WO2021142894A1 - 一种液晶显示面板及显示装置 - Google Patents

一种液晶显示面板及显示装置 Download PDF

Info

Publication number
WO2021142894A1
WO2021142894A1 PCT/CN2020/077383 CN2020077383W WO2021142894A1 WO 2021142894 A1 WO2021142894 A1 WO 2021142894A1 CN 2020077383 W CN2020077383 W CN 2020077383W WO 2021142894 A1 WO2021142894 A1 WO 2021142894A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
substrate
crystal molecules
under
Prior art date
Application number
PCT/CN2020/077383
Other languages
English (en)
French (fr)
Inventor
陈兴武
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Publication of WO2021142894A1 publication Critical patent/WO2021142894A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B29/00Combinations of cameras, projectors or photographic printing apparatus with non-photographic non-optical apparatus, e.g. clocks or weapons; Cameras having the shape of other objects

Definitions

  • This application relates to the field of display technology, and in particular to a liquid crystal display panel and a display device.
  • liquid crystal display has become the most extensive display technology at present, and people's requirements for display technology are getting higher and higher, and full-screen display is slowly entering people's field of vision.
  • the full-screen display gradually developed from the original Qi Liu Haiping to the screen digging, and then to directly set the camera below the screen.
  • adding cameras has become a trend.
  • smart screens currently popular on the market need to increase video interaction or capture human movements.
  • the optics When the camera is set under the screen, the optics will pass through multiple layers, and the difference in refractive index between the layers due to uneven film thickness will cause the optics to be absorbed or refracted. Make the captured picture produce chromatic aberration or distortion.
  • the most influential is the liquid crystal layer.
  • the uneven thickness of the liquid crystal layer caused by the uneven film layer in the camera area under the screen leads to the difference in the optical path difference and the color difference.
  • the present application provides a liquid crystal display panel and a display device to alleviate the technical problem of large optical path difference in the under-screen camera area of the existing liquid crystal display panel.
  • An embodiment of the present application provides a liquid crystal display panel, which includes a display area and an under-screen camera area.
  • the under-screen camera area includes a first substrate, a first electrode, a second substrate, a second electrode, and a liquid crystal layer.
  • the first electrode is disposed on the first substrate.
  • the second substrate is arranged opposite to the first substrate.
  • the second electrode is arranged under the second substrate.
  • the liquid crystal layer includes a plurality of liquid crystal molecules and is disposed between the first substrate and the second substrate.
  • the long axis direction of the plurality of liquid crystal molecules when no voltage is applied between the first electrode and the second electrode, the long axis direction of the plurality of liquid crystal molecules is parallel to the first substrate and the second substrate, and the When a first voltage is applied between the electrode and the second electrode, the long axis direction of the plurality of liquid crystal molecules faces the first substrate or the second substrate.
  • the under-screen camera area further includes a first alignment layer and a second alignment layer, the first alignment layer is disposed on the first electrode, and the second alignment layer The layer is disposed under the second electrode, and the first alignment layer and the second alignment layer are both horizontally aligned.
  • the plurality of liquid crystal molecules are positive liquid crystal molecules.
  • the angle between the alignment direction of the plurality of liquid crystal molecules and the electrode slit of the first electrode is 0 degrees to 10 degrees.
  • the liquid crystal layer further includes a polymerized monomer, and the polymerized monomer is distributed on the first alignment layer and under the second alignment layer, and the polymerized monomer It is used to keep the long axis direction of the plurality of liquid crystal molecules always facing the first substrate or the second substrate.
  • the polymerized monomer includes acrylate and its derivatives, methacrylate and its derivatives, styrene and its derivatives, epoxy resin and aliphatic amine epoxy resin.
  • One or several combinations of curing agents include acrylate and its derivatives, methacrylate and its derivatives, styrene and its derivatives, epoxy resin and aliphatic amine epoxy resin.
  • the plurality of liquid crystal molecules are dual-frequency liquid crystal molecules.
  • the first voltage is a low-frequency voltage.
  • the angle between the alignment direction of the plurality of liquid crystal molecules and the electrode slit of the first electrode is 80 degrees to 90 degrees.
  • the material of the first electrode and the second electrode is indium tin oxide.
  • An embodiment of the present application also provides a display device, which includes a liquid crystal display panel, a backlight module, an upper polarizer, and a lower polarizer, wherein the liquid crystal display panel includes a display area and an under-screen camera area, the under-screen camera area It includes a first substrate, a first electrode, a second substrate, a second electrode, and a liquid crystal layer.
  • the first electrode is disposed on the first substrate.
  • the second substrate is arranged opposite to the first substrate.
  • the second electrode is arranged under the second substrate.
  • the liquid crystal layer includes a plurality of liquid crystal molecules and is disposed between the first substrate and the second substrate.
  • the long axis direction of the plurality of liquid crystal molecules when no voltage is applied between the first electrode and the second electrode, the long axis direction of the plurality of liquid crystal molecules is parallel to the first substrate and the second substrate, and the When a first voltage is applied between the electrode and the second electrode, the long axis direction of the plurality of liquid crystal molecules faces the first substrate or the second substrate; the lower polarizer is disposed on the liquid crystal display panel And the backlight module and attached under the liquid crystal display panel, the upper polarizer is arranged on the liquid crystal display panel, and the upper polarizer and the lower polarizer are not arranged in the corresponding The camera area under the screen.
  • the under-screen camera area further includes a first alignment layer and a second alignment layer, the first alignment layer is disposed on the first electrode, and the second alignment layer It is arranged under the second electrode, and the first alignment layer and the second alignment layer are both horizontally aligned.
  • the plurality of liquid crystal molecules are positive liquid crystal molecules.
  • the angle between the alignment direction of the plurality of liquid crystal molecules and the electrode slit of the first electrode is 0 degrees to 10 degrees.
