WO2024101926A1 - 열전모듈 - Google Patents

열전모듈 Download PDF

Info

Publication number
WO2024101926A1
WO2024101926A1 PCT/KR2023/017995 KR2023017995W WO2024101926A1 WO 2024101926 A1 WO2024101926 A1 WO 2024101926A1 KR 2023017995 W KR2023017995 W KR 2023017995W WO 2024101926 A1 WO2024101926 A1 WO 2024101926A1
Authority
WO
WIPO (PCT)
Prior art keywords
disposed
cooling jacket
thermoelectric
substrate
shield member
Prior art date
Application number
PCT/KR2023/017995
Other languages
English (en)
French (fr)
Inventor
봉상훈
원부운
조용상
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230153539A external-priority patent/KR20240068556A/ko
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024101926A1 publication Critical patent/WO2024101926A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/13Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Definitions

  • the present invention relates to a thermoelectric module, and more specifically, to a thermoelectric module that uses the temperature difference between the low-temperature part and the high-temperature part of the thermoelectric element.
  • Thermoelectric phenomenon is a phenomenon caused by the movement of electrons and holes inside a material, and means direct energy conversion between heat and electricity.
  • Thermoelectric elements are a general term for devices that use thermoelectric phenomena, and have a structure in which a P-type thermoelectric material and an N-type thermoelectric material are joined between metal electrodes to form a PN junction pair.
  • Thermoelectric devices can be divided into devices that use temperature changes in electrical resistance, devices that use the Seebeck effect, a phenomenon in which electromotive force is generated due to a temperature difference, and devices that use the Peltier effect, a phenomenon in which heat absorption or heat generation occurs due to current. .
  • thermoelectric elements are widely applied to home appliances, electronic components, and communication components.
  • thermoelectric elements can be applied to cooling devices, heating devices, power generation devices, etc. Accordingly, the demand for thermoelectric performance of thermoelectric elements is increasing.
  • thermoelectric element Recently, there is a need to generate electricity using high-temperature heat and thermoelectric elements in automobiles, ships, etc.
  • a cooling jacket through which the first fluid passes is disposed on the low-temperature side of the thermoelectric element, a heatsink is disposed on the high-temperature side of the thermoelectric element, and a second fluid with a higher temperature than the first fluid passes through the heat sink. You can. Accordingly, electricity can be generated by the temperature difference between the low-temperature part and the high-temperature part of the thermoelectric element.
  • thermoelectric module that utilizes the temperature difference between the low-temperature part and the high-temperature part of the thermoelectric element.
  • thermoelectric module includes a cooling jacket formed with a through hole through which fluid can flow; A first thermoelectric element disposed on the cooling jacket; and a first shield member disposed on the first thermoelectric element and being thermally conductive, wherein the first thermoelectric element includes: a first substrate; a semiconductor device disposed on the first substrate; a second substrate disposed on the semiconductor device; a first electrode disposed between the first substrate and the semiconductor device; and a second electrode disposed between the second substrate and the semiconductor device, and the first shield member includes an overlapping portion disposed on an area where the first electrode and the second electrode overlap.
  • thermoelectric element may further include thermal grease disposed between the cooling jacket and the first thermoelectric element.
  • thermoelectric element and the first shield member may be combined.
  • thermoelectric element may further include a bonding layer disposed between the first thermoelectric element and the first shield member.
  • the bonding layer may include solder.
  • a substrate may be disposed, and the wiring portion may be disposed between the cooling jacket and the step portion.
  • a fluid inlet disposed at one end of the cooling jacket; And it further includes a fluid discharge portion disposed at the other end of the cooling jacket, wherein the through hole extends from the fluid inlet portion to the fluid discharge portion, and the wiring portion is between the fluid inlet portion and the first thermoelectric element or the fluid. It may be disposed between the discharge unit and the first thermoelectric element.
  • It may further include a dummy guide disposed between the cooling jacket and the step portion, and the dummy guide may be disposed between the fluid inlet portion and the wiring portion or between the fluid discharge portion and the wiring portion.
  • It may further include a first shield tube disposed on the fluid inlet and the step portion of the first shield member, and a second shield tube disposed on the fluid discharge portion and the step portion of the first shield member.
  • It may further include a sealing material disposed between the fluid inlet and the dummy guide under the first shield tube or between the fluid outlet and the dummy guide under the second shield tube.
  • the first shield member further includes a first extension portion disposed on one side of the cooling jacket and a second extension portion disposed on the other side of the cooling jacket, between one side of the cooling jacket and the first extension portion and It may further include an insulating member disposed between the other side of the cooling jacket and the second extension part.
  • One side of the cooling jacket and the first extension portion and the other side of the cooling jacket and the second extension portion may be coupled by a fastening member.
  • the first thermoelectric element is disposed on a first surface of the cooling jacket, and a second thermoelectric element is disposed on a second surface of the cooling jacket opposite to the first surface. And it may further include a second shield member disposed on the second thermoelectric element and being thermally conductive.
  • the first shield member includes a first extension portion disposed on one side of the cooling jacket and a second extension portion disposed on the other side of the cooling jacket, and the second shield member is disposed on the one side of the cooling jacket. It includes a third extension portion disposed and a fourth extension portion disposed on the other side of the cooling jacket, wherein the first extension portion and the third extension portion are disposed to overlap each other, and the second extension portion and the fourth extension portion are arranged to overlap each other.
  • the extension parts may be arranged to overlap each other.
  • the distance between the first extension part and the second extension part may be different from the distance between the third extension part and the fourth extension part.
  • the third extension may be disposed between the first extension and one side of the cooling jacket, and the fourth extension may be disposed between the second extension and the other side of the cooling jacket.
  • thermoelectric module that has a simple structure, is easy to assemble, and can accommodate the maximum number of thermoelectric elements in a given space.
  • thermoelectric module with high thermoelectric performance can be obtained by increasing the temperature difference between the high temperature section and the low temperature section.
  • thermoelectric module according to an embodiment of the present invention can be applied to a power generation device that generates electricity by using the temperature difference between the high temperature section and the low temperature section.
  • thermoelectric module according to an embodiment of the present invention can be applied to a Peltier device that cools or heats a specific object such as a fluid.
  • thermoelectric module 1 is a perspective view of a thermoelectric module according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a thermoelectric module according to an embodiment of the present invention.
  • thermoelectric elements according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a cooling jacket included in a thermoelectric module according to an embodiment of the present invention.
  • Figure 6 is a perspective view of a plurality of thermoelectric elements included in a thermoelectric module according to an embodiment of the present invention.
  • Figure 7 is a perspective view of one of a plurality of thermoelectric elements included in a thermoelectric module according to an embodiment of the present invention.
  • Figure 8 is a perspective view of a shield member included in a thermoelectric module according to an embodiment of the present invention.
  • thermoelectric module 9(a) to 9(c) are diagrams for explaining the connection between a shield member, a plurality of thermoelectric elements, and a cooling jacket included in a thermoelectric module according to an embodiment of the present invention.
  • Figure 10 is a perspective cross-sectional view in the second direction of a thermoelectric module according to an embodiment of the present invention.
  • Figure 11 is a cross-sectional perspective view in the third direction of a thermoelectric module according to an embodiment of the present invention.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining and replacing.
  • first, second, A, B, (a), and (b) may be used.
  • a component when a component is described as being 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to that other component, but also is connected to that component. It can also include cases where other components are 'connected', 'combined', or 'connected' due to another component between them.
  • “above” or “below” refers not only to cases where two components are in direct contact with each other, but also to one This also includes cases where another component described above is formed or placed between two components.
  • “top (above) or bottom (bottom)” it may include not only the upward direction but also the downward direction based on one component.
  • FIG 1 is a perspective view of a thermoelectric module according to an embodiment of the present invention
  • Figure 2 is an exploded perspective view of a thermoelectric module according to an embodiment of the present invention
  • Figures 3 and 4 are a thermoelectric element according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a cooling jacket included in a thermoelectric module according to an embodiment of the present invention
  • Figure 6 is a perspective view of a plurality of thermoelectric elements included in a thermoelectric module according to an embodiment of the present invention
  • Figure 7 is a perspective view of one of a plurality of thermoelectric elements included in a thermoelectric module according to an embodiment of the present invention
  • Figure 8 is a perspective view of a shield member included in a thermoelectric module according to an embodiment of the present invention
  • Figure 9 (a) ) to Figure 9(c) are diagrams for explaining the connection between the shield member, a plurality of thermoelectric elements, and the cooling jacket included in the thermoelectric module according to an embodiment of the present invention
  • Figure 10 is a diagram for one embodiment of the present invention.
  • 11 is a perspective view of a cross-section in the third direction of a thermoelectric module according to an embodiment of the present invention.
  • the thermoelectric module 1000 includes a cooling jacket 1100, a thermoelectric element 1200 disposed on the surface of the cooling jacket 1100, and a shield member 1400 disposed on the thermoelectric element 1200. ) includes.
  • the thermoelectric module 1000 may further include a shield tube 1500 disposed on the shield member 1400 at both ends of the cooling jacket 1100.
  • thermoelectric module 1000 produces power by using the temperature difference between the first fluid flowing through the inside of the cooling jacket 1100 and the second fluid flowing through the outside of the cooling jacket 1100. You can. Although not shown, a plurality of thermoelectric modules 1000 may be arranged in parallel and spaced apart at predetermined intervals to form a thermoelectric system. According to this, thermoelectric performance or power generation performance per unit area can be maximized.
  • the thermoelectric module may be referred to as a power generation device, and the thermoelectric system may be referred to as a power generation system.
  • the first fluid flowing into the cooling jacket 1100 may be water, but is not limited thereto, and may be various types of fluids with cooling performance.
  • the temperature of the first fluid flowing into the cooling jacket 1100 may be less than 100°C, preferably less than 50°C, and more preferably less than 40°C, but is not limited thereto, and is a fluid with a lower temperature than the second fluid. It can be.
  • the temperature of the first fluid discharged after passing through the cooling jacket 1100 may be higher than the temperature of the first fluid flowing into the cooling jacket 1100.
  • the first surface 1110 of the cooling jacket 1100 and the second surface 1120 opposite the first surface 1110 have thermoelectric elements.
  • Element 1200 may be disposed. It is directed from one end 1150 between the first surface 1110 and the second surface 1120 to the other end 1160 opposite the one end 1150 between the first surface 1110 and the second surface 1120.
  • 1 Fluid can flow.
