WO2020181751A1 - 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车 - Google Patents

燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车 Download PDF

Info

Publication number
WO2020181751A1
WO2020181751A1 PCT/CN2019/105380 CN2019105380W WO2020181751A1 WO 2020181751 A1 WO2020181751 A1 WO 2020181751A1 CN 2019105380 W CN2019105380 W CN 2019105380W WO 2020181751 A1 WO2020181751 A1 WO 2020181751A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen concentration
fuel cell
tail exhaust
pipe
detection device
Prior art date
Application number
PCT/CN2019/105380
Other languages
English (en)
French (fr)
Inventor
邓佳
李勇
易勇
赵勇富
Original Assignee
中山大洋电机股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910192014.0A external-priority patent/CN109768307A/zh
Priority claimed from CN201920320857.XU external-priority patent/CN209418665U/zh
Application filed by 中山大洋电机股份有限公司 filed Critical 中山大洋电机股份有限公司
Publication of WO2020181751A1 publication Critical patent/WO2020181751A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a fuel cell tail exhaust hydrogen concentration detection device, a fuel cell and a new energy vehicle.
  • the fuel cell system uses the electrochemical reaction between the hydrogen stored in the gas cylinder and the oxygen from the air to generate electricity and provide a source of power for electrical equipment.
  • the hydrogen and oxygen are separated by the fuel cell exchange membrane, but there is inevitably the phenomenon of mutual penetration; during the reaction process, the hydrogen circuit will accumulate liquid water, which needs to be discharged in time, usually a purge solenoid valve is used to remove the water in the hydrogen circuit
  • impurities are discharged to the outlet of the air path to mix to reduce the hydrogen concentration and avoid deflagration. Therefore, the fuel cell system needs to install a hydrogen concentration sensor at the outlet of the air path to monitor and control the hydrogen concentration at the outlet in real time.
  • hydrogen has an explosion limit of 4% to 75.6%. Therefore, it is necessary to reduce the discharged hydrogen concentration below 4% to avoid the danger. .
  • the fuel cell has a high operating temperature, and the air outlet gas is high temperature and high humidity.
  • a special hydrogen concentration sensor is required, which is generally a heated hydrogen concentration sensor.
  • the use cost is very high and the performance is unstable. This results in high maintenance costs for the fuel cell system, and even affects the safety and performance of the fuel cell system.
  • a venturi tube and a waterproof breathable membrane are used to avoid the use of the hydrogen concentration sensor in a high temperature and high humidity environment, and the cost is relatively low.
  • the device increases the flow resistance of the tailpipe and has a complicated structure. There is a risk of clogging of the waterproof and breathable membrane, which may cause inaccurate detection.
  • the current fuel cell tailgate needs to use a special hydrogen concentration sensor to detect the hydrogen concentration under high temperature and high humidity conditions.
  • the large flow resistance affects the detection effect and the detection reliability is insufficient; it is used in the whole vehicle. At times, it is necessary to reduce component assembly and improve system safety and reliability. And there is no function of diluting the tail exhaust hydrogen.
  • the first object of the present invention is to provide a fuel cell tail exhaust hydrogen concentration detection device, a fuel cell and a new energy vehicle, and solve the problem of inaccurate detection and low reliability of the fuel cell tail exhaust hydrogen concentration detection device in the prior art, which leads to the safety of the fuel cell system Technical problems with low performance and reliability.
  • the second object of the present invention is to provide a fuel cell tail exhaust hydrogen concentration detection device, a fuel cell and a new energy vehicle, and solve the technical problems of high cost, high maintenance cost and complicated structure in the prior art fuel cell tail exhaust hydrogen concentration detection device .
  • the fuel cell tail exhaust hydrogen concentration detection device is characterized in that it includes a tail main pipe, a sampling branch pipe, a gas-liquid separator and a hydrogen concentration sensor, wherein the inlet of the sampling branch pipe is connected to the tail main pipe
  • the gas-liquid separator includes an inner shell, a cavity is arranged in the inner shell, and a tail exhaust outlet pipe, a tail exhaust inlet pipe and a condensate outlet pipe are arranged on the inner shell, and a tail exhaust outlet pipe ,
  • the tail exhaust inlet pipe and the condensate outlet pipe are connected to the cavity
  • the outlet of the sampling branch pipeline is connected to the tail exhaust inlet pipe of the gas-liquid separator
  • the hydrogen concentration sensor is installed on the gas-liquid separator to use the tail exhaust
  • the outlet pipe can directly discharge the tail exhaust entering the sampling branch pipeline, or the tail exhaust outlet pipe is connected to the downstream section of the tail exhaust main pipe through an auxiliary pipeline, and the tail exhaust entering the sampling branch pipeline is returned to the tail again.
  • the above-mentioned fuel cell tail exhaust hydrogen concentration detection device further includes a mixing dilution unit, the mixing dilution unit including a fan and a ventilation gas branch pipeline, the outlet end of the ventilation gas branch pipeline is connected to the tail exhaust main pipe, and the fan blows the outside air Enter into the inlet end of the ventilation gas branch pipeline, and use external air to dilute the hydrogen concentration of the tail exhaust in the tailpipe main pipeline.
  • the mixing dilution unit including a fan and a ventilation gas branch pipeline
  • the outlet end of the ventilation gas branch pipeline is connected to the tail exhaust main pipe
  • the fan blows the outside air Enter into the inlet end of the ventilation gas branch pipeline, and use external air to dilute the hydrogen concentration of the tail exhaust in the tailpipe main pipeline.
  • the above-mentioned gas-liquid separator also includes an outer shell, the inner shell is sheathed with an outer shell, the gap between the inner shell and the outer shell forms an air duct, and the outer shell has an air inlet and an air outlet.
  • the inlet end of the ventilating gas branch pipeline is connected to the outlet pipe of the outer shell, and a fan is installed at the air inlet of the outer shell. The fan draws the external cold air into the air duct and blows it on the outer surface of the inner shell to form an air-cooled effect.
