WO2021142570A1 - 一种储存稳定的缩二脲多异氰酸酯的制备方法 - Google Patents

一种储存稳定的缩二脲多异氰酸酯的制备方法 Download PDF

Info

Publication number
WO2021142570A1
WO2021142570A1 PCT/CN2020/071732 CN2020071732W WO2021142570A1 WO 2021142570 A1 WO2021142570 A1 WO 2021142570A1 CN 2020071732 W CN2020071732 W CN 2020071732W WO 2021142570 A1 WO2021142570 A1 WO 2021142570A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
group
diisocyanate
biuret
preparation
Prior art date
Application number
PCT/CN2020/071732
Other languages
English (en)
French (fr)
Inventor
石滨
尚永华
刘照
薛勇勇
乔小飞
迟正伟
周琦
孙立冬
李海军
黎源
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to PCT/CN2020/071732 priority Critical patent/WO2021142570A1/zh
Publication of WO2021142570A1 publication Critical patent/WO2021142570A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C273/00Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C273/18Preparation of urea or its derivatives, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups of substituted ureas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C275/00Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups
    • C07C275/46Derivatives of urea, i.e. compounds containing any of the groups, the nitrogen atoms not being part of nitro or nitroso groups containing any of the groups, X being a hetero atom, Y being any atom, e.g. acylureas
    • C07C275/58Y being a hetero atom
    • C07C275/62Y being a nitrogen atom, e.g. biuret
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/02Polymeric products of isocyanates or isothiocyanates of isocyanates or isothiocyanates only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates

Definitions

  • the invention relates to the preparation of a polyisocyanate containing a biuret group.
  • the prepared biuret polyisocyanate product has excellent storage stability.
  • Aliphatic or cycloaliphatic biuret polyisocyanates are widely used in outdoor weather-resistant coatings and automobiles due to their light stability and weather resistance, excellent flexibility and adhesion, and good compatibility. Through the formulation of different systems, they are widely used in outdoor weather-resistant coatings and automobiles. Refinish paint, industrial paint and wood paint.
  • biuret group-containing polyisocyanates The preparation of biuret group-containing polyisocyanates is roughly divided into two types of methods: one is the water method, in which polyisocyanate reacts with excess water or a water donor to form urea, and then urea reacts with excess polyisocyanate to form urea.
  • Biuret, water or water donors are called biuretating agents.
  • patent US3201372 uses water as the biuretization reagent
  • patent GB1043672 uses hydrogen sulfide as the biuretization reagent
  • patent US3392183 uses formic acid as the biuretization reagent.
  • patent US3358010 uses tertiary alcohols as biuretization reagents
  • patent US4320068 uses aldoxime compounds as biuretization reagents. The other is the diisocyanate/diamine method, in which amine reacts with excess isocyanate to form urea, which then reacts with excess polyisocyanate to form biuret.
  • Patent US3358010 describes a method for preparing HDI biuret by reacting polyisocyanate with tertiary alcohol.
  • the white polyurea produced during the reaction is very small and the yield of biuret is improved.
  • the reaction temperature of the method is as high as 200 DEG C, the color number of the prepared biuret product is higher, and the content of the volatile isocyanate monomer of the diluted product during long-term storage will increase.
  • the published patent CN1175965A uses tertiary alcohol or a mixture of water and tertiary alcohol as the biuretizer, and prepares the biuret-containing group under the condition of a catalytic amount of urea, amine, biuret, urea derivative or amide as a stabilizer.
  • Polyisocyanate, the product prepared by this method has relatively low viscosity and low content of volatile isocyanate monomer. When the product is stored for a long time, the content of volatile isocyanate monomer will increase.
  • the biuret products prepared by the existing methods all have the problem of increased residual monomer content during storage. Free monomers are harmful to the human body and the environment, which seriously affects the use of biuret curing agents.
  • the purpose of the present invention is to provide a method for preparing storage-stable biuret polyisocyanate.
  • the obtained biuret polyisocyanate product has excellent storage stability of monomer content and little increase in monomer content.
  • the present invention provides a method for preparing storage-stable biuret polyisocyanate, which comprises the following steps:
  • reaction liquid Using water as the biuretization reagent to react with the diisocyanate monomer in the presence of a catalyst to obtain a reaction liquid;
  • the reaction system of the step (1) is also added Bronsted proton acid, so that the uretdione group in the polyisocyanate product obtained in the step (2) and (uretdione group + urea group + The molar ratio of the sum of the three biuret groups) (ie the molar ratio of uretdione group/(uretdione group + urea group + biuret group)) ⁇ 0.05, preferably ⁇ 0.03, as described in step (1)
  • the catalyst is a substance different from the Bronsted protic acid.
  • R is the part of the aforementioned diisocyanate monomer excluding one NCO group, for example, for hexamethylene diisocyanate, R is a hexamethylene isocyanate group.
  • the urea group, biuret group and uretdione group are the remaining part after removing the R group in the above structural formula, respectively.
  • biuret reagent Use water as a biuret reagent, react with diisocyanate monomers (such as aliphatic and/or cycloaliphatic diisocyanate monomers), and then separate to obtain urea groups, biuret groups and uretdione groups
  • diisocyanate monomers such as aliphatic and/or cycloaliphatic diisocyanate monomers
  • the biuret polyisocyanate product obtained by this method can be stably stored at 40° C. for at least 6 months, and the increase in the monomer content is less than 0.15 wt%.
  • the molar ratio of uretdione group/(uretdione group+ureido group+biuret group) in the polyisocyanate product is ⁇ 0.05, for example, ⁇ 0.04, ⁇ 0.03, ⁇ 0.02, etc., preferably ⁇ 0.03, the storage stability of the product is better.
  • the amount of the Bronsted protic acid used in step (1) is 0.01-0.1% by weight based on the total amount of diisocyanate monomers used, such as 0.01% by weight, 0.05% by weight, or 0.1% by weight .
  • the Bronsted protic acid used in step (1) is selected from formic acid, acetic acid, propionic acid, butyric acid, pivalic acid, stearic acid, cyclohexanecarboxylic acid, malonic acid, succinic acid , Adipic acid, benzoic acid, phthalic acid, phosphoric acid, phosphorous acid, one or more of boric acid.
  • the Bronsted protic acid used in step (1) is put into the reaction system before the biuretization reagent is put into the reaction system.
  • the Bronsted protic acid can be added together with the catalyst, or it can be added to the catalyst. It is added before or after the catalyst is added, but it is necessary to ensure that the Bronsted protic acid is added before the biuretizing agent is added.
  • the water used as the biuretization reagent can come from liquid water, steam, or crystalline hydrates of inorganic substances (such as sodium sulfate decahydrate, magnesium sulfate heptahydrate, sulfuric acid dodecahydrate). Aluminum potassium, etc.), water vapor is preferred in the present invention.
