WO2021143121A1 - 轴向磁场电机、定子总成及定子绕组工艺 - Google Patents

轴向磁场电机、定子总成及定子绕组工艺 Download PDF

Info

Publication number
WO2021143121A1
WO2021143121A1 PCT/CN2020/108563 CN2020108563W WO2021143121A1 WO 2021143121 A1 WO2021143121 A1 WO 2021143121A1 CN 2020108563 W CN2020108563 W CN 2020108563W WO 2021143121 A1 WO2021143121 A1 WO 2021143121A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
unit
winding
assembly
unit body
Prior art date
Application number
PCT/CN2020/108563
Other languages
English (en)
French (fr)
Inventor
黄厚佳
Original Assignee
浙江盘毂动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江盘毂动力科技有限公司 filed Critical 浙江盘毂动力科技有限公司
Priority to US17/791,458 priority Critical patent/US20230051080A1/en
Priority to EP20914429.4A priority patent/EP4092876A4/en
Publication of WO2021143121A1 publication Critical patent/WO2021143121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/085Forming windings by laying conductors into or around core parts by laying conductors into slotted stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0478Wave windings, undulated windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/066Windings consisting of complete sections, e.g. coils, waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/12Windings characterised by the conductor shape, form or construction, e.g. with bar conductors arranged in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the invention relates to the technical field of axial magnetic field motor stator matching technology, in particular to a stator winding technology.
  • the invention also relates to a stator assembly made by the stator winding process and an axial magnetic field motor using the stator assembly.
  • stator winding method In the current process of machining and assembling the stator of the axial field motor, the generally adopted stator winding method is usually divided into a concentrated winding and a distributed winding.
  • the concentrated winding usually winds a coil on a stator tooth.
  • the wire embedding process is simple, but it will generate larger harmonics in the motor magnetic field, which reduces the performance of the motor; while in the distributed winding structure, A coil usually spans multiple stator teeth. This kind of winding structure embedding process is more complicated, but the harmonics of the motor magnetic field are small, and the motor performance is better.
  • the object of the present invention is to provide a stator winding process, which can effectively reduce the difficulty of the corresponding winding and wire embedding process, improve the winding embedding operation efficiency and reduce the manufacturing cost of the motor.
  • Another object of the present invention is to provide a stator assembly made by the above-mentioned stator winding process and an axial field motor using the stator assembly.
  • the present invention provides a stator winding process, which includes the steps:
  • the unit body is wound, a single flat wire of a certain length is selected, and it is wound into a unit body that can form a single-phase winding. Both free ends of the unit body are left with a certain length of terminals.
  • the unit body includes a number of stacked unit layers, and the projections of each unit layer on a section perpendicular to the axis of the unit body overlap each other.
  • the unit layer includes outer ends that are connected in a one-to-one correspondence from the outside to the inside along its radial direction.
  • the conductor, the effective conductor and the inner conductor, the outer node is formed by bending between the two adjacent outer conductors that are in sequence, and the inner node is formed by bending between the two adjacent inner conductors that are connected in sequence.
  • the winding starts at one end of the flat wire.
  • the flat wire When passing the connection between the outer conductor or the inner conductor and the effective conductor, the flat wire is bent at a certain angle in the same plane, and each time it passes through an inner node or At the outer node, the flat wire is bent upwards or downwards, and the bending direction of the adjacent outer node is opposite to the inner node, until the winding start position of the flat wire is completed.
  • the layers are wound to form a unit layer, the inner nodes in the same unit layer are all located on the same circle, and the outer nodes in the same unit layer are all located on the same circle.
  • Winding assembly select any unit body as the reference unit body, arrange the outer nodes of the other unit body coaxially with the reference unit body, and align the outer nodes of the two unit bodies, and then keep the reference unit body still while moving along Rotate the other unit in the counterclockwise direction.
  • each unit layer of the unit will spiral down one layer relative to each unit layer of the reference unit, until the last layer of the unit and the reference unit The last layer is in the same plane, and then repeat the above process to assemble the remaining unit bodies one by one to form the stator winding. After the assembly is completed, adjust the relative angle between the terminals of each unit body according to the preset assembly requirements of the stator assembly In place
  • stator is embedded, the assembled stator windings are embedded in the slots of the stator assembly, and the unit bodies are connected in series or parallel according to the requirements of the working conditions to complete the overall assembly of the stator assembly.