  • a fluid inlet 1300 may be disposed at one end 1150 of the cooling jacket 1100
  • a fluid discharge portion 1310 may be disposed at the other end 1160 of the cooling jacket 1100.
  • the second fluid may flow toward.
  • the direction from the first surface 1110 to the second surface 1120 is referred to as the first direction
  • the direction through which the first fluid passes is referred to as the second direction
  • the second direction is referred to as the second direction
  • the direction through which the fluid passes may be referred to as the third direction, but is not limited thereto.
  • the second fluid passes through the outside of the cooling jacket 1100, for example, through the high-temperature side of the thermoelectric element 1200 disposed outside the cooling jacket 1100.
  • the second fluid may be exhaust heat or intake heat from a car, ship, etc., but is not limited thereto.
  • the temperature of the second fluid may be 100°C or higher, preferably 200°C or higher, and more preferably 220°C to 250°C, but is not limited thereto and has a temperature higher than the temperature of the first fluid. It may be a fluid.
  • the temperature of the first fluid flowing through the inside of the cooling jacket 1100 is lower than the temperature of the second fluid flowing through the high temperature side of the thermoelectric element 1200 disposed outside the cooling jacket 1100.
  • the cooling jacket 1100 may be referred to as a duct, a cooling unit, a fluid flow unit, or a coolant flow unit.
  • the embodiment of the present invention is not limited to this, and the temperature of the first fluid flowing through the inside of the cooling jacket 1100 passes through the high temperature side of the thermoelectric element 1200 disposed outside the cooling jacket 1100. It may be higher than the temperature of the second fluid.
  • thermoelectric element 1200 includes a first substrate 110, a first electrode portion 120, a P-type semiconductor device 130, an N-type semiconductor device 140, and a second electrode portion. 150 and a second substrate 160.
  • the first electrode portion 120 is disposed between the first substrate 110 and the lower bottom surfaces of the P-type semiconductor device 130 and the N-type semiconductor device 140, and the second electrode portion 150 is disposed on the second substrate. It is disposed between 160 and the upper bottom surface of the P-type semiconductor device 130 and the N-type semiconductor device 140. Accordingly, the plurality of P-type semiconductor devices 130 and the plurality of N-type semiconductor devices 140 are electrically connected by the first electrode portion 120 and the second electrode portion 150. A pair of P-type semiconductor devices 130 and N-type semiconductor devices 140 disposed between the first electrode portion 120 and the second electrode portion 150 and electrically connected may form a unit cell. .
  • the N-type semiconductor device when voltage is applied to the first electrode portion 120 and the second electrode portion 150 through the lead wires 181 and 182, the N-type semiconductor device ( The substrate through which current flows to 140 absorbs heat and acts as a cooling portion, and the substrate through which current flows from the N-type semiconductor device 140 to the P-type semiconductor device 130 is heated and may act as a heating portion.
  • the charges in the P-type semiconductor device 130 and the N-type semiconductor device 140 move due to the Seebeck effect, and electricity may occur.
  • the P-type semiconductor device 130 and the N-type semiconductor device 140 may be bismuth telluride (Bi-Te)-based semiconductor devices containing bismuth (Bi) and tellurium (Te) as main raw materials.
  • the P-type semiconductor element 130 is made of antimony (Sb), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), and tellurium. It may be a bismuth telluride (Bi-Te)-based thermoelectric leg containing at least one of (Te), bismuth (Bi), and indium (In).
  • the P-type semiconductor device 130 contains 99 to 99.999 wt% of Bi-Sb-Te, the main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), and copper (Cu). , it may contain 0.001 to 1 wt% of at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In).
  • the N-type semiconductor device 140 includes selenium (Se), nickel (Ni), aluminum (Al), copper (Cu), silver (Ag), lead (Pb), boron (B), gallium (Ga), and tellurium.
  • the N-type semiconductor device 140 may contain 99 to 99.999 wt% of Bi-Se-Te, the main raw material, based on 100 wt% of the total weight, and nickel (Ni), aluminum (Al), and copper (Cu). , it may contain 0.001 to 1 wt% of at least one of silver (Ag), lead (Pb), boron (B), gallium (Ga), and indium (In).
  • the P-type semiconductor device 130 and N-type semiconductor device 140 may be formed in bulk or stacked form.
  • the bulk P-type semiconductor device 130 or the bulk N-type semiconductor device 140 is manufactured by heat-treating a thermoelectric material to manufacture an ingot, crushing and sieving the ingot to obtain powder for a thermoelectric leg, and then manufacturing the ingot. It can be obtained through the process of sintering and cutting the sintered body.
  • the P-type semiconductor device 130 and N-type semiconductor device 140 may be polycrystalline thermoelectric legs. In this way, when the P-type semiconductor device 130 and the N-type semiconductor device 140 are polycrystalline thermoelectric legs, the strength of the P-type semiconductor device 130 and the N-type semiconductor device 140 can be increased.
  • the stacked P-type semiconductor device 130 or the stacked N-type semiconductor device 140 is formed by applying a paste containing a thermoelectric material on a sheet-shaped substrate to form a unit member, and then through a process of stacking and cutting the unit members. can be obtained.
  • the pair of P-type semiconductor device 130 and N-type semiconductor device 140 may have the same shape and volume, or may have different shapes and volumes.
  • the height or cross-sectional area of the N-type semiconductor device 140 is changed to the height or cross-sectional area of the P-type semiconductor device 130. It may be formed differently.
  • the P-type semiconductor device 130 or N-type semiconductor device 140 may have a cylindrical shape, a polygonal pillar shape, an elliptical pillar shape, etc.
  • thermoelectric leg thermoelectric structure
  • semiconductor structure semiconductor structure
  • thermoelectric performance index (ZT) can be expressed as Equation 1.
  • is the Seebeck coefficient [V/K]
  • is the electrical conductivity [S/m]
  • ⁇ 2 ⁇ is the power factor (Power Factor, [W/mK 2 ])
  • T is the temperature
  • k is the thermal conductivity [W/mK].
  • k can be expressed as a ⁇ cp ⁇ , where a is the thermal diffusivity [cm 2 /S], cp is the specific heat [J/gK], and ⁇ is the density [g/cm 3 ].
  • thermoelectric performance index of a thermoelectric element the Z value (V/K) is measured using a Z meter, and the thermoelectric performance index (ZT) can be calculated using the measured Z value.
  • the first electrode portion 120 disposed between the first substrate 110 and the P-type semiconductor device 130 and the N-type semiconductor device 140, and the second substrate 160 and the P-type semiconductor device 130 ) and the second electrode portion 150 disposed between the N-type semiconductor element 140 includes at least one of copper (Cu), silver (Ag), aluminum (Al), and nickel (Ni), and has a thickness of 0.01 mm to 0.01 mm. It can have a thickness of 0.3mm. If the thickness of the first electrode part 120 or the second electrode part 150 is less than 0.01 mm, the function as an electrode may be reduced and the electrical conduction performance may be lowered, and if it exceeds 0.3 mm, the conduction efficiency may be reduced due to an increase in resistance. This may be lowered.
  • first substrate 110 and the second substrate 160 facing each other may be metal substrates, and the thickness may be 0.1 mm to 1.5 mm. If the thickness of the metal substrate is less than 0.1 mm or more than 1.5 mm, the heat dissipation characteristics or thermal conductivity may be excessively high, and the reliability of the thermoelectric element may be reduced.
  • first substrate 110 and the second substrate 160 are metal substrates, between the first substrate 110 and the first electrode portion 120 and between the second substrate 160 and the second electrode portion 150 )
  • An insulating layer 170 may be further formed between each.
  • the insulating layer 170 may include a material having a thermal conductivity of 1 to 20 W/mK.
  • the insulating layer 170 may be a resin composition containing at least one of an epoxy resin and a silicone resin and an inorganic substance, a layer made of a silicon composite containing silicon and an inorganic substance, or an aluminum oxide layer.
  • the inorganic material may be at least one of oxides, nitrides, and carbides such as aluminum, boron, and silicon.
  • Each insulating layer 170 may be one insulating layer or may be a plurality of insulating layers of different compositions. At least a portion of the side surface of at least one of the first electrode unit 120 and the second electrode unit 150 is embedded in the insulating layer 170, and the insulating layer 170 is disposed between the plurality of electrodes included in each electrode unit. ) may have a concave shape toward each substrate.
  • each insulating layer 170 is a plurality of insulating layers
  • at least a portion of the side surface of at least one of the first electrode portion 120 and the second electrode portion 150 is an insulating layer
  • the uppermost surface of the insulating layer 170 disposed between the plurality of electrodes included in each electrode portion may have a concave shape toward each substrate.
  • the first substrate 110 and the second substrate 160 may have different sizes. That is, the volume, thickness, or area of one of the first substrate 110 and the second substrate 160 may be formed to be larger than the volume, thickness, or area of the other one.
  • the thickness may be the thickness in the direction from the first substrate 110 to the second substrate 160, and the area may be in the direction perpendicular to the direction from the first substrate 110 to the second substrate 160. It may be an area for Accordingly, the heat absorption or heat dissipation performance of the thermoelectric element can be improved.
  • the volume, thickness, or area of the first substrate 110 may be larger than at least one of the volume, thickness, or area of the second substrate 160 .
  • the first substrate 110 when the first substrate 110 is placed in a high temperature area for the Seebeck effect, when applied as a heating area for the Peltier effect, or when a sealing member to protect the thermoelectric element from the external environment is placed on the first substrate 110.
  • at least one of volume, thickness, or area can be made larger than the second substrate 160.
  • the area of the first substrate 110 may be 1.2 to 5 times the area of the second substrate 160. If the area of the first substrate 110 is less than 1.2 times that of the second substrate 160, the effect on improving heat transfer efficiency is not high, and if it exceeds 5 times, the heat transfer efficiency is significantly reduced, It may be difficult to maintain the basic shape of the thermoelectric element.
  • a heat dissipation pattern for example, a concave-convex pattern, may be formed on the surface of at least one of the first substrate 110 and the second substrate 160. Accordingly, the heat dissipation performance of the thermoelectric element can be improved. When the uneven pattern is formed on the surface in contact with the P-type semiconductor device 130 or the N-type semiconductor device 140, the bonding characteristics between the semiconductor device and the substrate can also be improved.
  • a sealing member may be further disposed between the first substrate 110 and the second substrate 160.
  • the sealing member is located between the first substrate 110 and the second substrate 160, Can be placed on the side. Accordingly, the first electrode unit 120, the P-type semiconductor device 130, the N-type semiconductor device 140, and the second electrode unit 150 can be sealed from external moisture, heat, contamination, etc.