  • the top of the inner shell described above protrudes from the outer shell.
  • the above-mentioned internal diameter D2 of the sampling branch pipeline is smaller than the internal diameter D1 of the tail-row main pipeline.
  • the above-mentioned inner shell is provided with a tail exhaust outlet pipe at the top, and a tail exhaust inlet pipe and a condensed water outlet pipe are provided at the bottom of the inner shell.
  • a detection hole is opened on the top wall of the inner shell, and the detection hole is connected with the cavity.
  • the hydrogen concentration sensor is installed on the inner shell, and the probe part of the hydrogen concentration sensor extends into the detection hole to sense the hydrogen concentration.
  • the position of the aforementioned detection hole is close to the tail exhaust outlet pipe.
  • the first installation platform is provided on the inner shell wall surface around the detection hole, and the hydrogen concentration sensor is installed on the installation platform.
  • the above-mentioned hydrogen concentration sensor is a non-heated hydrogen concentration sensor.
  • the position of the air inlet of the outer shell described above is provided with a second installation platform, and the fan is installed on the second installation platform.
  • the above-mentioned second installation platform and the first installation platform are offset by an angle.
  • a number of radiating ribs are arranged on the wall surface of the condenser shell.
  • a fuel cell includes a stack module, an electrical control assembly, a hydrogen circuit system, a cooling circuit system, and an air circuit system.
  • the stack module is formed by stacking several fuel cell units from bottom to top.
  • the circuit system includes a hydrogen inlet valve assembly, a hydrogen circulation pump and a purge valve;
  • the air circuit system includes an air compressor, an air cooler, and a humidifier;
  • a fuel cell tail exhaust hydrogen concentration detection device is installed at the outlet of the air circuit system , It is characterized in that: said fuel cell tail exhaust hydrogen concentration detection device is the aforementioned fuel cell tail exhaust hydrogen concentration detection device.
  • a new energy vehicle includes a vehicle body, a drive motor, and a fuel cell, wherein the drive motor and the fuel cell are mounted on the vehicle body, the drive motor provides power for the vehicle body, and the fuel cell provides electrical energy for the drive motor, characterized in that:
  • the fuel cell is the fuel cell described above
  • the present invention has the following effects:
  • the hydrogen concentration detection unit of the present invention includes a tailpipe main pipe, a sampling branch pipeline, a gas-liquid separator and a hydrogen concentration sensor, wherein the inlet of the sampling branch pipe is connected to the upstream section of the tailpipe main pipe, so
  • the gas-liquid separator includes an inner shell, a cavity is arranged in the inner shell, a tail exhaust outlet pipe, a tail exhaust inlet pipe and a condensate outlet pipe are arranged on the inner shell, a tail exhaust outlet pipe, and a tail exhaust inlet The pipe and the condensate outlet pipe are both connected to the cavity.
  • the outlet of the sampling branch pipe is connected to the tail exhaust inlet pipe of the gas-liquid separator.
  • a hydrogen concentration sensor is installed on the gas-liquid separator, and the tail exhaust outlet pipe can be used for direct discharge.
  • the tail exhaust entering the sampling branch pipeline, or the tail exhaust outlet pipe is connected to the downstream section of the tail exhaust main pipe through an auxiliary pipe, and the tail exhaust entering the sampling branch pipeline is returned to the tail exhaust main pipe.
  • the gas-liquid separator is used to first separate the exhaust gas entering the tail exhaust hydrogen concentration detection device to reduce the humidity of the tail exhaust. At the same time, the gas-liquid separator is used to cool the tail exhaust entering the tail hydrogen concentration detection device Reduce the temperature, thereby improving the accuracy and reliability of hydrogen concentration detection.
  • the fuel cell tail exhaust hydrogen concentration detection device of the present invention first greatly cools the incoming tail exhaust gas to reduce temperature and humidity, the use environment of the hydrogen concentration sensor is optimized , You can use the universal non-heated hydrogen concentration sensor on the market, no special hydrogen concentration sensor is required, so the cost can be greatly reduced.
  • the mixing and dilution unit of the present invention includes a fan and a ventilation gas branch pipeline.
  • the outlet end of the ventilation gas branch pipeline is connected to the tailpipe main pipe.
  • the fan blows external air into the inlet end of the ventilation gas branch pipeline. The air dilutes the hydrogen concentration of the tail exhaust in the tailpipe main line, reduces the concentration and temperature of the hydrogen in the tail exhaust of the fuel cell, and greatly improves safety.
  • the fuel cell of the present invention has high detection accuracy and reliability of the adopted fuel cell tail exhaust hydrogen concentration detection device, thereby improving the safety and reliability of the fuel cell system and reducing the cost.
  • the new energy vehicle of the present invention has high detection accuracy and reliability due to the adopted fuel cell tail exhaust hydrogen concentration detection and hybrid dilution device, thereby improving the safety and reliability of the fuel cell system and reducing the cost.
  • Fig. 1 is a schematic structural diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic diagram of the installation of the gas-liquid separator and the hydrogen concentration sensor in the first embodiment of the present invention
  • Figure 3 is a perspective view of the gas-liquid separator of the first embodiment of the present invention.
  • Figure 4 is a cross-sectional view of Figure 3 A-A;
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of the present invention.
  • FIG. 7 is a schematic diagram of the installation of the gas-liquid separator, the hydrogen concentration sensor, and the fan in the third embodiment of the present invention.
  • Figure 8 is a front view of the gas-liquid separator of the third embodiment of the present invention.
  • Figure 9 is a cross-sectional view of Figure 8 A-A;
  • Figure 10 is a B-B sectional view of Figure 8.
  • FIG. 11 is a schematic structural diagram of Embodiment 4 of the present invention.
  • Figure 12 is a schematic structural diagram of Embodiment 5 of the present invention.
  • Figure 13 is a circuit block diagram of the fifth embodiment of the present invention.
