WO2021141302A1 - 열전소자 - Google Patents

열전소자 Download PDF

Info

Publication number
WO2021141302A1
WO2021141302A1 PCT/KR2020/019098 KR2020019098W WO2021141302A1 WO 2021141302 A1 WO2021141302 A1 WO 2021141302A1 KR 2020019098 W KR2020019098 W KR 2020019098W WO 2021141302 A1 WO2021141302 A1 WO 2021141302A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
disposed
substrate
thermoelectric
electrode
Prior art date
Application number
PCT/KR2020/019098
Other languages
English (en)
French (fr)
Inventor
원부운
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to US17/758,261 priority Critical patent/US11937505B2/en
Priority to CN202080092411.1A priority patent/CN114930554A/zh
Priority to JP2022541280A priority patent/JP2023510237A/ja
Priority to EP20912956.8A priority patent/EP4089750A4/en
Publication of WO2021141302A1 publication Critical patent/WO2021141302A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions

Definitions

  • the present invention relates to a thermoelectric element, and more particularly, to an insulating layer of the thermoelectric element.
  • thermoelectric phenomenon is a phenomenon that occurs by the movement of electrons and holes inside a material, and refers to direct energy conversion between heat and electricity.
  • thermoelectric element is a generic term for a device using a thermoelectric phenomenon, and has a structure in which a P-type thermoelectric material and an N-type thermoelectric material are bonded between metal electrodes to form a PN junction pair.
  • Thermoelectric devices can be divided into devices using a temperature change in electrical resistance, devices using the Seebeck effect, which is a phenomenon in which electromotive force is generated by a temperature difference, and devices using the Peltier effect, which is a phenomenon in which heat absorption or heat is generated by current. .
  • Thermoelectric devices are widely applied to home appliances, electronic parts, and communication parts.
  • the thermoelectric element may be applied to an apparatus for cooling, an apparatus for heating, an apparatus for power generation, and the like. Accordingly, the demand for the thermoelectric performance of the thermoelectric element is increasing.
  • the thermoelectric element includes a substrate, an electrode, and a thermoelectric leg, a plurality of thermoelectric legs are disposed between the upper substrate and the lower substrate in an array form, a plurality of upper electrodes are disposed between the plurality of thermoelectric legs and the upper substrate, and a plurality of A plurality of lower electrodes are disposed between the thermoelectric leg and the lower substrate.
  • one of the upper substrate and the lower substrate may be a low-temperature portion, and the other may be a high-temperature portion.
  • the thermoelectric element when the thermoelectric element is applied to an apparatus for power generation, the greater the temperature difference between the low temperature part and the high temperature part, the higher the power generation performance.
  • the high temperature part may be heated to 200°C or higher.
  • thermal stress is applied to the high-temperature portion-side substrate due to a difference in thermal expansion coefficient between the high-temperature portion-side substrate and the electrode, and thus the electrode structure may be destroyed.
  • a crack may be applied to the bonding surface between the solder disposed on the electrode and the thermoelectric leg, which may lower the reliability of the thermoelectric element.
  • thermoelectric element may be manufactured according to a process of sequentially stacking electrodes and thermoelectric legs on a previously prepared metal substrate.
  • a metal substrate is used, an advantageous effect can be obtained in terms of heat conduction, but there is a problem in that reliability is lowered during long-term use due to a low withstand voltage.
  • thermoelectric device having improved thermal conduction performance as well as withstand voltage performance and thermal stress relaxation performance.
  • thermoelectric element having improved thermal conduction performance, withstand voltage performance, and thermal stress relaxation performance.
  • thermoelectric element includes a lower metal substrate, a lower insulating layer disposed on the lower metal substrate, a plurality of lower electrodes disposed on the lower insulating layer to be spaced apart from each other, and a plurality of lower electrodes on the lower electrode.
  • thermoelectric legs and N-type thermoelectric legs disposed on the plurality of P-type thermoelectric legs and N-type thermoelectric legs and a plurality of upper electrodes disposed to be spaced apart from each other, an upper portion disposed on the plurality of upper electrodes an insulating layer, and an upper metal substrate disposed on the upper insulating layer
  • the lower insulating layer includes a first insulating layer disposed on the lower metal substrate and a plurality of layers disposed to be spaced apart from each other on the first insulating layer a second insulating layer of
  • the plurality of lower electrodes may be disposed on the plurality of second insulating layers to correspond to the plurality of second insulating layers.
  • the spacing between the plurality of lower electrodes may be 0.6 to 2.8 times the spacing between the plurality of second insulating layers.
  • At least one of the plurality of second insulating layers may be further disposed on a portion of a side surface of at least one of the plurality of lower electrodes.
  • a maximum thickness of at least one of the plurality of second insulating layers disposed on a portion of a side surface of at least one of the plurality of lower electrodes may be 0.2 to 0.75 times a maximum thickness of at least one of the plurality of lower electrodes.
  • a coefficient of thermal expansion of the first insulating layer may be greater than a coefficient of thermal expansion of the second insulating layer.
  • a thickness of the first insulating layer may be greater than a thickness of the second insulating layer.
  • the first insulating layer may be a resin layer including a silicone resin and an inorganic material
  • the second insulating layer may be an aluminum oxide layer or a composite layer including a composite including silicon and aluminum.
  • the upper insulating layer may include a third insulating layer disposed under the upper metal substrate and a fourth insulating layer disposed under the third insulating layer.
  • the fourth insulating layer may be a plurality of fourth insulating layers spaced apart from each other.
  • the plurality of upper electrodes may be disposed under the plurality of fourth insulating layers to correspond to the plurality of fourth insulating layers.
  • thermoelectric device having excellent performance and high reliability can be obtained.
  • thermoelectric device having improved not only thermal conduction performance, but also withstand voltage performance and thermal stress relaxation performance.
  • thermoelectric element according to an embodiment of the present invention may be applied not only to applications implemented in a small size, but also applications implemented in a large size such as vehicles, ships, steel mills, and incinerators.
  • thermoelectric element 1 is a cross-sectional view of a thermoelectric element.
  • thermoelectric element 2 is a perspective view of a thermoelectric element.
  • thermoelectric element 3 is a perspective view of a thermoelectric element including a sealing member.
  • thermoelectric element 4 is an exploded perspective view of a thermoelectric element including a sealing member.
  • thermoelectric device 5 is a cross-sectional view of a substrate, an insulating layer, and an electrode included in the thermoelectric device according to an embodiment of the present invention.
  • thermoelectric device 6 is a cross-sectional view of a substrate, an insulating layer, and an electrode included in a thermoelectric device according to another embodiment of the present invention.
  • FIG. 7 is a view showing a manufacturing process of the substrate, the insulating layer, and the electrode of FIG. 6 .
  • FIG. 8(a) is a cross-sectional structure of a thermoelectric element according to an embodiment
  • FIG. 8(b) shows a change expected when the thermoelectric element according to the embodiment is exposed for a long time under a high temperature condition.
  • 9(a) and 9(b) are results of simulating stress and warpage of the thermoelectric element according to the embodiment.
  • FIG. 10(a) is a cross-sectional structure of a thermoelectric element according to a comparative example
  • FIG. 10(b) shows a change expected when the thermoelectric element according to the comparative example is exposed for a long time under a high temperature condition.
  • 11(a) and 11(b) are results of simulating stress and warpage of a thermoelectric element according to a comparative example.
  • thermoelectric element 12 illustrates a junction structure between a substrate and a heat sink of a thermoelectric element.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or one or more) of A and (and) B, C", it is combined with A, B, C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • FIG. 1 is a cross-sectional view of a thermoelectric element
  • FIG. 2 is a perspective view of the thermoelectric element
  • 3 is a perspective view of a thermoelectric element including a sealing member
  • FIG. 4 is an exploded perspective view of the thermoelectric element including a sealing member.
  • the thermoelectric element 100 includes a lower substrate 110 , a lower electrode 120 , a P-type thermoelectric leg 130 , an N-type thermoelectric leg 140 , an upper electrode 150 , and an upper substrate. (160).
  • the lower electrode 120 is disposed between the lower substrate 110 and the lower bottom surfaces of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140
  • the upper electrode 150 is formed between the upper substrate 160 and the P-type thermoelectric leg 140 . It is disposed between the thermoelectric leg 130 and the upper bottom surface of the N-type thermoelectric leg 140 . Accordingly, the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 are electrically connected by the lower electrode 120 and the upper electrode 150 .
  • a pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 disposed between the lower electrode 120 and the upper electrode 150 and electrically connected may form a unit cell.
  • thermoelectric leg 130 when a voltage is applied to the lower electrode 120 and the upper electrode 150 through the lead wires 181 and 182 , a current flows from the P-type thermoelectric leg 130 to the N-type thermoelectric leg 140 due to the Peltier effect.
  • the substrate through which flows absorbs heat to act as a cooling unit, and the substrate through which current flows from the N-type thermoelectric leg 140 to the P-type thermoelectric leg 130 may be heated and act as a heating unit.
  • a temperature difference between the lower electrode 120 and the upper electrode 150 when a temperature difference between the lower electrode 120 and the upper electrode 150 is applied, the charges in the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 move due to the Seebeck effect, and electricity may be generated. .
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be bismuth telluride (Bi-Te)-based thermoelectric legs including bismuth (Bi) and tellurium (Te) as main raw materials.
  • P-type thermoelectric leg 130 is antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium It may be a bismuthtelluride (Bi-Te)-based thermoelectric leg including at least one of (Te), bismuth (Bi), and indium (In).
  • the P-type thermoelectric leg 130 contains 99 to 99.999 wt% of Bi-Sb-Te, which is a main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), copper (Cu) , at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In) may be included in an amount of 0.001 to 1 wt%.
  • N-type thermoelectric leg 140 is selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), tellurium It may be a bismuthtelluride (Bi-Te)-based thermoelectric leg including at least one of (Te), bismuth (Bi), and indium (In).
  • the N-type thermoelectric leg 140 contains 99 to 99.999 wt% of Bi-Se-Te, a main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), copper (Cu) , at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In) may be included in an amount of 0.001 to 1 wt%.
  • thermoelectric leg may be referred to as a semiconductor structure, a semiconductor device, a semiconductor material layer, a semiconductor material layer, a semiconductor material layer, a conductive semiconductor structure, a thermoelectric structure, a thermoelectric material layer, a thermoelectric material layer, a thermoelectric material layer, etc. have.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be formed in a bulk type or a stack type.
  • the bulk-type P-type thermoelectric leg 130 or the bulk-type N-type thermoelectric leg 140 heat-treats a thermoelectric material to manufacture an ingot, grinds the ingot and sieves to obtain a powder for the thermoelectric leg, and then It can be obtained through the process of sintering and cutting the sintered body.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be polycrystalline thermoelectric legs. For polycrystalline thermoelectric legs, when sintering powder for thermoelectric legs, it can be compressed to 100 MPa to 200 MPa.
  • the thermoelectric leg powder when the P-type thermoelectric leg 130 is sintered, the thermoelectric leg powder may be sintered at 100 to 150 MPa, preferably 110 to 140 MPa, more preferably 120 to 130 MPa.
  • the powder for the thermoelectric leg when the N-type thermoelectric leg 140 is sintered, the powder for the thermoelectric leg may be sintered at 150 to 200 MPa, preferably 160 to 195 MPa, more preferably 170 to 190 MPa.
  • the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 are polycrystalline thermoelectric legs, the strength of the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 may be increased.
  • the laminated P-type thermoelectric leg 130 or the laminated N-type thermoelectric leg 140 is formed by applying a paste containing a thermoelectric material on a sheet-shaped substrate to form a unit member, and then stacking and cutting the unit member. can be obtained
  • the pair of P-type thermoelectric legs 130 and N-type thermoelectric legs 140 may have the same shape and volume, or may have different shapes and volumes.
  • the height or cross-sectional area of the N-type thermoelectric leg 140 is calculated as the height or cross-sectional area of the P-type thermoelectric leg 130 . may be formed differently.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a cylindrical shape, a polygonal column shape, an elliptical column shape, or the like.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may have a stacked structure.
  • the P-type thermoelectric leg or the N-type thermoelectric leg may be formed by stacking a plurality of structures coated with a semiconductor material on a sheet-shaped substrate and then cutting them. Accordingly, it is possible to prevent material loss and improve electrical conductivity properties.
  • Each structure may further include a conductive layer having an opening pattern, thereby increasing adhesion between the structures, decreasing thermal conductivity, and increasing electrical conductivity.
  • the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 may be formed to have different cross-sectional areas within one thermoelectric leg.
  • the cross-sectional area of both ends arranged to face the electrode in one thermoelectric leg may be formed to be larger than the cross-sectional area between the two ends. According to this, since the temperature difference between both ends can be formed large, thermoelectric efficiency can be increased.
  • thermoelectric figure of merit ZT
  • Equation (1) The performance of the thermoelectric element according to an embodiment of the present invention may be expressed as a figure of merit (ZT).