  • thermoelectric elements 1200 may be disposed on the first surface 1110 and the second surface 1120 of the cooling jacket 1100, respectively.
  • each thermoelectric element 1200 includes a first substrate 110 disposed to contact the cooling jacket 1100, a first electrode portion 120 disposed on the first substrate 110, and a first electrode.
  • the first substrate 110 of the thermoelectric element 1200 disposed on the cooling jacket 1100 may be a metal substrate, and the metal substrate is connected to the surface of the cooling jacket 1100 and a heat transfer material (thermal interface material, TIM, (not shown) may be adhered.
  • the heat transfer material may be, for example, thermal grease.
  • the metal substrate has excellent heat transfer performance, heat transfer between the thermoelectric element 1200 and the cooling jacket 1100 is easy. Additionally, when the metal substrate and the cooling jacket 1100 are bonded using a heat transfer material, heat transfer between the metal substrate and the cooling jacket 1100 may not be interrupted. In particular, when the metal substrate and the cooling jacket 1100 are bonded using a heat transfer material, withstand voltage performance is higher and assembly is easier than when the metal substrate and the cooling jacket 1100 are joined by a fastening member.
  • the metal substrate may be one of a copper substrate, an aluminum substrate, and a copper-aluminum substrate, but is not limited thereto.
  • thermoelectric module 1000 further includes a shield member 1400 disposed on the thermoelectric element 1200 outside the cooling jacket 1100.
  • the shield member 1400 includes an overlapping portion 1410 disposed on an area where the first electrode portion 120 and the second electrode portion 150 of the thermoelectric element 1200 overlap.
  • the overlapping portion 1410 is arranged to cover the entire area where the first electrode portion 120 and the second electrode portion 150 of the thermoelectric element 1200 overlap. That is, the second substrate 160 of the thermoelectric element 1200 is covered by the overlapping portion 1410, and no through hole is formed in the overlapping portion 1410 to expose the heat sink to the outside. According to this, the heat sink disposed on the second substrate 160 of the thermoelectric element 1200 can be omitted.
  • At least one hole is formed in the fluid inlet 1300 and fluid outlet 1310 disposed at one end 1150 and the other end 1160 of the cooling jacket 1100, respectively, and fluid inflow
  • the first fluid flowing in through at least one hole formed in the unit 1300 may pass through the cooling jacket 1100 and then be discharged through at least one hole formed in the fluid discharge unit 1310.
  • At least one hole formed in the fluid inlet 1300 may extend through the cooling jacket 1100 to at least one hole formed in the fluid outlet 1310.
  • thermoelectric elements 1200-1, ..., 1200-N are disposed on the first surface 1110 of the cooling jacket 1100, and Likewise, a plurality of thermoelectric elements may be disposed on the second surface 1120 of the cooling jacket 1100.
  • thermoelectric elements duplicate descriptions of content that is the same as that described with reference to FIGS. 3 and 4 will be omitted.
  • each thermoelectric module 1200 is disposed on a first substrate 110, a first electrode disposed on the first substrate 110, and a first electrode. It includes a semiconductor device, a second electrode disposed on the semiconductor device, and a second substrate 160 disposed on the second electrode.
  • the first substrate 110 is arranged to directly contact the first surface 1110 of the cooling jacket 1100, or is arranged to indirectly contact the first surface 1110 of the cooling jacket 1100 through a thermal interface material (TIM), etc. It can be.
  • the first substrate 110 may include a thermoelectric element area 112 vertically overlapping the second substrate 160 and a wiring area 114 disposed on a side of the thermoelectric element area 112.
  • a first electrode, a semiconductor device, a second electrode, and a second substrate 160 are sequentially disposed on the thermoelectric element area 112 of the first substrate 110, and in the wiring area 114 of the first substrate 110.
  • a wiring unit (not shown) electrically connected to the thermoelectric element area 112 may be disposed.
  • the wiring unit may include a lead wire connected to the first electrode disposed in the thermoelectric element area 112 and a connector connected to the lead wire.
  • thermoelectric elements may be electrically connected to each other through connectors disposed in the wiring area 114.
  • the first to third thermoelectric elements 1200-1, 1200-2, and 1200-3 are arranged adjacent to each other, and the fourth to sixth thermoelectric elements 1200-4 , 1200-5, 1200-6) are arranged adjacent to each other, the wiring areas ((114-1, 114-2, 114-3) are arranged in a row and electrically connected to each other through connectors, and the wiring areas (114-4, 114-5) of the fourth to sixth thermoelectric elements (1200-4, 1200-5, 1200-6) , 114-6 may be arranged in a row and electrically connected to each other through a connector (114-1).
  • thermoelectric elements 1200-1, 1200-2, 1200-3) are connected to the fluid inlet portion 1300 and the first to third thermoelectric elements (1200-1, 1200-2, 1200-3).
  • thermoelectric elements (1200-1, 1200-2, 1200-3) It is disposed between the third thermoelectric elements (1200-1, 1200-2, 1200-3), and the wiring area ((114-4) of the fourth to sixth thermoelectric elements (1200-4, 1200-5, 1200-6) , 114-5, and 114-6) may be disposed between the fluid discharge portion 1310 and the fourth to sixth thermoelectric elements 1200-4, 1200-5, and 1200-6.
  • the second substrate 160 of each thermoelectric element 1200 may include a plurality of split substrates 161, 162, 163, and 164 arranged to be spaced apart from each other.
  • one first substrate 110 is illustrated as four divided substrates 161, 162, 163, and 164, but is not limited thereto.
  • the second substrate 160 disposed on one first substrate 110 may include two or more divided substrates. According to this, when the second substrate 160 is bonded to the shield member 1400, which will be described later, even if the second substrate 160 is thermally expanded due to the high temperature of the second fluid, the second substrate 160 is thermally deformed, or The problem of the second substrate 160 being separated from the shield member 1400 can be minimized.
  • the shield member 1400 may include an overlapping portion 1410, a step portion 1412, a first extension portion 1420, and a second extension portion 1430.
  • the overlapping portion 1410 is disposed on the first side 1110 of the cooling jacket 1100
  • the first extension portion 1420 is disposed on one side 1130 of the cooling jacket 1100
  • the second extension portion ( 1430 may be disposed on the other side 1140 of the cooling jacket 1100.
  • the overlapping portion 1410 of the shield member 1400 is disposed on a plurality of thermoelectric elements 1200.
  • the overlapping portion 1410 of the shield member 1400 is disposed on an area where the first and second electrodes of the plurality of thermoelectric elements 1200 overlap.
  • the overlapping portion 1410 of the shield member 1400 is arranged to cover the entire area where the first and second electrodes of the plurality of thermoelectric elements 1200 overlap.
  • a plurality of thermoelectric elements 1200 may be disposed on the inner surface of the overlapping portion 1410 of the shield member 1400.
  • the inner surface of the overlapping portion 1410 of the shield member 1400 is the opposite side of the outer surface that is in direct contact with the second fluid among both sides of the overlapping portion 1410 of the shield member 1400, that is, the cooling jacket 1100. It may mean a side arranged to face.
  • the plurality of thermoelectric elements 1200-1 and the shield member 1400 may be combined or joined.
  • the second substrate 160 of the plurality of thermoelectric elements 1200 and the shield member 1400 may be combined or joined.
  • a bonding layer (not shown) may be further disposed between the plurality of thermoelectric elements 1200 and the shield member 1400.
  • the bonding layer may include solder.
  • the second substrate 160 of the plurality of thermoelectric elements 1200 may be soldered to the inner surface of the overlapping portion 1410 of the shield member 1400. That is, the upper surface of the second substrate 160 of the plurality of thermoelectric elements 1200 may be bonded to the inner surface of the overlapping portion 1410 of the shield member 1400. For example, the entire upper surface of the second substrate 160 of the plurality of thermoelectric elements 1200 may be bonded to the inner surface of the overlapping portion 1410 of the shield member 1400. Additionally, the lower surface of the first substrate 110 of the plurality of thermoelectric elements 1200 may be bonded to the cooling jacket 1100 using a heat conductive material, for example, thermal grease.
  • the shield member 1400 is thermally conductive.
  • the shield member 1400 may be a thermally conductive metal or a thermally conductive alloy.
  • the shield member 1400 may include copper, aluminum, or stainless steel.
  • the overlapping portion 1410 of the shield member 1400 can not only protect the plurality of thermoelectric elements 1200 but also function as a heat sink. According to this, the heat that the overlapping portion 1410 of the shield member 1400 receives from the high-temperature second fluid is directly transferred to the second substrate 160 of the plurality of thermoelectric elements 1200, so heat loss can be prevented. , power generation efficiency can be improved.
  • the bond between the second substrate 160 and the heat sink and the shield member for exposing the heat sink to the outside are required. Structural and process complexity due to assembly can be significantly reduced.
  • the shield member 1400 includes an overlapping portion 1410 and two step portions 1412, and the overlapping portion 1410 and Both step portions 1412 are disposed on the first surface 1110 of the cooling jacket 1100.
  • the two step portions 1412 form a step with the overlapping portion 1410 with the overlapping portion 1410 interposed therebetween.
  • Two step portions 1412 may be disposed at one end and the other end of the overlapping portion 1410.
  • the two step portions 1412 may be arranged to extend along one end 1150 of the cooling jacket 1100 and the other end 1160 of the cooling jacket 1100. That is, the two step portions 1412 may be arranged to extend in a direction from one side 1130 of the cooling jacket 1100 toward the other side 1140 of the cooling jacket 1100.
  • the height of the step portion 1412 may be higher than the height of the overlapping portion 1410. More specifically, based on the first surface 1110 of the cooling jacket 1100 or the first substrate 110 of the thermoelectric element 1200, the height of the inner surface of the stepped portion 1412 is greater than the inner surface of the overlapping portion 1410. It can be higher than the height.
  • the first substrate 110 of the thermoelectric element 1200 has a thermoelectric element region 112 vertically overlapping with the second substrate 160 and wiring disposed on the side of the thermoelectric element region 112. It includes a region 114, and a wiring portion (not shown) electrically connected to the thermoelectric element region 112 may be disposed in the wiring region 114 of the first substrate 110.
  • the second substrate 160 of the thermoelectric element 1200 is disposed between the cooling jacket 1100 and the overlapping portion 1410 of the shield member 1400, and cooling A wiring portion may be disposed between the jacket 1100 and the step portion 1412 of the shield member 1400.