  • the amount of water used by those skilled in the art can be determined according to the type of isocyanate selected to meet the application of downstream coatings or adhesive products. This is the existing technology in the field and will not be repeated here; for example, for HDI, HDI The mass ratio to water is 40:1-60:1; for IPDI, the mass ratio of IPDI to water is 50:1-70:1.
  • the catalyst used in step (1) is an acidic catalyst, which can be selected from those conventionally used in the art, such as monoalkyl phosphate, dialkyl phosphate, and monoaryl phosphate.
  • an acidic catalyst which can be selected from those conventionally used in the art, such as monoalkyl phosphate, dialkyl phosphate, and monoaryl phosphate.
  • the aliphatic, branched aliphatic or araliphatic groups of the monoalkyl phosphate, dialkyl phosphate, monoaryl phosphate or diaryl phosphate have 1-30, preferably 4-20 carbon atoms.
  • di-isooctyl phosphate, di-n-decyl phosphate, diphenyl phosphate and mixtures thereof are examples of di-isooctyl phosphate, di-n-decyl phosphate, diphenyl phosphate and mixtures thereof.
  • the amount of the catalyst in step (1) is 0.1-0.5% of the total weight of the diisocyanate monomer used.
  • the catalyst can be added as a solution or dispersion in a suitable solvent, and the catalyst is preferably added directly.
  • the diisocyanate monomer is an aliphatic diisocyanate and/or alicyclic diisocyanate; in addition to the NCO group, the diisocyanate monomer also contains 4-20 carbon atoms, more preferably hexamethylene One or more of diisocyanate, 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate and isophorone diisocyanate, more preferably hexamethylene diisocyanate and isophorone One or two kinds of ketone diisocyanate, more preferably hexamethylene diisocyanate.
  • the reaction temperature of the reaction in step (1) is 80-180°C (for example, 80°C, 100°C, 120°C, 160°C, 180°C, etc.), preferably 100-160°C;
  • the reaction time is 30°C. -400min (for example, 30min, 80min, 100min, 150min, 180min, 200min, 300min, 400min, etc.), preferably 60-180min.
  • the separation means for separating and removing unreacted diisocyanate monomers in step (2) is conventional in the art, and there is no particular limitation on this.
  • extraction, rotary evaporator, short-path evaporator or thin-film evaporator and theirs can be used.
  • the excess unreacted diisocyanate monomer is removed from the reaction solution until the content of the diisocyanate monomer in the product is less than 0.5% by weight.
  • the separation device used to separate unreacted diisocyanate monomers can be composed of, for example, a first-stage wiped film evaporator and a second-stage wiped film evaporator.
  • the separation temperature is controlled at 110-180°C
  • the separation absolute pressure is controlled at 1-200Pa
  • the separation temperature of the second stage wiped film evaporator is controlled at 120-180°C
  • the separation absolute pressure is controlled at 1-50Pa.
  • the wiped film system of the wiped film evaporator is a roller type or a scraper type
  • the evaporator is a thin film evaporator or a short-path evaporator.
  • a solvent or undilution may be used to obtain a polyisocyanate product containing a biuret group; if a solvent is used for dilution, the dilution solvent used is selected from esters, One or more of ketones and aromatic hydrocarbons, for example, may include ethyl acetate, butyl acetate, propylene glycol methyl ether acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, toluene, two Toluene, and their mixtures, can be diluted in any proportion when the solvents can dissolve each other.
  • the mass ratio of the biuret group-containing polyisocyanate product in the entire mixture is ⁇ 40%, and the solvent needs to be polyurethane grade Solvent.
  • a solvent can be added during the reaction to help inhibit the formation of insoluble polyurea, but it is preferred not to add a solvent.
  • Suitable solvents are for example: butyl acetate, ethyl acetate, tetrahydrofuran, propylene glycol methyl ether acetate, xylene, propylene glycol diacetate, butanone, methyl isoamyl ketone, cyclohexanone, hexane, toluene, two Toluene, benzene, chlorobenzene, o-dichlorobenzene, hydrocarbon mixtures, dichloromethane and/or trialkyl phosphates.
  • reaction of the present invention is preferably carried out without adding a solvent.
  • the obtained biuret polyisocyanate product has excellent storage stability of monomer content and little increase in monomer content.
  • the obtained biuret polyisocyanate product can be stably stored at 40° C. for at least 6 months, and the monomer content increase is less than 0.15 wt%.
  • Detection of the molar ratio of urea group, biuret group, and uretdione group in the polyisocyanate composition of the present invention Use AVANCE400 manufactured by Bruker Biospin, use deuterated chloroform CDCl 3 as the solvent, and use the sample (prepared more Isocyanate product) mass concentration 60%, 100MHz, scanning overnight to measure 13 C nuclear magnetic resonance spectrum.
  • the reagents used in the synthesis process of the present invention are all purchased from Sigma-Aldrich, and unless otherwise specified, they are all analytically pure.
  • the free isocyanate monomer content test adopts the national standard GB/T 18446-2009.
  • the obtained biuret polyisocyanate product has excellent monomer content storage stability and little increase in monomer content.
  • the obtained biuret polyisocyanate product can be stored stably at least at 40°C. 6 months, and the monomer content increase is less than 0.15wt%.
  • HDI Hexamethylene diisocyanate
  • IPDI isophorone diisocyanate
  • DEHP diisooctyl phosphate
  • DBP dibutyl phosphate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

