WO2021142826A1 - 臂架振动控制方法、装置及工程机械 - Google Patents

臂架振动控制方法、装置及工程机械 Download PDF

Info

Publication number
WO2021142826A1
WO2021142826A1 PCT/CN2020/072971 CN2020072971W WO2021142826A1 WO 2021142826 A1 WO2021142826 A1 WO 2021142826A1 CN 2020072971 W CN2020072971 W CN 2020072971W WO 2021142826 A1 WO2021142826 A1 WO 2021142826A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
signal
vibration
input
input signal
Prior art date
Application number
PCT/CN2020/072971
Other languages
English (en)
French (fr)
Inventor
徐蕾
张国梁
张勇
徐小东
Original Assignee
徐工集团工程机械股份有限公司
徐工消防安全装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐工集团工程机械股份有限公司, 徐工消防安全装备有限公司 filed Critical 徐工集团工程机械股份有限公司
Priority to PCT/CN2020/072971 priority Critical patent/WO2021142826A1/zh
Priority to DE112020006563.4T priority patent/DE112020006563T5/de
Publication of WO2021142826A1 publication Critical patent/WO2021142826A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/002Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion characterised by the control method or circuitry

Definitions

  • the present disclosure relates to the technical field of engineering machinery, and in particular to a boom vibration control method, device, engineering machinery and computer-readable storage medium.
  • Ladder fire truck is an elevating fire fighting vehicle with both fire fighting and rescue functions. Its main characteristics are fast action and efficient rescue.
  • the boom also called the ladder frame
  • the boom As the main load-bearing component, the boom (also called the ladder frame) of the ladder fire truck has the characteristics of light weight and low rigidity. The inventor has learned about a ladder fire truck. After the operator stops the boom by operating the boom, the boom will vibrate at a low frequency for a period of time due to its structural flexibility. The longer the boom of the ladder fire truck, the more obvious the vibration.
  • a boom vibration control method including:
  • the flow control valve is controlled to act.
  • the first input signal is a first opening percentage signal
  • the second input signal is a second opening percentage signal
  • Performing input shaping processing on the first input signal to obtain the second input signal includes:
  • the amplitude and time lag of the pulse sequence of the two-peak insensitive input shaper are determined according to the sensitivity curve of the two-peak insensitive input shaper and the residual vibration amplitude ratio function of the boom.
  • the residual vibration amplitude ratio function of the boom is:
  • is the vibration frequency of the boom
  • is the damping ratio of the vibration of the boom
  • V ( ⁇ , ⁇ ) is the residue of the boom vibration amplitude ratio function
  • a i is the amplitude of the pulse sequence
  • T i is the time lag of the pulse sequence
  • n is the number of pulses
  • the constraint equation of the pulse sequence of the two-peak insensitive input shaper is:
  • is the vibration frequency of the boom
  • is the vibration damping ratio of the boom
  • V tol is the residual vibration amplitude ratio threshold of the boom
  • a i is the two-peak insensitive input shaper
  • the amplitude of the pulse sequence of ⁇ m , ⁇ l0 , ⁇ h0 , ⁇ l , and ⁇ h are the basic applicable frequency, minimum applicable frequency, maximum applicable frequency, and first amplitude corresponding to the two-peak insensitive input shaper, respectively The frequency of and the frequency corresponding to the second amplitude.
  • V tol is the residual vibration amplitude ratio threshold of the boom
  • a i is the amplitude of the pulse sequence of the two-peak insensitive input to the shaper
  • t i is the pulse of the two-peak insensitive input to the shaper
  • T is the vibration period of the boom.
  • the boom vibration control method further includes:
  • the vibration period of the boom is determined according to the length of the boom and the corresponding relationship between the length of the boom and the vibration period of the boom.
  • acquiring the first input signal includes:
  • the first opening degree percentage signal is obtained.
  • acquiring the first input signal further includes:
  • the first input signal is used to control the boom luffing, and the hydraulic actuator is a luffing cylinder;
  • the maximum flow rate of the variable amplitude cylinder is obtained according to the following functional relationship:
  • Q is the flow rate of the luffing cylinder
  • A is the area of action of the oil in the luffing cylinder
  • a is the distance from the hinge point of one end of the luffing cylinder to the proximal hinge point of the boom
  • B is the distance from the hinge point of the other end of the luffing cylinder to the hinge point of the proximal end of the boom
  • is the angle between a and b
  • v max_cage is the maximum allowable line of the distal end of the boom Speed
  • x ladder_length is the length of the boom.
  • the first input signal is used to control the swing of the boom, and the hydraulic actuator is a swing hydraulic motor.
  • determining the flow demand signal includes:
  • the flow demand signal is determined according to the product of the second opening percentage signal and the maximum flow of the hydraulic actuator.
  • a boom vibration control device including:
  • the acquiring unit is used to acquire the first input signal of the handle
  • a shaping processing unit configured to perform input shaping processing on the first input signal to obtain a second input signal, where the second input signal is used to limit the residual vibration amplitude ratio of the boom to not greater than the residual vibration amplitude Value ratio threshold;
  • a first determining unit configured to determine a flow demand signal of the hydraulic actuator according to the second input signal and the maximum flow of the hydraulic actuator used to drive the boom;
  • the second determining unit is configured to determine the input voltage signal of the flow control valve connected to the hydraulic actuator according to the flow demand signal and the flow compensation function, where the flow compensation function is the flow rate of the flow control valve
  • the control unit is configured to control the action of the flow control valve according to the input voltage signal.
  • a boom vibration control device including:
  • a computer-readable storage medium having a computer program stored thereon, and when the program is executed by a processor, the boom vibration control method described in any of the foregoing technical solutions is implemented.
  • an engineering machine including: a boom, and the boom vibration control device described in the foregoing technical solution.
  • the construction machinery includes a ladder fire truck or a jib crane.
  • Fig. 1a is a flowchart of a method for controlling vibration of a boom according to some embodiments of the present disclosure
  • Fig. 1b is a schematic diagram of the principle of vibration control of a boom according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram of the sensitivity curve of the two-peak insensitive input shaper in some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram of the principle of performing input shaping processing on a first input signal in some embodiments of the present disclosure
  • Figure 4 is a schematic diagram of the vibration of the boom after the amplitude is stopped
  • FIG. 5 is a schematic diagram of the principle of flow compensation for a flow control valve in some embodiments of the present disclosure
  • Fig. 6a is a comparison diagram of a first input signal and a second input signal in some embodiments of the present disclosure
  • Fig. 6b is a comparison diagram of residual vibration curves of the boom after no vibration control measures are taken and the vibration control method of the embodiment of the present disclosure is adopted;
  • Figure 7 is a block diagram of a boom vibration control device according to some embodiments of the present disclosure.
  • Fig. 8 is a block diagram of a boom vibration control device according to other embodiments of the present disclosure.
  • Figure 9 is a block diagram of a computer system according to some embodiments of the present disclosure.
  • the inventor has already known a ladder fire truck.
  • the principle of controlling the vibration of the boom is: after the vehicle controller receives the opening change signal from the handle, it decelerates the movement of the boom to lower the boom. The acceleration of the movement of the frame, thereby reducing the vibration caused by the change of the speed of the boom.
  • This vibration control method has better vibration control effect only when the movement speed of the boom is low or the boom is short. To achieve the ideal vibration control effect under the working condition of high motion speed of the boom or long boom, the speed of the boom needs to be changed very slowly, that is, the acceleration of the boom must be controlled sufficiently low.
  • This control method causes vibration control to take a long time, and the boom still has a relatively large movement in the early stage after the handle is released. Therefore, the positioning accuracy of operating the boom through the handle is low, which affects the efficiency of rescue.
  • the vibration control principle of the boom is as follows: the oil pressure sensor installed at the oil inlet of the luffing cylinder detects the arm The pressure change of the variable amplitude cylinder when the frame vibrates, or the gyroscope installed at the distal end of the boom detects the change in the displacement of the distal end of the boom when the boom is vibrating; the vehicle controller is based on the detection signal of the oil pressure sensor or the gyroscope The detection signal is outputted for the vibration control signal of the variable amplitude cylinder, so that the variable amplitude cylinder generates vibration in the opposite direction to the vibration of the boom, so as to achieve the purpose of suppressing vibration.