  • the liquid crystal layer further includes a polymerized monomer, and the polymerized monomer is distributed on the first alignment layer and under the second alignment layer, and the polymerized monomer is used for The long axis direction of the plurality of liquid crystal molecules is always kept facing the first substrate or the second substrate.
  • the polymerized monomer includes acrylate and its derivatives, methacrylate and its derivatives, styrene and its derivatives, epoxy resin and aliphatic amine epoxy curing One or a combination of several agents.
  • the plurality of liquid crystal molecules are dual-frequency liquid crystal molecules.
  • the first voltage is a low-frequency voltage.
  • the angle between the alignment direction of the plurality of liquid crystal molecules and the electrode slit of the first electrode is 80 degrees to 90 degrees.
  • the material of the first electrode and the second electrode is indium tin oxide.
  • the under-screen camera area is designed with liquid crystal materials and electrodes, and the combination of liquid crystal materials and electrodes is used to make the under-screen camera work on the screen.
  • the long axis direction of the liquid crystal molecules in the lower camera area is perpendicular to the first substrate or the second substrate, thereby minimizing the difference in the optical path difference of the liquid crystal layer in the camera area under the screen, thereby improving the light transmission of the camera due to the uneven thickness of the liquid crystal layer
  • the problem of different rates has improved the quality of the pictures taken.
  • FIG. 1 is a schematic diagram of a side view structure of the under-screen camera area of a first liquid crystal display panel provided by an embodiment of the application.
  • FIG. 2 is a schematic side view of the structure of the display area of the first liquid crystal display panel provided by an embodiment of the application.
  • FIG. 3 is a first schematic diagram of the alignment direction of liquid crystal molecules and the angle between electrodes according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of a side view structure of a display area of a second liquid crystal display panel provided by an embodiment of the application.
  • FIG. 5 is a schematic side view of the structure of a third liquid crystal display panel provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of a side view structure of a fourth liquid crystal display panel provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the frequency dependence of the dielectric constant of the dual-frequency liquid crystal provided by an embodiment of the application.
  • FIG. 8 is a second schematic diagram of the alignment direction of liquid crystal molecules and the angle between electrodes according to an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a side view of a display device provided by an embodiment of the application.
  • a liquid crystal display panel 100 which includes a display area AA and an under-screen camera area CUP.
  • the under-screen camera area CUP includes a first substrate 10 and a first electrode 31. , The second substrate 20, the second electrode 32, and the liquid crystal layer.
  • the first electrode 31 is disposed on the first substrate 10.
  • the second substrate 20 is arranged opposite to the first substrate 10.
  • the second electrode 32 is disposed under the second substrate 20.
  • the liquid crystal layer includes a plurality of liquid crystal molecules 51 disposed between the first substrate 10 and the second substrate 20.
  • the long axis direction of the plurality of liquid crystal molecules 51 is parallel to the first substrate 10 and the second substrate 20 ( That is, the liquid crystal molecules are arranged horizontally)
  • the long axis direction of the plurality of liquid crystal molecules 51 faces the first substrate 10 or the The second substrate 20 (that is, the liquid crystal molecules are arranged vertically).
  • the under-screen camera area CUP further includes a first alignment layer 41 and a second alignment layer 42, the first alignment layer 41 is disposed on the first electrode 31, and the second alignment layer 42 is disposed on Below the second electrode 32, and the first alignment layer 41 and the second alignment layer 42 are both horizontally aligned.
  • the display area AA of the liquid crystal display panel 100 includes a first substrate 10, a second substrate 20 disposed opposite to the first substrate 10, and a third electrode 33 disposed on the first substrate 10.
  • the upper and lower substrates (the first substrate 10 and the second substrate 20) of the liquid crystal display panel except for the electrodes (the first electrode 31, the second electrode 32, the third electrode 33, the fourth electrode 34) and the alignment layer
  • the electrodes the first electrode 31, the second electrode 32, the third electrode 33, the fourth electrode 34
  • the alignment layer there may be other film layers such as an insulating layer and an organic layer, which are not shown in the drawings in this application.
  • the first electrode is a pixel electrode
  • the second electrode is a common electrode
  • one of the third electrode and the fourth electrode is a pixel electrode
  • the other is a common electrode.
  • the plurality of liquid crystal molecules 51 in the under-screen camera area CUP and the display area AA of the liquid crystal display panel 100 are all positive liquid crystal molecules.
  • the first alignment layer 41 and the second alignment layer 42 are both horizontally aligned.
  • the liquid crystal molecules Horizontal arrangement horizontal arrangement means that the short axis direction of the liquid crystal molecules faces the first substrate 10 or the second substrate 20.
  • the alignment direction of the liquid crystal molecules and the electrode slit are at a certain angle ⁇ .
  • the electrode is illustrated by taking the first electrode 31 as an example, and the angle ⁇ may be 0 degrees to 10 degrees.
  • the first voltage is applied to the first electrode 31 and the second electrode 32 to make the under-screen camera area CUP
  • the plurality of liquid crystal molecules 51 are arranged vertically.
  • a second voltage is applied to the third electrode 33 and the fourth electrode 34 to control the deflection of the plurality of liquid crystal molecules 51 in the display area AA to achieve the purpose of display.
  • the material of the first electrode 31, the second electrode 32, the third electrode 33, and the fourth electrode 34 may be transparent electrode materials such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the first substrate 10 is an array substrate
  • the second substrate 20 is a color filter substrate.
  • different electrodes are provided in the camera area CUP and the display area AA under the screen, and the multiple liquid crystal molecules 51 in the camera area CUP and the display area AA under the screen are separately controlled.
  • One liquid crystal molecule 51 is deflected by the first voltage
  • the plurality of liquid crystal molecules 51 in the display area AA is deflected by the second voltage.
  • the first voltage is applied to the electrodes of the under-screen camera area CUP to make
  • the multiple liquid crystal molecules 51 in the CUP of the camera area under the screen are arranged vertically to reduce the effective optical path difference. Even if the thickness of the liquid crystal layer caused by the uneven film thickness of the liquid crystal cell in different areas is different, there will be no uneven display in each area. The problem.