  • this embodiment provides a fuel cell tailpipe hydrogen concentration detection device, which includes a tailpipe main line 5, a sampling branch line 4, a gas-liquid separator 2, and a hydrogen concentration sensor 1, wherein The inlet 41 of the sampling branch pipeline 4 is connected to the upstream section 51 of the tailpipe main pipeline 5.
  • the gas-liquid separator 2 includes an inner casing 20 in which a cavity 2b is provided, and the inner casing A tail exhaust outlet pipe 2c, a tail exhaust inlet pipe 2d, and a condensate outlet pipe 2e are provided on the 20.
  • the tail exhaust outlet pipe 2c, tail exhaust inlet pipe 2d and condensate outlet pipe 2e are all connected to the cavity 2b, sampling
  • the outlet 42 of the branch pipe 4 is connected to the tail exhaust inlet pipe 2d of the gas-liquid separator 2, and the hydrogen concentration sensor 1 is installed on the gas-liquid separator 2, and the tail exhaust outlet pipe 2c is connected to the tail exhaust through an auxiliary pipe 3.
  • the downstream section 52 of the main line 5 returns the tail exhaust gas entering the sampling branch line 4 to the tail line main line for discharge.
  • the upstream section 51 of the tail line main line 5 is the tail exhaust entry section, and the tail line main line 5
  • the downstream section 52 is a tail exhaust discharge section.
  • the gas-liquid separator 2 is used to first separate the exhaust gas entering the tail exhaust hydrogen concentration detection device to reduce the humidity of the tail exhaust. At the same time, the gas-liquid separator is used to perform the gas-liquid separation of the tail exhaust entering the tail exhaust hydrogen concentration detection device. Cooling down, thereby improving the accuracy and reliability of hydrogen concentration detection. At the same time, because the fuel cell tail exhaust hydrogen concentration detection device of the present invention first greatly cools the incoming tail exhaust gas to reduce temperature and humidity, the hydrogen concentration sensor is used in the environment Optimization, the common hydrogen concentration sensor on the market can be used, no special hydrogen concentration sensor is required, so the cost can be greatly reduced.
  • the inner diameter D2 of the sampling branch pipe 4 is smaller than the inner diameter D1 of the tail row main pipe 1.
  • the Venturi effect is used to form a negative pressure in the sampling branch pipe 4 with a smaller diameter.
  • the tail exhaust gas is sucked into the sampling branch pipeline 4.
  • the inner diameter D2 of the sampling branch pipe 4 and the inner diameter D3 of the auxiliary pipe 3 are the same or different.
  • the above-mentioned gas-liquid separator 2 is a natural cooling condenser, an air-cooled condenser, or a liquid-cooled condenser.
  • Various condensers are easily available, simple in structure, and low in cost.
  • the above-mentioned inner casing 20 is provided with a tail exhaust outlet pipe 2c at the top, and a tail exhaust inlet pipe 2d and a condensate outlet pipe 2e are provided at the bottom of the inner casing 20.
  • the condensate outlet pipe 2e is used to discharge the inner casing.
  • the water collected by the cavity 2b in 20 has a simple structure and a reasonable layout, which is convenient for detection.
  • a detection hole 2f is opened on the wall surface of the inner casing 20, and the detection hole 2f communicates with the cavity 2b.
  • the hydrogen concentration sensor 1 is installed on the inner casing 20, and the probe portion 11 of the hydrogen concentration sensor 1 extends into the detection hole 2f. It has a simple structure and easy installation to sense the hydrogen concentration.
  • the position of the above-mentioned detection hole 2f is close to the tail exhaust outlet pipe 2c, which improves the accuracy and reliability of detection, because the tail exhaust gas close to the exhaust outlet pipe 2c has been substantially cooled down in temperature and humidity.
  • the installation platform 2g is provided on the wall surface of the condenser shell around the detection hole 2f, and the hydrogen concentration sensor is installed on the installation platform 2g, which is simple and convenient to install.
  • a number of radiating ribs 2a are provided on the wall surface of the inner casing 20, so that the heat dissipation is fast and the cooling effect is good.
  • the above-mentioned hydrogen concentration sensor adopts a non-heated hydrogen concentration sensor commonly used in the market, which is beneficial to reduce cost, easy to obtain materials, and low maintenance cost.
  • this embodiment is a modification on the basis of Embodiment 1.
  • the modification points are: use the tail exhaust outlet pipe 2c to directly discharge the tail exhaust gas entering the branch pipe 4, delete the auxiliary pipe 3, and the structure is more simple.
  • a fuel cell tail exhaust hydrogen concentration detection device provided by this embodiment includes a tail exhaust main line 5, a sampling branch line 4, and gas-liquid separation
  • a cavity 2b is provided in the inner shell 20
  • a tail exhaust outlet pipe 2c, a tail exhaust inlet pipe 2d and a condensate outlet pipe 2e, a tail exhaust outlet pipe 2c, a tail exhaust inlet pipe 2d and a condensate outlet pipe are set on the inner shell 20 2e are connected to the cavity 2b
  • the outlet 42 of the sampling branch pipe 4 is connected to the tail exhaust inlet pipe 2d of the gas-liquid separator 2
  • the hydrogen concentration sensor 1 is installed on the gas-liquid separator 2c passes through
  • An auxiliary pipeline 3 is connected to the downstream
  • the upstream section 51 of the main tailpipe line 5 is the tail exhaust gas inlet section, and the downstream section 52 of the tailpipe main pipe 5 is the tail exhaust gas discharge section.
  • the gas-liquid separator is used to first separate the exhaust gas entering the tail exhaust hydrogen concentration detection device to reduce the humidity of the tail exhaust.
  • the gas-liquid separator is used to cool the tail exhaust entering the tail hydrogen concentration detection device Reduce the temperature, thereby improving the accuracy and reliability of hydrogen concentration detection.
  • the fuel cell tail exhaust hydrogen concentration detection device of the present invention first greatly cools the incoming tail exhaust gas to reduce temperature and humidity, the use environment of the hydrogen concentration sensor is optimized , You can use the general hydrogen concentration sensor on the market, no special hydrogen concentration sensor is required, so the cost can be greatly reduced.
  • the mixing and dilution unit includes a fan 6 and a ventilation gas branch pipe 7.