  • the vibration control method of this other aerial ladder fire truck has the following technical defects: the vibration period of the boom needs to be determined according to the period of the detection signal of the oil pressure sensor or the gyroscope, and then the vibration control force can be applied to the luffing cylinder.
  • the vibration period of the boom requires at least a quarter of the detection signal period. Therefore, this vibration control method has no suppression effect on the first vibration with the largest amplitude and the most harmful.
  • the signal transmission between the gyroscope at the far end of the boom and the controller also has a certain delay.
  • embodiments of the present disclosure provide a boom vibration control method, device, engineering machinery, and computer-readable storage medium.
  • Some embodiments of the present disclosure provide a boom vibration control method, which is used to suppress, to a certain extent, the residual vibration of the boom of the boom type construction machinery caused by its own structural flexibility during luffing or rotation.
  • the specific type of the boom type construction machinery is not limited, for example, it may be a ladder fire truck or a boom type crane.
  • the distal end of the boom refers to the end farther away from the operation room of the construction machine, and correspondingly, the proximal end of the boom refers to the end closer to the operation room of the construction machine .
  • the boom vibration control method includes the following steps S1 to S5.
  • step S1 the first input signal of the handle is acquired.
  • the first input signal is a first opening percentage signal
  • this step S1 includes:
  • the opening change signal of the handle According to the opening change signal of the handle, the first opening percentage signal of the handle is obtained.
  • the opening degree change signal of the handle is, for example, the opening angle change signal of the handle.
  • the step S1 further includes: buffering the first opening percentage signal of the handle.
  • the first opening percentage signal is written into the data buffer area in the controller in chronological order.
  • the buffered first opening percentage signal is input shaping processing in the subsequent step.
  • step S2 input shaping is performed on the first input signal to obtain a second input signal.
  • the second input signal is used to limit the residual vibration amplitude ratio of the boom to not greater than the residual vibration amplitude ratio threshold. .
  • the first input signal is a first opening percentage signal
  • the second input signal is a second opening percentage signal.
  • the step S2 includes: combining the first opening percentage signal with the two peaks insensitive
  • the pulse sequence of the input shaper (Specified-Insensitivity Input Shaper, referred to as SI input shaper) is subjected to convolution calculation to obtain the second opening percentage signal.
  • SI input shaper Specific-Insensitivity Input Shaper
  • the amplitude and time lag of the pulse sequence of the two-peak insensitive input shaper According to its sensitivity curve and the residual vibration amplitude ratio function of the boom.
  • the sensitivity curve of the two-peak insensitive input shaper is shown in Figure 2, where: the horizontal axis represents the vibration frequency, represented by ⁇ ; the vertical axis represents the ratio of the residual vibration amplitude, that is, the vibration amplitude after the vibration is suppressed and the boom before the The ratio of the vibration amplitude when vibration control measures are taken, expressed in %. It can be seen from the figure that when the vibration frequency is not less than ⁇ l0 and not greater than ⁇ h0 , the two-peak insensitive input shaper can limit the residual vibration amplitude ratio within the residual vibration amplitude ratio threshold.
  • the selection of the two-peak insensitive input shaper has better tolerance to the error of the input boom vibration frequency, and therefore, the robustness of vibration control of the boom can be improved.
  • robustness refers to the characteristics of the control system that maintain certain other performances under certain parameter perturbations.
  • the residual vibration generated by a series of pulse excitation of the boom without vibration control measures is simplified as a second-order vibration system, and the residual vibration amplitude ratio function can be expressed as:
  • is the vibration frequency of the boom
  • is the vibration damping ratio of the boom
  • V( ⁇ , ⁇ ) is the ratio function of the residual vibration amplitude of the boom
  • a i is the amplitude of the pulse sequence
  • t i is the pulse sequence
  • the constraint equation of the pulse sequence of the two-peak insensitive input shaper can be obtained as follows:
  • is the vibration frequency of the boom
  • is the vibration damping ratio of the boom
  • V tol is the residual vibration amplitude ratio threshold of the boom
  • a i is the amplitude of the pulse sequence of the two-peak insensitive input to the shaper
  • ⁇ m , ⁇ l0 , ⁇ h0 , ⁇ l , ⁇ h are the basic applicable frequency, minimum applicable frequency, maximum applicable frequency, frequency corresponding to the first amplitude, and frequency corresponding to the second amplitude of the two-peak insensitive input shaper, respectively .
  • the solution of the two-peak insensitive input shaper can be obtained as:
  • Vtol is the residual vibration amplitude ratio threshold of the boom
  • a i is the amplitude of the pulse sequence of the two-peak insensitive input to the shaper
  • t i is the time lag of the pulse sequence of the two-peak insensitive input to the shaper
  • T is The vibration period of the boom.
  • the vibration period of the boom is an inherent attribute and is related to the length of the boom.
  • the vibration period of the boom is different under different extension lengths.
  • the boom vibration control method further includes: before step S2, determining the vibration period of the boom according to the length of the boom and the corresponding relationship between the length of the boom and the vibration period of the boom.
  • the corresponding relationship between the boom length and the boom vibration period can be stored in the controller in advance.
  • the corresponding relationship between the length of the boom and the vibration period of the boom can be obtained according to the modal simulation calculation method.
  • the corresponding relationship between the length of the boom and the vibration period of the boom can also be calculated analytically through a theoretical model.
  • a motion sensor is installed at the distal end of the boom or an oil pressure sensor is installed at the oil inlet of the luffing cylinder, and the boom is vibrated by manual excitation, and the boom is obtained from the above-mentioned sensor. Then perform Fourier analysis and conversion of the time domain vibration signal to obtain the frequency domain vibration signal. Take the maximum frequency as the vibration period of the boom at the current length, and then according to the vibration period of the boom at different lengths According to the data, the corresponding relationship between the boom length and the vibration period of the boom is obtained.
  • the vibration of the boom is simplified as a second-order undamped vibration system.
  • the solution of the two-peak insensitive input shaper consists of four pulses, corresponding to amplitudes A 1 to A 4 , and the interval between adjacent pulses is 0.5 times the boom vibration period (0.5T).
  • the first opening percentage signal and the pulse sequence of the two-peak insensitive input shaper are convolved to obtain the second opening percentage signal. That is: the first opening percentage signal u is multiplied by the four pulse amplitudes (A 1 ⁇ A 4 ) in sequence according to the delay of 0.5 times the boom vibration period (0.5T), and then the sum is obtained.
  • the second opening percentage signal Q shaped .
  • the first opening percentage signal is buffered in a data buffer area in the controller, and the data buffer area can store signal data of at least 1.5 times the boom vibration period (1.5T) for use Convolution calculation is performed with the pulse sequence of the two-peak insensitive input shaper.
  • the shaper is not limited to the two-peak insensitive input shaper, and other applicable input shapers can also be used for the purpose of achieving a balance between system robustness and response requirements.
  • step S3 the flow demand signal of the hydraulic actuator is determined according to the second input signal and the maximum flow of the hydraulic actuator used to drive the boom.
  • the second input signal is a second opening percentage signal
  • the above step S3 is, for example, according to the product of the second opening percentage signal Q shaped (t) and the maximum flow rate Q max of the hydraulic actuator , Determine the flow demand signal Q demand (t).
  • the first input signal of the handle is used to control the boom luffing
  • the hydraulic actuator is a luffing cylinder
  • the maximum flow rate Q max of the hydraulic actuator is the maximum flow rate of the luffing cylinder.
  • Q is the flow rate of the luffing cylinder
  • A is the area of action of the oil in the luffing cylinder
  • dL/dt is the time derivative of the length of the luffing cylinder.