  • the angle between two adjacent effective conductors is 360° ⁇ n/z, the bending angle at both ends of any effective conductor is 90° ⁇ 150°.
  • N the total number of unit bodies
  • z the total number of stator teeth
  • m the number of stator winding phases
  • p the number of motor pole pairs
  • the present invention also provides a stator assembly, including a stator housing and stator windings, the middle of the stator housing has an embedded slot, the stator winding is embedded in the embedded slot, and the stator assembly is composed of any of the above The stator winding process described in one item is made.
  • the present invention also provides an axial field motor, which includes a stator assembly and a rotor arranged coaxially, and the stator assembly becomes the stator assembly described in the previous item.
  • stator assembly provided by the present invention, during its operation, is carried out in sequence through the process steps of unit body winding, multi-unit preparation, winding assembly, and stator embedding, so that a single flat wire can be used.
  • the winding process of the stator winding can be completed only by the bending process in the whole unit body structure, and the reliable layout and relative structure setting between the conductors can be realized without additional processes such as welding, which greatly reduces the stator winding
  • the process is difficult, the process steps are simplified, the process operation efficiency is improved, and the winding arrangement is regular and beautiful, so that the finished stator winding can be embedded in the corresponding slot of the stator casing as a whole, thereby further reducing the stator assembly
  • the embedded wire assembly is difficult to realize efficient and automatic embedded wire assembly, and at the same time, the process cost and the overall manufacturing cost of the motor are reduced.
  • Fig. 1 is a flowchart of a stator winding process provided by a specific embodiment of the present invention
  • FIG. 2 is a schematic diagram of the assembly structure of the stator assembly provided by a specific embodiment of the present invention.
  • Fig. 3 is a schematic diagram of the structure of the stator winding part in Fig. 2;
  • FIG. 4 is a schematic diagram of the structure of the unit body part in FIG. 3;
  • Fig. 5 is a schematic diagram of the structure of the stator housing part in Fig. 2.
  • the core of the present invention is to provide a stator assembly, the stator winding process can effectively reduce the corresponding winding and wire embedding process difficulty, improve the winding embedding operation efficiency and reduce the motor manufacturing cost; at the same time, provide a stator winding process by the above The manufactured stator assembly and the axial magnetic field motor using the stator assembly.
  • FIG. 1 is a flowchart of a stator winding process provided by a specific embodiment of the present invention
  • Fig. 2 is a stator assembly provided by a specific embodiment of the present invention
  • Fig. 3 is a schematic structural diagram of the stator winding part in Fig. 2
  • Fig. 4 is a structural schematic diagram of the unit body part in Fig. 3
  • Fig. 5 is a structural schematic diagram of the stator housing part in Fig. 2.
  • the aluminum alloy casting 21 forming process uses the aluminum alloy casting 21 forming mold as described above, including:
  • Step 101 Winding the unit body:
  • a single flat wire of a certain length is selected and wound into a unit body 11 that can form a single-phase winding. Both free ends of the unit body 11 are left with a certain length of terminals 111, and the unit body after winding is formed 11 includes a number of stacked unit layers 112. The projections of each unit layer 112 on a section perpendicular to the axis of the unit body 11 overlap.
  • the unit layer 112 includes outer conductors that are connected in a one-to-one correspondence from the outside to the inside along its radial direction. 113.
  • the effective conductor 114 and the inner conductor 115 are bent to form an outer node 116 between two adjacent outer conductors 113 that are in sequence, and an inner node 117 is formed between two adjacent inner conductors 115 that are in sequence.
  • the winding starts from one end of the flat wire, and each time it passes through the connection between the outer conductor 113 or the inner conductor 115 and the effective conductor 114, the flat wire is bent at a certain angle in the same plane, and every time it passes through the connection between the outer conductor 113 or the inner conductor 115 and the effective conductor 114, the flat conductor is bent at a certain angle in the same plane, and every time it passes through the connection between the outer conductor 113 or the inner conductor 115 and the effective conductor 114, the flat conductor is bent at a certain angle in the same plane.
  • the flat wire When passing through an inner node 117 or an outer node 116, the flat wire is bent upward or downward, and the bending direction of the adjacent outer node 116 and the inner node 117 is opposite, until the winding start position of the flat wire , The single-layer winding can be completed to form the unit layer 112.
  • the inner nodes 117 in the same unit layer 112 are all located on the same circle, and the outer nodes 116 in the same unit layer 112 are all located on the same circle.
  • a unit body 11 is formed, and the number of layers of each unit body 11 is consistent with the preset number of turns of the coil. And the single unit body 11 is formed by continuous bending of a single flat wire.