本发明提供一种储存稳定的缩二脲多异氰酸酯的制备方法,采用本发明的方法,得到的缩二脲多异氰酸酯产品的单体含量储存稳定性优异,单体含量增加少。所述制备方法,包括如下步骤:(1)以水为缩二脲化试剂,将其与二异氰酸酯单体在催化剂存在下反应得到反应液;(2)分离除去步骤(1)所述反应液中未反应的二异氰酸酯单体,得到含缩二脲基团的多异氰酸酯产品;其中在所述步骤(1)中还加入布朗斯特质子酸,以使步骤(2)中得到的所述多异氰酸酯产品中的脲二酮基/(脲二酮基+脲基+缩二脲基)的摩尔比≤0.05,步骤(1)中所述催化剂为不同于布朗斯特质子酸的化合物。

Description

一种储存稳定的缩二脲多异氰酸酯的制备方法 技术领域
本发明涉及一种含缩二脲基团的多异氰酸酯的制备,制备的缩二脲多异氰酸酯产品具有优异的储存稳定性。
背景技术
脂肪族或脂环族缩二脲多异氰酸酯以其光稳定性和耐候性、优异的柔韧性与附着力、良好的相溶性,通过与不同体系的配制,广泛的用于室外耐候性涂料、汽车修补漆、工业漆以及木器漆。
含缩二脲基团的多异氰酸酯的制备大体上分为两类方法:一类是水法,其中多异氰酸酯与过量的水或者水的供体反应生成脲,脲然后与过量的多异氰酸酯反应生成缩二脲,水或者水的供体称之为缩二脲化试剂。目前报道的采用水法制备含缩二脲的多异氰酸酯的专利中,专利US3201372采用水作为缩二脲化试剂,专利GB1043672采用硫化氢作为缩二脲化试剂,专利US3392183采用甲酸作为缩二脲化试剂,专利US3358010采用叔醇作为缩二脲化试剂,专利US4320068采用醛肟类化合物作为缩二脲化试剂。另一类是二异氰酸酯/二胺法,其中胺与过量的异氰酸酯反应生成脲,脲然后与过量的多异氰酸酯反应生成缩二脲。
专利US3358010描述了采用多异氰酸酯与叔醇反应来制备HDI缩二脲的方法,反应过程中产生的白色聚脲很少,并且提高了缩二脲的产率。但该方法的反应温度高达200℃,制备的缩二脲产品色号较高,稀释产品在长期存储过程中易挥发的异氰酸酯单体含量会增加。
公开专利CN1175965A采用叔醇或水与叔醇的混合物作为缩二脲化剂,在催化量的脲、胺、缩二脲、脲的衍生物或酰胺作为稳定剂的条件下制备含缩二脲基的多异氰酸酯,该方法制备的产品具有比较低的粘度和低含量的易挥发异氰酸酯单体,在产品长期储存时,易挥发异氰酸酯单体的含量增大。
现有方法制备的缩二脲产品在存储过程中均存在残余单体含量增加的问 题,游离单体对人体和环境有害,这严重影响了缩二脲固化剂的使用。
发明内容
本发明的目的在于提供一种储存稳定的缩二脲多异氰酸酯的制备方法,采用本发明的方法,得到的缩二脲多异氰酸酯产品的单体含量储存稳定性优异,单体含量增加少。
本发明为达到其目的,提供如下技术方案:
本发明提供一种储存稳定的缩二脲多异氰酸酯的制备方法,包括如下步骤:
(1)以水为缩二脲化试剂与二异氰酸酯单体在催化剂存在下反应得到反应液;
(2)分离除去步骤(1)所述反应液中未反应的二异氰酸酯单体,得到含缩二脲基团的多异氰酸酯产品;
其中在所述步骤(1)的反应体系中还加入布朗斯特质子酸,以使步骤(2)中得到的所述多异氰酸酯产品中的脲二酮基与(脲二酮基+脲基+缩二脲基三者之和)的摩尔比(即脲二酮基/(脲二酮基+脲基+缩二脲基)的摩尔比)≤0.05,优选≤0.03,步骤(1)中所述催化剂为不同于所述布朗斯特质子酸的物质。
本领域技术人员所知晓的,脲、缩二脲、脲二酮的结构表示如下:
Figure PCTCN2020071732-appb-000001
其中R为前述二异氰酸酯单体中除去一个NCO基以外的部分,例如,对于六亚甲基二异氰酸酯,R为六亚甲基异氰酸酯基。而脲基、缩二脲基和脲二酮基分别是去除上述结构式中的R基团所剩余的部分。
