管路6的另一端连接一个外壳7,外壳7里面设置第一空腔71,外壳7的一侧设置空气入口72,稀释气体引入管路6、空气入口72与第一空腔71连通,气液分离器3的内壳体31安装在第一空腔71里,在内壳体31与外壳7之间还设置流道73以便外部冷空气进入到稀释气体引入管路6,结构紧凑,体积小,布局合理。
上述在气液分离器3的内壳体31的表面设置散热齿36,当外部冷空气进入吹在散热齿36上对气液分离器3进行冷却,形成一级降温。
上述的抽样分支管路2内径小于尾排主管路1的内径且抽样分支管路2的长度至少0.8米并且采用散热性能良好的金属材质制造,使高温气体在进入氢气浓度检测单元前已经过与室温热交换大幅降温,形成二级降温。
本实用新型所述气体混合引射稀释单元在尾排主管路1中上游段1a吸入待检测的尾排气体,尾排气体在经过引射三通管5的引射喷咀54处使气体动能增大,从而在分支入口53的交接处形成负压,引入大量空气,然后尾排气体和引入的空气混合稀释后从三通出口排出,同时气液分离器3从抽样分支管路2中取入高温高湿的尾排气体,该尾排气体进入带有散热齿36的内壳体31的空腔32,大幅降温降湿后的尾排气体为氢气浓度传感器4的准确性提供了保障,然后从尾排气出口33排出与引射的空气混合进入稀释气体引入管路6。
上述的内壳体31上的尾排气出口33位于第一空腔71里且朝向稀释气体引入管路6,简化了排气管路,便于气液分离器3出来的取样尾排气进入稀释气体引入管路6。
上述的所述氢气浓度传感器4为非加热型氢气浓度传感器,取材容易。
上述的引射喷咀54底部入口宽,顶部出口收窄,使引射效果更好。
上述的外壳7的一侧设置空气入口72是喇叭状,便于吸引大量空气。
如图6至图11所示,上述的尾排主管路1的上游段1a与抽样分支管路2之间设有尾排气体取样接头100,尾排气体取样接头100包括:接头管体101,连接在尾排主管路1的上游段1a上,带有第一入口1011和第一出口1012;取样管102,斜插安装在接头管体101的中部,取样管102的前端部1021部伸入到接头管体101里面,尾部1022位于接头管体101的外部,以便更好收集尾排气,实现在尾排气体中少量取样,提高检测的准确率。
上述的取样管102的轴线L2与接头管体101的轴线L1形成的夹角A在5度至85度的范围,这种倾斜设计时,尾排气体更容易进入取样管102。
上述的取样管102的前端部1021的取样口10210处设置倾斜切面10211,倾斜切面10211与取样管102的轴线L2形成锐角B,倾斜切面10211具有导向和增大接触面积的作用,可以更容易使尾排气体更进入取样管102。
上述的锐角B在10度至80度之间,角度合理,便于收集尾排气体。
上述的夹角A在15度至60度的范围,锐角B在15度至60度之间,这种角度的设计更加优化,可以更容易使尾排气体更进入取样管102。
上述的在接头管体101的两端外表面分别凸出有环形安装凸台1013,尾排主管路1的上游段1a套在环形安装凸台1013外面,尾排主管路1的内壁与环形安装凸台1013紧密配合,尾排主管路1与接头管体101的相接处用管箍106箍紧,安装连接更加简单方便。
实施例二:
如图12所示,一种燃料电池,包括电堆模块、电气控制组件、氢气路系统、冷却回路系统和空气路系统,所述的电堆模块由若干个燃料电池单体由下至上堆叠而成,所述的氢气路系统包括进氢阀门组件、氢气循环组件和吹扫阀;所述的空气路系统包括空气压缩机、空气冷却器、加湿器;在空气路系统的出 口安装有实施例一所述的燃料电池尾排氢气浓度检测及混合稀释装置。
以上实施例为本实用新型的较佳实施方式,但本实用新型的实施方式不限于此,其他任何未背离本实用新型的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本实用新型的保护范围之内。

Claims (17)