  • ZT The thermoelectric figure of merit (ZT) may be expressed as in Equation (1).
  • is the Seebeck coefficient [V/K]
  • is the electrical conductivity [S/m]
  • ⁇ 2 ⁇ is the power factor (Power Factor, [W/mK 2 ]).
  • T is the temperature
  • k is the thermal conductivity [W/mK].
  • k can be expressed as a ⁇ cp ⁇ , a is the thermal diffusivity [cm 2 /S], cp is the specific heat [J/gK], ⁇ is the density [g/cm 3 ].
  • thermoelectric figure of merit of the thermoelectric element In order to obtain the thermoelectric figure of merit of the thermoelectric element, a Z value (V/K) is measured using a Z meter, and a thermoelectric figure of merit (ZT) can be calculated using the measured Z value.
  • the lower electrode 120 is disposed between the lower substrate 110 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 140 , and the upper substrate 160 and the P-type thermoelectric leg 130 and the N-type thermoelectric leg 130 .
  • the upper electrode 150 disposed between the thermoelectric legs 140 includes at least one of copper (Cu), silver (Ag), aluminum (Al), and nickel (Ni), and has a thickness of 0.01 mm to 0.3 mm. can When the thickness of the lower electrode 120 or the upper electrode 150 is less than 0.01 mm, the function as an electrode may deteriorate and the electrical conduction performance may be lowered, and if it exceeds 0.3 mm, the conduction efficiency may be lowered due to an increase in resistance. .
  • the lower substrate 110 and the upper substrate 160 facing each other may be a metal substrate, and the thickness thereof may be 0.1 mm to 1.5 mm.
  • the thickness of the metal substrate is less than 0.1 mm or exceeds 1.5 mm, heat dissipation characteristics or thermal conductivity may be excessively high, and thus reliability of the thermoelectric element may be deteriorated.
  • the insulating layer 170 is disposed between the lower substrate 110 and the lower electrode 120 and between the upper substrate 160 and the upper electrode 150 , respectively. ) may be further formed.
  • the insulating layer 170 may include a material having a thermal conductivity of 1 to 20 W/mK.
  • the sizes of the lower substrate 110 and the upper substrate 160 may be different.
  • the volume, thickness, or area of one of the lower substrate 110 and the upper substrate 160 may be larger than the volume, thickness, or area of the other. Accordingly, heat absorbing performance or heat dissipation performance of the thermoelectric element may be improved.
  • the volume, thickness, or area of the lower substrate 110 may be larger than at least one of the volume, thickness, or area of the upper substrate 160 .
  • At least one of a volume, a thickness, or an area may be larger than that of the upper substrate 160 when it is disposed on the .
  • the area of the lower substrate 110 may be formed in a range of 1.2 to 5 times the area of the upper substrate 160 .
  • the effect on the improvement of heat transfer efficiency is not high, and when it exceeds 5 times, the heat transfer efficiency is rather significantly reduced, and the thermoelectric module It can be difficult to maintain the basic shape of
  • a heat dissipation pattern for example, a concave-convex pattern
  • a concave-convex pattern may be formed on the surface of at least one of the lower substrate 110 and the upper substrate 160 . Accordingly, the heat dissipation performance of the thermoelectric element may be improved.
  • the concave-convex pattern is formed on a surface in contact with the P-type thermoelectric leg 130 or the N-type thermoelectric leg 140 , bonding characteristics between the thermoelectric leg and the substrate may also be improved.
  • the thermoelectric element 100 includes a lower substrate 110 , a lower electrode 120 , a P-type thermoelectric leg 130 , an N-type thermoelectric leg 140 , an upper electrode 150 , and an upper substrate 160 .
  • a sealing member 190 may be further disposed between the lower substrate 110 and the upper substrate 160 .
  • the sealing member 190 is disposed between the lower substrate 110 and the upper substrate 160 on the side surfaces of the lower electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , and the upper electrode 150 .
  • the lower electrode 120 , the P-type thermoelectric leg 130 , the N-type thermoelectric leg 140 , and the upper electrode 150 may be sealed from external moisture, heat, contamination, and the like.
  • the sealing member 190 includes the outermost portions of the plurality of lower electrodes 120 , the outermost portions of the plurality of P-type thermoelectric legs 130 and the plurality of N-type thermoelectric legs 140 , and the plurality of upper electrodes 150 .
  • the sealing case 192, the sealing case 192 and the lower substrate 110, the sealing material 194, and the sealing case 192 and the upper substrate 160 are disposed spaced apart from the outermost side of the It may include a sealing material 196 disposed on the.
  • the sealing case 192 may contact the lower substrate 110 and the upper substrate 160 via the sealing materials 194 and 196 .
  • the sealing materials 194 and 196 may include at least one of an epoxy resin and a silicone resin, or a tape in which at least one of an epoxy resin and a silicone resin is applied to both surfaces.
  • the sealing materials 194 and 194 serve to seal between the sealing case 192 and the lower substrate 110 and between the sealing case 192 and the upper substrate 160, and the lower electrode 120, the P-type thermoelectric leg ( 130), the sealing effect of the N-type thermoelectric leg 140 and the upper electrode 150 may be increased, and may be mixed with a finishing material, a finishing layer, a waterproofing material, a waterproofing layer, and the like.
  • the sealing material 194 for sealing between the sealing case 192 and the lower substrate 110 is disposed on the upper surface of the lower substrate 110, and the sealing material for sealing between the sealing case 192 and the upper substrate 160 ( 196 may be disposed on the side of the upper substrate 160 .
  • the area of the lower substrate 110 may be larger than the area of the upper substrate 160 .
  • a guide groove G for drawing out the lead wires 181 and 182 connected to the electrode may be formed in the sealing case 192 .
  • the sealing case 192 may be an injection-molded product made of plastic or the like, and may be mixed with a sealing cover.
  • the above description of the sealing member is merely an example, and the sealing member may be modified in various forms.
  • an insulating material may be further included to surround the sealing member.
  • the sealing member may include a heat insulating component.
  • lower substrate 110 lower electrode 120 , upper electrode 150 , and upper substrate 160 are used, but these are arbitrarily referred to as upper and lower for ease of understanding and convenience of description. However, the positions may be reversed so that the lower substrate 110 and the lower electrode 120 are disposed on the upper portion, and the upper electrode 150 and the upper substrate 160 are disposed on the lower portion.
  • FIG. 5 is a cross-sectional view of a substrate, an insulating layer, and an electrode included in a thermoelectric element according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view of a substrate, an insulating layer, and an electrode included in the thermoelectric element according to another embodiment of the present invention
  • FIG. 7 is a view showing a manufacturing process of the substrate, the insulating layer, and the electrode of FIG. 6 .
  • the thermoelectric element 500 includes a substrate 510 , an insulating layer 520 disposed on the substrate 510 , and an insulating layer It includes a plurality of electrodes 530 disposed on the 520 to be spaced apart from each other, and a plurality of P-type thermoelectric legs and N-type thermoelectric legs (not shown) disposed on the plurality of electrodes 530 .
  • the substrate 510 , the insulating layer 520 , and the plurality of electrodes 530 are the lower substrate 110 , the insulating layer 170 and the lower electrode 120 of FIGS. 1 to 4 , or FIGS. 1 to 4 . of the upper substrate 160 , the insulating layer 170 , and the upper electrode 150 . Duplicate descriptions of the same contents as those described with reference to FIGS. 1 to 4 will be omitted.
  • the substrate 510 may be a metal substrate, for example, an aluminum substrate, a copper substrate, or an aluminum-copper alloy substrate.
  • the high temperature portion side substrate may be a copper substrate
  • the low temperature portion side substrate may be an aluminum substrate. Copper substrates have higher thermal and electrical conductivity than aluminum substrates. Accordingly, it is possible to satisfy both the high withstand voltage performance required for the low temperature portion and the high heat conduction performance required for the high temperature portion.
  • thermoelectric element 500 when the thermoelectric element 500 is driven, the high temperature side of the thermoelectric element 500 may be exposed to high temperatures for a long time, and shear stress may be transmitted to the interface between the electrode and the substrate due to different coefficients of thermal expansion between the electrode and the substrate. .
  • the shear stress transferred to the interface between the electrode and the substrate due to different coefficients of thermal expansion between the electrode and the substrate is referred to as a thermal stress.
  • a crack may be applied to the bonding surface between the solder disposed on the electrode and the thermoelectric leg, which may deteriorate the performance of the thermoelectric element and reduce reliability.
  • an insulating layer 520 is disposed between the substrate 510 and the electrode 530 , and the insulating layer 520 is subjected to thermal stress due to a difference in thermal expansion coefficient between the substrate 510 and the electrode 530 . It may be arranged in two layers to alleviate the
  • the insulating layer 520 includes a first insulating layer 522 disposed on the substrate 510 and a first insulating layer 522 and an electrode 530 on the first insulating layer 522 . and a second insulating layer 524 disposed therebetween.
  • the second insulating layer 524 may be a plurality of second insulating layers 524 arranged to be spaced apart from each other.
  • the total area of the first insulating layer 522 disposed on the substrate 510 is greater than the total area of the second insulating layer 524 disposed on the first insulating layer 522 .
  • the first insulating layer 522 is disposed closer to the substrate 510 than the second insulating layer 524 , and the first insulating layer 522 expands or contracts according to the temperature change of the substrate 510 . Since a portion of the thermal stress is absorbed in the process, the thermal stress applied to the second insulating layer 524 can be reduced.
  • the region A in which the second insulating layer 524 is not disposed on the first insulating layer 522 can be. Accordingly, even if the first insulating layer 522 expands or contracts according to a change in the temperature of the substrate 510 , the force caused by the expansion or contraction of the first insulating layer 522 affects the second insulating layer 524 . can be minimized, and the problem that the second insulating layer 524 is deformed together according to the expansion or contraction of the first insulating layer 522 can be prevented.
  • the coefficient of thermal expansion of the first insulating layer 522 may be greater than that of the second insulating layer 524 .
  • the Young's modulus of the first insulating layer 522 may be smaller than the Young's modulus of the second insulating layer 524 .
  • the withstand voltage performance of the second insulating layer 524 may be greater than the withstand voltage performance of the first insulating layer 522 .
  • the heat-conducting performance of the second insulating layer 524 may be greater than that of the first insulating layer 522 .
  • the thermal stress applied to the insulating layer 520 may be minimized.
  • the second insulating layer 524 in contact with the electrode 530 due to the second insulating layer 524 in contact with the electrode 530 , the dielectric strength and heat conduction performance of the entire insulating layer 520 may be improved.
  • thermoelectric element having all of thermal stress relaxation, withstand voltage performance, and thermal conduction performance.
  • the plurality of electrodes 530 may be disposed on the plurality of second insulating layers 524 to correspond to the plurality of second insulating layers 524 . That is, each of the plurality of second insulating layers 524 may be disposed on each of the plurality of electrodes 530 .
  • the second insulating layer 524 may include a plurality of second insulating layers 524 disposed to be spaced apart from each other, and a plurality of electrodes 530 may be disposed on each second insulating layer 524 to be spaced apart from each other. have.
  • two electrodes 530 , four electrodes 530 , eight electrodes 530 , or 16 electrodes 530 disposed to be spaced apart from each other may be disposed on each second insulating layer 524 .
  • the first insulating layer 522 having a relatively large coefficient of thermal expansion is completely disposed on the substrate 510
  • the second insulating layer 524 having a relatively small thermal expansion coefficient is formed on the first insulating layer 522 .
  • the first insulating layer 522 expands according to the temperature change of the substrate 510 .
  • the second insulating layer 524 may not be thermally deformed even if it is shrunk, and accordingly, a problem in which the structure of the electrode 530 is destroyed may be prevented.
  • the composition of the first insulating layer 522 may be different from the composition of the second insulating layer 524 .
  • the first insulating layer 522 may be a resin layer including a silicone resin and an inorganic material.
  • the Young's modulus of the first insulating layer 522 is 1 to 150 MPa, preferably 1 to 100 MPa, more preferably 1 to 65 MPa, more preferably 5 to 60 MPa, more preferably 10 to 50 MPa.
  • the Young's modulus may mean a Young's modulus at 200°C or less, preferably, it may mean a Young's modulus at a temperature between 150°C and 200°C.
  • the high-temperature portion of the thermoelectric element may be 150°C or higher, preferably 180°C or higher, and more preferably 200°C or higher.
  • the reference temperature defining the Young's modulus of the first insulating layer 522 may be a temperature between 150°C and 200°C.
  • the Young's modulus of the first insulating layer 522 satisfies this numerical range, even if the substrate is thermally expanded, the first insulating layer is stretched together, so that the thermal stress between the substrate and the electrode can be minimized, and cracks are generated in the thermoelectric leg. problems can be avoided.
  • the Young's modulus for each temperature can be measured with a Dynamic Mechanical Analysis (DMA) device.
  • DMA Dynamic Mechanical Analysis
  • the Young's modulus of the first insulating layer 522 is less than 1 MPa, it becomes difficult for the first insulating layer 522 to support between the substrate and the electrode, so that the reliability of the thermoelectric element is easily weakened under a small external shock or vibration environment.
  • the Young's modulus of the first insulating layer 522 exceeds 150 MPa, the thermal stress between the substrate and the electrode increases, so that the possibility of cracks occurring at the interface within the thermoelectric element increases.
  • the silicone resin included in the first insulating layer 522 may include polydimethylsiloxane (PDMS), and the inorganic material includes at least one of oxide, carbide, and nitride of at least one of aluminum, titanium, zirconium, boron and zinc. can do.