  • the liquid crystal display panel 101 shown in FIG. 4 is different from the above embodiment in that the third electrode 33' and the fourth electrode 34' of the display area AA' are arranged in different layers, which can be applied to the edge In the Fringe Field Switching (FFS) liquid crystal display, an insulating layer 60 is provided between the third electrode 33' and the fourth electrode 34' in FIG. 4.
  • the third electrode 33 and the fourth electrode 34 are arranged in the same layer, which can be applied to an in-plane switching (IPS) liquid crystal display.
  • IPS in-plane switching
  • the liquid crystal display panel 102 shown in FIG. 5 is divided into an under-screen camera area CUP' and a display area AA".
  • the liquid crystal display panel 102 includes a first substrate 10, which is disposed opposite to the first substrate 10.
  • the under-screen camera area CUP' further includes a first electrode 31 disposed on the first substrate 10 and a second electrode 32 disposed on the second substrate 20, and the first alignment layer 41 is disposed on the first electrode 31 , The second alignment layer 42 is disposed on the second electrode 32.
  • the display area AA" also includes a third electrode 33 and a fourth electrode 34 arranged on the first substrate 10.
  • the third electrode 33 and the fourth electrode 34 are arranged in the same layer, and the first alignment layer 41 is arranged on the third electrode.
  • the electrode 33 or the fourth electrode 34 is on.
  • the plurality of liquid crystal molecules 51 in the under-screen camera area CUP' and the display area AA" of the liquid crystal display panel 102 are all positive liquid crystal molecules.
  • the polymerized monomer 52 includes one or more of acrylate and its derivatives, methacrylate and its derivatives, styrene and its derivatives, epoxy resin and aliphatic amine epoxy curing agent. kind of combination.
  • the first alignment layer 41 and the second alignment layer 42 are both horizontally aligned, and a plurality of liquid crystal molecules 51 of the liquid crystal layer are aligned by an alignment process such as rubbing alignment or photo alignment, so that the alignment direction of the liquid crystal molecules is aligned with the electrode slits.
  • an alignment process such as rubbing alignment or photo alignment, so that the alignment direction of the liquid crystal molecules is aligned with the electrode slits.
  • the multiple liquid crystal molecules 51 of the liquid crystal layer are aligned, when the first voltage is applied to the first electrode 31 and the second electrode 32 of the under-screen camera area CUP', the multiple liquid crystal molecules 51 of the under-screen camera area CUP' rotate
  • the liquid crystal display panel 102 is arranged vertically, and ultraviolet light is used to illuminate the liquid crystal display panel 102 at the same time.
  • the ultraviolet light polymerization makes the multiple liquid crystal molecules 51 of the CUP' in the camera area under the screen be fixed, so that the multiple liquid crystal molecules 51
  • the long axis direction of the LCD always keeps facing the first substrate 10 or the second substrate 20, that is, the multiple liquid crystal molecules 51 in the display area AA" maintain a horizontal alignment, and the multiple liquid crystal molecules 51 in the under-screen camera area CUP' maintain a vertical alignment.
  • the multiple liquid crystal molecules 51 in the camera area CUP' under the screen are directly aligned to always maintain a vertical arrangement.
  • the lower camera area CUP' works, there is no need to apply the first voltage, which simplifies the drive design while reducing the effective optical path difference.
  • the liquid crystal display panel 103 shown in FIG. 6 is divided into an under-screen camera area CUP" and a display area AA'".
  • the liquid crystal display panel 103 includes a first substrate 10 opposite to the first substrate 10.
  • a second substrate 20 is provided, a liquid crystal layer provided between the first substrate 10 and the second substrate 20, a first alignment layer 41 provided on the first substrate 10, and a second alignment layer 41 provided under the second substrate 20 Layer 42, wherein the liquid crystal layer includes a plurality of liquid crystal molecules 51'.
  • the under-screen camera area CUP" also includes a first electrode 31 disposed on the first substrate 10 and a second electrode 32 disposed on the second substrate 20, and the first alignment layer 41 is disposed on the first electrode 31 , The second alignment layer 42 is disposed on the second electrode 32.
  • the display area AA'" also includes a third electrode 33 and a fourth electrode 34 disposed on the first substrate 10.
  • the third electrode 33 and the fourth electrode 34 are disposed in the same layer, and the first alignment layer 41 is disposed on the first substrate 10.
  • the third electrode 33 or the fourth electrode 34 On the third electrode 33 or the fourth electrode 34.
  • the plurality of liquid crystal molecules 51' in the under-screen camera area CUP" and the display area AA'" of the liquid crystal display panel 103 are all dual-frequency liquid crystal molecules.
  • dual-frequency liquid crystal molecules are composed of a combination of positive liquid crystals and negative liquid crystals.
  • the dielectric constant of dual-frequency liquid crystals is frequency-dependent. As shown in Figure 7, the liquid crystal is a positive liquid crystal when driven at low frequencies. When ⁇ is greater than 0, the liquid crystal is a negative liquid crystal when driven at high frequency, and the dielectric constant is less than 0.
  • the molecular structural formula of the positive liquid crystal in the dual-frequency liquid crystal can be:
  • the dual-frequency liquid crystal molecules may specifically be at least one of the following structural formulas:
  • the first alignment layer 41 and the second alignment layer 42 are both horizontally aligned, and a plurality of dual-frequency liquid crystal molecules of the liquid crystal layer are aligned by an alignment process such as rubbing alignment or photo-alignment, so that the alignment direction of the dual-frequency liquid crystal molecules is aligned with
  • the electrode slits have an included angle ⁇ ′ of 80 degrees to 90 degrees. As shown in FIG. 8, the included angle between the first electrode 31 and the plurality of liquid crystal molecules 51 ′ is taken as an example for illustration.
  • the third electrode 33 and the fourth electrode 34 of the display area AA'” are driven by high-frequency voltage.