  • the outlet end of the ventilation gas branch pipe 7 is connected to the tailpipe main pipe 5, and the fan 6 blows external cold air into the inlet end of the ventilation gas branch pipe 7 , Use external air to dilute the hydrogen concentration of the tail exhaust in the tail exhaust main line 5, the structure is simple and reasonable, and the implementation is easy and reliable.
  • the gas-liquid separator 2 also includes an outer casing 21.
  • the outer casing 21 is sleeved on the inner casing 20.
  • the gap between the inner casing 20 and the outer casing 21 forms an air duct 2h (the drawing is changed to 2h).
  • the body 21 has an air inlet 2j and an air outlet 2k.
  • the inlet end of the ventilating gas branch pipeline 7 is connected to the air outlet 2k of the outer shell 21.
  • a fan 6 and a fan 6 are installed at the air inlet 2j of the outer shell 21.
  • the external cold air is drawn into the air duct for 2h and blown on the outer surface of the inner shell 20 to form an air-cooling effect, which is more conducive to the heat dissipation of the inner shell 20, and has a compact structure, reasonable layout, and high integration, which is beneficial to reduce Product cost and easy installation.
  • the top of the inner shell 20 protrudes from the outer shell 21, which is convenient for arranging the installation platform 2g to install the hydrogen concentration sensor 1, the structure is simple and reasonable, and the cost is saved.
  • the inner diameter D2 of the sampling branch pipe 4 is smaller than the inner diameter D1 of the tail main pipe 5, the smaller sampling branch pipe 4 forms a negative pressure, and the tail exhaust gas in the tail main pipe 5 with a larger pipe diameter is sucked in To the sampling branch pipeline 4.
  • the above-mentioned inner diameter D2 of the sampling branch pipeline 4 is the same as or different from the inner diameter D3 of the auxiliary pipeline 3, and there is no specific requirement.
  • the above-mentioned gas-liquid separator 2 is a natural cooling condenser, an air-cooled condenser, or a liquid-cooled condenser.
  • Various condensers are easily available, simple in structure, and low in cost.
  • the above-mentioned inner casing 20 is provided with a tail exhaust outlet pipe 2c at the top, and a tail exhaust inlet pipe 2d and a condensate outlet pipe 2e are provided at the bottom of the inner casing 20.
  • the condensate outlet pipe 2e is used to discharge the inner casing.
  • the water collected by the cavity 2b in 20 has a simple structure and a reasonable layout, which is convenient for detection.
  • a detection hole 2f is opened on the wall surface of the inner casing 20, and the detection hole 2f is connected to the cavity 2b.
  • the hydrogen concentration sensor 1 is installed on the inner casing 20, and the probe portion of the hydrogen concentration sensor 1 extends into the detection hole 2f. In order to sense the hydrogen concentration, the structure is simple and the installation is convenient.
  • the position of the above-mentioned detection hole 2f is close to the tail exhaust outlet pipe 2c, which improves the accuracy and reliability of detection, because the tail exhaust gas close to the exhaust outlet pipe 2c has been substantially cooled down in temperature and humidity.
  • the installation platform 2g is provided on the wall surface of the inner casing around the detection hole 2f, and the hydrogen concentration sensor is installed on the installation platform 2g, which is simple and convenient to install.
  • the above-mentioned hydrogen concentration sensor 1 is a non-heated hydrogen concentration sensor, which is beneficial to reduce cost, is easy and convenient to obtain materials, and has low maintenance cost.
  • the position of the air inlet 2j of the outer casing 21 is provided with a second installation platform 2i, and the fan 6 is installed on the second installation platform 2i, which has a simple structure and convenient installation.
  • the above-mentioned second installation platform 2i and the first installation platform 2g are staggered by an angle to facilitate installation and avoid interference.
  • this embodiment is a modification on the basis of the third embodiment.
  • the modification points are: use the tail exhaust outlet pipe 2c to directly discharge the tail exhaust gas entering the sampling branch pipe 4, delete the auxiliary pipe 3, and the structure simpler.
  • the fuel cell provided in this embodiment includes a stack module, an electrical control assembly, a hydrogen circuit system, a cooling circuit system, and an air circuit system.
  • the stack module consists of several fuel cells. The monomers are stacked from bottom to top.
  • the hydrogen circuit system includes a hydrogen inlet valve assembly, a hydrogen circulation pump and a purge valve;
  • the air circuit system includes an air compressor, an air cooler, and a humidifier;
  • the outlet of the system is equipped with a fuel cell tail exhaust hydrogen concentration detection device, which is characterized in that: the fuel cell tail exhaust hydrogen concentration detection device is the fuel cell described in Embodiment 1 or Embodiment 2 or Embodiment 3 or Embodiment 4. Detection device for hydrogen concentration in tail exhaust.
  • the fuel cell tail exhaust hydrogen concentration detection device sends the detection signal to the fuel cell controller, and the fuel cell controller controls the operation of the stack module.
  • the gas at the outlet of the air path of the utility model is of high temperature and high humidity.
  • the gas-liquid separator of the first and second embodiments is used to first separate the exhaust gas entering the tail exhaust hydrogen concentration detection device to reduce the humidity of the exhaust gas At the same time, the gas-liquid separator is used to cool the exhaust gas entering the tail exhaust hydrogen concentration detection device, thereby improving the accuracy and reliability of hydrogen concentration detection, making the fuel cell system safer and better.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a new energy vehicle includes a vehicle body, a drive motor, and a fuel cell, wherein the drive motor and the fuel cell are mounted on the vehicle body, the drive motor provides power for the vehicle body, and the fuel cell provides electrical energy for the drive motor, characterized in that:
  • the fuel cell is the fuel cell described in Example 5. Improve the safety and reliability of the vehicle system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车,所述的燃料电池尾排氢气浓度检测装置包括尾排主管路(5)、分支管路(4)、气液分离器(2)和氢气浓度传感器(1),其中所述的分支管路(4)的入口(41)连接在尾排主管路(5)的上游段(51),气液分离器内壳体(20)上设置尾排气出口管(2c)、尾排气入口管(2d)和冷凝水出口管(2e),尾排气出口管(2c)、尾排气入口管(2d)和冷凝水出口管(2e)都与空腔连通,分支管路(4)的出口(42)连接气液分离器(2)的尾排气入口管(2d),在气液分离器(2)上安装氢气浓度传感器(1),它提高氢气浓度传感器(1)的检测准确性和可靠性,使氢气浓度传感器(1)使用环境优化,可以采用市场上普通的氢气浓度传感器,因此大幅降低成本。