  • the molecular weight of PDMS may be 5,000 to 30,000 g/mol, preferably 15,000 to 30,000 g/mol.
  • the first insulating layer 522 may have a Young's modulus of 1 to 150 MPa.
  • the first insulating layer 522 may further include a crosslinking agent, and the molecular weight of the crosslinking agent may be 500 to 2000 g/mol, preferably 1,000 to 2,000 g/mol. As the molecular weight of the crosslinking agent increases, the chain length of the crosslinking agent may increase.
  • the inorganic material may be included in an amount of 60 to 90 wt%, preferably 80 to 90 wt%, in the first insulating layer 522 .
  • the inorganic material of the first insulating layer 522 may have a D50 of 30 to 40 ⁇ m. Accordingly, since the heat dissipation path can be optimized, the thermal conductivity of the first insulating layer 522 can be increased to 2W/mK or more, preferably 3W/mK or more.
  • the first insulating layer 522 not only relieves thermal stress due to the difference in thermal expansion coefficient between the substrate and the electrode, but also improves insulation, bonding strength, and thermal conductivity between the substrate and the electrode. .
  • the Young's modulus of the first insulating layer 522 disposed on the high temperature side substrate 510 and the Young's modulus of the first insulating layer 522 disposed on the low temperature side substrate 510 are different from each other. You may.
  • the Young's modulus of the first insulating layer 522 disposed on the high temperature side substrate 510 may be lower than the Young's modulus of the first insulating layer 522 disposed on the low temperature side substrate 510 .
  • the Young's modulus of the first insulating layer 522 disposed on the high temperature side substrate 510 is 1 to 65 MPa
  • the Young's modulus of the first insulating layer 522 disposed on the low temperature side substrate 510 is 65 MPa or more, Preferably, it may be 65 to 150 MPa. Accordingly, even if the substrate 510 on the high-temperature side is thermally expanded, the first insulating layer 522 can be stretched together, so that the thermal stress between the substrate and the electrode can be minimized, and the problem of cracks occurring in the thermoelectric leg can be prevented. can
  • the thickness of the first insulating layer 522 on the high temperature side side is the first insulating layer 522 on the low temperature side. ) may be thicker than the
  • the withstand voltage performance of the second insulating layer 524 may be higher than that of the first insulating layer 522 .
  • the withstand voltage performance according to an embodiment of the present invention may mean a characteristic maintained without dielectric breakdown for 10 seconds under a voltage of AC 2.5 kV and a current of 1 mA.
  • the second insulating layer 524 may include aluminum oxide.
  • the second insulating layer 524 may be an aluminum oxide layer.
  • the second insulating layer 524 may include a composite including silicon and aluminum.
  • the composite may be at least one of an oxide, a carbide, and a nitride including silicon and aluminum.
  • the composite may include at least one of an Al-Si bond, an Al-O-Si bond, a Si-O bond, an Al-Si-O bond, and an Al-O bond.
  • the composite including at least one of an Al-Si bond, an Al-O-Si bond, a Si-O bond, an Al-Si-O bond, and an Al-O bond has excellent insulation performance, and thus high withstand voltage performance can get
  • the composite may be an oxide, carbide, or nitride that further contains titanium, zirconium, boron, zinc, or the like along with silicon and aluminum.
  • the composite may be obtained through a process of heat-treating after mixing aluminum with at least one of an inorganic binder and an organic/inorganic mixed binder.
  • the inorganic binder may include, for example, at least one of silica (SiO 2 ), a metal alkoxide, boron oxide (B 2 O 3 ), and zinc oxide (ZnO 2 ).
  • Inorganic binders are inorganic particles, but when they come into contact with water, they become sol or gel, which can serve as a binding agent.
  • the resin content of the first insulating layer 522 may be higher than the resin content of the second insulating layer 524 .
  • the adhesive force of the first insulating layer 522 is higher than that of the second insulating layer 524, and the coefficient of thermal expansion of the first insulating layer 522 may be higher than that of the second insulating layer 524.
  • the withstand voltage performance and heat conduction performance of the second insulating layer 524 may be higher than the withstand voltage performance and heat conduction performance of the first insulating layer 522 .
  • the thickness of the first insulating layer 522 may be thicker than the thickness of the second insulating layer 524 .
  • the thickness of the first insulating layer 522 may be 60 to 150 ⁇ m, preferably 70 to 130 ⁇ m, and more preferably 80 to 110 ⁇ m.
  • the thickness of the second insulating layer 524 may be 10 to 50 ⁇ m, preferably 20 to 40 ⁇ m. Accordingly, the first insulating layer 522 may relieve thermal stress applied to the insulating layer 520 , and a thermoelectric device having high withstand voltage performance and high thermal conductivity may be obtained.
  • the separation distance d3 between the plurality of electrodes 530 may be different from the separation distance d2 between the plurality of second insulating layers 524 . have. That is, as shown in FIG. 5A , the separation distance d3 between the plurality of electrodes 530 may be greater than the separation distance d2 between the plurality of second insulating layers 524 . Alternatively, as shown in FIG. 5B , the separation distance d3 between the plurality of electrodes 530 may be smaller than the separation distance d2 between the plurality of second insulating layers 524 .
  • the spacing distance d3 between the plurality of electrodes 530 may be 0.6 to 2.8 times the spacing distance d2 between the plurality of second insulating layers 524 , and the spacing distance between the plurality of electrodes 530 .
  • (d3) is less than 0.6 times the distance d2 between the plurality of second insulating layers 524, the contact area between the second insulating layer 524 and the electrode 530 is relatively small, The effect of the thermal deformation of the second insulating layer 524 can be minimized, but as the voltage increases, dielectric breakdown easily occurs in this region, thereby lowering the withstand voltage characteristics, and the second insulating layer 524 is separated from the electrode ( 530) may be dropped.
  • the second insulating layer 524 and the electrode 530 when the distance d3 between the plurality of electrodes 530 exceeds 2.8 times the distance d2 between the plurality of second insulating layers 524 , the second insulating layer 524 and the electrode 530 . Since the contact area with the electrode 530 is relatively large, the withstand voltage characteristic is improved, and the electrode 530 can be prevented from falling off from the second insulating layer 524 , but the thermal stress of the first insulating layer 522 at a high temperature is increased. Thermal deformation may also occur in the second insulating layer 524 by being transferred to the second insulating layer 524 , and the number of arrangement of the plurality of electrodes 530 within a limited area may be relatively reduced.
  • the spacing distance d3 between the plurality of electrodes 530 is 0.6 to 0.99 times, preferably 0.65 to 0.95 times the spacing d2 between the plurality of second insulating layers 524 . times, more preferably 0.7 times to 0.9 times. Accordingly, the influence on the electrode 530 due to the thermal deformation of the second insulating layer 524 at a high temperature can be minimized.
  • the separation distance d3 between the plurality of electrodes 530 is 1.01 to 2.8 times, preferably 1.05 times the separation distance d2 between the plurality of second insulating layers 524 . to 2.5 times, more preferably from 1.1 times to 2.2 times. Accordingly, since the second insulating layer 524 is disposed at the edge of each electrode 530 where the electric field is concentrated, the withstand voltage performance of the thermoelectric element may be further improved.
  • the electrode 530 on which the second insulating layer 524 is disposed is disposed on the first insulating layer 522 and then cured, or the first insulating layer 522 is cured. ) may be manufactured by disposing the second insulating layer 524 on it and then performing a separate scribing process.
  • the second insulating layer 524 may be further disposed on at least one side surface of the plurality of electrodes 530 . That is, a portion of at least one side surface of the plurality of electrodes 530 may be buried in the second insulating layer 524 , and a plurality of second insulating layers ( 524), the maximum thickness T2 of at least one of the plurality of electrodes 530 may be 0.2 to 0.75 times, preferably 0.25 to 0.6 times, more preferably 0.3 to 0.5 times the maximum thickness T3 of at least one of the plurality of electrodes 530. have.
  • thermoelectric element since the second insulating layer 524 is disposed at the edge of each electrode 530 where the electric field is concentrated, the withstand voltage performance of the thermoelectric element may be further improved.
  • thermoelectric performance of the thermoelectric element when at least a portion of the second insulating layer 524 is further disposed on at least one side surface of the plurality of electrodes 530 , heat loss through the horizontal direction of each electrode 530 is reduced. Since it can be reduced, it is possible to further improve the thermoelectric performance of the thermoelectric element.
  • thermoelectric device In order to manufacture the thermoelectric device according to FIG. 6 , referring to FIG. 7A , a plurality of electrodes 530 are disposed on a sheet 70 .
  • the sheet 70 may be a thermal sheet or a release film.
  • spray coating is performed with the material constituting the second insulating layer 524 .
  • the open area of the mask may be larger than the width of the electrode 530 .
  • the second insulating layer 524 may also be formed on the side surface of the electrode 530 .
  • the sheet 70 may be removed from the electrode 530 to be manufactured, but the manufacturing method is not limited thereto.
  • thermoelectric element in which a second insulating layer 524 is further disposed on a side surface of the electrode 530 may be obtained.
  • thermoelectric element According to an embodiment of the present invention, the effect of the thermoelectric element according to an embodiment of the present invention will be described through comparative examples and examples.
  • thermoelectric element 8 (a) is a cross-sectional structure of the thermoelectric element according to the embodiment
  • Figure 8 (b) shows the expected change when the thermoelectric element according to the embodiment is exposed under high temperature conditions for a long time
  • Figure 9 (a) is It is a result of simulating the stress applied to the second insulating layer of the thermoelectric element according to the embodiment
  • FIG. 9B is a simulation result of warpage of the thermoelectric element according to the embodiment.
  • 10 (a) is a cross-sectional structure of a thermoelectric element according to a comparative example
  • FIG. 10 (b) shows a change when the thermoelectric element according to the comparative example is exposed to a high temperature condition for a long time
  • FIG. 11 (a) is a comparison It is a result of simulating the stress applied to the second insulating layer of the thermoelectric element according to the example
  • FIG. 11B is a simulation result of warpage of the thermoelectric element according to the comparative example.
  • the thermoelectric element 500 is formed on a substrate 510 , a first insulating layer 522 disposed on the entire surface of the substrate 510 , and the first insulating layer 522 on each other. It includes a plurality of second insulating layers 524 disposed to be spaced apart and a plurality of electrodes 530 disposed on the plurality of second insulating layers 524 , and the coefficient of thermal expansion of the first insulating layer 522 is the second It is larger than the coefficient of thermal expansion of the insulating layer 524 .
  • the second insulating layer ( 524) is relatively small.
  • the thermoelectric element 600 includes a substrate 610 , a first insulating layer 622 and a first insulating layer 622 disposed on the entire surface of the substrate 610 . It includes a second insulating layer 624 disposed on the entire surface and a plurality of electrodes 630 disposed to be spaced apart from each other on the second insulating layer 624 , and the coefficient of thermal expansion of the second insulating layer 624 is the first It is larger than the coefficient of thermal expansion of the insulating layer 622 .
  • the first insulating layer 522 of the thermoelectric element 500 according to the embodiment and the second insulating layer 624 of the thermoelectric element 600 according to the comparative example have the same composition, and the thermoelectric element 500 according to the embodiment has the same composition.
  • the thermoelectric element 500 according to the embodiment has the same composition.
  • the second insulating layer 524 and the first insulating layer 622 of the thermoelectric element 600 according to the comparative example may have the same composition. Accordingly, when the thermoelectric element 600 according to the comparative example is exposed to a high temperature for a long time, the reliability of the thermoelectric element may be reduced due to the thermal stress of the first insulating layer 622 .
  • the maximum stress applied to the second insulating layer 524 according to the embodiment of the present invention is 262 MPa
  • the average stress is 32.37 MPa
  • the maximum distortion is 1.56 mm
  • the maximum stress applied to the first insulating layer 622 according to the comparative example is 831 MPa
  • the average stress is 214.47 MPa
  • the maximum distortion is 1.8 mm.
  • thermoelectric element according to the embodiment of the present invention has a low thermal stress applied to the insulating layer and less distortion even when exposed to high temperatures for a long time, so that the thermoelectric leg due to breakage of the insulating layer or destruction of the electrode structure, etc. It can be seen that cracks can be prevented from being applied to the .
  • the structure of the substrate, the insulating layer, and the electrode according to the embodiment of the present invention may be applied to at least one of the high temperature part side and the low temperature part side of the thermoelectric element.
  • the heat sink 200 may be further disposed on the substrate on the high temperature side of the thermoelectric element.
  • thermoelectric element 12 illustrates a junction structure between a substrate and a heat sink of a thermoelectric element.
  • the heat sink 200 and the substrate 510 may be fastened by a plurality of fastening members 400 .
  • a through hole S through which the fastening member 400 passes may be formed in the heat sink 200 and the substrate 510 .
  • a separate insulator 410 may be further disposed between the through hole S and the fastening member 400 .
  • the separate insulator 410 may be an insulator surrounding the outer circumferential surface of the fastening member 400 or an insulator surrounding the wall surface of the through hole S. According to this, it is possible to increase the insulation distance of the thermoelectric element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명의 한 실시예에 따른 열전소자는 하부 금속기판, 상기 하부 금속기판 상에 배치된 하부 절연층, 상기 하부 절연층 상에 서로 이격되도록 배치된 복수의 하부 전극, 상기 복수의 하부 전극 상에 배치된 복수의 P형 열전 레그 및 N형 열전 레그, 상기 복수의 P형 열전 레그 및 N형 열전 레그 상에 배치되고 서로 이격되도록 배치된 복수의 상부 전극, 상기 복수의 상부 전극 상에 배치된 상부 절연층, 그리고 상기 상부 절연층 상에 배치된 상부 금속기판을 포함하고, 상기 하부 절연층은 상기 하부 금속기판 상에 배치된 제1 절연층 및 상기 제1 절연층 상에서 서로 이격되도록 배치된 복수의 제2 절연층을 포함한다.