  • the flat wire is preferably a flat copper wire, and the wire winding form is a wave winding structure, so that a single coil can cross multiple stator teeth, thereby effectively reducing the magnetic field of the motor. In the harmonics, the performance of the motor is guaranteed.
  • the angle between two adjacent effective conductors 114 is 360 ° ⁇ n/z, the bending angle at both ends of any effective conductor 114 is 90° ⁇ 150°.
  • the above-mentioned size specification relationship can make the structure of the stator winding more regular, thereby further reducing the difficulty of wire embedding, improving the assembly efficiency between the stator winding and the stator housing 12, and ensuring the overall assembly effect of the stator assembly and the overall performance of the motor.
  • Step 102 multi-unit preparation:
  • the operation process of winding the unit body 11 described above is repeated to form a plurality of unit bodies 11 until the number of the unit bodies 11 meets the winding requirements.
  • Step 103 winding assembly
  • any unit body 11 as the reference unit body 11 arrange the outer node 116 of the other unit body 11 coaxially with the reference unit body 11, and align the outer nodes 116 of the two unit bodies 11, and then keep the reference unit body 11 Do not move, while rotating the other unit body 11 in the counterclockwise direction.
  • each unit layer 112 of the unit body 11 spirals down one layer relative to each unit layer 112 of the reference unit body 11 until the The last layer of the unit body 11 is in the same plane as the last layer of the reference unit body 11, and then repeat the above process to assemble the remaining unit bodies 11 one by one to form the stator winding. After the assembly is completed, follow the preset assembly of the stator assembly It is required to adjust the relative angle between the connection heads 111 of each unit body 11 in place.
  • Step 104 the stator is embedded:
  • stator windings are embedded in the slots 121 of the stator housing 12, and the unit bodies 11 are connected in series or in parallel according to the requirements of the working conditions to complete the overall assembly of the stator assembly.
  • the stator assembly provided by the present invention includes a stator housing 12 and a stator winding.
  • the stator housing 12 has an embedding slot 121, and the stator winding is embedded in the embedding slot 121.
  • the stator assembly is made by the stator winding process described above.
  • the structure of the stator assembly is regular and reliable, the assembly process is simple and easy, the winding and wire embedding operation efficiency is high, and the winding structure completely relies on bending to realize the change of the cable direction and arrangement. There are no solder joints in the wire structure, and the process cost is relatively high. Low.
  • the axial field motor provided by the present invention includes a coaxially arranged stator assembly and a rotor, and the stator assembly becomes the stator assembly as described above.
  • the performance of the axial field motor is better, and its manufacturing cost is lower.
  • stator winding process during its operation, is achieved by successively implementing process steps such as unit winding, multi-unit preparation, winding assembly, and stator embedding, so that it can be achieved by relying on a single flat wire.
  • the winding process of the stator winding can be completed only by the bending process in the whole unit body structure, and the reliable layout and relative structure setting between the conductors can be realized without additional processes such as welding, which greatly reduces the stator winding process Difficulty, the process steps are simplified, the process operation efficiency is improved, and the winding arrangement is regular and beautiful, so that the finished stator winding can be embedded in the corresponding slot of the stator housing as a whole, thereby further reducing the embedding of the stator assembly. It is difficult to assemble the wire, realizes efficient and automatic wire-inserted assembly, and reduces the process cost and the overall manufacturing cost of the motor.
  • stator assembly made by the above-mentioned stator winding process provided by the present invention has a regular and reliable structure, simple and easy assembly process, high winding and wire insertion operation efficiency, and the winding structure completely relies on bending to realize the cable Change of direction and layout, no solder joints in the wire structure, low process cost.
  • the axial field motor using the above-mentioned stator assembly provided by the present invention has better performance and lower manufacturing cost.
  • stator winding process provided by the present invention, the stator assembly made by the stator winding process, and the axial field motor using the stator assembly have been described in detail above. Specific examples are used in this article to illustrate the principle and implementation of the present invention. The description of the above examples is only used to help understand the method and core idea of the present invention. It should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, several improvements and modifications can be made to the present invention, and these improvements and modifications also fall within the protection scope of the claims of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