  • the inner surface of the overlapping portion 1410 of the shield member 1400 is bonded to the second substrate 160 of the thermoelectric element 1200, the inner surface of the step portion 1412 of the shield member 1400 is connected to the wiring portion. Since they are spaced apart, the wiring portion may not be electrically affected by the thermally conductive shield member 1400, and the withstand voltage performance of the thermoelectric module 1000 can be improved.
  • the wiring portion is arranged to extend along one end 1150 of the cooling jacket 1100 and the other end 1160 of the cooling jacket 1100, that is, the fluid inlet 1300 and the fluid discharge portion 1310, the wiring portion will be exposed to high temperature. The influence of the second fluid can be minimized.
  • the thermoelectric module 1000 further includes dummy guides 1600 and 1610.
  • the dummy guides 1600 and 1610 may have at least one of thermal insulation performance and electrical insulation performance.
  • the dummy guides 1600 and 1610 may include a plastic material.
  • the dummy guides 1600 and 1610 may be disposed between the first surface 1110 of the cooling jacket 1100 and the step portion 1412 of the shield member 1400.
  • the dummy guides 1600 and 1610 are between the first surface 1110 of the cooling jacket 1100 and the step portion 1412 of the shield member 1400, between the fluid inlet portion 1300 and the wiring portion, or between the fluid discharge portion 1310. ) and can be placed between the wiring section.
  • the dummy guides 1600 and 1610 perform a sealing role and can protect the plurality of thermoelectric elements 1200 disposed between the first surface 1110 of the cooling jacket 1100 and the shield member 1400. there is.
  • the thermoelectric module 1000 includes a fluid inlet 1300, a first shield tube 1500 disposed on the step portion 1412 of the shield member 1400, and a fluid discharge. It may further include a second shield tube 1510 disposed on the second area 1412 of the overlapping portion 1410 of the portion 1310 and the shield member 1400.
  • the first shield tube 1500 and the second shield tube 1510 allow high-temperature second fluid or external foreign substances to pass between the fluid inlet 1300 and the shield member 1400 and the fluid outlet 1310 and the shield member ( 1400) can be prevented.
  • a sealing material is applied between the fluid inlet 1300 and the dummy guide 1600 under the first shield tube 1500 or between the fluid outlet 1310 and the dummy guide 1610 under the second shield tube 1510. More may be arranged. According to this, it is possible to prevent the problem of high-temperature second fluid or external foreign substances penetrating between the fluid inlet 1300 and the shield member 1400 and into the fluid outlet 1310 and the shield member 1400.
  • a heat insulating member 1700 may be further disposed between the second extension portions 1430 of 1400.
  • the high temperature second fluid is directed from one side 1130 of the cooling jacket 1100 toward the other side 1140 or from the other side 1140 of the cooling jacket 1100 toward one side 1130.
  • the heat of the high-temperature second fluid is not directly transferred to the cooling jacket 1100, so the cooling jacket 1100 can be protected from high temperature.
  • the second extension portion 1430 may be coupled by the fastening member 1800. According to this, the contact area between the fastening member 1800 and the cooling jacket 1100 is minimized, so the cooling jacket 1100 can be protected from high temperatures.
  • the first extension portion 1420 and the second extension portion 1420 of the shield member 1420 do not need to be disposed in the overlapping portion 1410 of the shield member 1400. Since it is disposed only in there is.
  • thermoelectric element 1200 and the shield member 1400 disposed on the first side 1110 of the cooling jacket 1100, but the second side of the cooling jacket 1100 ( The thermoelectric element 1200 and a shield member may also be disposed at 1120 so as to be symmetrical to the first surface 1110 of the cooling jacket 1100.
  • the first extension 1420 and the second extension 1430 of the shield member 1400 disposed on the first surface 1110 of the cooling jacket 1100 are the cooling jacket 1100.
  • On one side 1130 and the other side 1140 of the third extension part 1920 and the fourth extension part 1930 of the shield member 1900 and the cooling jacket 1100 disposed on the second surface 1120 of They can be arranged to overlap each other.
  • the first extension 1420 of the shield member 1400 and the third extension 1920 of the shield member 1900 are arranged to overlap each other
  • the second extension portion 1430 of the shield member 1400 and the fourth extension portion 1930 of the shield member 1900 may be arranged to overlap each other.
  • the distance between the first extension part 1420 and the second extension part 1430 of the shield member 1400 is the distance between the third extension part 1920 and the fourth extension part 1930 of the shield member 1900.
  • the distance between the third extension part 1920 and the fourth extension part 1930 of the shield member 1900 is the distance between the first extension part 1420 and the second extension part 1430 of the shield member 1400. It may be greater than the distance, and accordingly, the first extension 1420 of the shield member 1400 is between the third extension 1920 of the shield member 1900 and one side 1130 of the cooling jacket 1100. and the second extension portion 1430 of the shield member 1400 may be disposed between the fourth extension portion 1930 of the shield member 1900 and the other side 1140 of the cooling jacket 1100. According to this, it is easy to assemble the shield member 1400 and the shield member 1900 to the cooling jacket 1100, and the penetration of the high temperature second fluid is prevented when the shield member 1400 and the shield member 1900 are assembled. It can be prevented.
  • the power generation system can generate power through heat sources generated from ships, automobiles, power plants, geothermal heat, etc., and multiple power generation devices can be arranged to efficiently converge the heat sources.
  • each power generation device can improve the cooling performance of the low-temperature part of the thermoelectric element by improving the adhesion between the thermoelectric module and the cooling jacket.
  • the efficiency and reliability of the power generation device can be improved, so it can be used in transportation devices such as ships and vehicles. Fuel efficiency can be improved. Therefore, in the shipping and transportation industries, transportation costs can be reduced and an eco-friendly industrial environment can be created, and when applied to manufacturing industries such as steel mills, material costs, etc. can be reduced.

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명의 한 실시예에 따른 열전모듈은 유체가 흐를 수 있는 관통홀이 형성된 쿨링자켓; 상기 쿨링자켓 상에 배치된 제1 열전소자; 그리고 상기 제1 열전소자 상에 배치되고 열전도성인 제1 실드부재를 포함하고, 상기 제1 열전소자는, 제1 기판; 상기 제1 기판 상에 배치된 반도체 소자; 상기 반도체 소자 상에 배치된 제2 기판; 상기 제1 기판과 상기 반도체 소자 사이에 배치된 제1 전극; 그리고 상기 제2 기판과 상기 반도체 소자 사이에 배치된 제2 전극을 포함하고, 상기 제1 실드부재는 상기 제1 전극과 상기 제2 전극이 중첩된 영역 상에 배치된 중첩부를 포함한다.

Description

열전모듈
본 발명은 열전모듈에 관한 것으로, 보다 상세하게는 열전소자의 저온부와 고온부 간 온도 차를 이용하는 열전모듈에 관한 것이다.
열전현상은 재료 내부의 전자(electron)와 정공(hole)의 이동에 의해 발생하는 현상으로, 열과 전기 사이의 직접적인 에너지 변환을 의미한다.
열전소자는 열전현상을 이용하는 소자를 총칭하며, P형 열전 재료와 N형 열전 재료를 금속 전극들 사이에 접합시켜 PN 접합 쌍을 형성하는 구조를 가진다.
열전소자는 전기저항의 온도 변화를 이용하는 소자, 온도 차에 의해 기전력이 발생하는 현상인 제벡 효과를 이용하는 소자, 전류에 의한 흡열 또는 발열이 발생하는 현상인 펠티에 효과를 이용하는 소자 등으로 구분될 수 있다.
열전소자는 가전제품, 전자부품, 통신용 부품 등에 다양하게 적용되고 있다. 예를 들어, 열전소자는 냉각용 장치, 온열용 장치, 발전용 장치 등에 적용될 수 있다. 이에 따라, 열전소자의 열전성능에 대한 요구는 점점 더 높아지고 있다.
최근, 자동차, 선박 등의 고온의 열 및 열전소자를 이용하여 전기를 발생시키고자 하는 니즈가 있다. 이때, 열전소자의 저온부 측에 제1 유체가 통과하는 쿨링자켓이 배치되고, 열전소자의 고온부 측에 히트싱크(heatsink)가 배치되며, 제1 유체보다 고온인 제2 유체가 히트싱크를 통과할 수 있다. 이에 따라, 열전소자의 저온부와 고온부 간 온도 차에 의하여 전기가 생성될 수 있다.
본 발명이 이루고자 하는 기술적 과제는 열전소자의 저온부와 고온부 간 온도 차를 이용하는 열전모듈을 제공하는 것이다.
본 발명의 한 실시예에 따른 열전모듈은 유체가 흐를 수 있는 관통홀이 형성된 쿨링자켓; 상기 쿨링자켓 상에 배치된 제1 열전소자; 그리고 상기 제1 열전소자 상에 배치되고 열전도성인 제1 실드부재를 포함하고, 상기 제1 열전소자는, 제1 기판; 상기 제1 기판 상에 배치된 반도체 소자; 상기 반도체 소자 상에 배치된 제2 기판; 상기 제1 기판과 상기 반도체 소자 사이에 배치된 제1 전극; 그리고 상기 제2 기판과 상기 반도체 소자 사이에 배치된 제2 전극을 포함하고, 상기 제1 실드부재는 상기 제1 전극과 상기 제2 전극이 중첩된 영역 상에 배치된 중첩부를 포함한다.
상기 쿨링자켓과 상기 제1 열전소자 사이에 배치된 서멀그리스를 더 포함할 수 있다.
상기 제1 열전소자와 상기 제1 실드부재는 결합될 수 있다.
상기 제1 열전소자와 상기 제1 실드부재 사이에 배치된 접합층을 더 포함할 수 있다.
상기 접합층은 솔더를 포함할 수 있다.
상기 제1 열전소자에 전기적으로 연결된 배선부를 더 포함하고, 상기 제1 실드부재는 상기 중첩부와 단차를 이루는 단차부를 포함하고, 상기 쿨링자켓과 상기 중첩부 사이에는 상기 제1 열전소자의 상기 제2 기판이 배치되고, 상기 쿨링자켓과 상기 단차부 사이에는 상기 배선부가 배치될 수 있다.
상기 쿨링자켓의 일단에 배치된 유체유입부; 그리고 상기 쿨링자켓의 타단에 배치된 유체배출부를 더 포함하고, 상기 관통홀은 상기 유체유입부로부터 상기 유체배출부까지 연장되며, 상기 배선부는 상기 유체유입부와 상기 제1 열전소자 사이 또는 상기 유체배출부와 상기 제1 열전소자 사이에 배치될 수 있다.