Description

열전소자
본 발명은 열전소자에 관한 것으로, 보다 상세하게는 열전소자의 절연층에 관한 것이다.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.
열전소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다.
열전소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다. 열전소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.
열전소자는 기판, 전극 및 열전 레그를 포함하며, 상부기판과 하부기판 사이에 복수의 열전 레그가 어레이 형태로 배치되며, 복수의 열전 레그와 상부기판 사이에 복수의 상부 전극이 배치되고, 복수의 열전 레그와 및 하부기판 사이에 복수의 하부전극이 배치된다. 이때, 상부기판과 하부기판 중 하나는 저온부가 되고, 나머지 하나는 고온부가 될 수 있다.
한편, 열전소자가 발전용 장치에 적용되는 경우, 저온부와 고온부 간의 온도 차가 클수록 발전 성능이 높아진다. 예를 들어, 고온부는 200℃이상으로 온도가 올라갈 수 있다. 고온부의 온도가 200℃이상이 되면, 고온부 측 기판과 전극 간 열팽창 계수 차로 인하여 고온부 측 기판에 열응력이 가해지며, 이에 따라 전극 구조가 파괴될 수 있다. 전극 구조가 파괴되면, 전극 상에 배치된 솔더와 열전 레그 간 접합면에 크랙이 가해질 수 있으며, 이는 열전소자의 신뢰성을 낮출 수 있다.
한편, 열전소자의 열전달 성능을 향상시키기 위하여, 금속기판을 사용하고자 하는 시도가 늘고 있다. 일반적으로, 열전소자는 미리 마련된 금속기판 상에 전극 및 열전 레그를 순차적으로 적층하는 공정에 따라 제작될 수 있다. 금속기판이 사용되는 경우, 열전도 측면에서는 유리한 효과를 얻을 수 있으나, 내전압이 낮아 장기간 사용 시 신뢰성이 낮아지는 문제가 있다.
이에 따라, 열전도 성능뿐만 아니라, 내전압 성능 및 열응력 완화 성능이 모두 개선된 열전소자가 필요하다.
본 발명이 이루고자 하는 기술적 과제는 열전도 성능, 내전압 성능 및 열응력 완화 성능이 모두 개선된 열전소자의 절연층을 제공하는 것이다.
본 발명의 한 실시예에 따른 열전소자는 하부 금속기판, 상기 하부 금속기판 상에 배치된 하부 절연층, 상기 하부 절연층 상에 서로 이격되도록 배치된 복수의 하부 전극, 상기 복수의 하부 전극 상에 배치된 복수의 P형 열전 레그 및 N형 열전 레그, 상기 복수의 P형 열전 레그 및 N형 열전 레그 상에 배치되고 서로 이격되도록 배치된 복수의 상부 전극, 상기 복수의 상부 전극 상에 배치된 상부 절연층, 그리고, 상기 상부 절연층 상에 배치된 상부 금속기판을 포함하고, 상기 하부 절연층은 상기 하부 금속기판 상에 배치된 제1 절연층 및 상기 제1 절연층 상에서 서로 이격되도록 배치된 복수의 제2 절연층을 포함한다.
상기 복수의 하부 전극은 상기 복수의 제2 절연층에 대응하도록 상기 복수의 제2 절연층 상에 배치될 수 있다.
상기 복수의 하부 전극 간 이격 거리는 상기 복수의 제2 절연층 간 이격 거리의 0.6배 내지 2.8배일 수 있다.
상기 복수의 제2 절연층 중 적어도 하나는 상기 복수의 하부 전극 중 적어도 하나의 측면의 일부에 더 배치될 수 있다.
상기 복수의 하부 전극 중 적어도 하나의 측면의 일부에 배치된 상기 복수의 제2 절연층 중 적어도 하나의 최대 두께는 상기 복수의 하부 전극 중 적어도 하나의 최대 두께의 0.2 내지 0.75배일 수 있다.
상기 제1 절연층의 열팽창계수는 상기 제2 절연층의 열팽창계수보다 클 수 있다.
상기 제1 절연층의 두께는 상기 제2 절연층의 두께보다 클 수 있다.
상기 제1 절연층은 실리콘 수지 및 무기물을 포함하는 수지층이고, 상기 제2 절연층은 산화알루미늄층 또는 실리콘과 알루미늄을 포함하는 복합체(composite)로 이루어진 복합체층일 수 있다.
상기 상부 절연층은 상기 상부 금속기판 아래에 배치된 제3 절연층 및 상기 제3 절연층 아래에 배치된 제4 절연층을 포함할 수 있다.
상기 제4 절연층은 서로 이격되도록 배치된 복수의 제4 절연층일 수 있다.
상기 복수의 상부 전극은 상기 복수의 제4 절연층에 대응하도록 상기 복수의 제4 절연층 아래에 배치될 수 있다.
본 발명의 실시예에 따르면, 성능이 우수하고, 신뢰성이 높은 열전소자를 얻을 수 있다. 특히, 본 발명의 실시예에 따르면, 열전도 성능뿐만 아니라, 내전압 성능 및 열응력 완화 성능까지 개선된 열전소자를 얻을 수 있다.
본 발명의 실시예에 따른 열전소자는 소형으로 구현되는 애플리케이션뿐만 아니라 차량, 선박, 제철소, 소각로 등과 같이 대형으로 구현되는 애플리케이션에서도 적용될 수 있다.
도 1은 열전소자의 단면도이다.
도 2는 열전소자의 사시도이다.
도 3은 실링부재를 포함하는 열전소자의 사시도이다.
도 4는 실링부재를 포함하는 열전소자의 분해사시도이다.
도 5는 본 발명의 한 실시예에 따른 열전소자에 포함되는 기판, 절연층 및 전극의 단면도이다.
도 6은 본 발명의 다른 실시예에 따른 열전소자에 포함되는 기판, 절연층 및 전극의 단면도이다.
도 7은 도 6의 기판, 절연층 및 전극의 제작 공정을 나타내는 도면이다.
도 8(a)는 실시예에 따른 열전소자의 단면 구조이고, 도 8(b)는 실시예에 따른 열전소자가 고온의 조건 하에 장시간 노출될 경우 예상되는 변화를 나타낸다.
도 9(a) 및 도 9(b)는 실시예에 따른 열전소자의 응력 및 뒤틀림(warpage)를 시뮬레이션한 결과이다.
도 10(a)는 비교예에 따른 열전소자의 단면 구조이고, 도 10(b)는 비교예에 따른 열전소자가 고온의 조건 하에 장시간 노출될 경우 예상되는 변화를 나타낸다.
도 11(a) 및 도 11(b)는 비교예에 따른 열전소자의 응력 및 뒤틀림(warpage)를 시뮬레이션한 결과이다.
도 12는 열전소자의 기판과 히트싱크 간 접합 구조를 예시한다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 열전소자의 단면도이고, 도 2는 열전소자의 사시도이다. 도 3은 실링부재를 포함하는 열전소자의 사시도이고, 도 4는 실링부재를 포함하는 열전소자의 분해사시도이다.
도 1 내지 2를 참조하면, 열전소자(100)는 하부 기판(110), 하부 전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부 전극(150) 및 상부 기판(160)을 포함한다.
하부 전극(120)은 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 하부 바닥면 사이에 배치되고, 상부 전극(150)은 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140)의 상부 바닥면 사이에 배치된다. 이에 따라, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)는 하부 전극(120) 및 상부 전극(150)에 의하여 전기적으로 연결된다. 하부 전극(120)과 상부 전극(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 단위 셀을 형성할 수 있다.
예를 들어, 리드선(181, 182)을 통하여 하부 전극(120) 및 상부 전극(150)에 전압을 인가하면, 펠티에 효과로 인하여 P형 열전 레그(130)로부터 N형 열전 레그(140)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 열전 레그(140)로부터 P형 열전 레그(130)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다. 또는, 하부전극(120) 및 상부전극(150) 간 온도 차를 가해주면, 제벡 효과로 인하여 P형 열전 레그(130) 및 N형 열전 레그(140) 내 전하가 이동하며, 전기가 발생할 수도 있다.
여기서, P형 열전 레그(130) 및 N형 열전 레그(140)는 비스무스(Bi) 및 텔루륨(Te)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. P형 열전 레그(130)는 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, P형 열전 레그(130)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Sb-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. N형 열전 레그(140)는 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, N형 열전 레그(140)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Se-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. 이에 따라, 본 명세서에서 열전 레그는 반도체 구조물, 반도체 소자, 반도체 재료층, 반도체 물질층, 반도체 소재층, 도전성 반도체 구조물, 열전 구조물, 열전 재료층, 열전 물질층, 열전 소재층 등으로 지칭될 수도 있다.
P형 열전 레그(130) 및 N형 열전 레그(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 열전 레그(130) 또는 벌크형 N형 열전 레그(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 이때, P형 열전 레그(130) 및 N형 열전 레그(140)는 다결정 열전 레그일 수 있다. 다결정 열전 레그를 위하여, 열전 레그용 분말을 소결할 때, 100MPa 내지 200MPa로 압축할 수 있다. 예를 들어, P형 열전 레그(130)의 소결 시 열전 레그용 분말을 100 내지 150MPa, 바람직하게는 110 내지 140MPa, 더욱 바람직하게는 120 내지 130MPa로 소결할 수 있다. 그리고, N형 열전 레그(140)의 소결 시 열전 레그용 분말을 150 내지 200MPa, 바람직하게는 160 내지 195MPa, 더욱 바람직하게는 170 내지 190MPa로 소결할 수 있다. 이와 같이, P형 열전 레그(130) 및 N형 열전 레그(140)는 다결정 열전 레그인 경우, P형 열전 레그(130) 및 N형 열전 레그(140)의 강도가 높아질 수 있다. 적층형 P형 열전 레그(130) 또는 적층형 N형 열전 레그(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.
이때, 한 쌍의 P형 열전 레그(130) 및 N형 열전 레그(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 열전 레그(130)와 N형 열전 레그(140)의 전기 전도 특성이 상이하므로, N형 열전 레그(140)의 높이 또는 단면적을 P형 열전 레그(130)의 높이 또는 단면적과 다르게 형성할 수도 있다.
이때, P형 열전 레그(130) 또는 N형 열전 레그(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 적층형 구조를 가질 수도 있다. 예를 들어, P형 열전 레그 또는 N형 열전 레그는 시트 형상의 기재에 반도체 물질이 도포된 복수의 구조물을 적층한 후, 이를 절단하는 방법으로 형성될 수 있다. 이에 따라, 재료의 손실을 막고 전기 전도 특성을 향상시킬 수 있다. 각 구조물은 개구 패턴을 가지는 전도성층을 더 포함할 수 있으며, 이에 따라 구조물 간의 접착력을 높이고, 열전도도를 낮추며, 전기전도도를 높일 수 있다.