本发明公开了一种定子总成,通过依次实施的单元体绕制、多单元制备、绕组装配以及定子嵌装等工艺步骤,使得依靠单根扁形导线即可实现单个单元体的绕制,整个单元体结构中仅靠弯折工艺即可完成定子绕组的绕制,无需焊接等附加工艺即可实现导体间的可靠布局和相对结构定型,大大降低了定子绕组工艺难度,简化了工艺步骤,提高了工艺操作效率,且绕组排列规整美观,使得绕制成型后的定子绕组能够被整体嵌入定子壳体相应的嵌槽中,从而进一步降低了定子总成的嵌线装配难度,实现高效自动化嵌线组装,同时降低了工艺成本和电机的整体制造成本。本发明还公开了一种由上述定子绕组工艺制得的定子总成以及应用该定子总成的轴向磁场电机。

Description

轴向磁场电机、定子总成及定子绕组工艺
本申请要求于2020年01月14日提交中国专利局、申请号为202010037881.X、发明名称为“轴向磁场电机、定子总成及定子绕组工艺”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及轴向磁场电机定子配套工艺技术领域,特别涉及一种定子绕组工艺。本发明还涉及一种由该定子绕组工艺制得的定子总成及应用该定子总成的轴向磁场电机。
背景技术
在目前的轴向磁场电机定子加工组装过程中,一般采取的定子绕线方式通常分为集中式绕组和分布式绕组。
具体而言,集中式绕组通常是将一个线圈绕在一个定子齿上,其嵌线工艺简单但会使电机磁场中产生较大的谐波,降低了电机的性能;而分布式绕组结构中,一个线圈通常跨过多个定子齿,该种绕组结构嵌线工艺较为复杂,但电机磁场的谐波小,电机性能较好。
因此,如何在保证电机性能的同时,有效降低绕组嵌线工艺难度,提高绕组嵌线操作效率并降低电机制造成本是本领域技术人员目前需要解决的重要技术问题。
发明内容
本发明的目的是提供一种定子绕组工艺,该定子绕组工艺能够有效降低相应的绕组和嵌线工艺难度,提高绕组嵌线操作效率并降低电机制造成本。本发明的另一目的是提供一种由上述定子绕组工艺制得的定子总成以及应用该定子总成的轴向磁场电机。
为解决上述技术问题,本发明提供一种定子绕组工艺,包括步骤:
单元体绕制,选取一定长度的单根扁形导线,将其绕制成可组成单相绕组的单元体,单元体的两自由端处均留有一定长度的接线头,绕制成型后的单元体包括若干对位层叠布置的单元层,各单元层在垂直于所述单元体轴线的截面上的投影重合,所述单元层包括沿其径向自外而内一一对应连接的外端导体、有效导体和内端导体,顺序相接的相邻两所述外端导体间弯折形成有外节点, 顺序相接的相邻两所述内端导体间弯折形成有内节点,绕制时,由扁形导线的一端线头处开始绕制,每经过外端导体或内端导体与有效导体间的连接处时,将扁形导线在同一平面内弯折一定角度,每经过一个内节点或外节点时,对扁形导线进行向上或向下弯折,相邻的所述外节点与所述内节点的弯折方向相反,直至绕制到扁形导线的绕线开始位置处,即可完成单层绕制而形成单元层,位于同一单元层内的各内节点均位于同一个圆上,且同一单元层内的各外节点均位于同一个圆上。完成一层单元层绕制后,在该单元层的最后一个节点处向下弯折,重复上述操作过程以进行下一层单元层的绕制,直至多个单元层连续绕制完毕后形成一个单元体,每个单元体层数与预设的线圈的匝数一致。且单个单元体由单根扁形导线连续弯制而成;
多单元制备,重复上述步骤单元体绕制的操作过程,以绕制成型多个单元体,直至单元体的数量满足绕组所需;
绕组装配,选取任一单元体为基准单元体,将另一单元体的外节点与基准单元体同轴布置,并使两单元体的外节点对位,然后保持基准单元体不动,同时沿逆时针方向旋转另一单元体,每旋转一圈,该单元体的各单元层即相对于基准单元体的各单元层向下螺旋前进一层,直至该单元体的最后一层与基准单元体的最后一层处于同一平面内,之后重复上述过程依次将其余单元体逐一顺序装配形成定子绕组,装配完成后,依据定子总成的预设装配需求将各单元体的接线头间的相对角度调整到位;