상기 쿨링자켓과 상기 단차부 사이에 배치된 더미 가이드를 더 포함하고, 상기 더미 가이드는 상기 유체유입부와 상기 배선부 사이 또는 상기 유체배출부와 상기 배선부 사이에 배치될 수 있다.
상기 유체유입부와 상기 제1 실드부재의 상기 단차부 상에 배치된 제1 실드튜브 및 상기 유체배출부와 상기 제1 실드부재의 상기 단차부 상에 배치된 제2 실드튜브를 더 포함할 수 있다.
상기 제1 실드튜브 아래에서 상기 유체유입부와 상기 더미가이드 사이 또는 상기 제2 실드튜브 아래에서 상기 유체배출부와 상기 더미가이드 사이에 배치된 실링재를 더 포함할 수 있다.
상기 제1 실드부재는 상기 쿨링자켓의 일측면에 배치된 제1 연장부 및 상기 쿨링자켓의 타측면에 배치된 제2 연장부를 더 포함하고, 상기 쿨링자켓의 일측면과 제1 연장부 사이 및 상기 쿨링자켓의 타측면과 상기 제2 연장부 사이에 배치된 단열부재를 더 포함할 수 있다.
상기 쿨링자켓의 일측면과 제1 연장부 및 상기 쿨링자켓의 타측면과 상기 제2 연장부는 체결부재에 의해 결합될 수 있다.
상기 제1 열전소자는 상기 쿨링자켓의 제1면에 배치되고, 상기 쿨링자켓의 상기 제1면의 반대면인 제2면에 배치된 제2 열전소자; 그리고 상기 제2 열전소자 상에 배치되고 열전도성인 제2 실드부재를 더 포함할 수 있다.
상기 제1 실드부재는 상기 쿨링자켓의 일측면에 배치된 제1 연장부 및 상기 쿨링자켓의 타측면에 배치된 제2 연장부를 포함하고, 상기 제2 실드부재는 상기 쿨링자켓의 상기 일측면에 배치된 제3 연장부 및 상기 쿨링자켓의 상기 타측면에 배치된 제4 연장부를 포함하고, 상기 제1 연장부와 상기 제3 연장부는 서로 중첩되도록 배치되고, 상기 제2 연장부와 상기 제4 연장부는 서로 중첩되도록 배치될 수 있다.
상기 제1 연장부와 상기 제2 연장부 사이의 거리는 상기 제3 연장부와 상기 제4 연장부 사이의 거리와 상이할 수 있다.
상기 제3 연장부는 상기 제1 연장부와 상기 쿨링자켓의 일측면 사이에 배치되고, 상기 제4 연장부는 상기 제2 연장부와 상기 쿨링자켓의 타측면 사이에 배치될 수 있다.
본 발명의 실시예에 따르면, 구조가 간단하고, 조립이 용이하면서도 소정의 공간 내에 최대 개수의 열전소자를 수용할 수 있는 열전모듈을 얻을 수 있다.
본 발명의 실시예에 따르면, 고온부와 저온부 간 온도 차를 크게 하여 열전성능이 높은 열전모듈을 얻을 수 있다.
본 발명의 실시예에 따른 열전모듈은 고온부와 저온부 간 온도 차를 이용하여 전기를 생성하는 발전장치에 적용될 수 있다.
본 발명의 실시예에 따른 열전모듈은 유체 등의 특정 대상을 냉각 또는 가열하는 펠티에 장치에 적용될 수 있다.
도 1은 본 발명의 한 실시예에 따른 열전모듈의 사시도이다.
도 2는 본 발명의 한 실시예에 따른 열전모듈의 분해사시도이다.
도 3 및 도 4는 본 발명의 실시예에 따른 열전소자이다.
도 5는 본 발명의 한 실시예에 따른 열전모듈에 포함되는 쿨링자켓의 사시도이다.
도 6은 본 발명의 한 실시예에 따른 열전모듈에 포함되는 복수의 열전소자의 사시도이다.
도 7은 본 발명의 한 실시예에 따른 열전모듈에 포함되는 복수의 열전소자 중 하나의 사시도이다.
도 8은 본 발명의 한 실시예에 따른 열전모듈에 포함되는 실드부재의 사시도이다.
도 9(a) 내지 도 9(c)는 본 발명의 한 실시예에 따른 열전모듈에 포함되는 실드부재, 복수의 열전소자 및 쿨링자켓 간 접합을 설명하기 위한 도면이다.
도 10은 본 발명의 한 실시예에 따른 열전모듈의 제2 방향 단면 사시도이다.
도 11은 본 발명의 한 실시예에 따른 열전모듈의 제3 방향 단면 사시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
도 1은 본 발명의 한 실시예에 따른 열전모듈의 사시도이고, 도 2는 본 발명의 한 실시예에 따른 열전모듈의 분해사시도이며, 도 3 및 도 4는 본 발명의 실시예에 따른 열전소자이고, 도 5는 본 발명의 한 실시예에 따른 열전모듈에 포함되는 쿨링자켓의 사시도이고, 도 6은 본 발명의 한 실시예에 따른 열전모듈에 포함되는 복수의 열전소자의 사시도이며, 도 7은 본 발명의 한 실시예에 따른 열전모듈에 포함되는 복수의 열전소자 중 하나의 사시도이고, 도 8은 본 발명의 한 실시예에 따른 열전모듈에 포함되는 실드부재의 사시도이고, 도 9(a) 내지 도 9(c)는 본 발명의 한 실시예에 따른 열전모듈에 포함되는 실드부재, 복수의 열전소자 및 쿨링자켓 간 접합을 설명하기 위한 도면이고, 도 10은 본 발명의 한 실시예에 따른 열전모듈의 제2 방향 단면 사시도이고, 도 11은 본 발명의 한 실시예에 따른 열전모듈의 제3 방향 단면 사시도이다.
도 1 내지 도 2를 참조하면, 열전모듈(1000)은 쿨링자켓(1100), 쿨링자켓(1100)의 표면에 배치된 열전소자(1200) 및 열전소자(1200) 상에 배치된 실드부재(1400)를 포함한다. 그리고, 열전모듈(1000)은 쿨링자켓(1100)의 양단에서 실드부재(1400) 상에 배치되는 실드튜브(1500)를 더 포함할 수 있다.
본 발명의 실시예에 따른 열전모듈(1000)은, 쿨링자켓(1100)의 내부를 통해 흐르는 제1 유체 및 쿨링자켓(1100)의 외부를 통과하는 제2 유체 간의 온도 차를 이용하여 전력을 생산할 수 있다. 도시되지 않았으나, 복수 개의 열전모듈(1000)은 소정 간격으로 이격되도록 평행하게 배치되어 열전 시스템을 이룰 수도 있다. 이에 따르면, 단위 면적 당 열전 성능 또는 발전 성능을 최대화할 수 있다. 열전모듈은 발전장치라 지칭될 수 있고, 열전 시스템은 발전 시스템이라 지칭될 수 있다.
쿨링자켓(1100) 내로 유입되는 제1 유체는 물일 수 있으나, 이로 제한되는 것은 아니며, 냉각 성능이 있는 다양한 종류의 유체일 수 있다. 쿨링자켓(1100)으로 유입되는 제1 유체의 온도는 100℃미만, 바람직하게는 50℃미만, 더욱 바람직하게는 40℃미만일 수 있으나, 이로 제한되는 것은 아니고, 제2 유체보다 낮은 온도를 갖는 유체일 수 있다. 쿨링자켓(1100)을 통과한 후 배출되는 제1 유체의 온도는 쿨링자켓(1100)으로 유입되는 제1 유체의 온도보다 높을 수 있다.
도 1, 도 2 및 도 5를 참조하면, 본 발명의 실시예에 따르면, 쿨링자켓(1100)의 제1 면(1110) 및 제1 면(1110)에 대향하는 제2 면(1120)에는 열전소자(1200)가 배치될 수 있다. 제1면(1110)과 제2면(1120) 사이의 일단(1150)으로부터 제1면(1110)과 제2면(1120) 사이에서 일단(1150)과 대향하는 타단(1160)을 향하도록 제1 유체가 흐를 수 있다. 이를 위하여, 쿨링자켓(1100)의 일단(1150)에는 유체유입부(1300)가 배치되고, 쿨링자켓(1100)의 타단(1160)에는 유체배출부(1310)가 배치될 수 있다. 한편, 제1면(1110)과 제2면(1120) 사이의 일측면(1140)으로부터 제1면(1110)과 제2면(1120) 사이의 일측면(1140)과 대향하는 타측면(1130)을 향하도록 제2 유체가 흐를 수 있다. 설명의 편의를 위하여, 본 명세서에서는 제1면(1110)으로부터 제2면(1120)을 향하는 방향을 제1 방향이라고 지칭하고, 제1 유체가 통과하는 방향을 제2 방향이라고 지칭하며, 제2 유체가 통과하는 방향을 제3 방향이라고 지칭할 수 있으나, 이로 제한되는 것은 아니다.
한편, 제2 유체는 쿨링자켓(1100)의 외부, 예를 들어 쿨링자켓(1100)의 외부에 배치된 열전소자(1200)의 고온부 측을 통과한다. 제2 유체는 자동차, 선박 등의 배기열 또는 흡기열일 수 있으나, 이로 제한되는 것은 아니다. 예를 들어, 제2 유체의 온도는 100℃이상, 바람직하게는 200℃이상, 더욱 바람직하게는 220℃내지 250℃일 수 있으나, 이로 제한되는 것은 아니고, 제1 유체의 온도보다 높은 온도를 갖는 유체일 수 있다.
본 명세서에서, 쿨링자켓(1100)의 내부를 통해 흐르는 제1 유체의 온도는 쿨링자켓(1100)의 외부에 배치된 열전소자(1200)의 고온부 측을 통과하는 제2 유체의 온도보다 낮은 것을 예로 들어 설명한다. 이에 따라, 본 명세서에서, 쿨링자켓(1100)는 덕트, 냉각부, 유체유동부, 또는 냉각수 유동부라 지칭될 수 있다. 다만, 본 발명의 실시예는 이로 제한되는 것은 아니며, 쿨링자켓(1100)의 내부를 통해 흐르는 제1 유체의 온도는 쿨링자켓(1100)의 외부에 배치된 열전소자(1200)의 고온부 측을 통과하는 제2 유체의 온도보다 높을 수도 있다.