  • the dual-frequency liquid crystal in the display area AA'” The molecule is a negative liquid crystal, and the negative liquid crystal is deflected by the electric field to achieve the display purpose.
  • the under-screen camera area CUP needs to work, the first electrode 31 and the second electrode 32 are driven by low-frequency voltage, and the under-screen camera
  • the dual-frequency liquid crystal molecules in the area CUP” are positive liquid crystals, and under the influence of the electric field, the positive liquid crystals are deflected and arranged vertically.
  • a display device 1000 is provided, as shown in FIG. 9, which includes the liquid crystal display panel 103, the backlight module 200, the upper polarizer 300, and the lower polarizer 400 provided in one of the foregoing embodiments.
  • the lower polarizer 400 is disposed between the liquid crystal display panel 103 and the backlight module 200 and is attached under the liquid crystal display panel 103, and the upper polarizer 300 is disposed on the liquid crystal display panel 103
  • the upper, and the upper polarizer 300 and the lower polarizer 400 are not arranged in the corresponding under-screen camera area CUP".
  • the present application provides a liquid crystal display panel and a display device.
  • the under-screen camera area of the liquid crystal display panel includes upper and lower substrates, electrode layers and alignment layers arranged on the upper and lower substrates, and a plurality of liquid crystal molecules arranged between the upper and lower substrates.
  • the long axis directions of the plurality of liquid crystal molecules are parallel to the upper substrate and the lower substrate, and when the first voltage is applied to the electrode layer, the multiple The long axis direction of each liquid crystal molecule faces the upper substrate or the lower substrate.
  • the under-screen camera area is designed with liquid crystal materials and electrodes, and the combination of liquid crystal materials and electrodes enables the under-screen camera to arrange the liquid crystal molecules in the under-screen camera area vertically when the under-screen camera is working, thereby making the light path of the liquid crystal layer in the under-screen camera area The difference is minimized, so that the problem of the different transmittance of light caused by the uneven thickness of the liquid crystal layer of the camera is improved, and the quality of the captured pictures is improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板(100,101,102,103)及显示装置(1000)。在液晶显示面板(100,101,102,103)的屏下摄像头区(CUP,CUP')的电极层之间未施加电压时,多个液晶分子(51,51')的长轴方向与第一基板(10)及第二基板(11)平行,在电极层之间施加第一电压时,多个液晶分子(51,51')的长轴方向垂直于第一基板(10)或第二基板(11)。屏下摄像头区(CUP,CUP')通过特殊电极设计,使屏下摄像头区(CUP,CUP')的多个液晶分子(51,51')垂直站立,减小有效光程差。

Description

一种液晶显示面板及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种液晶显示面板及显示装置。
背景技术
随着显示技术的快速发展,液晶显示已经成为了目前最广泛的显示技术,人们对显示技术的要求也越来越高,全屏显示慢慢进入人们的视野。全屏显示由最初的齐刘海屏逐渐发展为屏幕挖孔,再到直接把摄像头设置到屏幕下方。即使是电视面板,增加摄像头也成为一种趋势,如目前市面流行的智慧屏,需要增加视频互动或者捕捉人体动作的功能。把摄像头设置到屏幕下方,光学会通过多膜层,而各个膜层之间由于膜厚不均等导致的折射率差异,使光学会被吸收或者折射。使拍摄到的图片产生色差或者扭曲。其中影响最大的就是液晶层,由于屏下摄像头区膜层不均导致液晶层厚度不均,从而导致光程差差异而引起颜色差异。