Description

燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车 技术领域:
本发明涉及燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车。
背景技术:
燃料电池系统利用储存在气瓶中的氢气与来自空气的氧气之间发生电化学反应来产生电能,为用电设备提供动力来源。氢气与氧气由燃料电池交换膜隔开,但是不可避免的存在互相渗透的现象;在反应过程中,氢气路会聚集液态水,需要及时的排出,通常会利用吹扫电磁阀将氢气路的水及杂质排出到空气路出口混合以降低氢气浓度,避免发生爆燃。所以,燃料电池系统需要在空气路出口安装氢气浓度传感器,来对出口的氢气浓度进行实时监控和控制,氢气作为一种可燃气体,其爆炸极限为4%~75.6%。因此需要将排出的氢气浓度降到4%以下才会避免危险。。
通常燃料电池运行温度较高,空气路出口气体为高温高湿,在这种使用环境下,需要使用特殊的氢气浓度传感器,一般为加热型氢气浓度传感器,使用成本非常高,而且性能不稳定,造成燃料电池系统维修保养成本高,甚至会影响燃料电池系统的安全性和使用性能。
在专利CN208076472U中,使用了一种文丘里管和防水透气膜来避免氢浓度传感器在高温高湿环境下使用,成本相对较低,但是该装置使尾排管流阻加大,结构复杂,且存在防水透气膜堵塞风险,易造成检测不准的现象。
在专利CN 108493467A中,使用了大量的阀类来控制燃料电池尾气含氢量,部件数量多,控制较为复杂,且没有解决普通氢气浓度传感器在高温高湿环境下的使用。
综上所述,目前的燃料电池尾排需要使用特殊的氢气浓度传感器来在高温高湿工况下检测氢气浓度,流阻大影响检测效果,存在检测可靠性不足等情况;在整车上应用时,需要减少部件装配,提高系统安全性和可靠性。且没有对尾排氢气进行稀释的功能。
发明内容:
本发明的第一目的是提供燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车,解决现有技术中燃料电池尾排氢气浓度检测装置存在检测不准确、可靠性低导致燃料电池系统安全性和可靠性低的技术问题。
本发明的第二目的是提供燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车,解决现有技术中燃料电池尾排氢气浓度检测装置存在成本高,维修费贵、结构复杂的技术问题。
本发明的目的是通过下述技术方案予以实现的:
燃料电池尾排氢气浓度检测装置,其特征在于:它包括尾排主管路、抽样分支管路、气液分离器和氢气浓度传感器,其中所述的抽样分支管路的入口连接在尾排主管路的上游段,所述的气液分离器包括内壳体,内壳体内设置空腔,内壳体上设置尾排气出口管、尾排气入口管和冷凝水出口管,尾排气出口管、尾排气入口管和冷凝水出口管都与空腔连通,抽样分支管路的出口连接气液分离器的尾排气入口管,在气液分离器上安装氢气浓度传感器,利用尾排气出口管可直接排出进入抽样分支管路的尾排气,或者尾排气出口管通过一个辅助管路连接到尾排主管路的下游段,将进入抽样分支管路的尾排气重新回送到尾排主管路。
上述燃料电池尾排氢气浓度检测装置还包括混合稀释单元,所述的混合稀释单元包括风扇和通风气体分支管路,通风气体分支管路的出口端连接到尾排主管路上,风扇将外部空气吹入到通风气体分支管路的入口端,利用外部空气将尾排主管路里面的尾排气的氢气浓度进行稀释。
上述所述的气液分离器还包括外壳体,内壳体的外面套装有外壳体,内壳体与外壳体之间的空隙形成风道,外壳体有一个进风口和一个出风管口,通风气体分支管路的入口端连接外壳体的出风管口,在外壳体的进风口处安装风扇,风扇将外部冷空气抽入风道,并吹在内壳体的外表面形成风冷的效果。
上述所述的内壳体的顶部凸出外壳体。
上述所述的抽样分支管路内径D2小于尾排主管路的内径D1。
上述所述的内壳体的顶部设置尾排气出口管,在内壳体的底部设置有尾排气入口管和冷凝水出口管。
上述在内壳体顶部壁面上开有探测孔,探测孔与空腔连通,氢气浓度传感器安装在内壳体上,且氢气浓度传感器的探头部伸入到探测孔里面以感应氢气浓度。
上述的探测孔的位置靠近尾排气出口管。
上述在探测孔的周围的内壳体壁面上设置第一安装平台,氢气浓度传感器安装在安装平台上。
上述所述的氢气浓度传感器是非加热型氢气浓度传感器。
上述所述的外壳体的进风口的位置设置第二安装平台,风扇安装在第二安装平台上。
上述的第二安装平台与第一安装平台错开一个角度。
上述的冷凝器壳体壁面上设置若干散热筋。
一种燃料电池,包括电堆模块、电气控制组件、氢气路系统、冷却回路系统和空气路系统,所述的电堆模块由若干个燃料电池单体由下至上堆叠而成,所述的氢气路系统包括进氢阀门组件、氢气循环泵和吹扫阀;所述的空气路系统包括空气压缩机、空气冷却器、加湿器;在空气路系统的出口安装有燃料电池尾排氢气浓度检测装置,其特征在于:所述的燃料电池尾排氢气浓度检测装置是上述所述的燃料电池尾排氢气浓度检测装置。
一种新能源汽车,包括车辆本体、驱动电机和燃料电池,其中驱动电机和燃料电池安装在车辆本体上,驱动电机为车辆本体提供动力,燃料电池为驱动电机提供电能,其特征在于:所述的燃料电池是上述所述的燃料电池
本发明与现有技术相比,具有如下效果:
1)本发明的氢气浓度检测单元包括尾排主管路、抽样分支管路、气液分离 器和氢气浓度传感器,其中所述的抽样分支管路的入口连接在尾排主管路的上游段,所述的气液分离器包括内壳体,内壳体内设置空腔,内壳体上设置尾排气出口管、尾排气入口管和冷凝水出口管,尾排气出口管、尾排气入口管和冷凝水出口管都与空腔连通,抽样分支管路的出口连接气液分离器的尾排气入口管,在气液分离器上安装氢气浓度传感器,利用尾排气出口管可直接排出进入抽样分支管路的尾排气,或者尾排气出口管通过一个辅助管路连接到尾排主管路的下游段,将进入抽样分支管路的尾排气重新回送到尾排主管路。利用气液分离器先将进入尾排氢气浓度检测装置的尾排气进行气液分离,降低尾排气的湿度,同时利用气液分离器对进入尾排氢气浓度检测装置的尾排气进行冷却降温,从而提高氢气浓度检测准确性和可靠性,与此同时,由于本发明的燃料电池尾排氢气浓度检测装置先将进入的尾排气进行大幅冷却降温降湿,使氢气浓度传感器使用环境优化,可以采用市场上通用的非加热型氢气浓度传感器,无需专门特制氢气浓度传感器,因此可以大幅降低成本。
2)本发明的混合稀释单元包括风扇和通风气体分支管路,通风气体分支管路的出口端连接到尾排主管路上,风扇将外部空气吹入到通风气体分支管路的入口端,利用外部空气将尾排主管路里面的尾排气的氢气浓度进行稀释,降低燃料电池尾排气中氢气的浓度和温度,大幅提高安全性。
3)本发明的燃料电池,由于采用的燃料电池尾排氢气浓度检测装置的检测准确性和可靠性高,从而提高燃料电池系统安全性和可靠性,降低成本。
4)本发明的新能源汽车,由于采用的燃料电池尾排氢气浓度检测及混合稀释装置的检测准确性和可靠性高,从而提高燃料电池系统安全性和可靠性,降低成本。
5)本发明的其它优点在实施例部分展开详细描述。
附图说明:
图1本发明实施例一的结构示意图;
图2是本发明实施例一的气液分离器和氢气浓度传感器的安装示意图;
图3是本发明实施例一的气液分离器的立体图;
图4是图3的A-A剖视图;
图5是本发明实施例二的结构示意图;
图6本发明实施例三的结构示意图;
图7是本发明实施例三的气液分离器和氢气浓度传感器、风扇的安装示意图;
图8是本发明实施例三的气液分离器的主视图;
图9是图8的A-A剖视图;
图10是图8的B-B剖视图;
图11是本发明实施例四的结构示意图;
图12是本发明实施例五的结构示意图;
图13是本发明实施例五的电路方框图。
具体实施方式:
下面通过具体实施例并结合附图对本发明作进一步详细的描述。
实施例一:
如图1至图4所示,本实施例提供一种燃料电池尾排氢气浓度检测装置,它包括尾排主管路5、抽样分支管路4、气液分离器2和氢气浓度传感器1,其中所述的抽样分支管路4的入口41连接在尾排主管路5的上游段51,所述的气液分离器2包括内壳体20,内壳体20内设置空腔2b,内壳体20上设置尾排气出口管2c、尾排气入口管2d和冷凝水出口管2e,尾排气出口管2c、尾排气入口管2d和冷凝水出口管2e都与空腔2b连通,抽样分支管路4的出口42连接气液分离器2的尾排气入口管2d,在气液分离器2上安装氢气浓度传感器1,尾排气出口管2c通过一个辅助管路3连接到尾排主管路5的下游段52,将进入抽样分支管路4的尾排气重新回送到尾排主管路排出,尾排主管路5的上游段51是尾排气进入段,尾排主管路5的下游段52是尾排气排出段。利用气液分离器 2先将进入尾排氢气浓度检测装置的尾排气进行气液分离,降低尾排气的湿度,同时利用气液分离器对进入尾排氢气浓度检测装置的尾排气进行冷却降温,从而提高氢气浓度检测准确性和可靠性,与此同时,由于本发明的燃料电池尾排氢气浓度检测装置先将进入的尾排气进行大幅冷却降温降湿,使氢气浓度传感器使用环境优化,可以采用市场上普通的氢气浓度传感器,无需专门特制氢气浓度传感器,因此可以大幅降低成本。
所述抽样分支管路4内径D2小于尾排主管路1的内径D1,利用文丘里效应在管径较小的抽样分支管路4形成负压,管径较大的尾排主管路1里面的尾排气被吸入到抽样分支管路4内。
上述的抽样分支管路4内径D2与辅助管路3的内径D3相同或者不同。
上述所述的气液分离器2是自然冷却冷凝器或者是风冷冷凝器或者是液冷冷凝器,各种冷凝器容易获得,结构简单,成本低。
上述所述的内壳体20的顶部设置尾排气出口管2c,在内壳体20的底部设置有尾排气入口管2d和冷凝水出口管2e,利用冷凝水出口管2e排出内壳体20内的空腔2b收集的水份,结构简单,布局合理,便于检测。
上述在内壳体20壁面上开有探测孔2f,探测孔2f与空腔2b连通,氢气浓度传感器1安装在内壳体20上,且氢气浓度传感器1的探头部11伸入到探测孔2f里面以感应氢气浓度,结构简单,安装方便。
上述的探测孔2f的位置靠近尾排气出口管2c,提高检测的准确性、可靠性,因为靠近排气出口管2c的尾排气已经进行大幅冷却降温降湿。
上述在探测孔2f周围的冷凝器壳体壁面上设置安装平台2g,氢气浓度传感器安装在安装平台2g上,安装简单方便。
上述的内壳体20壁面上设置若干散热筋2a,散热快,冷却效果好。
上述所述的氢气浓度传感器是采用市场上通用的非加热型氢气浓度传感器,有利于降低成本,取材容易方便,维修成本低。
实施例二:
如图5所示,本实施例是对实施例一基础上的改动,改动点是:利用尾排气出口管2c直接排出进入分支管路4的尾排气,删除辅助管路3,结构更简单。
实施例三:
如图6、图7、图8、图9、图10所示,本实施例提供的一种燃料电池尾排氢气浓度检测装置,包括尾排主管路5、抽样分支管路4、气液分离器2和氢气浓度传感器1,其中所述的抽样分支管路4的入口41连接在尾排主管路5的上游段51,所述的气液分离器2包括内壳体20,内壳体20内设置空腔2b,内壳体20上设置尾排气出口管2c、尾排气入口管2d和冷凝水出口管2e,尾排气出口管2c、尾排气入口管2d和冷凝水出口管2e都与空腔2b连通,抽样分支管路4的出口42连接气液分离器2的尾排气入口管2d,在气液分离器2上安装氢气浓度传感器1,尾排气出口管2c通过一个辅助管路3连接到尾排主管路5的下游段52,将进入抽样分支管路4的尾排气重新回送到尾排主管路5。尾排主管路5的上游段51是尾排气进入段,尾排主管路5的下游段52是尾排气排出段。利用气液分离器先将进入尾排氢气浓度检测装置的尾排气进行气液分离,降低尾排气的湿度,同时利用气液分离器对进入尾排氢气浓度检测装置的尾排气进行冷却降温,从而提高氢气浓度检测准确性和可靠性,与此同时,由于本发明的燃料电池尾排氢气浓度检测装置先将进入的尾排气进行大幅冷却降温降湿,使氢气浓度传感器使用环境优化,可以采用市场上通用的氢气浓度传感器,无需专门特制氢气浓度传感器,因此可以大幅降低成本。
混合稀释单元包括风扇6和通风气体分支管路7,通风气体分支管路7的出口端连接到尾排主管路5上,风扇6将外部冷空气吹入到通风气体分支管路7的入口端,利用外部空气将尾排主管路5里面的尾排气的氢气浓度进行稀释,结构简单合理,实施容易可靠。
所述的气液分离器2还包括外壳体21,内壳体20的外面套装有外壳体21, 内壳体20与外壳体21之间的空隙形成风道2h(图纸改成2h),外壳体21有一个进风口2j和一个出风管口2k,通风气体分支管路7的入口端连接外壳体21的出风管口2k,在外壳体21的进风口2j处安装风扇6,风扇6将外部冷空气抽入风道2h,并吹在内壳体20的外表面形成风冷的效果,更有利于内壳体20的散热,且结构紧凑,布局合理,集成度高,有利于降低产品成本,安装方便。
内壳体20的顶部凸出外壳体21,便于布置安装平台2g安装氢气浓度传感器1,结构简单合理,节省成本。
所述抽样分支管路4内径D2小于尾排主管路5的内径D1,管径较小的抽样分支管路4形成负压,管径较大的尾排主管路5里面的尾排气被吸入到抽样分支管路4内。
上述的抽样分支管路4内径D2与辅助管路3的内径D3相同或者不同,没有具体要求。
上述所述的气液分离器2是自然冷却冷凝器或者是风冷冷凝器或者是液冷冷凝器,各种冷凝器容易获得,结构简单,成本低。
上述所述的内壳体20的顶部设置尾排气出口管2c,在内壳体20的底部设置有尾排气入口管2d和冷凝水出口管2e,利用冷凝水出口管2e排出内壳体20内的空腔2b收集的水份,结构简单,布局合理,便于检测。
上述在内壳体20壁面上开有探测孔2f,探测孔2f与空腔2b连通,氢气浓度传感器1安装在内壳体20上,且氢气浓度传感器1的探头部伸入到探测孔2f里面以感应氢气浓度,结构简单,安装方便。
上述的探测孔2f的位置靠近尾排气出口管2c,提高检测的准确性、可靠性,因为靠近排气出口管2c的尾排气已经进行大幅冷却降温降湿。
上述在探测孔2f的周围的内壳体壁面上设置安装平台2g,氢气浓度传感器安装在安装平台2g上,安装简单方便。
上述所述的氢气浓度传感器1是非加热型氢气浓度传感器,有利于降低成本, 取材容易方便,维修成本低。
上述的外壳体21的进风口2j的位置设置第二安装平台2i,风扇6安装在第二安装平台2i上,结构简单,安装方便。
上述的第二安装平台2i与第一安装平台2g错开一个角度,便于安装,避免产生干涉。
实施例四:
如图11所示,本实施例是对实施例三基础上的改动,改动点是:利用尾排气出口管2c直接排出进入抽样分支管路4的尾排气,删除辅助管路3,结构更简单。
实施例五:
如图12、图13所示,本实施例提供的是燃料电池,包括电堆模块、电气控制组件、氢气路系统、冷却回路系统和空气路系统,所述的电堆模块由若干个燃料电池单体由下至上堆叠而成,所述的氢气路系统包括进氢阀门组件、氢气循环泵和吹扫阀;所述的空气路系统包括空气压缩机、空气冷却器、加湿器;在空气路系统的出口安装有燃料电池尾排氢气浓度检测装置,其特征在于:所述的燃料电池尾排氢气浓度检测装置是实施例一或者实施例二或者实施例三或者实施例四所述的燃料电池尾排氢气浓度检测装置。燃料电池尾排氢气浓度检测装置将检测信号送到燃料电池控制器,燃料电池控制器控制电堆模块的工作。
本实用新型空气路出口气体为高温高湿,利用实施例一、实施例二的气液分离器先将进入尾排氢气浓度检测装置的尾排气的进行气液分离,降低尾排气的湿度,同时利用气液分离器对进入尾排氢气浓度检测装置的尾排气进行冷却降温,从而提高氢气浓度检测准确性和可靠性,使燃料电池系统更安全和使用性能更好。
实施例六:
一种新能源汽车,包括车辆本体、驱动电机和燃料电池,其中驱动电机和燃料电池安装在车辆本体上,驱动电机为车辆本体提供动力,燃料电池为驱动电机提供电能,其特征在于:所述的燃料电池是实施例五所述的燃料电池。提高整车系统安全性和可靠性。
以上实施例为本发明的较佳实施方式,但本发明的实施方式不限于此,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (15)