도 3 내지 도 4를 참조하면, 열전소자(1200)는 제1 기판(110), 제1 전극부(120), P형 반도체 소자(130), N형 반도체 소자(140), 제2 전극부(150) 및 제2 기판(160)을 포함한다.
제1 전극부(120)는 제1 기판(110)과 P형 반도체 소자(130) 및 N형 반도체 소자(140)의 하부 바닥면 사이에 배치되고, 제2 전극부(150)는 제2 기판(160)과 P형 반도체 소자(130) 및 N형 반도체 소자(140)의 상부 바닥면 사이에 배치된다. 이에 따라, 복수의 P형 반도체 소자(130) 및 복수의 N형 반도체 소자(140)는 제1 전극부(120) 및 제2 전극부(150)에 의하여 전기적으로 연결된다. 제1 전극부(120)와 제2 전극부(150) 사이에 배치되며, 전기적으로 연결되는 한 쌍의 P형 반도체 소자(130) 및 N형 반도체 소자(140)는 단위 셀을 형성할 수 있다.
예를 들어, 리드선(181, 182)을 통하여 제1 전극부(120) 및 제2 전극부(150)에 전압을 인가하면, 펠티에 효과로 인하여 P형 반도체 소자(130)로부터 N형 반도체 소자(140)로 전류가 흐르는 기판은 열을 흡수하여 냉각부로 작용하고, N형 반도체 소자(140)로부터 P형 반도체 소자(130)로 전류가 흐르는 기판은 가열되어 발열부로 작용할 수 있다. 또는, 제1 전극부(120) 및 제2 전극부(150) 간 온도 차를 가해주면, 제벡 효과로 인하여 P형 반도체 소자(130) 및 N형 반도체 소자(140) 내 전하가 이동하며, 전기가 발생할 수도 있다.
여기서, P형 반도체 소자(130) 및 N형 반도체 소자(140)는 비스무스(Bi) 및 텔루륨(Te)를 주원료로 포함하는 비스무스텔루라이드(Bi-Te)계 반도체 소자일 수 있다. P형 반도체 소자 (130)는 안티몬(Sb), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, P형 반도체 소자(130)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Sb-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다. N형 반도체 소자(140)는 셀레늄(Se), 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga), 텔루륨(Te), 비스무스(Bi) 및 인듐(In) 중 적어도 하나를 포함하는 비스무스텔루라이드(Bi-Te)계 열전 레그일 수 있다. 예를 들어, N형 반도체 소자(140)는 전체 중량 100wt%에 대하여 주원료물질인 Bi-Se-Te를 99 내지 99.999wt%로 포함하고, 니켈(Ni), 알루미늄(Al), 구리(Cu), 은(Ag), 납(Pb), 붕소(B), 갈륨(Ga) 및 인듐(In) 중 적어도 하나를 0.001 내지 1wt%로 포함할 수 있다.
P형 반도체 소자(130) 및 N형 반도체 소자(140)는 벌크형 또는 적층형으로 형성될 수 있다. 일반적으로 벌크형 P형 반도체 소자(130) 또는 벌크형 N형 반도체 소자(140)는 열전 소재를 열처리하여 잉곳(ingot)을 제조하고, 잉곳을 분쇄하고 체거름하여 열전 레그용 분말을 획득한 후, 이를 소결하고, 소결체를 커팅하는 과정을 통하여 얻어질 수 있다. 이때, P형 반도체 소자(130) 및 N형 반도체 소자(140)는 다결정 열전 레그일 수 있다. 이와 같이, P형 반도체 소자(130) 및 N형 반도체 소자(140)가 다결정 열전 레그인 경우, P형 반도체 소자(130) 및 N형 반도체 소자(140)의 강도가 높아질 수 있다. 적층형 P형 반도체 소자(130) 또는 적층형 N형 반도체 소자(140)는 시트 형상의 기재 상에 열전 소재를 포함하는 페이스트를 도포하여 단위 부재를 형성한 후, 단위 부재를 적층하고 커팅하는 과정을 통하여 얻어질 수 있다.
이때, 한 쌍의 P형 반도체 소자(130) 및 N형 반도체 소자(140)는 동일한 형상 및 체적을 가지거나, 서로 다른 형상 및 체적을 가질 수 있다. 예를 들어, P형 반도체 소자(130)와 N형 반도체 소자(140)의 전기 전도 특성이 상이하므로, N형 반도체 소자(140)의 높이 또는 단면적을 P형 반도체 소자(130)의 높이 또는 단면적과 다르게 형성할 수도 있다.
이때, P형 반도체 소자(130) 또는 N형 반도체 소자(140)는 원통 형상, 다각 기둥 형상, 타원형 기둥 형상 등을 가질 수 있다.
본 명세서에서, 반도체 소자는 열전 레그, 열전 구조물, 반도체 구조물 등으로 지칭될 수도 있다.
본 발명의 한 실시예에 따른 열전 소자의 성능은 열전성능 지수(figure of merit, ZT)로 나타낼 수 있다. 열전성능 지수(ZT)는 수학식 1과 같이 나타낼 수 있다.
Figure PCTKR2023017995-appb-img-000001
여기서, α는 제벡계수[V/K]이고, σ는 전기 전도도[S/m]이며, α2σ는 파워 인자(Power Factor, [W/mK2])이다. 그리고, T는 온도이고, k는 열전도도[W/mK]이다. k는 a·cp·ρ로 나타낼 수 있으며, a는 열확산도[cm2/S]이고, cp 는 비열[J/gK]이며, ρ는 밀도[g/cm3]이다.
열전 소자의 열전성능 지수를 얻기 위하여, Z미터를 이용하여 Z 값(V/K)을 측정하며, 측정한 Z값을 이용하여 열전성능 지수(ZT)를 계산할 수 있다.
여기서, 제1 기판(110)과 P형 반도체 소자(130) 및 N형 반도체 소자(140) 사이에 배치되는 제1 전극부(120), 그리고 제2 기판(160)과 P형 반도체 소자(130) 및 N형 반도체 소자(140) 사이에 배치되는 제2 전극부(150)는 구리(Cu), 은(Ag), 알루미늄(Al) 및 니켈(Ni) 중 적어도 하나를 포함하며, 0.01mm 내지 0.3mm의 두께를 가질 수 있다. 제1 전극부(120) 또는 제2 전극부(150)의 두께가 0.01mm 미만인 경우, 전극으로서 기능이 떨어지게 되어 전기 전도 성능이 낮아질 수 있으며, 0.3mm를 초과하는 경우 저항의 증가로 인하여 전도 효율이 낮아질 수 있다.
그리고, 상호 대향하는 제1 기판(110)과 제2 기판(160)은 금속 기판일 수 있으며, 그 두께는 0.1mm~1.5mm일 수 있다. 금속 기판의 두께가 0.1mm 미만이거나, 1.5mm를 초과하는 경우, 방열 특성 또는 열전도율이 지나치게 높아질 수 있으므로, 열전 소자의 신뢰성이 저하될 수 있다. 또한, 제1 기판(110)과 제2 기판(160)이 금속 기판인 경우, 제1 기판(110)과 제1 전극부(120) 사이 및 제2 기판(160)과 제2 전극부(150) 사이에는 각각 절연층(170)이 더 형성될 수 있다. 절연층(170)은 1~20W/mK의 열전도도를 가지는 소재를 포함할 수 있다. 이때, 절연층(170)은 에폭시 수지 및 실리콘 수지 중 적어도 하나와 무기물을 포함하는 수지 조성물이거나, 실리콘과 무기물을 포함하는 실리콘 복합체로 이루어진 층이거나, 산화알루미늄층일 수 있다. 여기서, 무기물은 알루미늄, 붕소, 규소 등의 산화물, 질화물 및 탄화물 중 적어도 하나일 수 있다.
각 절연층(170)은 하나의 절연층이거나, 서로 다른 조성의 복수의 절연층일 수 있다. 제1 전극부(120) 및 제2 전극부(150) 중 적어도 하나의 측면의 적어도 일부는 절연층(170)에 매립되며, 각 전극부에 포함되는 복수의 전극 사이에 배치된 절연층(170)의 상면은 각 기판을 향하여 오목한 형상을 가질 수 있다. 각 절연층(170)이 복수의 절연층인 경우, 제1 전극부(120) 및 제2 전극부(150) 중 적어도 하나의 측면의 적어도 일부는 각 기판을 기준으로 최상부에 배치된 절연층(170)에 매립되며, 각 전극부에 포함되는 복수의 전극 사이에 배치된 절연층(170)의 최상면은 각 기판을 향하여 오목한 형상을 가질 수 있다.
이때, 제1 기판(110)과 제2 기판(160)의 크기는 다르게 형성될 수도 있다. 즉, 제1 기판(110)과 제2 기판(160) 중 하나의 체적, 두께 또는 면적은 다른 하나의 체적, 두께 또는 면적보다 크게 형성될 수 있다. 여기서, 두께는 제1 기판(110)으로부터 제2 기판(160)을 향하는 방향에 대한 두께일 수 있으며, 면적은 제1 기판(110)으로부터 제2 기판(160)을 향하는 방향에 수직하는 방향에 대한 면적일 수 있다. 이에 따라, 열전소자의 흡열 성능 또는 방열 성능을 높일 수 있다. 바람직하게는, 제1 기판(110)의 체적, 두께 또는 면적은 제2 기판(160)의 체적, 두께 또는 면적 중 적어도 하나 보다 더 크게 형성될 수 있다. 이때, 제1 기판(110)은 제벡 효과를 위해 고온영역에 배치되는 경우, 펠티에 효과를 위해 발열영역으로 적용되는 경우 또는 열전소자의 외부환경으로부터 보호를 위한 실링부재가 제1 기판(110) 상에 배치되는 경우에 제2 기판(160) 보다 체적, 두께 또는 면적 중 적어도 하나를 더 크게 할 수 있다. 이때, 제1 기판(110)의 면적은 제2 기판(160)의 면적 대비 1.2 내지 5배의 범위로 형성할 수 있다. 제1 기판(110)의 면적이 제2 기판(160)에 비해 1.2배 미만으로 형성되는 경우, 열전달 효율 향상에 미치는 영향은 높지 않으며, 5배를 초과하는 경우에는 오히려 열전달 효율이 현저하게 떨어지며, 열전소자의 기본 형상을 유지하기 어려울 수 있다.