  • the maximum flow rate Q max can be obtained.
  • the flow rate Q of the luffing cylinder 2 can be calculated according to the following relationship:
  • a is the distance from the hinge point of one end of the luffing cylinder to the proximal hinge point of the boom
  • b is the distance from the hinge point of the other end of the luffing cylinder to the proximal hinge point of the boom
  • is the distance between a and b
  • v max_cage is the maximum allowable linear velocity at the far end of the boom
  • x ladder_length is the length of the boom.
  • the first input signal may also be used to control the swing of the boom, and the hydraulic actuator is a swing hydraulic motor.
  • the rotary hydraulic motor is used as a hydraulic actuator, the aforementioned maximum flow Q max is a fixed value.
  • step S4 the input voltage signal of the flow control valve connected to the hydraulic actuator is determined according to the flow demand signal and the flow compensation function, where the flow compensation function is the inverse function of the flow characteristic curve function of the flow control valve .
  • the action of the hydraulic actuator is controlled by the flow control valve.
  • the flow control valve is, for example, a hydraulic valve. Since the flow characteristic curve of the flow control valve is non-linear, in order to achieve a linear mapping between the flow demand signal Q demand and the output flow Q real of the flow control valve, thereby reducing or even avoiding the amplitude deviation of the flow signal output by the flow control valve. For a better vibration control effect, in some embodiments of the present disclosure, a compensation calculation is performed on the flow signal output by the flow control valve. Please refer to FIG.
  • the curve function Q the inverse function of f(u).
  • step S5 the flow control valve is controlled to act according to the input voltage signal uvalve.
  • the principle of vibration control of the boom according to the above-mentioned embodiments of the present disclosure is shown in Fig. 1b.
  • Figure 6a is a comparison diagram of the first input signal and the second input signal in some embodiments of the present disclosure
  • Figure 6b is the boom in the absence of vibration control measures and the use of embodiments of the present disclosure
  • Comparison chart of residual vibration curve after vibration control method It can be seen from the figure that after adopting the vibration control method of the embodiment of the present disclosure, the residual vibration amplitude of the boom is not obvious, so that it is difficult for people to feel the vibration of the boom.
  • the two-peak insensitive input shaper used in the embodiment of the present disclosure contains four pulses, of which the last pulse has a time lag of 1.5T, which is much smaller than the required attenuation of the residual vibration of the boom without vibration control measures. Time, so the timeliness of vibration control is better. In addition, it can be seen from the figure that even if the change speed of the first input signal is close to the step signal, a better vibration control effect can still be achieved.
  • the boom vibration control method provided by the embodiment of the present disclosure belongs to the active vibration control method.
  • the second input signal is obtained by input shaping the first input signal of the handle, and the second input signal controls the motion of the boom.
  • the vibration amplitude ratio is limited to not greater than the residual vibration amplitude ratio threshold. Compared with the related technology known by the inventor, the solutions of the embodiments of the present disclosure control vibration more timely, accurately, and with higher accuracy.
  • Some embodiments of the present disclosure adopt a two-peak insensitive input shaper, which has better tolerance to the error of the input vibration frequency of the boom, and therefore, the robustness of vibration control can be improved.
  • the two-peak insensitive input shaper performs input shaping on the first input signal from the first pulse, and controls the vibration of the boom before the boom reaches the first vibration amplitude. Therefore, the vibration to the boom is the strongest The first amplitude has a better suppression effect.
  • the implementation scheme of the present disclosure can achieve the above-mentioned beneficial effects without adding hardware facilities such as sensors, so that the physical structure and working stability of the original system will not be affected. , It will not increase hardware costs.
  • some embodiments of the present disclosure also provide a boom vibration control device, including:
  • the obtaining unit 71 is used to obtain the first input signal of the handle
  • the shaping processing unit 72 is configured to perform input shaping processing on the first input signal to obtain a second input signal, and the second input signal is used to limit the residual vibration amplitude ratio of the boom to not greater than the residual vibration amplitude ratio threshold;
  • the first determining unit 73 is configured to determine the flow demand signal of the hydraulic actuator according to the second input signal and the maximum flow of the hydraulic actuator used to drive the boom action;
  • the second determining unit 74 is configured to determine the input voltage signal of the flow control valve connected to the hydraulic actuator according to the flow demand signal and the flow compensation function, where the flow compensation function is the inverse function of the flow characteristic curve function of the flow control valve;
  • the control unit 75 is used to control the action of the flow control valve according to the input voltage signal.
  • the boom vibration control device according to the embodiment of the present disclosure can achieve beneficial effects similar to the foregoing, which will not be repeated here.
  • some embodiments of the present disclosure also provide a boom vibration control device, including: a memory 83 and a processor 84 coupled to the memory 83, and the processor 84 is configured to be based on data stored in the memory 83 Command to execute the boom vibration control method as in any of the foregoing embodiments.
  • each step in the aforementioned boom vibration control method can be implemented by a processor, and can be implemented by any of software, hardware, firmware, or a combination thereof.
  • the embodiments of the present disclosure may also adopt the form of a computer program product implemented on one or more non-volatile storage media containing computer program instructions. Therefore, some embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the boom vibration control method as in any of the foregoing technical solutions is implemented.
  • Figure 9 shows a schematic diagram of a computer system according to some embodiments of the present disclosure.
  • the computer system can be expressed in the form of a general-purpose computing device, and the computer system can be used to implement the boom vibration control method of the above-mentioned embodiment.
  • the computer system includes a memory 91, a processor 92, and a bus 90 connecting different system components.
  • the memory 91 may include, for example, a system memory, a non-volatile storage medium, and the like.
  • the system memory stores, for example, an operating system, an application program, a boot loader (Boot Loader), and other programs.
  • the system memory may include volatile storage media, such as random access memory (RAM) and/or cache memory.
  • the non-volatile storage medium stores, for example, instructions for executing the corresponding embodiment of the above-mentioned boom vibration control method.
  • Non-volatile storage media include, but are not limited to, magnetic disk storage, optical storage, flash memory, and the like.
  • the processor 92 can be implemented by a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistors and other discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • each module such as the judgment module and the determination module can be implemented by a central processing unit (CPU) running instructions for executing corresponding steps in a memory, or can be implemented by a dedicated circuit that executes the corresponding steps.
  • the bus 90 can use any bus structure among a variety of bus structures.
  • the bus structure includes, but is not limited to, an industry standard architecture (ISA) bus, a microchannel architecture (MCA) bus, and a peripheral component interconnect (PCI) bus.
  • ISA industry standard architecture
  • MCA microchannel architecture
  • PCI peripheral component interconnect
  • the computer system may also include an input/output interface 93, a network interface 94, a storage interface 95, and so on.
  • the input/output interface 93, the network interface 94, the storage interface 95, and the memory 91 and the processor 92 may be connected by a bus 90.
  • the input and output interface 93 can provide a connection interface for input and output devices such as a display, a mouse, and a keyboard.
  • the network interface 94 provides a connection interface for various networked devices.
  • the storage interface 95 provides a connection interface for external storage devices such as floppy disks, U disks, and SD cards.
  • Some embodiments of the present disclosure also provide an engineering machine, including: a boom, and the boom vibration control device of the foregoing embodiment.
  • Construction machinery includes, but is not limited to, ladder fire trucks or jib cranes. When the operator operates the boom of the boom-type construction machinery, the boom has a better vibration control effect.