采用水作为缩二脲化试剂,与二异氰酸酯单体(如脂肪族和/或脂环族的二异氰酸酯单体)反应,然后通过分离得到具有脲基、缩二脲基和脲二酮基的缩二脲多异氰酸酯产品,本发明人经深入研究,惊奇地发现:通过在缩二脲多异氰酸酯制备反应过程中添加少量布朗斯特质子酸,可以起到抑制脲二酮多异氰酸酯的生成的作用,使得最终产品中脲二酮基/(脲二酮基+脲基+缩二脲基)的摩尔比为≤0.05,产品的存储稳定性优异。通过此方法得到的缩二脲多异氰酸酯产品可在40℃下稳定存储至少6个月,而其单体含量增加量小于0.15wt%。
一些实施方案中,所述多异氰酸酯产品中的脲二酮基/(脲二酮基+脲基+缩二脲基)的摩尔比≤0.05,例如≤0.04,≤0.03,≤0.02等,优选≤0.03,产品的存储稳定性更佳。
一些实施方案中,步骤(1)中所用的所述布朗斯特质子酸的用量基于所用的二异氰酸酯单体的总量为0.01-0.1重量%,例如0.01重量%、0.05重量%、0.1重量%。
一些实施方案中,步骤(1)中所用的所述布朗斯特质子酸选自甲酸、乙酸、丙酸、丁酸、新戊酸、硬脂酸、环己烷甲酸、丙二酸、琥珀酸、己二酸、苯甲酸、邻苯二甲酸、磷酸、亚磷酸、硼酸中的一种或多种。
步骤(1)中所用的所述布朗斯特质子酸在所述缩二脲化试剂投入反应体系之前投入反应体系中,可以将所述布朗斯特质子酸与催化剂一起加入,也可以在催化剂加入前或者催化剂加入后加入,但需确保在所述缩二脲化试剂加入之前加入布朗斯特质子酸。
步骤1)中,作为缩二脲化试剂的水可以来自液态的水,也可以来自水蒸气,也可以来自无机物的结晶水合物(例如十水合硫酸钠,七水合硫酸镁,十二水合硫酸铝钾等),本发明优选水蒸气。关于水的用量本领域技术人员可以根据所选择的异氰酸酯种类而确定,以满足下游涂料或胶黏剂产品的应用,这是本领域现有技术,对此不作一一赘述;例如对于HDI,HDI与水的质量比为40:1-60:1;对于IPDI,IPDI与水质量比为50:1-70:1。
一些实施方案中,步骤(1)中所用的所述催化剂为酸性催化剂,可以选自本领域所常规使用的那些催化剂,例如优选为磷酸单烷基酯、磷酸二烷基酯、 磷酸单芳基酯、磷酸二芳基酯中的一种或多种混合物。优选地,所述的磷酸单烷基酯、磷酸二烷基酯、磷酸单芳基酯或磷酸二芳基酯的脂族、支化脂族或芳脂族基团具有1-30个,优选4-20个碳原子。例如磷酸甲基酯、磷酸乙基酯、磷酸正十二烷基酯、磷酸二乙基酯、磷酸二正丙基酯、磷酸二正丁基酯、磷酸二异戊基酯、磷酸二己基酯、磷酸二异辛基酯、磷酸二正癸基酯、磷酸二苯基酯及其混合物中的一种或多种。
一些实施方案中,步骤(1)中所述催化剂的用量为所用二异氰酸酯单体的总重量的0.1-0.5%。催化剂可以以合适溶剂中的溶液或分散体加入,优选将催化剂直接加入。
一些实施方案中,所述二异氰酸酯单体为脂肪族二异氰酸酯和/或脂环族二异氰酸酯;所述二异氰酸酯单体除了NCO基外还含有4-20个碳原子,进一步优选六亚甲基二异氰酸酯、1,4-环己烷二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯和异佛尔酮二异氰酸酯中的一种或多种,更优选六亚甲基二异氰酸酯和异佛尔酮二异氰酸酯的一种或两种,更进一步优选六亚甲基二异氰酸酯。
一些实施方案中,步骤(1)中所述反应的反应温度为80-180℃(例如80℃、100℃、120℃、160℃、180℃等),优选100-160℃;反应时间为30-400min(例如30min、80min、100min、150min、180min、200min、300min、400min等),优选60-180min。
步骤(2)中分离除去未反应的二异氰酸酯单体的分离手段为本领域所常规的,对此不做特别限制,例如可为萃取、旋转蒸发器、短程蒸发器或薄膜蒸发器及他们的组合,从所述的反应液中除去过量的未反应的二异氰酸酯单体,直至产品中的二异氰酸酯单体含量小于0.5%(重量)。本发明方法中,分离未反应的二异氰酸酯单体所用的分离装置例如可以由第一级刮膜式蒸发器和第二级刮膜式蒸发器组成,所述第一级刮膜式蒸发器的分离温度控制在110-180℃,分离绝对压力控制在1-200Pa,第二级刮膜式蒸发器的分离温度控制在120-180℃,分离绝对压力控制在1-50Pa,本发明方法中,所述的刮膜式蒸发器的刮膜系统为滚轮式或刮板式,蒸发器为薄膜蒸发器或短程蒸发器。