  1. 燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:包括气体混合引射稀释单元,其中:气体混合引射稀释单元包括引射三通管(5)和稀释气体引入管路(6),引射三通管(5)的主入口(51)连接尾排主管路(1)的上游段(1a),引射三通管(5)的分支入口(53)连接稀释气体引入管路(6)的一端,引射三通管(5)的出口(52)连接尾排主管路(1)的下游段(1b),在主入口(51)与分支入口(53)的交接处设置引射喷咀(54),通过引射喷咀(54)的作用使分支入口(53)处形成负压,使外部冷空气通过稀释气体引入管路(6)进入尾排主管路(1)达到稀释的作用。
  2. 根据权利要求1所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:还包括氢气浓度检测单元,所述的氢气浓度检测单元包括尾排主管路(1)、抽样分支管路(2)、气液分离器(3)和氢气浓度传感器(4),其中所述的抽样分支管路(2)的入口连接在尾排主管路(1)的上游段(1a),所述的气液分离器(3)包括内壳体(31),内壳体(31)内设置空腔(32),内壳体(31)上设置尾排气出口(33)、尾排气入口管(34)和冷凝水出口管(35),尾排气出口(33)、尾排气入口管(34)和冷凝水出口管(35)都与空腔(32)连通,抽样分支管路(2)的出口连接气液分离器(3)的尾排气入口管(34),在气液分离器(3)上安装氢气浓度传感器(4)。
  3. 根据权利要求2所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:稀释气体引入管路(6)的另一端连接一个外壳(7),外壳(7)里面设置第一空腔(32),外壳(7)的一侧设置空气入口(72),稀释气体引入管路(6)、空气入口(72)与第一空腔(32)连通,气液分离器(3)的内壳体(31)安装在第一空腔(32)里,在内壳体(31)与外壳(7)之间还设置流道(73)以便外部冷空气进入到稀释气体引入管路(6)。
  4. 根据权利要求2所述的燃料电池尾排氢气浓度检测及混合稀释装置,其 特征在于:在气液分离器(3)的内壳体(31)的表面设置散热齿(36),当外部冷空气进入吹在散热齿(36)上对气液分离器(3)进行冷却,形成一级降温。
  5. 根据权利要求2所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:抽样分支管路(2)内径小于尾排主管路(1)的内径且抽样分支管路(2)的长度至少0.8米并且采用散热性能良好的金属材质制造,使高温气体在进入氢气浓度检测单元前已经过与室温热交换大幅降温,形成二级降温。
  6. 根据权利要求2或3或4或5所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:内壳体(31)上的尾排气出口(33)位于第一空腔(32)里且朝向稀释气体引入管路(6)。
  7. 根据权利要求2或3或4或5所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:所述氢气浓度传感器(4)为非加热型氢气浓度传感器(4)。
  8. 根据权利2或3或4或5所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:引射喷咀(54)底部入口宽,顶部出口收窄。
  9. 根据权利3所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:外壳(7)的一侧设置空气入口(72)是喇叭状。
  10. 根据权利要求2或3或4或5所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:尾排主管路(1)的上游段(1a)与抽样分支管路(2)之间设有尾排气体取样接头(100)。
  11. 根据权利要求10所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:尾排气体取样接头(100)包括:
    接头管体(101),连接在尾排主管路(1)的上游段(1a)上,带有第一入口(1011)和第一出口(1012);
    取样管(102),斜插安装在接头管体(101)的中部,取样管(102)的前 端部(1021)部伸入到接头管体(101)里面,尾部(1022)位于接头管体(101)的外部,以便更好收集尾排气。
  12. 根据权利要求11所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:取样管(102)的轴线L2与接头管体(101)的轴线L1形成的夹角A在5度至85度的范围。
  13. 根据权利要求12所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:取样管(102)的前端部(1021)的取样口(10210)处设置倾斜切面(10211),倾斜切面(10211)与取样管(102)的轴线L2形成锐角B。
  14. 根据权利要求13所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:锐角B在10度至80度之间。
  15. 根据权利要求13所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:夹角A在15度至60度的范围,锐角B在15度至60度之间。
  16. 根据权利要求11或12或13或14或15所述的燃料电池尾排氢气浓度检测及混合稀释装置,其特征在于:在接头管体(101)的两端外表面分别凸出有环形安装凸台(1013),尾排主管路(1)的上游段(1a)套在环形安装凸台(1013)外面,尾排主管路(1)的内壁与环形安装凸台(1013)紧密配合,尾排主管路(1)与接头管体(101)的相接处用管箍(106)箍紧。
  17. 一种燃料电池,包括电堆模块、电气控制组件、氢气路系统、冷却回路系统和空气路系统,所述的电堆模块由若干个燃料电池单体由下至上堆叠而成,所述的氢气路系统包括进氢阀门组件、氢气循环组件和吹扫阀;所述的空气路系统包括空气压缩机、空气冷却器、加湿器;其特征在于:在空气路系统的出口安装有权利要求1至16任意一项所述的燃料电池尾排氢气浓度检测及混合稀释装置。
PCT/CN2020/112382 2020-01-17 2020-08-31 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池 WO2021143149A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020101944.9U CN211530092U (zh) 2020-01-17 2020-01-17 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池
CN202020101944.9 2020-01-17
CN202020568484.0U CN211904824U (zh) 2020-04-16 2020-04-16 一种燃料电池尾排气体取样接头及尾排氢气浓度检测装置
CN202020568484.0 2020-04-16

Publications (1)

Publication Number Publication Date
WO2021143149A1 true WO2021143149A1 (zh) 2021-07-22

Family

ID=76863520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112382 WO2021143149A1 (zh) 2020-01-17 2020-08-31 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池

Country Status (1)