또한, 제1 기판(110)과 제2 기판(160) 중 적어도 하나의 표면에는 방열 패턴, 예를 들어 요철 패턴이 형성될 수도 있다. 이에 따라, 열전소자의 방열 성능을 높일 수 있다. 요철 패턴이 P형 반도체 소자(130) 또는 N형 반도체 소자(140)와 접촉하는 면에 형성되는 경우, 반도체 소자와 기판 간의 접합 특성도 향상될 수 있다.
도시되지 않았으나, 제1 기판(110)과 제2 기판(160) 사이에는 실링부재가 더 배치될 수도 있다. 실링부재는 제1 기판(110)과 제2 기판(160) 사이에서 제1 전극부(120), P형 반도체 소자(130), N형 반도체 소자(140) 및 제2 전극부(150)의 측면에 배치될 수 있다. 이에 따라, 제1 전극부(120), P형 반도체 소자(130), N형 반도체 소자(140) 및 제2 전극부(150)는 외부의 습기, 열, 오염 등으로부터 실링될 수 있다.
다시 도 1 내지 도 2를 참조하면, 쿨링자켓(1100)의 제1면(1110) 및 제2면(1120)에는 각각 열전소자(1200)가 배치될 수 있다.
전술한 바와 같이, 각 열전소자(1200)는 쿨링자켓(1100)에 접촉하도록 배치된 제1기판(110), 제1 기판(110) 상에 배치된 제1 전극부(120), 제1 전극부(120) 상에 배치된 복수의 반도체 소자(130, 140), 복수의 반도체 소자(130, 140) 상에 배치된 제2 전극부(150) 및 제2 전극부(150) 상에 배치된 제2 기판(160)을 포함한다. 이때, 쿨링자켓(1100) 상에 배치되는 열전소자(1200)의 제1 기판(110)은 금속기판일 수 있고, 금속기판은 쿨링자켓(1100)의 표면과 열전달물질(thermal interface material, TIM, 미도시)에 의하여 접착될 수 있다. 열전달물질은, 예를 들면 서멀그리스(thermal grease)일 수 있다. 금속기판은 열전달 성능이 우수하므로, 열전소자(1200)와 쿨링자켓(1100) 간의 열전달이 용이하다. 또한, 금속기판과 쿨링자켓(1100)이 열전달물질에 의하여 접착되면, 금속기판과 쿨링자켓(1100) 간의 열전달이 방해 받지 않을 수 있다. 특히, 금속기판과 쿨링자켓(1100)이 열전달물질에 의하여 접착되면, 금속기판과 쿨링자켓(1100)이 체결부재에 의해 결합되는 것에 비하여 내전압 성능이 높고, 조립이 용이하다. 여기서, 금속기판은 구리 기판, 알루미늄 기판 및 구리-알루미늄 기판 중 하나일 수 있으나, 이로 제한되는 것은 아니다.
한편, 본 발명의 실시예에 따르면, 열전모듈(1000)은 쿨링자켓(1100)의 외부에서 열전소자(1200) 상에 배치된 실드부재(1400)를 더 포함한다. 실드부재(1400)는 열전소자(1200)의 제1 전극부(120)와 제2 전극부(150)가 중첩된 영역 상에 배치된 중첩부(1410)를 포함한다.
도 1 내지 도 2에 도시된 바와 같이, 중첩부(1410)는 열전소자(1200)의 제1 전극부(120)와 제2 전극부(150)가 중첩된 영역 전체를 커버하도록 배치된다. 즉, 열전소자(1200)의 제2 기판(160)은 중첩부(1410)에 의해 커버되며, 중첩부(1410)에는 히트싱크를 외부에 노출시키기 위한 관통홀이 형성되지 않는다. 이에 따르면, 열전소자(1200)의 제2 기판(160) 상에 배치되는 히트싱크를 생략할 수 있다.
다시 도 5를 참조하면, 쿨링자켓(1100)의 일단(1150) 및 타단(1160)에 배치된 유체유입부(1300) 및 유체배출부(1310)에는 각각 적어도 하나의 홀이 형성되며, 유체유입부(1300)에 형성된 적어도 하나의 홀을 통해 유입된 제1 유체가 쿨링자켓(1100)을 통과한 후 유체배출부(1310)에 형성된 적어도 하나의 홀을 통해 배출될 수 있다. 유체유입부(1300)에 형성된 적어도 하나의 홀은 쿨링자켓(1100)을 관통하여 유체배출부(1310)에 형성된 적어도 하나의 홀까지 연장될 수 있다.
도 1, 도 2, 도 5 내지 도 7을 참조하면, 쿨링자켓(1100)의 제1면(1110)에는 복수의 열전소자(1200-1, ..., 1200-N)이 배치되고, 이와 마찬가지로 쿨링자켓(1100)의 제2면(1120)에도 복수의 열전소자가 배치될 수 있다. 여기서, 쿨링자켓(1100)의 한 면에 6개의 열전소자가 배치되는 것으로 도시되어 있으나, 이는 예시에 불과하며, 이로 제한되는 것이 아니다. 열전소자와 관련하여, 도 3 내지 도 4를 참조하여 설명한 내용과 동일한 내용에 대해서는 중복된 설명을 생략한다.
도 6 내지 도 7을 참조하면, 본 발명의 실시예에 따른 각 열전모듈(1200)은 제1 기판(110), 제1 기판(110) 상에 배치된 제1 전극, 제1 전극 상에 배치된 반도체 소자, 반도체 소자 상에 배치된 제2 전극 및 제2 전극 상에 배치된 제2 기판(160)을 포함한다.
본 발명의 실시예에 따르면, 제1 기판(110)은 쿨링자켓(1100)의 제1면(1110)에 직접 접촉하도록 배치되거나, 열전달물질(thermal interface material, TIM) 등을 통하여 간접 접촉하도록 배치될 수 있다. 제1 기판(110)은 제2 기판(160)과 수직으로 중첩된 열전소자 영역(112) 및 열전소자 영역(112)의 측면에 배치된 배선 영역(114)을 포함할 수 있다. 제1 기판(110)의 열전소자 영역(112) 상에는 제1 전극, 반도체 소자, 제2 전극 및 제2 기판(160)이 순차적으로 배치되고, 제1 기판(110)의 배선 영역(114)에는 열전소자 영역(112)에 전기적으로 연결된 배선부(미도시)가 배치될 수 있다. 여기서, 배선부는 열전소자 영역(112)에 배치된 제1 전극과 연결된 리드선 및 리드선에 연결된 커넥터를 포함할 수 있다.
인접하는 복수의 열전소자는 배선 영역(114)에 배치된 커넥터를 통하여 서로 전기적으로 연결될 수 있다. 예를 들어, 도 6에 도시된 바와 같이, 제1 내지 제3 열전소자(1200-1, 1200-2, 1200-3)가 서로 인접하여 배치되고, 제4 내지 제6 열전소자(1200-4, 1200-5, 1200-6)가 서로 인접하여 배치되는 경우, 제1 내지 제3 열전소자(1200-1, 1200-2, 1200-3)의 배선 영역((114-1, 114-2, 114-3)은 일렬로 배치되어 커넥터를 통하여 서로 전기적으로 연결되고, 제4 내지 제6 열전소자(1200-4, 1200-5, 1200-6)의 배선 영역((114-4, 114-5, 114-6)은 일렬로 배치되어 커넥터를 통하여 서로 전기적으로 연결될 수 있다. 이때, 제1 내지 제3 열전소자(1200-1, 1200-2, 1200-3)의 배선 영역((114-1, 114-2, 114-3)은 쿨링자켓(1100)의 일단(1150), 즉 유체유입부(1300) 측에 배치되고, 제4 내지 제6 열전소자(1200-4, 1200-5, 1200-6)의 배선 영역((114-4, 114-5, 114-6)은 쿨링자켓(1100)의 타단(1160), 즉 유체배출부(1310) 측에 배치될 수 있다. 즉, 제1 내지 제3 열전소자(1200-1, 1200-2, 1200-3)의 배선 영역((114-1, 114-2, 114-3)에 배치된 배선부는 유체유입부(1300)와 제1 내지 제3 열전소자(1200-1, 1200-2, 1200-3) 사이에 배치되고, 제4 내지 제6 열전소자(1200-4, 1200-5, 1200-6)의 배선 영역((114-4, 114-5, 114-6)에 배치된 배선부는 유체배출부(1310)와 제4 내지 제6 열전소자(1200-4, 1200-5, 1200-6) 사이에 배치될 수 있다.
본 발명의 실시예에 따르면, 각 열전소자(1200)의 제2 기판(160)은 서로 이격되도록 배치된 복수의 분할 기판(161, 162, 163, 164)을 포함할 수 있다. 여기서, 하나의 제1 기판(110)에 대하여 4개의 분할 기판(161, 162, 163, 164)으로 예시되어 있으나, 이로 제한되는 것은 아니다. 하나의 제1 기판(110)에 배치된 제2 기판(160)은 2 이상의 분할 기판을 포함할 수 있다. 이에 따르면, 제2 기판(160)이 후술할 실드부재(1400)와 접합되는 경우, 고온의 제2 유체로 인해 제2 기판(160)이 열팽창하더라도, 제2 기판(160)이 열변형되거나, 제2 기판(160)이 실드부재(1400)로부터 이탈되는 문제를 최소화할 수 있다.
도 8을 참조하면, 실드부재(1400)는 중첩부(1410), 단차부(1412), 제1 연장부(1420) 및 제2 연장부(1430)를 포함할 수 있다. 중첩부(1410)는 쿨링자켓(1100)의 제1면(1110)에 배치되고, 제1 연장부(1420)는 쿨링자켓(1100)의 일측면(1130)에 배치되며, 제2 연장부(1430)는 쿨링자켓(1100)의 타측면(1140)에 배치될 수 있다.