定子嵌装,将装配到位后的定子绕组嵌入定子总成的嵌槽中,并依据工况需求将各单元体进行串联或并联,以完成定子总成的整体组装。
优选地,在步骤单元体绕制中,设相邻两有效导体间跨过的定子齿数量为n,定子齿的总数为z,则相邻两所述有效导体间的夹角为360°×n/z,任一有效导体的两端弯折角为90°~150°。
优选地,在步骤多单元制备中,设单元体总数为N,定子齿的总数为z,定子绕组的相数为m,电机极对数为p,则N=z/(mp)。
本发明还提供一种定子总成,包括定子壳体和定子绕组,所述定子壳体的中部具有嵌槽,所述定子绕组嵌装于所述嵌槽内,该定子总成由上文任一项所述的定子绕组工艺制成。
本发明还提供一种轴向磁场电机,包括同轴布置的定子总成和转子,所述定子总成为如上一项所述的定子总成。
相对上述背景技术,本发明所提供的定子总成,其操作过程中,通过依次实施的单元体绕制、多单元制备、绕组装配以及定子嵌装等工艺步骤,使得依靠单根扁形导线即可实现单个单元体的绕制,整个单元体结构中仅靠弯折工艺即可完成定子绕组的绕制,无需焊接等附加工艺即可实现导体间的可靠布局和相对结构定型,大大降低了定子绕组工艺难度,简化了工艺步骤,提高了工艺操作效率,且绕组排列规整美观,使得绕制成型后的定子绕组能够被整体嵌入定子壳体相应的嵌槽中,从而进一步降低了定子总成的嵌线装配难度,实现高效自动化嵌线组装,同时降低了工艺成本和电机的整体制造成本。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一种具体实施方式所提供的定子绕组工艺的流程图;
图2为本发明一种具体实施方式所提供的定子总成的装配结构示意图;
图3为图2中定子绕组部分的结构示意图;
图4为图3中单元体部分的结构示意图;
图5为图2中定子壳体部分的结构示意图。
其中,11-单元体、111-接线头、112-单元层、113-外端导体、114-有效导体、115-内端导体、116-外节点、117-内节点、12-定子壳体、121-嵌槽。
具体实施方式
本发明的核心是提供一种定子总成,该定子绕组工艺能够有效降低相应的绕组和嵌线工艺难度,提高绕组嵌线操作效率并降低电机制造成本;同时,提供一种由上述定子绕组工艺制得的定子总成以及应用该定子总成的轴向磁场电机。
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。
请着重参考图1,并配合参考图2至图5,图1为本发明一种具体实施方式所提供的定子绕组工艺的流程图;图2为本发明一种具体实施方式所提供的定子总成的装配结构示意图;图3为图2中定子绕组部分的结构示意图;图4为图3中单元体部分的结构示意图;图5为图2中定子壳体部分的结构示意图。
在具体实施方式中,本发明所提供的铝合金铸件21成型工艺,采用了如上文所述的铝合金铸件21成型模具,包括:
步骤101,单元体绕制:
选取一定长度的单根扁形导线,将其绕制成可组成单相绕组的单元体11,单元体11的两自由端处均留有一定长度的接线头111,绕制成型后的单元体11包括若干对位层叠布置的单元层112,各单元层112在垂直于单元体11轴线的截面上的投影重合,单元层112包括沿其径向自外而内一一对应连接的外端导体113、有效导体114和内端导体115,顺序相接的相邻两外端导体113间弯折形成有外节点116,顺序相接的相邻两内端导体115间弯折形成有内节点117,绕制时,由扁形导线的一端线头处开始绕制,每经过外端导体113或内端导体115与有效导体114间的连接处时,将扁形导线在同一平面内弯折一定角度,每经过一个内节点117或外节点116时,对扁形导线进行向上或向下弯折,相邻的外节点116与内节点117的弯折方向相反,直至绕制到扁形导线的绕线开始位置处,即可完成单层绕制而形成单元层112,位于同一单元层112内的各内节点117均位于同一个圆上,且同一单元层112内的各外节点116均位于同一个圆上。完成一层单元层112绕制后,在该单元层112的最后一个节点处向下弯折,重复上述操作过程以进行下一层单元层112的绕制,直至多个单元层112连续绕制完毕后形成一个单元体11,每个单元体11层数与预设的线圈的匝数一致。且单个单元体11由单根扁形导线连续弯制而成。