步骤(2)中,分离除去未反应的二异氰酸酯单体后,可以用溶剂或可以 不稀释而得到含缩二脲基团的多异氰酸酯产品;若采用溶剂稀释,所用稀释溶剂选自酯类、酮类及芳香族烃类等中的一种或多种,例如可以包括乙酸乙酯、乙酸丁酯、丙二醇甲醚醋酸酯、丙酮、甲乙酮、甲基异丁基甲酮、环己酮、甲苯、二甲苯,及它们的混合物,在所述溶剂可以相互溶解的情况下可以以任何比例稀释,优选含缩二脲基团的多异氰酸酯产品在整个混合物中的质量比≥40%,溶剂需要采用聚氨酯级溶剂。
可在反应过程中加入溶剂,以利于抑制不溶性聚脲的形成,但优选不加入溶剂。合适的溶剂例如:乙酸丁酯、乙酸乙酯、四氢呋喃、丙二醇甲醚醋酸酯、二甲苯、丙二醇二乙酸酯、丁酮、甲基异戊基酮、环己酮、己烷、甲苯、二甲苯、苯、氯苯、邻二氯苯、烃混合物、二氯甲烷和/或三烷基磷酸酯。优选使用丙二醇甲醚醋酸酯、磷酸三乙基酯、磷酸三正丁基酯、磷酸三甲基酯和或这些化合物的任何比例混合物。然而,本发明反应优选在不添加溶剂下进行反应。
本发明提供的技术方案具有如下有益效果:
采用本发明的方法,得到的缩二脲多异氰酸酯产品的单体含量储存稳定性优异,单体含量增加少。得到的缩二脲多异氰酸酯产品可在40℃下稳定存储至少6个月,且单体含量增加量小于0.15wt%。
具体实施方式
为了更好的理解本发明的技术方案,下面结合实施例进一步阐述本发明的内容,但本发明的内容并不仅仅局限于以下实施例。本领域技术人员可以理解,在本说明书的教导之下,可对本发明做出一些修改或调整。这些修改或调整也应当在本发明权利要求所限定的范围之内。
本发明中涉及的所有百分数,除特别说明外,均为质量百分数。
本发明的多异氰酸酯组合物中的脲基、缩二脲基、脲二酮基的摩尔比检测:使用Bruker Biospin制造的AVANCE400,以氘代氯仿CDCl 3为溶剂,以试样(制得的多异氰酸酯产品)质量浓度60%、100MHz、扫描过夜测定 13C核磁共振谱。
需要说明的是,在上述测定中,将以下的信号进行积分,由其值求出各摩 尔比率。
脲基:156.3ppm附近
缩二脲基:156.25ppm附近
脲二酮基:157.7ppm附近
摩尔比:脲二酮基/(脲二酮基+脲基+缩二脲基)=157.7pm附近的信号面积/(156.3附近的信号面积+156.25附近的信号面积+157.7附近的信号面积)
本发明合成过程使用的试剂均购买自Sigma-Aldrich,如未特别说明,均为分析纯。
游离异氰酸酯单体含量测试采用国家标准GB/T 18446-2009。
实施例及对比例制备缩二脲多异氰酸酯的制备过程(具体工艺参数在下表1中列出)如下:
将1000g的异氰酸酯单体加热到反应温度a℃,并在搅拌作用下依次加入b g催化剂和c g布朗斯特质子酸,将d g水蒸气在e分钟(反应时间即e分钟)内缓慢通入到反应体系中与异氰酸酯单体进行反应;水蒸气加入完成后将反应液在反应温度下停留30分钟,然后在60min内降温至50℃以下,反应结束;反应结束后,得到的反应液采用两级短程蒸发器(设备厂商UIC,型号为KDL-5)经一级蒸发和二级蒸发(一级蒸发和二级蒸发的温度和压力条件见表1)进行分离,分离得到100%固含的缩二脲多异氰酸酯产品,其中的脲二酮基/(脲二酮基+脲基+缩二脲基)的官能团摩尔比为f,残余单体(即游离异氰酸酯单体)含量为m%,产品在40℃存储6个月游离异氰酸酯单体含量上升为h%,计算单体含量增加值j(即h%和m%的差值),结果见下表1:
各实施例的工艺条件和测试结果如表1所示。
从实验结果可见,采用本发明的方法,得到的缩二脲多异氰酸酯产品的单体含量储存稳定性优异,单体含量增加少,得到的缩二脲多异氰酸酯产品可在40℃下稳定存储至少6个月,且单体含量增加量小于0.15wt%。
表1
Figure PCTCN2020071732-appb-000002
备注:六亚甲基二异氰酸酯(HDI),异佛尔酮二异氰酸酯(IPDI),磷酸二异辛基酯(DEHP),磷酸二丁酯(DBP)