Abstract

一种臂架(1)振动控制方法、装置、工程机械及计算机可读存储介质。臂架振动控制方法包括:获取手柄的第一输入信号;对第一输入信号进行输入整形处理,得到第二输入信号,第二输入信号用于将臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值;根据第二输入信号,以及用于驱动臂架动作的液压执行元件的最大流量,确定液压执行元件的流量需求信号;根据流量需求信号和流量补偿函数,确定液压执行元件所连接的流量控制阀的输入电压信号,其中,流量补偿函数为流量控制阀的流量特性曲线函数的反函数;根据输入电压信号,控制流量控制阀动作。

Description

臂架振动控制方法、装置及工程机械 技术领域
本公开涉及工程机械技术领域,特别涉及一种臂架振动控制方法、装置、工程机械及计算机可读存储介质。
背景技术
云梯消防车是兼具消防与救援功能的举高类消防车辆,以动作快速、救援高效为主要特征。云梯消防车的臂架(也称梯架)作为主要承载部件,具有质量轻、刚度小的特点。发明人已获知的一种云梯消防车,在操作人员操作臂架停止动作后,臂架由于其结构柔性原因,在一段时间内会发生低频大幅振动。云梯消防车的臂架越长,振动越明显。
发明内容
根据本公开实施例的一方面,提供了一种臂架振动控制方法,包括:
获取手柄的第一输入信号;
对所述第一输入信号进行输入整形处理,得到第二输入信号,所述第二输入信号用于将所述臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值;
根据所述第二输入信号,以及用于驱动所述臂架动作的液压执行元件的最大流量,确定所述液压执行元件的流量需求信号;
根据所述流量需求信号和流量补偿函数,确定所述液压执行元件所连接的流量控制阀的输入电压信号,其中,所述流量补偿函数为所述流量控制阀的流量特性曲线函数的反函数;
根据所述输入电压信号,控制所述流量控制阀动作。
在一些实施例中,所述第一输入信号为第一开度百分比信号,所述第二输入信号为第二开度百分比信号;
对所述第一输入信号进行输入整形处理,得到所述第二输入信号,包括:
将所述第一开度百分比信号与二峰不灵敏输入整形器的脉冲序列进行卷积计算,得到所述第二开度百分比信号;
其中,所述二峰不灵敏输入整形器的脉冲序列的幅值和时滞,根据所述二峰不灵 敏输入整形器的灵敏度曲线以及所述臂架的残余振动幅值比率函数确定。
在一些实施例中,所述臂架的残余振动幅值比率函数为:
Figure PCTCN2020072971-appb-000001
式中,
Figure PCTCN2020072971-appb-000002
Figure PCTCN2020072971-appb-000003
其中,ω为所述臂架的振动频率,ξ为所述臂架的振动阻尼比,V(ω,ξ)为所述臂架的残余振动幅值比率函数,A i为脉冲序列的幅值,t i为脉冲序列的时滞,n为脉冲数量,
Figure PCTCN2020072971-appb-000004
在一些实施例中,所述二峰不灵敏输入整形器的脉冲序列的约束方程为:
Figure PCTCN2020072971-appb-000005
其中,ω为所述臂架的振动频率,ξ为所述臂架的振动阻尼比,V tol为所述臂架的残余振动幅值比率阈值,A i为所述二峰不灵敏输入整形器的脉冲序列的幅值,ω m、ω l0、ω h0、ω l、ω h分别为所述二峰不灵敏输入整形器的基本适用频率、最小适用频率、最大适用频率、第一幅值对应的频率和第二幅值对应的频率。
在一些实施例中,所述臂架的振动阻尼比ξ=0,所述二峰不灵敏输入整形器的解为:
Figure PCTCN2020072971-appb-000006
Figure PCTCN2020072971-appb-000007
其中,V tol为所述臂架的残余振动幅值比率阈值,A i为所述二峰不灵敏输入整形器的脉冲序列的幅值,t i为所述二峰不灵敏输入整形器的脉冲序列的时滞,T为所述臂架的振动周期。
在一些实施例中,所述的臂架振动控制方法,还包括:
在对所述第一输入信号进行输入整形处理之前,根据所述臂架的长度,以及臂架长度与臂架振动周期的对应关系,确定所述臂架的振动周期。
在一些实施例中,获取所述第一输入信号,包括:
获取所述手柄的开度变化信号;
根据所述开度变化信号,得到所述第一开度百分比信号。
在一些实施例中,获取所述第一输入信号,还包括:
缓存所述第一开度百分比信号。
在一些实施例中,所述第一输入信号用于控制所述臂架变幅,所述液压执行元件为变幅油缸;
所述变幅油缸的最大流量,根据以下函数关系式得到:
Figure PCTCN2020072971-appb-000008
其中,Q为所述变幅油缸的流量,A为所述变幅油缸内油液的作用面积,a为所述变幅油缸的其中一端铰点至所述臂架的近端铰点的距离,b为所述变幅油缸的另一端铰点至所述臂架的近端铰点的距离,α为a与b之间的夹角,v max_cage为所述臂架远端的最大允许线速度,x ladder_length为所述臂架的长度。
在一些实施例中,所述第一输入信号用于控制所述臂架回转,所述液压执行元件为回转液压马达。
在一些实施例中,确定所述流量需求信号,包括:
根据所述第二开度百分比信号和所述液压执行元件的最大流量的乘积,确定所述流量需求信号。
根据本公开实施例的另一方面,提供了一种臂架振动控制装置,包括:
获取单元,用于获取手柄的第一输入信号;
整形处理单元,用于对所述第一输入信号进行输入整形处理,得到第二输入信号,所述第二输入信号用于将所述臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值;
第一确定单元,用于根据所述第二输入信号,以及用于驱动所述臂架动作的液压执行元件的最大流量,确定所述液压执行元件的流量需求信号;
第二确定单元,用于根据所述流量需求信号和流量补偿函数,确定所述液压执行元件所连接的流量控制阀的输入电压信号,其中,所述流量补偿函数为所述流量控制阀的流量特性曲线函数的反函数;
控制单元,用于根据所述输入电压信号,控制所述流量控制阀动作。
根据本公开实施例的另一方面,提供了一种臂架振动控制装置,包括:
存储器;和
耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行前述任一技术方案所述的臂架振动控制方法。
根据本公开实施例的又一方面,提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现前述任一技术方案所述的臂架振动控制方法。
根据本公开实施例的再一方面,提供了一种工程机械,包括:臂架,以及前述技术方案所述的臂架振动控制装置。
在一些实施例中,所述工程机械包括云梯消防车或臂架型起重机。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1a是根据本公开一些实施例的臂架振动控制方法的流程图;
图1b是根据本公开一些实施例的臂架振动控制原理示意图;
图2是本公开一些实施例中二峰不灵敏输入整形器的灵敏度曲线示意图;
图3是本公开一些实施例中对第一输入信号进行输入整形处理的原理示意图;
图4是臂架在变幅停止后产生振动示意图;
图5是本公开一些实施例中对流量控制阀进行流量补偿原理示意图;
图6a是本公开一些实施例中第一输入信号与第二输入信号的对比图;
图6b是臂架在未采取振动控制措施及采用本公开实施例振动控制方法后的残余 振动曲线对比图;
图7是根据本公开一些实施例的臂架振动控制装置的框图;
图8是根据本公开另一些实施例的臂架振动控制装置的框图;
图9是根据本公开一些实施例的计算机系统的框图。
应当明白,附图中所示出的各个部分的尺寸并不必然是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