因此,现有液晶显示面板的屏下摄像头区存在较大光程差的问题需要解决。
技术问题
本申请提供一种液晶显示面板及显示装置,以缓解现有液晶显示面板的屏下摄像头区存在较大光程差的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种液晶显示面板,其包括显示区和屏下摄像头区,所述屏下摄像头区包括第一基板、第一电极、第二基板、第二电极、液晶层。所述第一电极,设置于所述第一基板上。所述第二基板,与所述第一基板相对设置。所述第二电极,设置于所述第二基板下。所述液晶层,包括多个液晶分子,设 置于所述第一基板和所述第二基板之间。其中,在所述第一电极和所述第二电极之间未施加电压时,所述多个液晶分子的长轴方向与所述第一基板及所述第二基板平行,在所述第一电极和所述第二电极之间施加第一电压时,所述多个液晶分子的长轴方向朝向所述第一基板或所述第二基板。
在本申请实施例提供的液晶显示面板中,所述屏下摄像头区还包括第一配向层和第二配向层,所述第一配向层设置于所述第一电极上,所述第二配向层设置于所述第二电极下,且所述第一配向层和所述第二配向层均为水平配向。
在本申请实施例提供的液晶显示面板中,所述多个液晶分子为正性液晶分子。
在本申请实施例提供的液晶显示面板中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为0度至10度。
在本申请实施例提供的液晶显示面板中,所述液晶层还包括聚合单体,所述聚合单体分布在所述第一配向层上和所述第二配向层下,所述聚合单体用于使所述多个液晶分子的长轴方向始终保持朝向所述第一基板或所述第二基板。
在本申请实施例提供的液晶显示面板中,所述聚合单体包括丙烯酸酯及其衍生物、甲基丙烯酸酯及其衍生物、苯乙烯及其衍生物、环氧树脂与脂肪胺类环氧固化剂中的一种或几种组合。
在本申请实施例提供的液晶显示面板中,所述多个液晶分子为双频液晶分子。
在本申请实施例提供的液晶显示面板中,所述第一电压为低频电压。
在本申请实施例提供的液晶显示面板中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为80度至90度。
在本申请实施例提供的液晶显示面板中,所述第一电极和所述第二电极的材料为氧化铟锡。
本申请实施例还提供一种显示装置,其包括液晶显示面板、背光模组、上偏光片以及下偏光片,其中所述液晶显示面板包括显示区和屏下摄像头区,所述屏下摄像头区包括第一基板、第一电极、第二基板、第二电极、液晶层。所述第一电极,设置于所述第一基板上。所述第二基板,与所述第一基板相对设置。所述第二电极,设置于所述第二基板下。所述液晶层,包括多个液晶分子,设置于所述第一基板和所述第二基板之间。其中,在所述第一电极和所述第二电极之间未施加电压时,所述多个液晶分子的长轴方向与所述第一基板及所述第二基板平行,在所述第一电极和所述第二电极之间施加第一电压时,所述多个液晶分子的长轴方向朝向所述第一基板或所述第二基板;所述下偏光片设置于所述液晶显示面板和所述背光模组之间且贴附在所述液晶显示面板下,所述上偏光片设置于所述液晶显示面板上,且所述上偏光片和所述下偏光片均未设置在对应所述屏下摄像头区。
在本申请实施例提供的显示装置中,所述屏下摄像头区还包括第一配向层和第二配向层,所述第一配向层设置于所述第一电极上,所述第二配向层设置于所述第二电极下,且所述第一配向层和所述第二配向层均为水平配向。
在本申请实施例提供的显示装置中,所述多个液晶分子为正性液晶分子。
在本申请实施例提供的显示装置中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为0度至10度。
在本申请实施例提供的显示装置中,所述液晶层还包括聚合单体,所述聚合单体分布在所述第一配向层上和所述第二配向层下,所述聚合单体用于使所述多个液晶分子的长轴方向始终保持朝向所述第一基板或所述第二基板。
在本申请实施例提供的显示装置中,所述聚合单体包括丙烯酸酯及其衍生物、 甲基丙烯酸酯及其衍生物、苯乙烯及其衍生物、环氧树脂与脂肪胺类环氧固化剂中的一种或几种组合。
在本申请实施例提供的显示装置中,所述多个液晶分子为双频液晶分子。
在本申请实施例提供的显示装置中,所述第一电压为低频电压。
在本申请实施例提供的显示装置中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为80度至90度。
在本申请实施例提供的显示装置中,所述第一电极和所述第二电极的材料为氧化铟锡。
有益效果
本申请的有益效果为:本申请提供的一种液晶显示面板及显示装置中,所述屏下摄像头区通过液晶材料及电极设计,利用液晶材料和电极的搭配,使屏下摄像头在工作时屏下摄像头区的液晶分子的长轴方向垂直于第一基板或第二基板,进而使屏下摄像头区液晶层光程差差异达到最小,从而改善了摄像头因液晶层厚度不均导致光的透光率不同问题,提高了拍摄图片的质量。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的第一种液晶显示面板的屏下摄像头区的侧视结构示意图。
图2为本申请实施例提供的第一种液晶显示面板的显示区的侧视结构示意图。
图3为本申请实施例提供的液晶分子配向方向和电极夹角第一种示意图。
图4为本申请实施例提供的第二种液晶显示面板的显示区的侧视结构示意图。
图5为本申请实施例提供的第三种液晶显示面板的侧视结构示意图。
图6为本申请实施例提供的第四种液晶显示面板的侧视结构示意图。
图7为本申请实施例提供的双频液晶介电常数的频率依赖性示意图。
图8为本申请实施例提供的液晶分子配向方向和电极夹角第二种示意图。
图9为本申请实施例提供的显示装置的侧视结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
在一种实施例中,如图1所示,提供一种液晶显示面板100,其包括显示区AA和屏下摄像头区CUP,所述屏下摄像头区CUP包括第一基板10、第一电极31、第二基板20、第二电极32、液晶层。所述第一电极31,设置于所述第一基板10上。所述第二基板20,与所述第一基板10相对设置。所述第二电极32,设置于所述第二基板20下。所述液晶层,包括多个液晶分子51,设置于所述第一基板10和所述第二基板20之间。其中,在所述第一电极31和所述第二电极32之间未施加电压时,所述多个液晶分子51的长轴方向与所述第一基板10及所述第二基板20平行(即液晶分子水平排布),在所述第一电极31和所述第二电极32之间施加第一电压时,所述多个液晶分子51的长轴方向朝向所述第一基板10或所述第二基板20(即液晶分子竖直排布)。
具体的,所述屏下摄像头区CUP还包括第一配向层41和第二配向层42,所述第一配向层41设置于所述第一电极31上,所述第二配向层42设置于所述第二电极32下,且所述第一配向层41和所述第二配向层42均为水平配向。
具体的,如图2所示,所述液晶显示面板100的显示区AA包括第一基板10、与第一基板10相对设置的第二基板20、设置在第一基板10上的第三电极33和第四电极34以及第一配向层41、设置在第二基板20下的第二配向层42、以及设置在第一基板10和第二基板20之间的液晶层,其中液晶层包括多 个液晶分子51,第三电极33和第四电极34同层设置,第一配向层41设置于第三电极33或第四电极34上。
需要说明的,所述液晶显示面板的上下基板(第一基板10和第二基板20)上除了电极(第一电极31、第二电极32、第三电极33、第四电极34)和配向层(第一配向层41、第二配向层42)外还可以有绝缘层和有机层等其他膜层,本申请图示均未示出。