  1. 燃料电池尾排氢气浓度检测装置,其特征在于:它包括尾排主管路、抽样分支管路、气液分离器和氢气浓度传感器,其中所述的抽样分支管路的入口连接在尾排主管路的上游段,所述的气液分离器包括内壳体,内壳体内设置空腔,内壳体上设置尾排气出口管、尾排气入口管和冷凝水出口管,尾排气出口管、尾排气入口管和冷凝水出口管都与空腔连通,抽样分支管路的出口连接气液分离器的尾排气入口管,在气液分离器上安装氢气浓度传感器,利用尾排气出口管可直接排出进入抽样分支管路的尾排气,或者尾排气出口管通过一个辅助管路连接到尾排主管路的下游段,将进入抽样分支管路的尾排气重新回送到尾排主管路。
  2. 根据权利要求1所述的燃料电池尾排氢气浓度检测装置,其特征在于:它还包括混合稀释单元,所述的混合稀释单元包括风扇和通风气体分支管路,通风气体分支管路的出口端连接到尾排主管路上,风扇将外部空气吹入到通风气体分支管路的入口端,利用外部空气将尾排主管路里面的尾排气的氢气浓度进行稀释。
  3. 根据权利要求2所述的燃料电池尾排氢气浓度检测装置,其特征在于:所述的气液分离器还包括外壳体,内壳体的外面套装有外壳体,内壳体与外壳体之间的空隙形成风道,外壳体有一个进风口和一个出风管口,通风气体分支管路的入口端连接外壳体的出风管口,在外壳体的进风口处安装风扇,风扇将外部冷空气抽入风道,并吹在内壳体的外表面形成风冷的效果。
  4. 根据权利要求3所述的燃料电池尾排氢气浓度检测装置,其特征在于:内壳体的顶部凸出外壳体。
  5. 根据权利要求2或3或4所述的燃料电池尾排氢气浓度检测装置,其特征在于:所述的抽样分支管路内径D2小于尾排主管路的内径D1。
  6. 根据权利要求5所述的燃料电池尾排氢气浓度检测装置,其特征在于: 所述的内壳体的顶部设置尾排气出口管,在内壳体的底部设置有尾排气入口管和冷凝水出口管。
  7. 根据权利要求6所述的燃料电池尾排氢气浓度检测装置,其特征在于:在内壳体顶部壁面上开有探测孔,探测孔与空腔连通,氢气浓度传感器安装在内壳体上,且氢气浓度传感器的探头部伸入到探测孔里面以感应氢气浓度。
  8. 根据权利要求7所述的燃料电池尾排氢气浓度检测装置,其特征在于:探测孔的位置靠近尾排气出口管。
  9. 根据权利要求8所述的燃料电池尾排氢气浓度检测装置,其特征在于:在探测孔的周围的内壳体壁面上设置第一安装平台,氢气浓度传感器安装在安装平台上。
  10. 根据权利要求9所述的燃料电池尾排氢气浓度检测装置,其特征在于:所述的氢气浓度传感器是非加热型氢气浓度传感器。
  11. 根据权利要求10所述的燃料电池尾排氢气浓度检测装置,其特征在于:外壳体的进风口的位置设置第二安装平台,风扇安装在第二安装平台上。
  12. 根据权利要求11所述的燃料电池尾排氢气浓度检测装置,其特征在于:第二安装平台与第一安装平台错开一个角度。
  13. 根据权利要求5所述的燃料电池尾排氢气浓度检测装置,其特征在于:冷凝器壳体壁面上设置若干散热筋。
  14. 一种燃料电池,包括电堆模块、电气控制组件、氢气路系统、冷却回路系统和空气路系统,所述的电堆模块由若干个燃料电池单体由下至上堆叠而成,所述的氢气路系统包括进氢阀门组件、氢气循环泵和吹扫阀;所述的空气路系统包括空气压缩机、空气冷却器、加湿器;在空气路系统的出口安装有燃料电池尾排氢气浓度检测装置,其特征在于:所述的燃料电池尾排氢气浓度检测装置是权利要求1至13任何一项所述的燃料电池尾排氢气浓度检测装置。
  15. 一种新能源汽车,包括车辆本体、驱动电机和燃料电池,其中驱动电 机和燃料电池安装在车辆本体上,驱动电机为车辆本体提供动力,燃料电池为驱动电机提供电能,其特征在于:所述的燃料电池是权利要求14所述的燃料电池。
PCT/CN2019/105380 2019-03-14 2019-09-11 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车 WO2020181751A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910192014.0A CN109768307A (zh) 2019-03-14 2019-03-14 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
CN201920320857.X 2019-03-14
CN201920320857.XU CN209418665U (zh) 2019-03-14 2019-03-14 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车
CN201910192014.0 2019-03-14