需要说明的是,一般工况下,为了导电效率,上述扁形导线优选为扁铜线,且导线绕组形式为波绕组结构,从而能够使单个线圈可以跨过多个定子齿,从而有效降低电机磁场中的谐波,保证电机性能。
进一步地,在上述步骤102单元体绕制中,设相邻两有效导体114间跨过的定子齿数量为n,定子齿的总数为z,则相邻两有效导体114间的夹角为360°×n/z,任一有效导体114的两端弯折角为90°~150°。上述尺寸规格关系能 够使得定子绕组的结构更加规整,从而进一步降低嵌线难度,提高定子绕组与定子壳体12间的装配效率,保证定子总成的整体装配效果和电机整体性能。
步骤102,多单元制备:
重复上述步骤单元体11绕制的操作过程,以绕制成型多个单元体11,直至单元体11的数量满足绕组所需。
更具体地,在上述步骤102多单元制备中,设单元体11总数为N,定子齿的总数为z,定子绕组的相数为m,电机极对数为p,则N=z/(mp)。应当指出,上文提及的电机的极对数p,其数值即为电机的总极数的二分之一。
步骤103,绕组装配:
选取任一单元体11为基准单元体11,将另一单元体11的外节点116与基准单元体11同轴布置,并使两单元体11的外节点116对位,然后保持基准单元体11不动,同时沿逆时针方向旋转另一单元体11,每旋转一圈,该单元体11的各单元层112即相对于基准单元体11的各单元层112向下螺旋前进一层,直至该单元体11的最后一层与基准单元体11的最后一层处于同一平面内,之后重复上述过程依次将其余单元体11逐一顺序装配形成定子绕组,装配完成后,依据定子总成的预设装配需求将各单元体11的接线头111间的相对角度调整到位。
步骤104,定子嵌装:
将装配到位后的定子绕组嵌入定子壳体12的嵌槽121中,并依据工况需求将各单元体11进行串联或并联,以完成定子总成的整体组装。
在具体实施方式中,本发明所提供的定子总成,包括定子壳体12和定子绕组,所述定子壳体12上具有嵌槽121,所述定子绕组对位嵌装于所述嵌槽121内,该定子总成由上文所述的定子绕组工艺制成。该定子总成的结构规整可靠,装配过程简便易行,绕组及嵌线操作效率较高,且其绕组结构完全依靠弯折实现线缆变向和布置,导线结构中无焊点,工艺成本较低。
在具体实施方式中,本发明所提供的轴向磁场电机,包括同轴布置的定子总成和转子,所述定子总成为如上文所述的定子总成。该轴向磁场电机的性能较好,且其制造成本较低。
综上可知,本发明中提供的定子绕组工艺,其操作过程中,通过依次实施 的单元体绕制、多单元制备、绕组装配以及定子嵌装等工艺步骤,使得依靠单根扁形导线即可实现单个单元体的绕制,整个单元体结构中仅靠弯折工艺即可完成定子绕组的绕制,无需焊接等附加工艺即可实现导体间的可靠布局和相对结构定型,大大降低了定子绕组工艺难度,简化了工艺步骤,提高了工艺操作效率,且绕组排列规整美观,使得绕制成型后的定子绕组能够被整体嵌入定子壳体相应的嵌槽中,从而进一步降低了定子总成的嵌线装配难度,实现高效自动化嵌线组装,同时降低了工艺成本和电机的整体制造成本。
此外,本发明所提供的由上述定子绕组工艺制成的定子总成,其结构规整可靠,装配过程简便易行,绕组及嵌线操作效率较高,且其绕组结构完全依靠弯折实现线缆变向和布置,导线结构中无焊点,工艺成本较低。
另外,本发明所提供的应用上述定子总成的轴向磁场电机,其性能较好,且其制造成本较低。
以上对本发明所提供的定子绕组工艺、由该定子绕组工艺制得的定子总成以及应用该定子总成的轴向磁场电机进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (5)