具体的,第一电极为像素电极,第二电极为公共电极,第三电极和第四电极其中一个为像素电极,另一个为公共电极。
具体的,所述液晶显示面板100的屏下摄像头区CUP和显示区AA的多个液晶分子51均为正性液晶分子。
具体的,所述第一配向层41和所述第二配向层42均为水平配向,采用摩擦(rubbing)配向或光配向等配向方法对液晶层的多个液晶分子51进行配向后,液晶分子水平排布(水平排布指液晶分子的短轴方向朝向第一基板10或第二基板20)。液晶分子的配向方向与电极狭缝呈一定角度θ,如图3所示,电极以第一电极31为例说明,角度θ可以为0度至10度。
具体的,当需要屏下摄像头区CUP工作时(使用屏下摄像头区CUP下面的摄像头拍照或拍摄视频等),给第一电极31和第二电极32施加第一电压,使屏下摄像头区CUP的多个液晶分子51呈竖直排布。当需要显示区AA显示时,给第三电极33和第四电极34施加第二电压,以控制显示区AA的多个液晶分子51偏转实现显示的目的。
进一步的,所示第一电极31、第二电极32、第三电极33、第四电极34的材料可以为氧化铟锡(Indium Tin Oxide,ITO)等透明电极材料。
具体的,所述第一基板10为阵列基板,所述第二基板20为彩膜基板。
在本实施例中,通过在屏下摄像头区CUP和显示区AA设置不同的电极,并对屏下摄像头区CUP和显示区AA的多个液晶分子51分别单独控制,屏下摄像头区CUP的多个液晶分子51由第一电压控制偏转,显示区AA的多个液晶分子51由第二电压控制偏转,在屏下摄像头区CUP工作时,对屏下摄像头区CUP的电极施加第一电压,使屏下摄像头区CUP的多个液晶分子51竖直排布,减小了有效光程差,即使不同区域液晶盒因为膜厚不均导致的液晶层厚 度不同,也不会有各个区域显示不均的问题。
在一种实施例中,如图4所示的液晶显示面板101,与上述实施例不同的是,显示区AA’的第三电极33’和第四电极34’不同层设置,可应用于边缘切换型(Fringe Field Switching,FFS)液晶显示器,图4中第三电极33’和第四电极34’之间设置有绝缘层60。上述实施例中第三电极33和第四电极34同层设置,可应用于面内切换型(In plane Switching,IPS)液晶显示器。其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,如图5所示的液晶显示面板102分为屏下摄像头区CUP’和显示区AA”,所述液晶显示面板102包括第一基板10、与第一基板10相对设置的第二基板20、设置于第一基板10和第二基板20之间的液晶层、以及设置于第一基板10上的第一配向层41和设置于第二基板20下的第二配向层42,其中液晶层包括多个液晶分子51及多个聚合单体52,聚合单体52靠近第一配向层41和第二配向层42排布。
具体的,在屏下摄像头区CUP’还包括设置于第一基板10上的第一电极31和设置于第二基板20上的第二电极32,第一配向层41设置于第一电极31上,第二配向层42设置于第二电极32上。
具体的,在显示区AA”还包括设置于第一基板10上的第三电极33和第四电极34,第三电极33和第四电极34同层设置,第一配向层41设置于第三电极33或第四电极34上。
具体的,所述液晶显示面板102的屏下摄像头区CUP’和显示区AA”的多个液晶分子51均为正性液晶分子。
具体的,所述聚合单体52包括丙烯酸酯及其衍生物、甲基丙烯酸酯及其衍生物、苯乙烯及其衍生物、环氧树脂与脂肪胺类环氧固化剂中的一种或几种组合。
具体的,第一配向层41和第二配向层42均为水平配向,采用摩擦配向或光配向等配向工艺对液晶层的多个液晶分子51进行配向,使液晶分子的配向方向与电极狭缝呈0度至10度的夹角。
进一步的,对液晶层的多个液晶分子51配向后,对屏下摄像头区CUP’的第一电极31和第二电极32施加第一电压时屏下摄像头区CUP’的多个液 晶分子51旋转成竖直排布,并同时采用紫外光照射液晶显示面板102,由于聚合单体52的存在,紫外光聚合使屏下摄像头区CUP’的多个液晶分子51被固定,使多个液晶分子51的长轴方向始终保持朝向第一基板10或第二基板20,即显示区AA”的多个液晶分子51维持水平配向,而屏下摄像头区CUP’的多个液晶分子51维持竖直配向。
在本实施例中,通过在液晶层加入聚合单体52,并用紫外光照射,使屏下摄像头区CUP’的多个液晶分子51直接配向成始终保持竖直状态的排布,在后续需要屏下摄像头区CUP’工作时,也无需再施加第一电压,在实现减小有效光程差的同时,简化了驱动设计。
在一种实施例中,如图6所示的液晶显示面板103分为屏下摄像头区CUP”和显示区AA’”,所述液晶显示面板103包括第一基板10、与第一基板10相对设置的第二基板20、设置于第一基板10和第二基板20之间的液晶层、以及设置于第一基板10上的第一配向层41和设置于第二基板20下的第二配向层42,其中液晶层包括多个液晶分子51’。
具体的,在屏下摄像头区CUP”还包括设置于第一基板10上的第一电极31和设置于第二基板20上的第二电极32,第一配向层41设置于第一电极31上,第二配向层42设置于第二电极32上。
具体的,在显示区AA’”还包括设置于第一基板10上的第三电极33和第四电极34,第三电极33和第四电极34同层设置,第一配向层41设置于第三电极33或第四电极34上。
具体的,所述液晶显示面板103的屏下摄像头区CUP”和显示区AA’”的多个液晶分子51’均为双频液晶分子。
具体的,双频液晶分子是由正性液晶和负性液晶组合而成,双频液晶的介电常数具有频率依赖性,如图7所示,低频驱动时液晶为正性液晶,介电常数Δε大于0,高频驱动时液晶为负性液晶,介电常数小于0。其中,双频液晶中的正性液晶的分子结构式可以为:
Figure PCTCN2020077383-appb-000001
其中,n为0或1;所述R1可以是CnH2n+1、OCnH2n+1、CnH2n-1、OCnH2n-1等,n为0-9;R2为F,CN、SCN等极性基团;A1、A2、A3、A4为苯环、环己烷、五元环或者其他杂环等;X1和X2可以为H、F或者R2;C1、C2和C3为CnH2n、COO、CH=CH、CH2-O、CF2-O等或者无,其中C1、C2、C3至少有一个为COO。
进一步的,所述双频液晶分子具体可以为下列结构式中的至少一种:
Figure PCTCN2020077383-appb-000002
具体的,第一配向层41和第二配向层42均为水平配向,采用摩擦配向或光配向等配向工艺对液晶层的多个双频液晶分子进行配向,使双频液晶分子的配向方向与电极狭缝呈80度至90度的夹角θ’,如图8所示以第一电极31与多个液晶分子51’的夹角为例说明。
具体的,需要液晶显示面板103的显示区AA’”显示时,给显示区AA’”的第三电极33和第四电极34施加高频电压驱动,此时显示区AA’”的双频液晶分子为负性液晶,负性液晶受电场影响发生偏转以实现显示目的。当需要屏下摄像头区CUP”工作时,给第一电极31和第二电极32施加低频电压驱 动,此时屏下摄像头区CUP”的双频液晶分子为正性液晶,受电场的影响,正性液晶发生偏转呈竖直排布。
在本实施例中,通过使用双频液晶,与屏下摄像头区CUP”的电极以及显示区AA’”的电极配合,需要显示区AA’”显示时给显示区AA’”施加高频电压驱动,需要屏下摄像头区CUP”工作时给屏下摄像头施加低频电压驱动,以使屏下摄像头区CUP”的双频液晶分子呈竖直排布,减小有效光程差。