发明人已获知的一种云梯消防车,其对臂架振动控制的原理为:车辆的控制器在接收到来自于手柄的开度变化信号后,对臂架的动作进行减速处理,以降低臂架运动的加速度,从而降低由于臂架速度变化导致的振动。该振动控制方式仅在臂架运动速度较低或者臂架较短时振动控制效果较好。在臂架运动速度较高或者臂架较长的工况下,若要达到理想的振动控制效果,需使臂架的速度变化十分缓慢,即将臂架的加速度控制的足够低。这种控制方式导致振动控制耗时较长,并且,臂架在手柄释放后的前期仍有较大幅度的运动,因此,通过手柄操作臂架的定位精度较低,进而影响到救援的效率。
发明人已获知的另一种云梯消防车,以变幅运动停止导致的振动为例,其对臂架 的振动控制原理为:由安装在变幅油缸的油液入口处的油压传感器检测臂架振动时变幅油缸的压力变化,或者由安装在臂架远端的陀螺仪检测臂架振动时臂架远端的位移变化;车辆的控制器根据上述油压传感器的检测信号或者上述陀螺仪的检测信号,输出针对变幅油缸的振动控制信号,使变幅油缸产生与臂架振动方向相反的振动,从而达到抑制振动的目的。
该另一种云梯消防车的振动控制方式存在以下技术缺陷:需要根据油压传感器或陀螺仪的检测信号的周期来确定臂架的振动周期,然后才能对变幅油缸施加振动控制力,而确定臂架的振动周期至少需要四分之一个检测信号周期,因此,该振动控制方式对于幅值最大而且危害又最大的第一个振动没有抑制作用。此外,由于变幅油缸的活塞杆与缸筒之间的摩擦力会对变幅油缸的压力产生一定影响,臂架远端的陀螺仪与控制器之间的信号传输也有一定的延时性,这些因素导致系统不能及时的对变幅油缸施加振动控制力,振动控制的准确性较低,振动控制效果不够理想。此外,油压传感器或陀螺仪等硬件的引入,也增加了系统成本和系统的复杂性,影响到系统的稳定性。
为解决上述技术问题,本公开实施例提供了一种臂架振动控制方法、装置、工程机械及计算机可读存储介质。
本公开一些实施例提供了一种臂架振动控制方法,用于在一定程度上抑制臂架类工程机械的臂架在进行变幅或回转等动作时因自身结构柔性导致的残余振动。其中,臂架类工程机械的具体类型不限,例如可以为云梯消防车或臂架型起重机等。在本公开实施例中,对于臂架类工程机械,臂架的远端是指更加远离工程机械的操作室的一端,相应的,臂架的近端是指更加靠近工程机械的操作室的一端。
如图1a所示,该臂架振动控制方法包括了以下步骤S1至步骤S5。
在步骤S1,获取手柄的第一输入信号。
操作人员通过操作手柄来控制臂架动作,如控制臂架变幅或者回转。在本公开的一些实施例中,第一输入信号为第一开度百分比信号,该步骤S1包括:
获取手柄的开度变化信号;
根据手柄的开度变化信号,得到手柄的第一开度百分比信号。其中,手柄的开度变化信号例如为手柄的开启角度变化信号。
在本公开的另一些实施例中,该步骤S1还包括:缓存手柄的第一开度百分比信号。例如,按照时间顺序将第一开度百分比信号写入控制器中的数据缓存区。缓存的 第一开度百分比信号在后续步骤中被进行输入整形处理。
回到图1a,在步骤S2,对第一输入信号进行输入整形处理,得到第二输入信号,第二输入信号用于将臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值。
在本公开的一些实施例中,第一输入信号为第一开度百分比信号,第二输入信号为第二开度百分比信号,该步骤S2包括:将第一开度百分比信号与二峰不灵敏输入整形器(Specified-Insensitivity Input Shaper,简称SI输入整形器)的脉冲序列进行卷积计算,得到第二开度百分比信号,其中,二峰不灵敏输入整形器的脉冲序列的幅值和时滞,根据其灵敏度曲线以及臂架的残余振动幅值比率函数确定。
二峰不灵敏输入整形器的灵敏度曲线如图2所示,其中:横轴表示振动频率,以ω表示;纵轴表示残余振动幅值比率,即抑制振动后的振动幅值与臂架在未采取振动控制措施时的振动幅值的比值,以%表示。从图中可以看出,当振动频率不小于ω l0且不大于ω h0时,二峰不灵敏输入整形器可将残余振动幅值比率限制在残余振动幅值比率阈值内。选用二峰不灵敏输入整形器,对输入的臂架振动频率的误差具有较好的包容性,因此,可以提高对臂架进行振动控制的鲁棒性。其中,鲁棒性指控制系统在一定的参数摄动下,维持其它某些性能的特性。
将臂架在未采取振动控制措施情况下,在一系列脉冲激励下产生的残余振动简化为二阶振动系统,残余振动幅值比率函数可以表示为:
Figure PCTCN2020072971-appb-000009
式中,
Figure PCTCN2020072971-appb-000010
Figure PCTCN2020072971-appb-000011
其中,ω为臂架的振动频率,ξ为臂架的振动阻尼比,V(ω,ξ)为臂架的残余振动幅值比率函数,A i为脉冲序列的幅值,t i为脉冲序列的时滞,n为脉冲数量,
Figure PCTCN2020072971-appb-000012
根据上述残余振动幅值比率函数和二峰不灵敏输入整形器的灵敏度曲线,可以得到二峰不灵敏输入整形器的脉冲序列的约束方程如下:
Figure PCTCN2020072971-appb-000013
其中,ω为臂架的振动频率,ξ为臂架的振动阻尼比,V tol为臂架的残余振动幅值比率阈值,A i为二峰不灵敏输入整形器的脉冲序列的幅值,ω m、ω l0、ω h0、ω l、ω h分别为二峰不灵敏输入整形器的基本适用频率、最小适用频率、最大适用频率、第一幅值对应的频率和第二幅值对应的频率。
在一些实施例中,设定臂架的振动阻尼比ξ=0,对上述约束方程进行求解,可以得到二峰不灵敏输入整形器的解为:
Figure PCTCN2020072971-appb-000014
Figure PCTCN2020072971-appb-000015
其中,Vtol为臂架的残余振动幅值比率阈值,A i为二峰不灵敏输入整形器的脉冲序列的幅值,t i为二峰不灵敏输入整形器的脉冲序列的时滞,T为臂架的振动周期。
臂架的振动周期为其固有属性,与臂架的长度有关,臂架在不同伸展长度下,其振动周期不同。在本公开的一些实施例中,臂架振动控制方法,还包括:在步骤S2之前,根据臂架的长度,以及臂架长度与臂架振动周期的对应关系,确定臂架的振动周期。臂架长度与臂架振动周期的对应关系,可以预先存储在控制器中。臂架长度与臂架振动周期的对应关系可以根据模态仿真计算方法得出。
在本公开的另一些实施例中,臂架长度与臂架振动周期的对应关系也可以通过理论模型解析计算得出。在本公开的又一些实施例中,在臂架远端加装运动传感器或者在变幅油缸的油液入口加装油压传感器,采用人工激励方式使臂架产生振动,从上述传感器获得臂架的时域振动信号,然后对该时域振动信号进行傅立叶分析转换,得到 频域振动信号,取频率最大值作为臂架在当前长度下的振动周期,再根据臂架在不同长度下的振动周期数据,得到臂架长度与臂架振动周期的对应关系。
为简化计算,提高计算处理效率,在本公开的上述实施例中,将臂架的振动简化为二阶无阻尼振动系统。在本公开的一些其它实施例中,也可以检测臂架在未采取振动控制措施时的振幅衰减信息,根据振幅衰减信息来确定臂架的振动阻尼比ξ,然后再代入上述二峰不灵敏输入整形器的约束方程进行求解,得到修正后的方程解。
二峰不灵敏输入整形器的解包含四个脉冲,分别对应幅值A 1~A 4,相邻脉冲之间间隔0.5倍的臂架振动周期(0.5T)。如图3所示,在得到二峰不灵敏输入整形器的解后,将第一开度百分比信号与二峰不灵敏输入整形器的脉冲序列进行卷积计算,得到第二开度百分比信号。即:将第一开度百分比信号u按照0.5倍的臂架振动周期(0.5T)的延时,依次与四个脉冲幅值(A 1~A 4)相乘后求和,由此得到第二开度百分比信号Q shaped。其中,T=f(x ladder_length)为臂架长度x ladder_length与臂架振动周期T的对应关系函数。
在本公开的一些实施例中,第一开度百分比信号缓存在控制器中的数据缓存区,该数据缓存区能够存储至少1.5倍的臂架振动周期(1.5T)的信号数据,以用于与二峰不灵敏输入整形器的脉冲序列进行卷积计算。
值得一提的是,在本公开实施例中,整形器不限于二峰不灵敏输入整形器,也可以以实现系统鲁棒性与响应需求的平衡为目的,采用其它可适用的输入整形器。
回到图1a,在步骤S3,根据第二输入信号,以及用于驱动臂架动作的液压执行元件的最大流量,确定液压执行元件的流量需求信号。