Country Link
WO (1) WO2021143149A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713643A (zh) * 2021-08-25 2021-11-30 一汽解放汽车有限公司 一种氢燃料电池尾排气混合稀释装置及氢燃料电池
CN114784332A (zh) * 2022-03-28 2022-07-22 东风汽车集团股份有限公司 冷启动控制方法、装置、设备及介质
CN115902113A (zh) * 2022-11-30 2023-04-04 福建省巨颖高能新材料有限公司 一种用于电子级氟气制备的气体杂质的检测装置
CN117927398A (zh) * 2024-03-21 2024-04-26 潍柴动力股份有限公司 一种尾气再循环控制系统、方法、电子设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106023A1 (en) * 2002-11-25 2004-06-03 Honda Motor Co., Ltd. Fuel cell system
JP2004311242A (ja) * 2003-04-08 2004-11-04 Honda Motor Co Ltd 燃料電池ボックス換気装置
CN103380526A (zh) * 2010-12-16 2013-10-30 空中客车德国运营有限责任公司 燃料电池系统、燃料电池系统的用途以及具有燃料电池系统的飞行器
CN108493467A (zh) * 2018-03-30 2018-09-04 云浮市飞驰新能源汽车有限公司 一种控制燃料电池尾气含氢量的装置
CN109768307A (zh) * 2019-03-14 2019-05-17 中山大洋电机股份有限公司 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
CN209418665U (zh) * 2019-03-14 2019-09-20 中山大洋电机股份有限公司 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040106023A1 (en) * 2002-11-25 2004-06-03 Honda Motor Co., Ltd. Fuel cell system
JP2004311242A (ja) * 2003-04-08 2004-11-04 Honda Motor Co Ltd 燃料電池ボックス換気装置
CN103380526A (zh) * 2010-12-16 2013-10-30 空中客车德国运营有限责任公司 燃料电池系统、燃料电池系统的用途以及具有燃料电池系统的飞行器
CN108493467A (zh) * 2018-03-30 2018-09-04 云浮市飞驰新能源汽车有限公司 一种控制燃料电池尾气含氢量的装置
CN109768307A (zh) * 2019-03-14 2019-05-17 中山大洋电机股份有限公司 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
CN209418665U (zh) * 2019-03-14 2019-09-20 中山大洋电机股份有限公司 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113713643A (zh) * 2021-08-25 2021-11-30 一汽解放汽车有限公司 一种氢燃料电池尾排气混合稀释装置及氢燃料电池
CN113713643B (zh) * 2021-08-25 2023-09-26 一汽解放汽车有限公司 一种氢燃料电池尾排气混合稀释装置及氢燃料电池
CN114784332A (zh) * 2022-03-28 2022-07-22 东风汽车集团股份有限公司 冷启动控制方法、装置、设备及介质
CN114784332B (zh) * 2022-03-28 2023-12-19 东风汽车集团股份有限公司 冷启动控制方法、装置、设备及介质
CN115902113A (zh) * 2022-11-30 2023-04-04 福建省巨颖高能新材料有限公司 一种用于电子级氟气制备的气体杂质的检测装置
CN117927398A (zh) * 2024-03-21 2024-04-26 潍柴动力股份有限公司 一种尾气再循环控制系统、方法、电子设备及介质

Similar Documents

Publication Publication Date Title
WO2021143149A1 (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池
CN101680671B (zh) 加湿器和燃料电池系统
CN109411784A (zh) 一种商用车燃料电池发动机供气系统
CN111725538B (zh) 一种中冷加湿装置及其应用的燃料电池系统
CN109768307A (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
RU2605489C2 (ru) Расходомер вентури с вакуумной изоляцией для системы рециркуляции отработавших газов
CN209029485U (zh) 一种商用车燃料电池发动机供气系统
WO2020173076A1 (zh) 一种电堆气液分配装置及其应用的燃料电池
WO2023010844A1 (zh) 一种燃料电池冷却通风系统
CN211530092U (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池
WO2020181751A1 (zh) 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车
CN216288546U (zh) 一种用于燃料电池系统的多功能集成式增湿器
CN215184097U (zh) 一种高效水气分离器及其应用的燃料电池系统
CN113224347A (zh) 一种燃料电池系统换热加湿装置及换热加湿方法
CN207183421U (zh) 一种空气冷却器及其应用的燃料电池空气进气系统
CN209418672U (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
CN209418665U (zh) 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车
CN218568901U (zh) 一种车辆、燃料电池发动机及其加湿系统
WO2022016882A1 (zh) 一种中冷加湿装置及其应用的燃料电池系统
WO2023019921A1 (zh) 一种中冷器及其应用的燃料电池系统
CN216185982U (zh) 一种低闪点燃料双壁管闭式通风系统
CN215418249U (zh) 一种燃料电池供气装置及车辆
CN211530082U (zh) 一种燃料电池热平衡“气—气—气”三相热交换系统
CN116072923A (zh) 一种水汽分离换热总成及燃料电池空气供给系统
CN219497847U (zh) 一种阴极测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913126

Country of ref document: EP

Kind code of ref document: A1