또는, P형 열전 레그(130) 또는 N형 열전 레그(140)는 하나의 열전 레그 내에서 단면적이 상이하도록 형성될 수도 있다. 예를 들어, 하나의 열전 레그 내에서 전극을 향하도록 배치되는 양 단부의 단면적이 양 단부 사이의 단면적보다 크게 형성될 수도 있다. 이에 따르면, 양 단부 간의 온도차를 크게 형성할 수 있으므로, 열전효율이 높아질 수 있다.
본 발명의 한 실시예에 따른 열전 소자의 성능은 열전성능 지수(figure of merit, ZT)로 나타낼 수 있다. 열전성능 지수(ZT)는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2020019098-appb-img-000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α 2σ는 파워 인자(Power Factor, [W/mK 2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm 2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm 3]이다.
열전 소자의 열전성능 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 열전성능 지수(ZT)를 계산할 수 있다.
여기서, 하부 기판(110)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 하부 전극(120), 그리고 상부 기판(160)과 P형 열전 레그(130) 및 N형 열전 레그(140) 사이에 배치되는 상부 전극(150)은 구리(Cu), 은(Ag), 알루미늄(Al) 및 니켈(Ni) 중 적어도 하나를 포함하며, 0.01mm 내지 0.3mm의 두께를 가질 수 있다. 하부 전극(120) 또는 상부 전극(150)의 두께가 0.01mm 미만인 경우, 전극으로서 기능이 떨어지게 되어 전기 전도 성능이 낮아질 수 있으며, 0.3mm를 초과하는 경우 저항의 증가로 인하여 전도 효율이 낮아질 수 있다.
그리고, 상호 대향하는 하부 기판(110)과 상부 기판(160)은 금속 기판일 수 있으며, 그 두께는 0.1mm~1.5mm일 수 있다. 금속 기판의 두께가 0.1mm 미만이거나, 1.5mm를 초과하는 경우, 방열 특성 또는 열전도율이 지나치게 높아질 수 있으므로, 열전 소자의 신뢰성이 저하될 수 있다. 또한, 하부 기판(110)과 상부 기판(160)이 금속 기판인 경우, 하부 기판(110)과 하부 전극(120) 사이 및 상부 기판(160)과 상부 전극(150) 사이에는 각각 절연층(170)이 더 형성될 수 있다. 절연층(170)은 1~20W/mK의 열전도도를 가지는 소재를 포함할 수 있다.
이때, 하부 기판(110)과 상부 기판(160)의 크기는 다르게 형성될 수도 있다. 예를 들어, 하부 기판(110)과 상부 기판(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 이에 따라, 열전 소자의 흡열 성능 또는 방열 성능을 높일 수 있다. 바람직하게는, 하부기판(110)의 체적, 두께 또는 면적은 상부기판(160)의 체적, 두께 또는 면적 중 적어도 하나 보다 더 크게 형성될 수 있다. 이때, 하부기판(110)은 제벡 효과를 위해 고온영역에 배치되는 경우, 펠티에 효과를 위해 발열영역으로 적용되는 경우 또는 후술할 열전모듈의 외부환경으로부터 보호를 위한 실링부재가 하부기판(110) 상에 배치되는 경우에 상부기판(160) 보다 체적, 두께 또는 면적 중 적어도 하나를 더 크게 할 수 있다. 이때, 하부기판(110)의 면적은 상부기판(160)의 면적대비 1.2 내지 5배의 범위로 형성할 수 있다. 하부기판(110)의 면적이 상부기판(160)에 비해 1.2배 미만으로 형성되는 경우, 열전달 효율 향상에 미치는 영향은 높지 않으며, 5배를 초과하는 경우에는 오히려 열전달 효율이 현저하게 떨어지며, 열전모듈의 기본 형상을 유지하기 어려울 수 있다.
또한, 하부 기판(110)과 상부 기판(160) 중 적어도 하나의 표면에는 방열 패턴, 예를 들어 요철 패턴이 형성될 수도 있다. 이에 따라, 열전 소자의 방열 성능을 높일 수 있다. 요철 패턴이 P형 열전 레그(130) 또는 N형 열전 레그(140)와 접촉하는 면에 형성되는 경우, 열전 레그와 기판 간의 접합 특성도 향상될 수 있다. 열전소자(100)는 하부기판(110), 하부전극(120), P형 열전 레그(130), N형 열전 레그(140), 상부전극(150) 및 상부기판(160)을 포함한다.
도 3 내지 도 4에 도시된 바와 같이, 하부기판(110)과 상부기판(160) 사이에는 실링부재(190)가 더 배치될 수도 있다. 실링부재(190)는 하부기판(110)과 상부기판(160) 사이에서 하부전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부전극(150)의 측면에 배치될 수 있다. 이에 따라, 하부전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부전극(150)은 외부의 습기, 열, 오염 등으로부터 실링될 수 있다. 여기서, 실링부재(190)는, 복수의 하부전극(120)의 최외곽, 복수의 P형 열전 레그(130) 및 복수의 N형 열전 레그(140)의 최외곽 및 복수의 상부전극(150)의 최외곽의 측면으로부터 소정 거리 이격되어 배치되는 실링 케이스(192), 실링 케이스(192)와 하부 기판(110) 사이에 배치되는 실링재(194) 및 실링 케이스(192)와 상부 기판(160) 사이에 배치되는 실링재(196)를 포함할 수 있다. 이와 같이, 실링 케이스(192)는 실링재(194, 196)를 매개로 하여 하부 기판(110) 및 상부 기판(160)과 접촉할 수 있다. 이에 따라, 실링 케이스(192)가 하부 기판(110) 및 상부 기판(160)과 직접 접촉할 경우 실링 케이스(192)를 통해 열전도가 일어나게 되고, 결과적으로 하부 기판(110)과 상부 기판(160) 간의 온도 차가 낮아지는 문제를 방지할 수 있다. 여기서, 실링재(194, 196)는 에폭시 수지 및 실리콘 수지 중 적어도 하나를 포함하거나, 에폭시 수지 및 실리콘 수지 중 적어도 하나가 양면에 도포된 테이프를 포함할 수 있다. 실링재(194, 194)는 실링 케이스(192)와 하부 기판(110) 사이 및 실링 케이스(192)와 상부 기판(160) 사이를 기밀하는 역할을 하며, 하부전극(120), P형 열전 레그(130), N형 열전 레그(140) 및 상부전극(150)의 실링 효과를 높일 수 있고, 마감재, 마감층, 방수재, 방수층 등과 혼용될 수 있다. 여기서, 실링 케이스(192)와 하부 기판(110) 사이를 실링하는 실링재(194)는 하부 기판(110)의 상면에 배치되고, 실링케이스(192)와 상부 기판(160) 사이를 실링하는 실링재(196)는 상부기판(160)의 측면에 배치될 수 있다. 이를 위하여, 하부 기판(110)의 면적은 상부 기판(160)의 면적보다 클 수 있다. 한편, 실링 케이스(192)에는 전극에 연결된 리드선(181, 182)를 인출하기 위한 가이드 홈(G)이 형성될 수 있다. 이를 위하여, 실링 케이스(192)는 플라스틱 등으로 이루어진 사출 성형물일 수 있으며, 실링 커버와 혼용될 수 있다. 다만, 실링부재에 관한 이상의 설명은 예시에 지나지 않으며, 실링부재는 다양한 형태로 변형될 수 있다. 도시되지 않았으나, 실링부재를 둘러싸도록 단열재가 더 포함될 수도 있다. 또는 실링부재는 단열 성분을 포함할 수도 있다.
이상에서, 하부 기판(110), 하부 전극(120), 상부 전극(150) 및 상부 기판(160)이라는 용어를 사용하고 있으나, 이는 이해의 용이 및 설명의 편의를 위하여 임의로 상부 및 하부로 지칭한 것일 뿐이며, 하부 기판(110) 및 하부 전극(120)이 상부에 배치되고, 상부 전극(150) 및 상부 기판(160)이 하부에 배치되도록 위치가 역전될 수도 있다.
도 5는 본 발명의 한 실시예에 따른 열전소자에 포함되는 기판, 절연층 및 전극의 단면도이고, 도 6은 본 발명의 다른 실시예에 따른 열전소자에 포함되는 기판, 절연층 및 전극의 단면도이며, 도 7은 도 6의 기판, 절연층 및 전극의 제작 공정을 나타내는 도면이다.
도 5(a) 및 도 5(b)를 참조하면, 본 발명의 한 실시예에 따른 열전소자(500)는 기판(510), 기판(510) 상에 배치된 절연층(520), 절연층(520) 상에 서로 이격되도록 배치된 복수의 전극(530) 및 복수의 전극(530) 상에 배치된 복수의 P형 열전 레그 및 N형 열전 레그(미도시)를 포함한다.
여기서, 기판(510), 절연층(520) 및 복수의 전극(530)은 도 1 내지 도 4의 하부 기판(110), 절연층(170) 및 하부 전극(120)이거나, 도 1 내지 도 4의 상부 기판(160), 절연층(170) 및 상부 전극(150)일 수 있다. 도 1 내지 도 4에서 설명한 내용과 동일한 내용에 대해서는 중복된 설명을 생략한다. 본 명세서에서, "상부" 및 "하부"는 구성요소 간 상대적인 위치를 표현하기 위한 용어이며, 구성요소의 배치가 전체적으로 역전되면 "상부"는 "하부"가 되고, "하부"는 "상부"가 될 수 있다. 여기서, 기판(510)은 금속기판, 예를 들어 알루미늄 기판, 구리 기판, 알루미늄-구리 합금 기판일 수 있다. 본 발명의 실시예에 따르면, 고온부 측 기판은 구리 기판이고, 저온부 측 기판은 알루미늄 기판일 수도 있다. 구리 기판은 알루미늄 기판에 비하여 열전도도 및 전기전도도가 높다. 이에 따라, 저온부 측에 요구되는 높은 내전압 성능 및 고온부 측에 요구되는 높은 열전도 성능을 모두 만족시킬 수 있다.
일반적으로, 열전소자(500)의 구동 시 열전소자(500)의 고온부 측은 고온에 장시간 노출될 수 있으며, 전극과 기판 간의 서로 다른 열팽창 계수로 인하여 전극과 기판 간의 계면에는 전단응력이 전달될 수 있다. 본 명세서에서, 전극과 기판 간의 서로 다른 열팽창 계수로 인하여 전극과 기판 간의 계면에 전달된 전단응력을 열응력이라 한다. 열응력이 소정 수준을 넘어서면, 전극 상에 배치된 솔더와 열전 레그 간 접합면에 크랙이 가해질 수 있으며, 이는 열전소자의 성능을 저하시키고, 신뢰성을 낮출 수 있다.
본 발명의 실시예에 따르면, 기판(510)과 전극(530) 사이에는 절연층(520)이 배치되며, 절연층(520)은 기판(510)과 전극(530) 간의 열팽창계수 차로 인한 열응력을 완화시키기 위하여 이층으로 배치될 수 있다.
본 발명의 실시예에 따르면, 절연층(520)은 기판(510) 상에 배치된 제1 절연층(522) 및 제1 절연층(522) 상에서 제1 절연층(522)과 전극(530) 사이에 배치된 제2 절연층(524)를 포함한다. 여기서, 제2 절연층(524)은 서로 이격되도록 배치된 복수의 제2 절연층(524)일 수 있다. 본 발명의 실시예에 따르면, 기판(510) 상에 배치된 제1 절연층(522)의 총 면적은 제1 절연층(522) 상에 배치된 제2 절연층(524)의 총 면적보다 클 수 있다.
이에 따르면, 제1 절연층(522)은 제2 절연층(524)에 비하여 기판(510)에 더 가깝게 배치되며, 제1 절연층(522)은 기판(510)의 온도 변화에 따라 팽창 또는 수축되는 과정에서 열응력의 일부를 흡수하므로, 제2 절연층(524)에 가해지는 열응력을 줄일 수 있다.