如图4所示,以云梯消防车为例,若臂架1动作过程中,臂架1远端工作斗的运动速度过大,会给工作斗3中的救援人员带来安全隐患和不适感。因此,需要对驱动臂架1动作的液压执行元件(如变幅油缸2)的流量进行限制,以将工作斗3的运动速度限制在合理的范围内。在本公开的一些实施例中,第二输入信号为第二开度百分比信号,上述步骤S3例如为,根据第二开度百分比信号Q shaped(t)和液压执行元件的最大流量Q max的乘积,确定流量需求信号Q demand(t)。
在本公开的一些实施例中,手柄的第一输入信号用于控制臂架变幅,液压执行元件为变幅油缸,液压执行元件的最大流量Q max为变幅油缸的最大流量。
变幅油缸的流量的计算式为:
Figure PCTCN2020072971-appb-000016
其中,Q为变幅油缸的流量,A为变幅油缸内油液的作用面积,dL/dt为对变幅油缸的长度求时间导数。
对变幅油缸的流量Q求取最大值,即可得到最大流量Q max。请参照图4中所示的几何关系,变幅油缸2的流量Q可根据以下关系式计算得出:
Figure PCTCN2020072971-appb-000017
a为变幅油缸的其中一端铰点至臂架的近端铰点的距离,b为变幅油缸的另一端铰点至臂架的近端铰点的距离,α为a与b之间的夹角,v max_cage为臂架远端的最大允许线速度,x ladder_length为臂架的长度。
在本公开的一些实施例中,第一输入信号也可以用于控制臂架回转,液压执行元件为回转液压马达。回转液压马达作为液压执行元件时,前述的最大流量Q max为一固定值。
由于液压执行元件的流量被限制在合理范围内,因此工作斗的运动速度被限制在合理范围内,从而保障了工作斗中救援人员的安全,并减少了臂架动作带来的不适感。
回到图1a,在步骤S4,根据流量需求信号和流量补偿函数,确定液压执行元件所连接的流量控制阀的输入电压信号,其中,流量补偿函数为流量控制阀的流量特性曲线函数的反函数。
液压执行元件的动作受流量控制阀的控制。流量控制阀例如为液压阀。由于流量控制阀的流量特性曲线呈非线性,为实现流量需求信号Q demand与流量控制阀输出流量Q real的线性映射,从而减少甚至避免流量控制阀输出的流量信号的幅值偏移,以实现更佳的振动控制效果,在本公开的一些实施例中,对流量控制阀输出的流量信号进行了补偿计算。请结合图5所示,在本公开的一些实施例中,根据流量需求信号Q demand和流量补偿函数u=f -1(Q),确定液压执行元件所连接的流量控制阀的输入电压信号u valve,即,将流量需求信号Q demand代入流量补偿函数u=f -1(Q),得到输入电压信号u valve,其中,流量补偿函数u=f -1(Q)为流量控制阀的流量特性曲线函数Q=f(u)的反函数。
回到图1a,在步骤S5,根据输入电压信号u valve,控制流量控制阀动作。根据本公开上述实施例对臂架进行振动控制的原理如图1b所示。
如图6a和图6b所示,其中,图6a是本公开一些实施例中第一输入信号与第二输入信号的对比图,图6b是臂架在未采取振动控制措施及采用本公开实施例振动控 制方法后的残余振动曲线对比图。从图中可以看出,采用本公开实施例振动控制方法后,臂架的残余振动幅值不明显,从而使人不易感受到臂架的振动。
本公开实施例采用的二峰不灵敏输入整形器包含四个脉冲,其中最后一个脉冲时滞为1.5T,该时滞远远小于未采取振动控制措施情况下臂架的残余振动所需的衰减时间,因此振动控制的及时性较好。此外,从图中还可以看出,即使第一输入信号的变化速度接近阶跃信号,仍然可以达到较好的振动控制效果。
本公开实施例提供的臂架振动控制方法属于主动振动控制方法,通过对手柄的第一输入信号进行输入整形处理得到第二输入信号,第二输入信号控制臂架动作,可将臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值。与发明人已知的相关技术相比,本公开实施例方案对振动的控制更为及时、准确,精度更高。
本公开一些实施例方案采用二峰不灵敏输入整形器,对输入的臂架振动频率的误差具有较好的包容性,因此,可以提高振动控制的鲁棒性。二峰不灵敏输入整形器从第一个脉冲开始即对第一输入信号进行输入整形,对臂架的振动控制在臂架达到第一个振动幅值之前,因此,对臂架振动最为强烈的第一个幅值具有较好的抑制效果。
此外,与发明人已知的相关技术相比,采用本公开实施例方案,可以不增加传感器等硬件设施而实现上述有益效果,这样,不会影响到原有系统的物理结构及其工作稳定性,也不会增加硬件成本。
如图7所示,本公开一些实施例还提供了一种臂架振动控制装置,包括:
获取单元71,用于获取手柄的第一输入信号;
整形处理单元72,用于对第一输入信号进行输入整形处理,得到第二输入信号,第二输入信号用于将臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值;
第一确定单元73,用于根据第二输入信号,以及用于驱动臂架动作的液压执行元件的最大流量,确定液压执行元件的流量需求信号;
第二确定单元74,用于根据流量需求信号和流量补偿函数,确定液压执行元件所连接的流量控制阀的输入电压信号,其中,流量补偿函数为流量控制阀的流量特性曲线函数的反函数;
控制单元75,用于根据输入电压信号,控制流量控制阀动作。
同理,采用本公开实施例的臂架振动控制装置可以实现与前述类似的有益效果,这里不在详细赘述。
如图8所示,本公开一些实施例还提供了一种臂架振动控制装置,包括:存储器 83和耦接至存储器83的处理器84,处理器84被配置为基于存储在存储器83中的指令,执行如前述任一实施例的臂架振动控制方法。
应当理解,前述臂架振动控制方法中的各个步骤都可以通过处理器来实现,并且可以通过软件、硬件、固件或其结合的任一种方式实现。
除了上述臂架振动控制方法、装置之外,本公开实施例还可采用在一个或多个包含有计算机程序指令的非易失性存储介质上实施的计算机程序产品的形式。因此,本公开一些实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如前述任一技术方案的臂架振动控制方法。
图9示出了本公开一些实施例的计算机系统的示意图。如图9所示,计算机系统可以用通用计算设备的形式表现,该计算机系统可以用来实现上述实施例的臂架振动控制方法。计算机系统包括存储器91、处理器92和连接不同系统组件的总线90。
存储器91例如可以包括系统存储器、非易失性存储介质等。系统存储器例如存储有操作系统、应用程序、引导装载程序(Boot Loader)以及其他程序等。系统存储器可以包括易失性存储介质,例如随机存取存储器(RAM)和/或高速缓存存储器。非易失性存储介质例如存储有执行上述臂架振动控制方法的对应实施例的指令。非易失性存储介质包括但不限于磁盘存储器、光学存储器、闪存等。
处理器92可以用通用处理器、数字信号处理器(DSP)、应用专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其它可编程逻辑设备、分立门或晶体管等分立硬件组件方式来实现。相应地,诸如判断模块和确定模块的每个模块,可以通过中央处理器(CPU)运行存储器中执行相应步骤的指令来实现,也可以通过执行相应步骤的专用电路来实现。
总线90可以使用多种总线结构中的任意总线结构。例如,总线结构包括但不限于工业标准体系结构(ISA)总线、微通道体系结构(MCA)总线、外围组件互连(PCI)总线。
计算机系统还可以包括输入输出接口93、网络接口94、存储接口95等。输入输出接口93、网络接口94、存储接口95以及存储器91和处理器92之间可以通过总线90连接。输入输出接口93可以为显示器、鼠标、键盘等输入输出设备提供连接接口。网络接口94为各种联网设备提供连接接口。存储接口95为软盘、U盘、SD卡等外部存储设备提供连接接口。
本公开的一些实施例还提供了一种工程机械,包括:臂架,以及前述实施例的臂 架振动控制装置。工程机械包括但不限于云梯消防车或臂架型起重机。操作人员在操作该臂架类工程机械的臂架动作时,臂架具有较好的振动控制效果。
至此,已经详细描述了本公开的各种实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (16)