  1. 一种定子绕组工艺,其特征在于,包括步骤:
    单元体绕制,选取一定长度的单根扁形导线,将其绕制成可组成单相绕组的单元体,单元体的两自由端处均留有一定长度的接线头,绕制成型后的单元体包括若干对位层叠布置的单元层,各单元层在垂直于所述单元体轴线的截面上的投影重合,所述单元层包括沿其径向自外而内一一对应连接的外端导体、有效导体和内端导体,顺序相接的相邻两所述外端导体间弯折形成有外节点,顺序相接的相邻两所述内端导体间弯折形成有内节点,绕制时,由扁形导线的一端线头处开始绕制,每经过外端导体或内端导体与有效导体间的连接处时,将扁形导线在同一平面内弯折一定角度,每经过一个内节点或外节点时,对扁形导线进行向上或向下弯折,相邻的所述外节点与所述内节点的弯折方向相反,直至绕制到扁形导线的绕线开始位置处,即可完成单层绕制而形成单元层,位于同一单元层内的各内节点均位于同一个圆上,且同一单元层内的各外节点均位于同一个圆上,完成一层单元层绕制后,在该单元层的最后一个节点处向下弯折,重复上述操作过程以进行下一层单元层的绕制,直至多个单元层连续绕制完毕后形成一个单元体,每个单元体层数与预设的线圈的匝数一致,且单个单元体由单根扁形导线连续弯制而成;
    多单元制备,重复上述步骤单元体绕制的操作过程,以绕制成型多个单元体,直至单元体的数量满足绕组所需;
    绕组装配,选取任一单元体为基准单元体,将另一单元体的外节点与基准单元体同轴布置,并使两单元体的外节点对位,然后保持基准单元体不动,同时沿逆时针方向旋转另一单元体,每旋转一圈,该单元体的各单元层即相对于基准单元体的各单元层向下螺旋前进一层,直至该单元体的最后一层与基准单元体的最后一层处于同一平面内,之后重复上述过程依次将其余单元体逐一顺序装配形成定子绕组,装配完成后,依据定子总成的预设装配需求将各单元体的接线头间的相对角度调整到位;
    定子嵌装,将装配到位后的定子绕组嵌入定子总成的嵌槽中,并依据工况需求将各单元体进行串联或并联,以完成定子总成的整体组装。
  2. 如权利要求1所述的定子绕组工艺,其特征在于:在步骤单元体绕制中,设相邻两有效导体间跨过的定子齿数量为n,定子齿的总数为z,则相邻两所述有效导体间的夹角为360°×n/z,任一有效导体的两端弯折角为90°~150°。
  3. 如权利要求1所述的定子绕组工艺,其特征在于:在步骤多单元制备中,设单元体总数为N,定子齿的总数为z,定子绕组的相数为m,电机极对数为p,则N=z/(mp)。
  4. 一种定子总成,包括定子壳体和定子绕组,所述定子壳体上具有嵌槽,所述定子绕组嵌装于所述嵌槽内,其特征在于:该定子总成由权利要求1至3中任一项所述的定子绕组工艺制成。
  5. 一种轴向磁场电机,包括同轴布置的定子总成和转子,其特征在于:所述定子总成为如权利要求4所述的定子总成。
PCT/CN2020/108563 2020-01-14 2020-08-12 轴向磁场电机、定子总成及定子绕组工艺 WO2021143121A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/791,458 US20230051080A1 (en) 2020-01-14 2020-08-12 Axial magnetic field electric motor, stator assembly, and stator winding process
EP20914429.4A EP4092876A4 (en) 2020-01-14 2020-08-12 ELECTRIC MOTOR WITH AXIAL MAGNETIC FIELD, STATOR ARRANGEMENT AND STATOR WINDING METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010037881.XA CN113193717B (zh) 2020-01-14 2020-01-14 轴向磁场电机、定子总成及定子绕组工艺
CN202010037881.X 2020-01-14