특히, 제1 절연층(522) 상에서 복수의 제2 절연층(524)이 서로 이격되도록 배치될 경우, 제1 절연층(522) 상에는 제2 절연층(524)이 배치되지 않는 영역(A)이 있을 수 있다. 이에 따르면, 기판(510)의 온도 변화에 따라 제1 절연층(522)이 팽창 또는 수축되더라도, 제1 절연층(522)의 팽창 또는 수축에 따른 힘이 제2 절연층(524)에 미치는 영향을 최소화할 수 있으며, 제1 절연층(522)의 팽창 또는 수축에 따라 제2 절연층(524)이 함께 변형되는 문제를 방지할 수 있다.
이때, 제1 절연층(522)의 열팽창계수는 제2 절연층(524)의 열팽창계수보다 클 수 있다. 또는, 제1 절연층(522)의 영률(Young's modulus)은 제2 절연층(524)의 영률보다 작을 수 있다. 그리고, 제2 절연층(524)의 내전압 성능은 제1 절연층(522)의 내전압 성능보다 클 수 있다. 또는, 제2 절연층(524)의 열전도 성능은 제1 절연층(522)의 열전도 성능보다 클 수 있다. 이에 따르면, 기판(510)의 팽창 또는 수축 시 기판(510)과 접촉하는 제1 절연층(522)이 함께 팽창 또는 수축되므로, 절연층(520)에 가해지는 열응력은 최소화될 수 있다. 또한, 전극(530)과 접촉하는 제2 절연층(524)으로 인하여 절연층(520) 전체의 내전압 성능 및 열전도 성능을 높일 수 있다.
이와 같이, 본 발명의 실시예에 따르면, 열응력 완화, 내전압 성능 및 열전도 성능을 모두 가지는 열전소자의 절연층 구조를 얻을 수 있다.
한편, 복수의 전극(530)은 복수의 제2 절연층(524)에 대응하도록 복수의 제2 절연층(524) 상에 배치될 수 있다. 즉, 복수의 제2 절연층(524) 각각은 복수의 전극(530) 각각마다 배치될 수 있다. 또는, 제2 절연층(524)은 서로 이격되도록 배치된 복수의 제2 절연층(524)을 포함하되, 각 제2 절연층(524)에는 복수의 전극(530)이 서로 이격되도록 배치될 수도 있다. 예를 들어, 각 제2 절연층(524)에는 서로 이격되도록 배치된 2개의 전극(530), 4개의 전극(530), 8개의 전극(530), 또는 16개의 전극(530)이 배치될 수 있다. 이와 같이, 열팽창계수가 상대적으로 큰 제1 절연층(522)이 기판(510) 상에 전면적으로 배치되고, 열팽창계수가 상대적으로 작은 제2 절연층(524)이 제1 절연층(522) 상에 서로 이격되도록 복수로 배치되며, 복수의 제2 절연층(524)과 복수의 전극(530)이 대응하도록 배치되는 경우, 기판(510)의 온도 변화에 따라 제1 절연층(522)이 팽창 또는 수축되더라도 제2 절연층(524)은 열변형되지 않을 수 있으며, 이에 따라, 전극(530)의 구조가 파괴되는 문제도 방지할 수 있다.
이를 위하여, 제1 절연층(522)의 조성은 제2 절연층(524)의 조성과 상이할 수 있다. 예를 들어, 제1 절연층(522)은 실리콘 수지 및 무기물을 포함하는 수지층일 수 있다. 예를 들어, 제1 절연층(522)의 영률(Young's modulus)은 1 내지 150MPa, 바람직하게는 1 내지 100MPa, 더욱 바람직하게는 1 내지 65MPa, 더욱 바람직하게는 5 내지 60MPa, 더 바람직하게는 10 내지 50MPa일 수 있다. 본 실시예에서, 영률은 200℃이하에서의 영률을 의미할 수 있으며, 바람직하게는 150℃내지 200℃사이의 온도에서의 영률을 의미할 수 있다. 열전소자가 발전용으로 적용되는 경우, 열전소자의 고온부와 저온부 간 온도 차가 클수록 발전 성능이 높아질 수 있다. 이에 따라, 열전소자의 고온부는 150℃이상, 바람직하게는 180℃이상, 더욱 바람직하게는 200℃이상이 될 수 있다. 이에 따라, 본 명세서에서 제1 절연층(522)의 영률을 정의하는 기준 온도는 150℃내지 200℃사이의 온도가 될 수 있다. 제1 절연층(522)의 영률이 이러한 수치범위를 만족할 경우, 기판이 열팽창되더라도 제1 절연층이 함께 늘어나므로, 기판과 전극 사이의 열응력은 최소화될 수 있고, 열전레그에 크랙이 발생하는 문제를 방지할 수 있다. 여기서, 온도별 영률은 동적기계분석(Dynamic Mechanical Analysis, DMA)장비로 측정이 가능하다.
이때, 제1 절연층(522)의 영률이 1MPa 미만인 경우, 제1 절연층(522)이 기판과 전극 사이를 지지하기 어려워지므로, 외부의 작은 충격 또는 진동 환경 하에서 열전소자의 신뢰성이 쉽게 약해질 수 있다. 이에 반해, 제1 절연층(522)의 영률이 150MPa을 초과하는 경우, 기판과 전극 간의 열응력이 커지게 되므로 열전소자 내 계면에 크랙이 발생할 가능성이 높아지게 된다.
이때, 제1 절연층(522)에 포함되는 실리콘 수지는 PDMS(polydimethylsiloxane)를 포함할 수 있고, 무기물은 알루미늄, 티타늄, 지르코늄, 붕소 및 아연 중 적어도 하나의 산화물, 탄화물 및 질화물 중 적어도 하나를 포함할 수 있다. 여기서, PDMS의 분자량은 5,000 내지 30,000g/mol, 바람직하게는 15,000 내지 30,000g/mol일 수 있다. PDMS의 분자량이 이러한 수치범위를 만족하는 경우, PDMS의 사슬 간 결합력이 향상될 수 있으므로, 제1 절연층(522)이 1 내지 150MPa의 영률을 가질 수 있다. 이때, 제1 절연층(522)은 가교제를 더 포함할 수 있으며, 가교제의 분자량은 500 내지 2000g/mol, 바람직하게는 1,000 내지 2,000g/mol일 수 있다. 가교제의 분자량이 커질수록 가교제의 사슬길이는 길어질 수 있다.
한편, 무기물은 제1 절연층(522)에서 60 내지 90wt%, 바람직하게는 80 내지 90wt%로 포함될 수 있다. 이때, 제1 절연층(522)의 무기물은 D50이 30 내지 40㎛일 수 있다. 이에 따르면, 방열 경로가 최적화될 수 있으므로, 제1 절연층(522)의 열전도도를 2W/mK 이상, 바람직하게는 3W/mK 이상으로 높일 수 있다.
이와 같이, 본 발명의 실시예에 따른 제1 절연층(522)은 기판과 전극 간 열팽창 계수 차에 따른 열응력을 완화할 뿐만 아니라, 기판과 전극 간 절연성, 접합력 및 열전도 성능을 향상시킬 수도 있다.
한편, 본 발명의 실시예에 따르면, 고온부 측 기판(510)에 배치되는 제1 절연층(522)의 영률과 저온부 측 기판(510)에 배치되는 제1 절연층(522)의 영률은 서로 상이할 수도 있다. 고온부 측 기판(510)에 배치되는 제1 절연층(522)의 영률은 저온부 측 기판(510)에 배치되는 제1 절연층(522)의 영률보다 낮을 수 있다. 예를 들어, 고온부 측 기판(510)에 배치되는 제1 절연층(522)의 영률은 1 내지 65MPa이고, 저온부 측 기판(510)에 배치되는 제1 절연층(522)의 영률은 65MPa 이상, 바람직하게는 65 내지 150MPa일 수 있다. 이에 따라, 고온부 측의 기판(510)이 열팽창되더라도 제1 절연층(522)이 함께 늘어날 수 있으므로, 기판과 전극 사이의 열응력은 최소화될 수 있고, 열전레그에 크랙이 발생하는 문제를 방지할 수 있다.
또한, 본 발명의 실시예에 따르면, 고온부 측 제1 절연층(522)은 더욱 높은 열응력 완화 성능을 요구하므로, 고온부 측 제1 절연층(522)의 두께는 저온부 측 제1 절연층(522)의 두께보다 더 두꺼울 수도 있다.
한편, 본 발명의 실시예에 따르면, 제2 절연층(524)의 내전압 성능은 제1 절연층(522)의 내전압 성능보다 높을 수 있다. 본 발명의 실시예에 따른 내전압 성능은 AC 2.5kV의 전압 및 1mA의 전류 하에서 10초 동안 절연 파괴 없이 유지되는 특성을 의미할 수 있다. 이를 위하여, 제2 절연층(524)은 산화알루미늄을 포함할 수 있다. 예를 들어, 제2 절연층(524)은 산화알루미늄층일 수 있다. 또는, 제2 절연층(524)은 실리콘과 알루미늄을 포함하는 복합체(composite)를 포함할 수도 있다. 여기서, 복합체는 실리콘과 알루미늄을 포함하는 산화물, 탄화물 및 질화물 중 적어도 하나일 수 있다. 예를 들어, 복합체는 Al-Si 결합, Al-O-Si 결합, Si-O 결합, Al-Si-O 결합 및 Al-O 결합 중 적어도 하나를 포함할 수 있다. 이와 같이, Al-Si 결합, Al-O-Si 결합, Si-O 결합, Al-Si-O 결합 및 Al-O 결합 중 적어도 하나를 포함하는 복합체는 절연 성능이 우수하며, 이에 따라 높은 내전압 성능을 얻을 수 있다. 또는, 복합체는 실리콘 및 알루미늄과 함께 티타늄, 지르코늄, 붕소, 아연 등을 더 포함하는 산화물, 탄화물, 질화물일 수도 있다. 이를 위하여, 복합체는 무기바인더 및 유무기 혼합 바인더 중 적어도 하나와 알루미늄을 혼합한 후 열처리하는 과정을 통하여 얻어질 수 있다. 무기바인더는, 예를 들어 실리카(SiO 2), 금속알콕사이드, 산화붕소(B 2O 3) 및 산화아연(ZnO 2) 중 적어도 하나를 포함할 수 있다. 무기바인더는 무기입자이되, 물에 닿으면 졸 또는 겔화되어 바인딩의 역할을 할 수 있다. 이때, 실리카(SiO 2), 금속알콕사이드 및 산화붕소(B 2O 3) 중 적어도 하나는 금속과의 밀착력을 높이는 역할을 하며, 산화아연(ZnO 2)은 제2 절연층(524)의 강도를 높이고, 열전도율을 높이는 역할을 할 수 있다.
이때, 제1 절연층(522)의 수지 함량은 제2 절연층(524)의 수지 함량보다 높을 수 있다. 이에 따르면, 제1 절연층(522)의 접착력은 제2 절연층(524)의 접착력보다 높고, 제1 절연층(522)의 열팽창계수는 제2 절연층(524)의 열팽창계수보다 높을 수 있으며, 제2 절연층(524)의 내전압 성능 및 열전도 성능은 제1 절연층(522)의 내전압 성능 및 열전도 성능보다 높을 수 있다.
제1 절연층(522)의 두께는 제2 절연층(524)의 두께보다 두꺼울 수 있다. 예를 들어, 제1 절연층(522)의 두께는 60 내지 150㎛, 바람직하게는 70 내지 130㎛, 더욱 바람직하게는 80 내지 110㎛일 수 있다. 그리고, 제2 절연층(524)의 두께는 10 내지 50㎛, 바람직하게는 20 내지 40㎛일 수 있다. 이에 따르면, 제1 절연층(522)은 절연층(520)에 가해지는 열응력을 완화할 수 있고, 내전압 성능 및 열전도 성능이 높은 열전소자를 얻을 수 있다.