  1. 一种臂架振动控制方法,包括:
    获取手柄的第一输入信号;
    对所述第一输入信号进行输入整形处理,得到第二输入信号,所述第二输入信号用于将所述臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值;
    根据所述第二输入信号,以及用于驱动所述臂架动作的液压执行元件的最大流量,确定所述液压执行元件的流量需求信号;
    根据所述流量需求信号和流量补偿函数,确定所述液压执行元件所连接的流量控制阀的输入电压信号,其中,所述流量补偿函数为所述流量控制阀的流量特性曲线函数的反函数;
    根据所述输入电压信号,控制所述流量控制阀动作。
  2. 根据权利要求1所述的臂架振动控制方法,其中:所述第一输入信号为第一开度百分比信号,所述第二输入信号为第二开度百分比信号;
    对所述第一输入信号进行输入整形处理,得到所述第二输入信号,包括:
    将所述第一开度百分比信号与二峰不灵敏输入整形器的脉冲序列进行卷积计算,得到所述第二开度百分比信号;
    其中,所述二峰不灵敏输入整形器的脉冲序列的幅值和时滞,根据所述二峰不灵敏输入整形器的灵敏度曲线以及所述臂架的残余振动幅值比率函数确定。
  3. 根据权利要求2所述的臂架振动控制方法,其中:所述臂架的残余振动幅值比率函数为:
    Figure PCTCN2020072971-appb-100001
    式中,
    Figure PCTCN2020072971-appb-100002
    Figure PCTCN2020072971-appb-100003
    其中,ω为所述臂架的振动频率,ξ为所述臂架的振动阻尼比,V(ω,ξ)为所述臂 架的残余振动幅值比率函数,A i为脉冲序列的幅值,t i为脉冲序列的时滞,n为脉冲数量,
    Figure PCTCN2020072971-appb-100004
  4. 根据权利要求3所述的臂架振动控制方法,其中:所述二峰不灵敏输入整形器的脉冲序列的约束方程为:
    Figure PCTCN2020072971-appb-100005
    其中,ω为所述臂架的振动频率,ξ为所述臂架的振动阻尼比,V tol为所述臂架的残余振动幅值比率阈值,A i为所述二峰不灵敏输入整形器的脉冲序列的幅值,ω m、ω l0、ω h0、ω l、ω h分别为所述二峰不灵敏输入整形器的基本适用频率、最小适用频率、最大适用频率、第一幅值对应的频率和第二幅值对应的频率。
  5. 根据权利要求4所述的臂架振动控制方法,其中:所述臂架的振动阻尼比ξ=0,所述二峰不灵敏输入整形器的解为:
    Figure PCTCN2020072971-appb-100006
    Figure PCTCN2020072971-appb-100007
    其中,V tol为所述臂架的残余振动幅值比率阈值,A i为所述二峰不灵敏输入整形器的脉冲序列的幅值,t i为所述二峰不灵敏输入整形器的脉冲序列的时滞,T为所述臂架的振动周期。
  6. 根据权利要求5所述的臂架振动控制方法,还包括:
    在对所述第一输入信号进行输入整形处理之前,根据所述臂架的长度,以及臂架长度与臂架振动周期的对应关系,确定所述臂架的振动周期。
  7. 根据权利要求2所述的臂架振动控制方法,其中:获取所述第一输入信号,包括:
    获取所述手柄的开度变化信号;
    根据所述开度变化信号,得到所述第一开度百分比信号。
  8. 根据权利要求2所述的臂架振动控制方法,其中:获取所述第一输入信号,还包括:
    缓存所述第一开度百分比信号。
  9. 根据权利要求2所述的臂架振动控制方法,其中:所述第一输入信号用于控制所述臂架变幅,所述液压执行元件为变幅油缸;
    所述变幅油缸的最大流量,根据以下函数关系式得到:
    Figure PCTCN2020072971-appb-100008
    其中,Q为所述变幅油缸的流量,A为所述变幅油缸内油液的作用面积,a为所述变幅油缸的其中一端铰点至所述臂架的近端铰点的距离,b为所述变幅油缸的另一端铰点至所述臂架的近端铰点的距离,α为a与b之间的夹角,v max_cage为所述臂架远端的最大允许线速度,x ladder_length为所述臂架的长度。
  10. 根据权利要求2所述的臂架振动控制方法,其中:所述第一输入信号用于控制所述臂架回转,所述液压执行元件为回转液压马达。
  11. 根据权利要求9或10所述的臂架振动控制方法,其中:确定所述流量需求信号,包括:
    根据所述第二开度百分比信号和所述液压执行元件的最大流量的乘积,确定所述流量需求信号。
  12. 一种臂架振动控制装置,包括:
    获取单元,用于获取手柄的第一输入信号;
    整形处理单元,用于对所述第一输入信号进行输入整形处理,得到第二输入信号,所述第二输入信号用于将所述臂架的残余振动幅值比率限制为不大于残余振动幅值比率阈值;
    第一确定单元,用于根据所述第二输入信号,以及用于驱动所述臂架动作的液压执行元件的最大流量,确定所述液压执行元件的流量需求信号;
    第二确定单元,用于根据所述流量需求信号和流量补偿函数,确定所述液压执行元件所连接的流量控制阀的输入电压信号,其中,所述流量补偿函数为所述流量控制阀的流量特性曲线函数的反函数;
    控制单元,用于根据所述输入电压信号,控制所述流量控制阀动作。
  13. 一种臂架振动控制装置,包括:
    存储器;和
    耦接至存储器的处理器,处理器被配置为基于存储在存储器中的指令,执行如权利要求1-11中任一项所述的臂架振动控制方法。
  14. 一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1-11中任一项所述的臂架振动控制方法。
  15. 一种工程机械,包括:臂架,以及根据权利要求13所述的臂架振动控制装置。
  16. 根据权利要求15所述的工程机械,其中:所述工程机械包括云梯消防车或臂架型起重机。
PCT/CN2020/072971 2020-01-19 2020-01-19 臂架振动控制方法、装置及工程机械 WO2021142826A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/072971 WO2021142826A1 (zh) 2020-01-19 2020-01-19 臂架振动控制方法、装置及工程机械
DE112020006563.4T DE112020006563T5 (de) 2020-01-19 2020-01-19 Verfahren und Vorrichtung zum Steuern von Schwingung eines Auslegers und Technikmaschinerie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/072971 WO2021142826A1 (zh) 2020-01-19 2020-01-19 臂架振动控制方法、装置及工程机械