在一种实施例中,提供一种显示装置1000,如图9所示,其包括前述实施例其中之一提供的液晶显示面板103、背光模组200、上偏光片300以及下偏光片400,其中所述下偏光片400设置于所述液晶显示面板103和所述背光模组200之间且贴附在所述液晶显示面板103下,所述上偏光片300设置于所述液晶显示面板103上,且所述上偏光片300和所述下偏光片400均未设置在对应所述屏下摄像头区CUP”。
根据上述实施例可知:
本申请提供一种液晶显示面板及显示装置,所述液晶显示面板的屏下摄像头区包括上下基板、设置在上下基板上的电极层和配向层以及设置于上下基板之间的多个液晶分子。其中,在所述电极层之间未施加电压时,所述多个液晶分子的长轴方向与所述上基板及所述下基板平行,在所述电极层施加第一电压时,所述多个液晶分子的长轴方向朝向所述上基板或所述下基板。所述屏下摄像头区通过液晶材料及电极设计,利用液晶材料和电极的搭配,使屏下摄像头在工作时屏下摄像头区的液晶分子竖直排布,进而使屏下摄像头区液晶层光程差差异达到最小,从而改善了摄像头因液晶层厚度不均导致光的透光率不同问题,提高了拍摄图片的质量。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种液晶显示面板,其包括显示区和屏下摄像头区,所述屏下摄像头区包括:
    第一基板;
    第一电极,设置于所述第一基板上;
    第二基板,与所述第一基板相对设置;
    第二电极,设置于所述第二基板下;以及
    液晶层,包括多个液晶分子,设置于所述第一基板和所述第二基板之间;
    其中,在所述第一电极和所述第二电极之间未施加电压时,所述多个液晶分子的长轴方向与所述第一基板及所述第二基板平行,在所述第一电极和所述第二电极之间施加第一电压时,所述多个液晶分子的长轴方向朝向所述第一基板或所述第二基板。
  2. 根据权利要求1所述的液晶显示面板,其中,所述屏下摄像头区还包括第一配向层和第二配向层,所述第一配向层设置于所述第一电极上,所述第二配向层设置于所述第二电极下,且所述第一配向层和所述第二配向层均为水平配向。
  3. 根据权利要求2所述的液晶显示面板,其中,所述多个液晶分子为正性液晶分子。
  4. 根据权利要求3所述的液晶显示面板,其中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为0度至10度。
  5. 根据权利要求4所述的液晶显示面板,其中,所述液晶层还包括聚合单体,所述聚合单体分布在所述第一配向层上和所述第二配向层下,所述聚合单体用于使所述多个液晶分子的长轴方向始终保持朝向所述第一基板或所述第二基板。
  6. 根据权利要求5所述的液晶显示面板,其中,所述聚合单体包括丙烯酸酯及其衍生物、甲基丙烯酸酯及其衍生物、苯乙烯及其衍生物、环氧树脂与脂肪胺类环氧固化剂中的一种或几种组合。
  7. 根据权利要求2所述的液晶显示面板,其中,所述多个液晶分子为双 频液晶分子。
  8. 根据权利要求7所述的液晶显示面板,其中,所述第一电压为低频电压。
  9. 根据权利要求7所述的液晶显示面板,其中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为80度至90度。
  10. 根据权利要求1所述的液晶显示面板,其中,所述第一电极和所述第二电极的材料为氧化铟锡。
  11. 一种显示装置,其包括液晶显示面板、背光模组、上偏光片以及下偏光片,其中所述液晶显示面板包括显示区和屏下摄像头区,所述屏下摄像头区包括:
    第一基板;
    第一电极,设置于所述第一基板上;
    第二基板,与所述第一基板相对设置;
    第二电极,设置于所述第二基板下;以及
    液晶层,包括多个液晶分子,设置于所述第一基板和所述第二基板之间;
    其中,在所述第一电极和所述第二电极之间未施加电压时,所述多个液晶分子的长轴方向与所述第一基板及所述第二基板平行,在所述第一电极和所述第二电极之间施加第一电压时,所述多个液晶分子的长轴方向朝向所述第一基板或所述第二基板;所述下偏光片设置于所述液晶显示面板和所述背光模组之间且贴附在所述液晶显示面板下,所述上偏光片设置于所述液晶显示面板上,且所述上偏光片和所述下偏光片均未设置在对应所述屏下摄像头区。
  12. 根据权利要求11所述的显示装置,其中,所述屏下摄像头区还包括第一配向层和第二配向层,所述第一配向层设置于所述第一电极上,所述第二配向层设置于所述第二电极下,且所述第一配向层和所述第二配向层均为水平配向。
  13. 根据权利要求12所述的显示装置,其中,所述多个液晶分子为正性液晶分子。
  14. 根据权利要求13所述的显示装置,其中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为0度至10度。
  15. 根据权利要求14所述的显示装置,其中,所述液晶层还包括聚合单体,所述聚合单体分布在所述第一配向层上和所述第二配向层下,所述聚合单体用于使所述多个液晶分子的长轴方向始终保持朝向所述第一基板或所述第二基板。
  16. 根据权利要求15所述的显示装置,其中,所述聚合单体包括丙烯酸酯及其衍生物、甲基丙烯酸酯及其衍生物、苯乙烯及其衍生物、环氧树脂与脂肪胺类环氧固化剂中的一种或几种组合。
  17. 根据权利要求12所述的显示装置,其中,所述多个液晶分子为双频液晶分子。
  18. 根据权利要求17所述的显示装置,其中,所述第一电压为低频电压。
  19. 根据权利要求17所述的显示装置,其中,所述多个液晶分子的配向方向与所述第一电极的电极狭缝的夹角为80度至90度。
  20. 根据权利要求11所述的显示装置,其中,所述第一电极和所述第二电极的材料为氧化铟锡。
PCT/CN2020/077383 2020-01-19 2020-03-02 一种液晶显示面板及显示装置 WO2021142894A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010061600.4 2020-01-19
CN202010061600.4A CN111208682B (zh) 2020-01-19 2020-01-19 一种液晶显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2021142894A1 true WO2021142894A1 (zh) 2021-07-22

Family

ID=70784491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077383 WO2021142894A1 (zh) 2020-01-19 2020-03-02 一种液晶显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN111208682B (zh)
WO (1) WO2021142894A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111736379A (zh) * 2020-06-17 2020-10-02 深圳市华星光电半导体显示技术有限公司 一种摄像模组及显示装置
CN112198694A (zh) 2020-10-27 2021-01-08 武汉华星光电技术有限公司 显示面板及电子终端