한편, 도 5(a) 및 5(b)에 도시된 바와 같이, 복수의 전극(530) 간 이격 거리(d3)는 복수의 제2 절연층(524) 간 이격 거리(d2)와 상이할 수 있다. 즉, 도 5(a)에 도시된 바와 같이, 복수의 전극(530) 간 이격 거리(d3)는 복수의 제2 절연층(524) 간 이격 거리(d2)보다 클 수 있다. 또는, 도 5(b)에 도시된 바와 같이, 복수의 전극(530) 간 이격 거리(d3)는 복수의 제2 절연층(524) 간 이격 거리(d2)보다 작을 수도 있다. 예를 들어, 복수의 전극(530) 간 이격 거리(d3)는 복수의 제2 절연층(524) 간 이격 거리(d2)의 0.6배 내지 2.8배일 수 있으며, 복수의 전극(530) 간 이격 거리(d3)가 복수의 제2 절연층(524) 간 이격 거리(d2)의 0.6배 미만인 경우, 제2 절연층(524)과 전극(530)과의 접촉 면적이 상대적으로 작아, 고온에서의 제2 절연층(524)의 열변형에 의한 영향은 최소화될 수 있으나, 전압의 증가에 따라 본 영역에서 쉽게 절연파괴가 발생되어 내전압특성이 저하될 수 있으며, 제2 절연층(524)로부터 전극(530)이 탈락될 수 있다. 또한, 복수의 전극(530) 간 이격 거리(d3)가 복수의 제2 절연층(524) 간 이격 거리(d2)의 2.8배를 초과하는 경우, 제2 절연층(524)과 전극(530)과의 접촉 면적이 상대적으로 커지므로, 내전압특성이 향상되고, 제2 절연층(524)로부터 전극(530)이 탈락을 방지할 수 있으나, 고온에서의 제1 절연층(522)의 열응력이 제2 절연층(524)에도 전달되어 제2 절연층(524)에도 열변형이 발생될 수 있으며, 제한된 면적 내에서 복수의 전극(530)의 배치 개수는 상대적으로 감소될 수 있다. 본 발명의 실시예에 따르면, 복수의 전극(530) 간 이격 거리(d3)는 복수의 제2 절연층(524) 간 이격 거리(d2)의 0.6배 내지 0.99배, 바람직하게는 0.65 배 내지 0.95배, 더욱 바람직하게는 0.7배 내지 0.9배일 수 있다. 이에 따르면, 고온에서의 제2 절연층(524)의 열변형에 의하여 전극(530)에 미치는 영향을 최소화할 수 있다. 또는, 본 발명의 실시예에 따르면, 복수의 전극(530) 간 이격 거리(d3)는 복수의 제2 절연층(524) 간 이격 거리(d2)의 1.01배 내지 2.8배, 바람직하게는 1.05 배 내지 2.5배, 더욱 바람직하게는 1.1배 내지 2.2배일 수 있다. 이에 따르면, 전계가 몰리는 각 전극(530)의 가장자리에 제2 절연층(524)이 배치되므로, 열전소자의 내전압 성능이 더욱 높아질 수 있다.
도시되지 않았으나, 도 5에 따른 열전소자의 제조방법은 제2 절연층(524)이 배치된 전극(530)을 제1 절연층(522) 상에 배치한 후 경화하거나, 제1 절연층(522) 상에 제2 절연층(524)를 배치한 후 별도의 스크라이빙 공정을 수행하여 제조할 수 있다.
또는, 도 6에 도시된 바와 같이, 복수의 전극(530) 중 적어도 하나의 측면에는 제2 절연층(524)의 적어도 일부가 더 배치될 수 있다. 즉, 복수의 전극(530) 중 적어도 하나의 측면의 일부는 제2 절연층(524)에 매립될 수 있으며, 복수의 전극(530) 중 적어도 하나의 측면에 배치된 복수의 제2 절연층(524) 중 적어도 하나의 최대 두께(T2)는 복수의 전극(530) 중 적어도 하나의 최대 두께(T3)의 0.2 내지 0.75배, 바람직하게는 0.25 내지 0.6배, 더욱 바람직하게는 0.3 내지 0.5배일 수 있다.
이에 따르면, 전계가 몰리는 각 전극(530)의 가장자리에 제2 절연층(524)이 배치되므로, 열전소자의 내전압 성능이 더욱 높아질 수 있다.
특히, 도 6에 도시된 바와 같이, 복수의 전극(530) 중 적어도 하나의 측면에 제2 절연층(524)의 적어도 일부가 더 배치되면, 각 전극(530)의 수평 방향을 통한 열 손실을 줄일 수 있으므로, 열전소자의 열전성능을 더욱 개선할 수 있다.
도 6에 따른 열전소자를 제작하기 위하여, 도 7(a)를 참조하면, 시트(70) 상에 복수의 전극(530)을 배치한다. 여기서, 시트(70)는 서멀 시트 또는 이형 필름일 수 있다. 다음으로, 도 7(b)를 참조하면, 전극(530) 상에 마스크(M)를 배치한 후, 제2 절연층(524)을 이루는 소재로 스프레이 코팅을 수행한다. 이때, 마스크의 오픈 영역은 전극(530)의 폭보다 클 수 있다. 이에 따라, 제2 절연층(524)은 전극(530)의 측면에도 형성될 수 있다. 다음으로, 도 7(c)를 참조하면, 기판(510) 상에 제1 절연층(522)을 이루는 소재를 미리 도포한 후, 도 7(a) 및 도 7(b)의 단계를 통하여 형성된 전극(530) 및 제2 절연층(524)을 전사한다. 그리고, 도 7(d)를 참조하면, 제1 절연층(522)의 경화 후 시트(70)를 전극(530)으로부터 떼어내어 제조할 수 있으나, 본 제조 방법에 한정되지 않는다.
이에 따르면, 제1 절연층(522) 상에 서로 이격되도록 배치된 복수의 제2 절연층(524) 및 복수의 제2 절연층(524) 상에 배치된 복수의 전극(530)을 포함하고, 전극(530)의 측면에 제2 절연층(524)이 더 배치된 열전소자를 얻을 수 있다.
이하, 비교예 및 실시예를 통하여 본 발명의 실시예에 따른 열전소자의 효과를 설명하고자 한다.
도 8(a)는 실시예에 따른 열전소자의 단면 구조이고, 도 8(b)는 실시예에 따른 열전소자가 고온의 조건 하에 장시간 노출될 경우 예상되는 변화를 나타내며, 도 9(a)는 실시예에 따른 열전소자의 제2 절연층에 가해지는 응력을 시뮬레이션한 결과이고, 도 9(b)는 실시예에 따른 열전소자의 뒤틀림(warpage)을 시뮬레이션한 결과이다. 도 10(a)는 비교예에 따른 열전소자의 단면 구조이고, 도 10(b)는 비교예에 따른 열전소자가 고온의 조건 하에 장시간 노출될 경우의 변화를 나타내며, 도 11(a)은 비교예에 따른 열전소자의 제2 절연층에 가해지는 응력을 시뮬레이션한 결과이고, 도 11(b)는 비교예에 따른 열전소자의 뒤틀림(warpage)을 시뮬레이션한 결과이다.
도 8(a)와 같이, 실시예에 따른 열전소자(500)는 기판(510), 기판(510) 상에 전면 배치된 제1 절연층(522), 제1 절연층(522) 상에 서로 이격되도록 배치된 복수의 제2 절연층(524) 및 복수의 제2 절연층(524) 상에 배치된 복수의 전극(530)을 포함하고, 제1 절연층(522)의 열팽창계수는 제2 절연층(524)의 열팽창계수보다 크다. 이에 따르면, 실시예에 따른 열전소자(500)가 고온에 장시간 노출될 경우, 도 8(b)와 같이 기판(510) 및 제1 절연층(522)의 열변형 대비하여, 제2 절연층(524)의 열변형은 상대적으로 작다.
이에 반해, 도 10(a)와 같이, 비교예에 따른 열전소자(600)는 기판(610), 기판(610) 상에 전면 배치된 제1 절연층(622), 제1 절연층(622) 상에 전면 배치된 제2 절연층(624) 및 제2 절연층(624) 상에 서로 이격되도록 배치된 복수의 전극(630)을 포함하고, 제2 절연층(624)의 열팽창계수는 제1 절연층(622)의 열팽창계수보다 크다. 즉, 실시예에 따른 열전소자(500)의 제1 절연층(522)과 비교예에 따른 열전소자(600)의 제2 절연층(624)은 동일한 조성을 가지고, 실시예에 따른 열전소자(500)의 제2 절연층(524)과 비교예에 따른 열전소자(600)의 제1 절연층(622)은 동일한 조성을 가질 수 있다. 이에 따르면, 비교예에 따른 열전소자(600)가 고온에 장시간 노출될 경우, 제1 절연층(622)의 열응력에 의해 열전소자의 신뢰성이 저하될 수 있다.
이는 도 9 및 도 11로부터 알 수 있다. 도 9(a) 및 도 9(b)를 참조하면, 본 발명의 실시예에 따른 제2 절연층(524)에 가해지는 최대 응력은 262MPa이고, 평균 응력은 32.37MPa이며, 최대 뒤틀림은 1.56mm임을 알 수 있다. 이에 반해, 도 11(a) 및 도 11(b)를 참조하면, 비교예에 따른 제1 절연층(622)에 가해지는 최대 응력은 831MPa이고, 평균 응력은 214.47MPa이며, 최대 뒤틀림은 1.8mm임을 알 수 있다.
이와 같이, 본 발명의 실시예에 따른 열전소자는 고온에 장시간 노출 시에도 절연층에 가해지는 열응력이 낮으며, 뒤틀림이 적게 나타나므로, 절연층의 파손 또는 전극 구조의 파괴 등으로 인하여 열전 레그에 크랙이 가해지는 것을 방지할 수 있음을 알 수 있다.
본 발명의 실시예에 따른 기판, 절연층 및 전극의 구조는 열전소자의 고온부 측 및 저온부 측 중 적어도 하나에 적용될 수 있다.
이때, 열전소자의 고온부 측 기판에는 히트싱크(200)가 더 배치될 수 있다.
도 12는 열전소자의 기판과 히트싱크 간 접합 구조를 예시한다.
도 12를 참조하면, 히트싱크(200)와 기판(510)은 복수의 체결부재(400)에 의하여 체결될 수 있다. 이를 위하여, 히트싱크(200)와 기판(510)에는 체결부재(400)가 관통하는 관통홀(S)이 형성될 수 있다. 여기서, 관통홀(S)과 체결부재(400) 사이에는 별도의 절연체(410)가 더 배치될 수 있다. 별도의 절연체(410)는 체결부재(400)의 외주면을 둘러싸는 절연체 또는 관통홀(S)의 벽면을 둘러싸는 절연체일 수 있다. 이에 따르면, 열전소자의 절연거리를 넓히는 것이 가능하다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 하부 금속기판,
    상기 하부 금속기판 상에 배치된 하부 절연층,
    상기 하부 절연층 상에 서로 이격되도록 배치된 복수의 하부 전극,
    상기 복수의 하부 전극 상에 배치된 복수의 P형 열전 레그 및 N형 열전 레그,
    상기 복수의 P형 열전 레그 및 N형 열전 레그 상에 배치되고 서로 이격되도록 배치된 복수의 상부 전극,
    상기 복수의 상부 전극 상에 배치된 상부 절연층, 그리고,
    상기 상부 절연층 상에 배치된 상부 금속기판을 포함하고,
    상기 하부 절연층은
    상기 하부 금속기판 상에 배치된 제1 절연층 및 상기 제1 절연층 상에서 서로 이격되도록 배치된 복수의 제2 절연층을 포함하는 열전소자.
  2. 제1항에 있어서,
    상기 복수의 하부 전극은 상기 복수의 제2 절연층에 대응하도록 상기 복수의 제2 절연층 상에 배치된 열전소자.
  3. 제2항에 있어서,
    상기 복수의 하부 전극 간 이격 거리는 상기 복수의 제2 절연층 간 이격 거리의 0.6배 내지 2.8배인 열전소자.
  4. 제1항에 있어서,
    상기 복수의 제2 절연층 중 적어도 하나는 상기 복수의 하부 전극 중 적어도 하나의 측면의 일부에 더 배치된 열전소자.
  5. 제4항에 있어서,
    상기 복수의 하부 전극 중 적어도 하나의 측면의 일부에 배치된 상기 복수의 제2 절연층 중 적어도 하나의 최대 두께는 상기 복수의 하부 전극 중 적어도 하나의 최대 두께의 0.2 내지 0.75배인 열전소자.
  6. 제1항에 있어서,
    상기 제1 절연층의 열팽창계수는 상기 제2 절연층의 열팽창계수보다 큰 열전소자.
  7. 제1항에 있어서,
    상기 제1 절연층의 두께는 상기 제2 절연층의 두께보다 큰 열전소자.
  8. 제1항에 있어서,
    상기 상부 절연층은 상기 상부 금속기판 아래에 배치된 제3 절연층 및 상기 제3 절연층 아래에 배치된 제4 절연층을 포함하는 열전소자.
  9. 제8항에 있어서,
    상기 제4 절연층은 서로 이격되도록 배치된 복수의 제4 절연층인 열전소자.
  10. 제9항에 있어서,
    상기 복수의 상부 전극은 상기 복수의 제4 절연층에 대응하도록 상기 복수의 제4 절연층 아래에 배치된 열전소자.
PCT/KR2020/019098 2020-01-07 2020-12-24 열전소자 WO2021141302A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/758,261 US11937505B2 (en) 2020-01-07 2020-12-24 Thermoelectric device
CN202080092411.1A CN114930554A (zh) 2020-01-07 2020-12-24 热电元件
JP2022541280A JP2023510237A (ja) 2020-01-07 2020-12-24 熱電素子
EP20912956.8A EP4089750A4 (en) 2020-01-07 2020-12-24 THERMOELECTRIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0002125 2020-01-07
KR1020200002125A KR20210088980A (ko) 2020-01-07 2020-01-07 열전소자