Publications (1)

Publication Number Publication Date
WO2021142826A1 true WO2021142826A1 (zh) 2021-07-22

Family

ID=76863313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072971 WO2021142826A1 (zh) 2020-01-19 2020-01-19 臂架振动控制方法、装置及工程机械

Country Status (2)

Country Link
DE (1) DE112020006563T5 (zh)
WO (1) WO2021142826A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285643A (en) * 1990-04-02 1994-02-15 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for civil-engineering and construction machine
CN1141680A (zh) * 1994-02-21 1997-01-29 株式会社小松制作所 工作机械的减震装置及减震方法
US6328173B1 (en) * 1998-09-08 2001-12-11 Palfinger Aktiengesellschaft Crane
US20040055455A1 (en) * 2002-09-25 2004-03-25 Tabor Keith A. Apparatus for controlling bounce of hydraulically powered equipment
GB2445165A (en) * 2006-12-29 2008-07-02 Agco Sa Vibration damping for load carrier
CN102797787A (zh) * 2012-08-17 2012-11-28 中联重科股份有限公司 混凝土布料设备及其臂架振动抑制的方法、控制器和装置
CN103629293A (zh) * 2013-12-04 2014-03-12 中联重科股份有限公司 臂架残余振动的抑制方法及装置
CN106661870A (zh) * 2014-07-03 2017-05-10 住友重机械工业株式会社 挖土机及挖土机的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5285643A (en) * 1990-04-02 1994-02-15 Hitachi Construction Machinery Co., Ltd. Hydraulic drive system for civil-engineering and construction machine
CN1141680A (zh) * 1994-02-21 1997-01-29 株式会社小松制作所 工作机械的减震装置及减震方法
US6328173B1 (en) * 1998-09-08 2001-12-11 Palfinger Aktiengesellschaft Crane
US20040055455A1 (en) * 2002-09-25 2004-03-25 Tabor Keith A. Apparatus for controlling bounce of hydraulically powered equipment
GB2445165A (en) * 2006-12-29 2008-07-02 Agco Sa Vibration damping for load carrier
CN102797787A (zh) * 2012-08-17 2012-11-28 中联重科股份有限公司 混凝土布料设备及其臂架振动抑制的方法、控制器和装置
CN103629293A (zh) * 2013-12-04 2014-03-12 中联重科股份有限公司 臂架残余振动的抑制方法及装置
CN106661870A (zh) * 2014-07-03 2017-05-10 住友重机械工业株式会社 挖土机及挖土机的控制方法

Also Published As

Publication number Publication date
DE112020006563T5 (de) 2022-12-29

Similar Documents

Publication Publication Date Title
Feng et al. Identification and compensation of non-linear friction for a electro-hydraulic system
CN104276526B (zh) 减小电梯绳索摇摆的方法和电梯系统
JP6180373B2 (ja) エレベータシステムの動作を制御する方法、セミアクティブダンパアクチュエータの動作を制御する制御ユニット、およびエレベータシステム
CN103092073B (zh) 抑制臂架振动的控制方法及系统
JP6008816B2 (ja) エレベータシステムの動作を制御するための方法及びシステム
JP6664138B2 (ja) 制御方法、及びロボット装置
CN103383572B (zh) 一种工程机械及其臂架的振动控制方法、控制装置和控制系统
WO2013056517A1 (zh) 泵车及其臂架的振动抑制方法、控制器和装置
CN103064425B (zh) 提高臂架运动稳定性的方法、系统及工程机械
CN104122798A (zh) 压电陶瓷驱动器的高速纳米精度运动控制方法及系统
JP6037888B2 (ja) 制振装置
CN102341547A (zh) 建筑机械、建筑机械的控制方法、以及使计算机执行该方法的程序
RU2742676C1 (ru) Способ управления пространственным расположением подъемного контейнера в подъемной системе двойного типа намотки канатов для работы в сверхглубокой вертикальной шахте
WO2021142826A1 (zh) 臂架振动控制方法、装置及工程机械
WO2023207152A1 (zh) 一种用于起重机臂架的控制方法、控制器、装置及起重机
JP6564272B2 (ja) Hilシミュレーションシステム及びhilシミュレーション方法
CN105631144B (zh) 一种考虑动载荷的汽车起重机吊臂挠度计算方法
Golovin et al. Discrepancy-based control for positioning of large gantry crane
JP5499865B2 (ja) 多関節型ロボットの速度指令プロファイルの生成方法
RU2786545C1 (ru) Способ и устройство управления колебаниями стрелы, а также инженерное оборудование
CN108491661B (zh) 自适应调节起重机起重臂动刚度消除振动的方法和系统
CN114312196B (zh) 基于模型补偿的钟摆式悬架控制方法及其参数测量方法
Vaughan Dynamics and control of mobile cranes
Cao et al. An improved negative zero vibration anti-swing control strategy for grab ship unloader based on elastic wire rope model
CN113562616A (zh) 智能调节起重机塔身变幅刚度以抑制振动的方法和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914517

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20914517

Country of ref document: EP

Kind code of ref document: A1