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132578A (ja) * 2017-02-14 2018-08-23 セイコーエプソン株式会社 液晶装置、液晶装置の製造方法、電子機器
CN109976061A (zh) * 2019-04-29 2019-07-05 武汉华星光电技术有限公司 显示面板及显示装置
CN109976021A (zh) * 2019-04-29 2019-07-05 武汉华星光电技术有限公司 显示面板及显示装置
CN110231735A (zh) * 2019-05-16 2019-09-13 武汉华星光电技术有限公司 显示装置
CN209514245U (zh) * 2019-03-11 2019-10-18 友达光电(昆山)有限公司 显示装置及使用该显示装置的终端
CN110703499A (zh) * 2019-03-26 2020-01-17 武汉华星光电技术有限公司 一种显示面板及其控制方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6192914B2 (ja) * 2012-10-01 2017-09-06 株式会社ジャパンディスプレイ 表示装置およびその製造方法
CN109164624B (zh) * 2018-09-30 2021-08-17 京东方科技集团股份有限公司 显示面板、显示装置及其图像获取方法
CN109254442B (zh) * 2018-11-30 2024-04-26 信利光电股份有限公司 一种齐刘海液晶显示面板以及触控显示器
CN109856850B (zh) * 2019-03-29 2020-10-13 武汉华星光电技术有限公司 显示装置
CN110568649A (zh) * 2019-09-10 2019-12-13 武汉华星光电技术有限公司 一种显示装置及其驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018132578A (ja) * 2017-02-14 2018-08-23 セイコーエプソン株式会社 液晶装置、液晶装置の製造方法、電子機器
CN209514245U (zh) * 2019-03-11 2019-10-18 友达光电(昆山)有限公司 显示装置及使用该显示装置的终端
CN110703499A (zh) * 2019-03-26 2020-01-17 武汉华星光电技术有限公司 一种显示面板及其控制方法、显示装置
CN109976061A (zh) * 2019-04-29 2019-07-05 武汉华星光电技术有限公司 显示面板及显示装置
CN109976021A (zh) * 2019-04-29 2019-07-05 武汉华星光电技术有限公司 显示面板及显示装置
CN110231735A (zh) * 2019-05-16 2019-09-13 武汉华星光电技术有限公司 显示装置

Also Published As

Publication number Publication date
CN111208682B (zh) 2021-04-27
CN111208682A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
US10371971B2 (en) Liquid crystal display with switchable viewing angle and method of viewing angle control
US10288914B2 (en) Liquid crystal display with switchable viewing angle and method of viewing angle control
US9983422B2 (en) LCD panel and LCD and viewing angle control method of LCD panel
US9835886B2 (en) Liquid crystal display with switchable viewing angle and method of viewing angle control
US9798169B2 (en) Liquid crystal display with switchable viewing angle and method of viewing angle control
US9720266B2 (en) Liquid crystal display with switchable viewing angle and method of viewing angle control
US9897872B2 (en) Liquid crystal display panel with switchable viewing angle and driving method thereof
US10386662B2 (en) Liquid crystal panel, liquid crystal display device and method for improving liquid crystal rotation obstacle
WO2020248646A1 (zh) 液晶面板的配向方法、液晶面板及显示装置
US10859864B2 (en) Display device
WO2020087583A1 (zh) Coa型液晶显示器
WO2021142894A1 (zh) 一种液晶显示面板及显示装置
WO2022178921A1 (zh) 显示装置
US10818248B2 (en) Display panel
JP2007241281A (ja) 広視野角液晶ディスプレイ
WO2020211143A1 (zh) 液晶显示面板及液晶显示装置
WO2020093514A1 (zh) 显示面板组件及显示装置
WO2018101442A1 (ja) 液晶表示装置及びその製造方法
US20150015817A1 (en) Liquid crystal display device
JP2009223137A (ja) 液晶装置及び電子機器
US7626656B2 (en) LCD device for switching display mode between wide viewing angle and narrow viewing angle and method employing control cell for controlling tilt angle of molecules of dichroic liquid crystal layer therein
US20210232006A1 (en) Display panel and display device
CN106125406B (zh) 一种窄视角显示的垂直取向液晶显示器
CN114096912B (zh) 液晶显示装置
KR20050000958A (ko) 횡전계형 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914462

Country of ref document: EP

Kind code of ref document: A1