Claims (10)

  1. 一种储存稳定的缩二脲多异氰酸酯的制备方法,其特征在于,包括如下步骤:
    (1)以水为缩二脲化试剂,将其与二异氰酸酯单体在催化剂存在下反应得到反应液;
    (2)分离除去步骤(1)所述反应液中未反应的二异氰酸酯单体,得到含缩二脲基团的多异氰酸酯产品;
    其中在所述步骤(1)的反应体系中还加入布朗斯特质子酸,以使步骤(2)中得到所述多异氰酸酯产品中的脲二酮基/(脲二酮基+脲基+缩二脲基)的摩尔比≤0.05,步骤(1)中所述催化剂为不同于所述布朗斯特质子酸的物质。
  2. 根据权利要求1所述的制备方法,其特征在于,所述多异氰酸酯产品中的脲二酮基/(脲二酮基+脲基+缩二脲基)的摩尔比≤0.05,优选≤0.03。
  3. 根据权利要求1或2所述的制备方法,其特征在于,步骤(1)中所用的所述布朗斯特质子酸的用量为所用的二异氰酸酯单体的总重量的0.01-0.1%。
  4. 根据权利要求1-3任一项所述的制备方法,其特征在于,步骤(1)中所用的所述布朗斯特质子酸选自甲酸、乙酸、丙酸、丁酸、新戊酸、硬脂酸、环己烷甲酸、丙二酸、琥珀酸、己二酸、苯甲酸、邻苯二甲酸、磷酸、亚磷酸、硼酸中的一种或多种。
  5. 根据权利要求1-4任一项所述的制备方法,其特征在于,在步骤(1)的所述缩二脲化试剂加入反应体系之前将所述布朗斯特质子酸加入反应体系中。
  6. 根据权利要求1-5任一项所述的制备方法,其特征在于,步骤(1)中所用的所述催化剂为酸性催化剂,优选为磷酸单烷基酯、磷酸二烷基酯、磷酸单芳基酯、磷酸二芳基酯中的一种或多种混合物。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤(1)中所述催化剂的用量为所用二异氰酸酯单体的总重量的0.1-0.5%。
  8. 根据权利要求1-7任一项所述的制备方法,其特征在于,所述二异氰酸酯单体为脂肪族二异氰酸酯和/或脂环族二异氰酸酯;所述二异氰酸酯单体 除了NCO基外还含有4-20个碳原子,进一步优选六亚甲基二异氰酸酯、1,4-环己烷二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯和异佛尔酮二异氰酸酯中的一种或多种,更优选六亚甲基二异氰酸酯和异佛尔酮二异氰酸酯的一种或两种,更进一步优选六亚甲基二异氰酸酯。
  9. 根据权利要求1-8任一项所述的制备方法,其特征在于,步骤(1)中,所述水来自液态的水或水蒸气或来自无机物的结晶水合物,优选水蒸气。
  10. 根据权利要求1-9任一项所述的制备方法,其特征在于,步骤(1)中所述反应的反应温度为80-180℃,优选100-160℃;反应时间为30-400min,优选60-180min。
PCT/CN2020/071732 2020-01-13 2020-01-13 一种储存稳定的缩二脲多异氰酸酯的制备方法 WO2021142570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071732 WO2021142570A1 (zh) 2020-01-13 2020-01-13 一种储存稳定的缩二脲多异氰酸酯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071732 WO2021142570A1 (zh) 2020-01-13 2020-01-13 一种储存稳定的缩二脲多异氰酸酯的制备方法