Publications (1)

Publication Number Publication Date
WO2021141302A1 true WO2021141302A1 (ko) 2021-07-15

Family

ID=76788769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/019098 WO2021141302A1 (ko) 2020-01-07 2020-12-24 열전소자

Country Status (7)

Country Link
US (1) US11937505B2 (ko)
EP (1) EP4089750A4 (ko)
JP (1) JP2023510237A (ko)
KR (1) KR20210088980A (ko)
CN (1) CN114930554A (ko)
TW (1) TW202141818A (ko)
WO (1) WO2021141302A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298126A (ja) * 2002-04-01 2003-10-17 Kyocera Corp 熱電素子モジュールならびに半導体素子収納用パッケージおよび半導体モジュール
JP2003324218A (ja) * 2002-04-30 2003-11-14 Okano Electric Wire Co Ltd 熱電変換モジュール
JP2004274072A (ja) * 2004-04-26 2004-09-30 Yamaha Corp 熱電モジュール用基板、その製造方法及び熱電モジュール
KR20150084310A (ko) * 2014-01-13 2015-07-22 홍익대학교 산학협력단 써멀비아전극을 구비한 열전모듈 및 그 제조방법
KR102020155B1 (ko) * 2018-10-24 2019-09-10 엘티메탈 주식회사 열전 소자 및 그 제조방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5212937B2 (ja) 2008-04-21 2013-06-19 学校法人東京理科大学 熱電変換素子、当該熱電変換素子を備えた熱電モジュール及び熱電変換素子の製造方法
DE102014219852A1 (de) * 2014-09-30 2016-03-31 Mahle International Gmbh Thermoelektrischer Generator, insbesondere für ein Kraftfahrzeug
JP7302478B2 (ja) 2017-10-24 2023-07-04 株式会社レゾナック 熱電変換モジュールの製造方法、熱電変換モジュール及び熱電変換モジュール用接合材
WO2019146991A1 (ko) * 2018-01-23 2019-08-01 엘지이노텍 주식회사 열전 모듈
KR102469943B1 (ko) 2018-01-25 2022-11-23 엘지이노텍 주식회사 열전 소자
KR102095243B1 (ko) 2018-04-04 2020-04-01 엘지이노텍 주식회사 열전소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003298126A (ja) * 2002-04-01 2003-10-17 Kyocera Corp 熱電素子モジュールならびに半導体素子収納用パッケージおよび半導体モジュール
JP2003324218A (ja) * 2002-04-30 2003-11-14 Okano Electric Wire Co Ltd 熱電変換モジュール
JP2004274072A (ja) * 2004-04-26 2004-09-30 Yamaha Corp 熱電モジュール用基板、その製造方法及び熱電モジュール
KR20150084310A (ko) * 2014-01-13 2015-07-22 홍익대학교 산학협력단 써멀비아전극을 구비한 열전모듈 및 그 제조방법
KR102020155B1 (ko) * 2018-10-24 2019-09-10 엘티메탈 주식회사 열전 소자 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4089750A4 *

Also Published As

Publication number Publication date
US11937505B2 (en) 2024-03-19
KR20210088980A (ko) 2021-07-15
EP4089750A4 (en) 2023-12-27
JP2023510237A (ja) 2023-03-13
EP4089750A1 (en) 2022-11-16
US20230041077A1 (en) 2023-02-09
TW202141818A (zh) 2021-11-01
CN114930554A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
US20210143308A1 (en) Thermoelectric element
WO2020159177A1 (ko) 열전소자
WO2021145621A1 (ko) 발전장치
WO2020246749A1 (ko) 열전소자
WO2021201494A1 (ko) 열전소자
WO2021101267A1 (ko) 열전소자
WO2021141302A1 (ko) 열전소자
WO2021029590A1 (ko) 열전장치
WO2021132974A1 (ko) 열전소자
KR20220066013A (ko) 열전소자
WO2021194158A1 (ko) 열전소자
KR20220040980A (ko) 열전소자
WO2020130507A1 (ko) 열전 모듈
WO2022060112A1 (ko) 열전소자
WO2023287167A1 (ko) 열전소자
WO2022092737A1 (ko) 열전소자
WO2020256398A1 (ko) 열전소자
WO2023146302A1 (ko) 열전장치
WO2022019569A1 (ko) 열전 소자
WO2022270912A1 (ko) 열전장치
WO2022124674A1 (ko) 열전 소자
WO2022019673A1 (ko) 열전모듈
WO2022060165A1 (ko) 열전소자
WO2024101926A1 (ko) 열전모듈
WO2022035215A1 (ko) 열전 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020912956

Country of ref document: EP

Effective date: 20220808