Publications (1)

Publication Number Publication Date
WO2021143121A1 true WO2021143121A1 (zh) 2021-07-22

Family

ID=76863521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108563 WO2021143121A1 (zh) 2020-01-14 2020-08-12 轴向磁场电机、定子总成及定子绕组工艺

Country Status (4)

Country Link
US (1) US20230051080A1 (zh)
EP (1) EP4092876A4 (zh)
CN (1) CN113193717B (zh)
WO (1) WO2021143121A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573632B2 (en) * 2001-07-06 2003-06-03 Chun-Pu Hsu Structure of a stator forming an annularly closed stable structure
CN104184227A (zh) * 2014-06-26 2014-12-03 赵晓东 同心分割式定子及定子绕组集中装配法
CN104319971A (zh) * 2014-10-22 2015-01-28 华中科技大学 一种带有阻尼线圈的交流永磁同步伺服电机
CN104682585A (zh) * 2015-04-04 2015-06-03 大连碧蓝节能环保科技有限公司 组装式变极定子铁芯及绕组
CN109672277A (zh) * 2019-02-26 2019-04-23 苏州新智机电工业有限公司 一种电动压缩机电机定子及其制造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768239B1 (en) * 2003-06-23 2004-07-27 Magnetic Power-Motion, Llc Electromotive devices using notched ribbon windings
US8823238B2 (en) * 2007-04-03 2014-09-02 Hybridauto Pty Ltd Winding arrangement for an electrical machine
CN103354406B (zh) * 2009-06-19 2015-09-02 建准电机工业股份有限公司 马达定子的制造方法
JP2011205835A (ja) * 2010-03-26 2011-10-13 Aisin Aw Co Ltd ステータの製造方法及びステータ製造用の変形ガイド治具
US10574110B2 (en) * 2010-04-28 2020-02-25 Launchpoint Technologies, Inc. Lightweight and efficient electrical machine and method of manufacture
US9712010B2 (en) * 2010-10-14 2017-07-18 Toyota Jidosha Kabushiki Kaisha Motor having a cage wave stator winding
SI23711B (sl) * 2011-04-05 2020-12-31 Elaphe Pogonske Tehnologije D.O.O. Kompaktno polifazno valovito navitje električnega stroja z velikim specifičnim navorom
CN203326758U (zh) * 2013-07-09 2013-12-04 上海马拉松·革新电气有限公司 一种大功率低压定子绕组结构
CN104333185B (zh) * 2014-11-17 2017-01-11 上海马拉松·革新电气有限公司 一种大功率低压定子绕组的连续成型装置及方法
CN208046339U (zh) * 2017-09-28 2018-11-02 浙江顺动科技有限公司 一种新型印刷绕组的永磁无刷直流电机
CN207766054U (zh) * 2017-12-29 2018-08-24 北京动力源科技股份有限公司 一种扁铜线绕组排布结构和定子、转子、电机
CN107979258A (zh) * 2018-01-12 2018-05-01 中国计量大学 一种永磁无刷直流电机闭口槽定子及其嵌线方法
CN208445376U (zh) * 2018-07-23 2019-01-29 上海适达动力科技股份有限公司 轴向磁场电机及其定子绕组结构
CN109038879A (zh) * 2018-08-08 2018-12-18 天津大西槐精密机械有限公司 一种电机定子及电机
CN109167452B (zh) * 2018-10-22 2020-09-15 浙江盘毂动力科技有限公司 一种轴向磁场电机定子组件及装配方法
CN109904963A (zh) * 2019-05-05 2019-06-18 合肥巨一动力系统有限公司 一种扁线电机定子
CN110611387A (zh) * 2019-11-07 2019-12-24 重庆宗申电动力科技有限公司 一种相绕组、定子及电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6573632B2 (en) * 2001-07-06 2003-06-03 Chun-Pu Hsu Structure of a stator forming an annularly closed stable structure
CN104184227A (zh) * 2014-06-26 2014-12-03 赵晓东 同心分割式定子及定子绕组集中装配法
CN104319971A (zh) * 2014-10-22 2015-01-28 华中科技大学 一种带有阻尼线圈的交流永磁同步伺服电机
CN104682585A (zh) * 2015-04-04 2015-06-03 大连碧蓝节能环保科技有限公司 组装式变极定子铁芯及绕组
CN109672277A (zh) * 2019-02-26 2019-04-23 苏州新智机电工业有限公司 一种电动压缩机电机定子及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4092876A4

Also Published As

Publication number Publication date
EP4092876A1 (en) 2022-11-23
CN113193717B (zh) 2022-04-29
CN113193717A (zh) 2021-07-30
EP4092876A4 (en) 2024-02-07
US20230051080A1 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
CN104584391B (zh) 旋转电机及其制造方法
JP5840295B2 (ja) 回転電機
US6894418B2 (en) Nested stator coils for permanent magnet machines
US7977840B2 (en) Stator winding for a slotless motor
US10236738B2 (en) Rotary electric machine
JP5028234B2 (ja) 回転電機、及び固定子の製造方法
WO2015079732A1 (ja) 電気機械の電機子
JP5924710B2 (ja) 回転電機
WO2012039201A1 (ja) 巻線構造、回転電機、及び、回転電機の製造方法
WO2014109015A1 (ja) 回転電機および回転電機に用いられる電機子の製造方法
CN105981266B (zh) 旋转电机以及旋转电机的线圈的制造方法
US7521834B2 (en) Poly-phase electromagnetic device having an improved conductor winding arrangement
WO2022156815A1 (zh) 插针绕组式定子及电机
WO2021143121A1 (zh) 轴向磁场电机、定子总成及定子绕组工艺
JP5298556B2 (ja) ステータコイルの製造方法
CN112821599A (zh) 一种定子组件和电机
CN108288885B (zh) 用于电机的电压平衡绕组模式及组装这种绕组的方法
CN215956131U (zh) 一种扁线电机定子及电机
CN209046394U (zh) 一种多极空心杯电机线圈结构
WO2000049702A9 (en) A film coil and manufacturing method for motors and generators
JPH09271157A (ja) カップ形多重無鉄心電機子コイルの製造方法
CN215772715U (zh) 一种采用12线圈的自承式绕组
US20230208229A1 (en) Motor, flat-wire motor winding, coil winding assembly, and winding method
CN115995900B (zh) 电驱动永磁电机的单匝连接式绕组及定子
JP2012205334A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020914429

Country of ref document: EP

Effective date: 20220816