Publications (1)

Publication Number Publication Date
WO2021142570A1 true WO2021142570A1 (zh) 2021-07-22

Family

ID=76863443

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071732 WO2021142570A1 (zh) 2020-01-13 2020-01-13 一种储存稳定的缩二脲多异氰酸酯的制备方法

Country Status (1)

Country Link
WO (1) WO2021142570A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103045A (en) * 1986-09-03 1992-04-07 Rhone-Poulenc Chimie Storage-stable biuret polyisocyanates
CN1894300A (zh) * 2003-12-24 2007-01-10 罗狄亚化学公司 酰基脲和包含酰基脲的组合物的合成
CN101072805A (zh) * 2004-12-13 2007-11-14 巴斯福股份公司 生产含有缩二脲基团且储存稳定的无色多异氰酸酯的方法
CN111217972A (zh) * 2020-01-13 2020-06-02 万华化学集团股份有限公司 一种储存稳定的缩二脲多异氰酸酯的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5103045A (en) * 1986-09-03 1992-04-07 Rhone-Poulenc Chimie Storage-stable biuret polyisocyanates
CN1894300A (zh) * 2003-12-24 2007-01-10 罗狄亚化学公司 酰基脲和包含酰基脲的组合物的合成
CN101072805A (zh) * 2004-12-13 2007-11-14 巴斯福股份公司 生产含有缩二脲基团且储存稳定的无色多异氰酸酯的方法
CN111217972A (zh) * 2020-01-13 2020-06-02 万华化学集团股份有限公司 一种储存稳定的缩二脲多异氰酸酯的制备方法

Similar Documents

Publication Publication Date Title
JP2832473B2 (ja) イソシアヌレート基含有ポリイソシアネートの製造方法
KR100948527B1 (ko) 폴리이소시아네이트 조성물 및 이를 포함한 코팅 조성물
CN110305294A (zh) 一种存储稳定的含有脲二酮基团的多异氰酸酯的制备方法
EP2367864B1 (de) Monomerarme 1 : 1 monoaddukte aus reaktiven olefinischen verbindungen und diisocyanaten unter verwendung einbaubarer inhibitoren
CN111072917A (zh) 一种存储稳定的多异氰酸酯组合物及制备方法
CN111217972B (zh) 一种储存稳定的缩二脲多异氰酸酯的制备方法
JP5356300B2 (ja) アロファネート基含有ブロックポリイソシアネート
WO2020133067A1 (zh) 一种含有脲二酮基团的多异氰酸酯的制备方法
US20090076240A1 (en) Compounds having isocyanate functional group substituents and coating compositions comprised thereof
WO2021142570A1 (zh) 一种储存稳定的缩二脲多异氰酸酯的制备方法
JP4201582B2 (ja) イソシアヌレート基を含有するポリイソシアネート組成物
US20200332147A1 (en) Hard coatings with high chemical and mechanical stability
US4656223A (en) Process for the production of modified polyisocyanates, the compounds obtainable by this process and their use in polyurethane lacquers
CN114249868B (zh) 一种存储稳定的多异氰酸酯组合物及其制备方法
JP3952673B2 (ja) 変性イソシアネート化合物の製造方法
CN114507332A (zh) 一种含有缩二脲结构的多异氰酸酯及其制备方法
US20070238837A1 (en) Compounds containing allophanate, isocyanate and ortho ester groups and their use as binders
JP2011505456A (ja) 軟質脂環式ジイソシアネートトリマー
JP2021504532A (ja) イミン型第四級アンモニウム塩触媒、その調製方法、およびポリイソシアネート組成物の調製のためのその使用
JP2692864B2 (ja) イソシアヌレート基含有ポリイソシアネートの製法
CN108137779B (zh) 缩二脲多异氰酸酯组合物
JP2023534679A (ja) 保存が安定するポリイソシアネート組成物及びその調製方法
CN117343279A (zh) 一种低色号超低游离单体多异氰酸酯的制备方法
JP2007169520A (ja) ポリイソシアネート組成物
CN115710344A (zh) 具有储存稳定性的多异氰酸酯固化剂、制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20913771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20913771

Country of ref document: EP

Kind code of ref document: A1