Publications (1)

Publication Number Publication Date
WO2020181751A1 true WO2020181751A1 (zh) 2020-09-17

Family

ID=72426845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105380 WO2020181751A1 (zh) 2019-03-14 2019-09-11 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车

Country Status (1)

Country Link
WO (1) WO2020181751A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113588764A (zh) * 2021-07-21 2021-11-02 上海海珊智能仪器有限公司 一种氢燃料电池阳极尾气检测系统
DE102020212109A1 (de) 2020-09-25 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zur Bestimmung der Wasserstoff-Konzentration eines Abgases in einer Abgasleitung eines Brennstoffzellensystems und Brennstoffzellensystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054424A1 (ja) * 2004-11-16 2006-05-26 Nissan Motor Co., Ltd. 燃料電池システム
CN108333312A (zh) * 2018-03-12 2018-07-27 上海重塑能源科技有限公司 尾排氢气浓度检测装置及燃料电池车辆
CN108493467A (zh) * 2018-03-30 2018-09-04 云浮市飞驰新能源汽车有限公司 一种控制燃料电池尾气含氢量的装置
CN109768307A (zh) * 2019-03-14 2019-05-17 中山大洋电机股份有限公司 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006054424A1 (ja) * 2004-11-16 2006-05-26 Nissan Motor Co., Ltd. 燃料電池システム
CN108333312A (zh) * 2018-03-12 2018-07-27 上海重塑能源科技有限公司 尾排氢气浓度检测装置及燃料电池车辆
CN108493467A (zh) * 2018-03-30 2018-09-04 云浮市飞驰新能源汽车有限公司 一种控制燃料电池尾气含氢量的装置
CN109768307A (zh) * 2019-03-14 2019-05-17 中山大洋电机股份有限公司 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020212109A1 (de) 2020-09-25 2022-03-31 Robert Bosch Gesellschaft mit beschränkter Haftung Vorrichtung zur Bestimmung der Wasserstoff-Konzentration eines Abgases in einer Abgasleitung eines Brennstoffzellensystems und Brennstoffzellensystem
CN113588764A (zh) * 2021-07-21 2021-11-02 上海海珊智能仪器有限公司 一种氢燃料电池阳极尾气检测系统
CN113588764B (zh) * 2021-07-21 2024-04-19 上海海珊智能仪器有限公司 一种氢燃料电池阳极尾气检测系统

Similar Documents

Publication Publication Date Title
WO2021143149A1 (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池
CN109768307A (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
CN101680671B (zh) 加湿器和燃料电池系统
WO2020181751A1 (zh) 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车
US8053126B2 (en) Water transfer efficiency improvement in a membrane humidifier by reducing dry air inlet temperature
KR101461874B1 (ko) 연료 전지 시스템 및 그 가습 및 냉각방법
WO2022041544A1 (zh) 一种封闭式的质子交换膜燃料电池系统壳体通风排水装置
CN113571737B (zh) 一种空冷电堆环境模拟测试系统及其控制方法
WO2023010844A1 (zh) 一种燃料电池冷却通风系统
CN113328123B (zh) 一种燃料电池电堆外壳吹扫装置及控制方法
CN112162132A (zh) 一种三相电能表
CN101346843A (zh) 对燃料电池冷却剂中气体吸入的响应
CN209418672U (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及新能源汽车
CN211530092U (zh) 燃料电池尾排氢气浓度检测及混合稀释装置及燃料电池
CN209418665U (zh) 燃料电池尾排氢气浓度检测装置及燃料电池和新能源汽车
JP6830199B2 (ja) 燃料電池システム及びその運転方法
CN210467990U (zh) 一种燃料电池的空气降温增湿设备及应用的燃料电池
WO2023019921A1 (zh) 一种中冷器及其应用的燃料电池系统
CN214099656U (zh) 一种中冷加湿一体化模块及燃料电池系统
CN203071171U (zh) 一种燃料电池发动机进气增湿可调装置
CN215418249U (zh) 一种燃料电池供气装置及车辆
WO2022016882A1 (zh) 一种中冷加湿装置及其应用的燃料电池系统
CN211829050U (zh) 通风系统及燃料电池箱体的通风系统
CN113517455A (zh) 一种燃料电池的中冷加湿集成总成装置
CN220250711U (zh) 尾排冷凝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919355

Country of ref document: EP

Kind code of ref document: A1