도 9(a) 내지 도 9(c)를 참조하면, 실드부재(1400)의 중첩부(1410)는 복수의 열전소자(1200) 상에 배치된다. 실드부재(1400)의 중첩부(1410)는 복수의 열전소자(1200)의 제1 전극과 제2 전극이 중첩된 영역 상에 배치된다. 실드부재(1400)의 중첩부(1410)는 복수의 열전소자(1200)의 제1 전극과 제2 전극이 중첩된 영역 전체를 커버하도록 배치된다. 이때, 복수의 열전소자(1200)은 실드부재(1400)의 중첩부(1410)의 내면에 배치될 수 있다. 여기서, 실드부재(1400)의 중첩부(1410)의 내면은, 실드부재(1400)의 중첩부(1410)의 양면 중 제2 유체와 직접 접촉하는 외면의 반대면, 즉 쿨링자켓(1100)을 향하도록 배치된 면을 의미할 수 있다. 본 발명의 실시예에 따르면, 복수의 열전소자(1200-1)와 실드부재(1400)는 결합 또는 접합될 수 있다. 본 발명의 실시예에 따르면, 복수의 열전소자(1200)의 제2 기판(160)은 실드부재(1400)는 결합 또는 접합될 수 있다. 이를 위하여, 복수의 열전소자(1200)와 실드부재(1400) 사이에는 접합층(미도시)이 더 배치될 수 있다. 여기서, 접합층은 솔더를 포함할 수 있다. 예를 들어, 복수의 열전소자(1200)의 제2 기판(160)은 실드부재(1400)의 중첩부(1410)의 내면과 솔더링될 수 있다. 즉, 복수의 열전소자(1200)의 제2 기판(160)의 상면은 실드부재(1400)의 중첩부(1410)의 내면과 접합될 수 있다. 예를 들어, 복수의 열전소자(1200)의 제2 기판(160)의 상면 전체는 실드부재(1400)의 중첩부(1410)의 내면과 접합될 수 있다. 그리고, 복수의 열전소자(1200)의 제1 기판(110)의 하면은 쿨링자켓(1100)과 열전도물질, 예를 들어 서멀그리스에 의하여 접합될 수 있다. 여기서, 실드부재(1400)는 열전도성이다. 예를 들어, 실드부재(1400)는 열전도성 금속 또는 열전도성 합금일 수 있다. 예를 들어, 실드부재(1400)는 구리, 알루미늄 또는 스테인리스강을 포함할 수 있다. 이에 따르면, 실드부재(1400)의 중첩부(1410)는 복수의 열전소자(1200)를 보호하는 기능뿐만 아니라, 히트싱크의 기능도 할 수 있다. 이에 따르면, 실드부재(1400)의 중첩부(1410)가 고온의 제2 유체로부터 받는 열은 복수의 열전소자(1200)의 제2 기판(160)으로 그대로 전달되므로, 열손실이 방지될 수 있으며, 발전효율이 개선될 수 있다. 또한, 복수의 열전소자(1200)의 제2 기판(160)에 히트싱크를 별도로 배치할 필요가 없으므로, 제2 기판(160)과 히트싱크 간 접합 및 히트싱크를 외부로 노출하기 위한 실드부재의 조립에 따른 구조 및 공정 복잡도가 현저히 감소될 수 있다.
도 8, 도 9(a) 내지 도 9(c) 및 도 10을 참조하면, 실드부재(1400)는 중첩부(1410) 및 두 개의 단차부(1412)를 포함하며, 중첩부(1410) 및 두 개의 단차부(1412)는 모두 쿨링자켓(1100)의 제1면(1110)에 배치된다. 두 개의 단차부(1412)는 중첩부(1410)를 사이에 두고 중첩부(1410)와 단차를 이룬다. 두 개의 단차부(1412)는 중첩부(1410)의 일단 및 타단에 배치될 수 있다. 두 개의 단차부(1412)는 쿨링자켓(1100)의 일단(1150) 및 쿨링자켓(1100)의 타단(1160)을 따라 연장되도록 배치될 수 있다. 즉, 두 개의 단차부(1412)는 쿨링자켓(1100)의 일측면(1130)으로부터 쿨링자켓(1100)의 타측면(1140)을 향하는 방향으로 연장되도록 배치될 수 있다. 이때, 쿨링자켓(1100)의 제1면(1110) 또는 열전소자(1200)의 제1 기판(110)을 기준으로, 단차부(1412)의 높이는 중첩부(1410)의 높이보다 높을 수 있다. 더욱 구체적으로, 쿨링자켓(1100)의 제1면(1110) 또는 열전소자(1200)의 제1 기판(110)을 기준으로, 단차부(1412)의 내면의 높이는 중첩부(1410)의 내면의 높이보다 높을 수 있다.
한편, 전술한 바와 같이, 열전소자(1200)의 제1 기판(110)은 제2 기판(160)과 수직으로 중첩된 열전소자 영역(112) 및 열전소자 영역(112)의 측면에 배치된 배선 영역(114)을 포함하며, 제1 기판(110)의 배선 영역(114)에는 열전소자 영역(112)에 전기적으로 연결된 배선부(미도시)가 배치될 수 있다. 본 발명의 실시예에 따르면, 쿨링자켓(1100)과 실드부재(1400)의 중첩부(1410)의 중첩부(1410) 사이에는 열전소자(1200)의 제2 기판(160)이 배치되고, 쿨링자켓(1100)과 실드부재(1400)의 단차부(1412) 사이에는 배선부가 배치될 수 있다. 이에 따르면, 실드부재(1400)의 중첩부(1410)의 내면이 열전소자(1200)의 제2 기판(160)과 접합되더라도, 실드부재(1400)의 단차부(1412)의 내면은 배선부와 이격되므로, 배선부가 열전도성인 실드부재(1400)에 의하여 전기적 영향을 받지 않을 수 있으며, 열전모듈(1000)의 내전압 성능을 높일 수 있다.
또한, 배선부가 쿨링자켓(1100)의 일단(1150) 및 쿨링자켓(1100)의 타단(1160), 즉 유체유입부(1300) 및 유체배출부(1310)를 따라 연장되도록 배치되면, 배선부가 고온의 제2 유체에 의해 받는 영향을 최소화할 수 있다.
한편, 본 발명의 실시예에 따른 열전모듈(1000)은 더미 가이드(1600, 1610)를 더 포함한다. 더미 가이드(1600, 1610)는 단열 성능 및 전기적 절연 성능 중 적어도 하나를 가질 수 있다. 예를 들어, 더미 가이드(1600, 1610)는 플라스틱 소재를 포함할 수 있다. 더미 가이드(1600, 1610)는 쿨링자켓(1100)의 제1면(1110)과 실드부재(1400)의 단차부(1412) 사이에 배치될 수 있다. 더미 가이드(1600, 1610)는 쿨링자켓(1100)의 제1면(1110)과 실드부재(1400)의 단차부(1412) 사이에서 유체유입부(1300)와 배선부 사이 또는 유체배출부(1310)와 배선부 사이에 배치될 수 있다. 이에 따르면, 더미 가이드(1600, 1610)는 실링 역할을 수행하며, 쿨링자켓(1100)의 제1면(1110)과 실드부재(1400) 사이에 배치된 복수의 열전소자(1200)를 보호할 수 있다.
전술한 바와 같이, 본 발명의 실시예에 따른 열전모듈(1000)은 유체유입부(1300)와 실드부재(1400)의 단차부(1412) 상에 배치된 제1 실드튜브(1500) 및 유체배출부(1310)와 실드부재(1400)의 중첩부(1410)의 제2 영역(1412) 상에 배치된 제2 실드튜브(1510)를 더 포함할 수 있다. 제1 실드튜브(1500) 및 제2 실드튜브(1510)에 의하여 고온의 제2 유체 또는 외부 이물질이 유체유입부(1300) 및 실드부재(1400) 사이와 유체배출부(1310) 및 실드부재(1400)에 침투하는 문제를 방지할 수 있다. 이때, 제1 실드튜브(1500) 아래에서 유체유입부(1300)와 더미가이드(1600) 사이 또는 제2 실드튜브(1510) 아래에서 유체배출부(1310)와 더미가이드(1610) 사이에 실링재가 더 배치될 수도 있다. 이에 따르면, 고온의 제2 유체 또는 외부 이물질이 유체유입부(1300) 및 실드부재(1400) 사이와 유체배출부(1310) 및 실드부재(1400)에 침투하는 문제를 방지할 수 있다.
한편, 도 11을 참조하면, 쿨링자켓(1100)의 일측면(1130)과 실드부재(1400)의 제1 연장부(1420) 사이 및 쿨링자켓(1100)의 타측면(1140)과 실드부재(1400)의 제2 연장부(1430) 사이에는 단열부재(1700)가 더 배치될 수 있다. 이에 따르면, 고온의 제2 유체가 쿨링자켓(1100)의 일측면(1130)으로부터 타측면(1140)을 향하는 방향 또는 쿨링자켓(1100)의 타측면(1140)으로부터 일측면(1130)을 향하는 방향으로 흐르는 경우, 고온의 제2 유체의 열이 쿨링자켓(1100)에 직접 전달되지 않으므로, 쿨링자켓(1100)을 고온으로부터 보호할 수 있다.
한편, 도 11을 참조하면, 쿨링자켓(1100)의 일측면(1130)과 실드부재(1400)의 제1 연장부(1420) 및 쿨링자켓(1100)의 타측면(1140)과 실드부재(1400)의 제2 연장부(1430)는 체결부재(1800)에 의해 결합될 수 있다. 이에 따르면, 체결부재(1800)와 쿨링자켓(1100)이 접촉하는 면적이 최소화되므로, 쿨링자켓(1100)을 고온으로부터 보호할 수 있다. 특히, 본 발명의 실시예에 따르면, 체결부재(1800)가 실드부재(1400)의 중첩부(1410)에 배치될 필요 없이 실드부재의 제1 연장부(1420) 및 제2 연장부(1420)에만 배치되므로, 체결부재(1800)가 제2 유체의 유로를 방해하는 문제가 방지될 수 있으며, 열전소자(1200)의 유효 영역의 면적이 체결부재(1800)에 의하여 작아지는 문제가 방지될 수 있다.
이상에서, 설명의 편의를 위하여 쿨링자켓(1100)의 제1면(1110)에 배치된 열전소자(1200) 및 실드부재(1400)를 중심으로 설명하였으나, 쿨링자켓(1100)의 제2면(1120)에도 쿨링자켓(1100)의 제1면(1110)과 대칭되도록 열전소자(1200) 및 실드부재가 배치될 수 있다.
도 11에 도시된 바와 같이, 쿨링자켓(1100)의 제1면(1110)에 배치된 실드부재(1400)의 제1 연장부(1420) 및 제2 연장부(1430)는 쿨링자켓(1100)의 제2면(1120)에 배치된 실드부재(1900)의 제3 연장부(1920) 및 제4 연장부(1930)와 쿨링자켓(1100)의 일측면(1130) 및 타측면(1140)에서 서로 중첩되도록 배치될 수 있다. 예를 들어, 쿨링자켓(1100)의 일측면(1130)에서 실드부재(1400)의 제1 연장부(1420)와 실드부재(1900)의 제3 연장부(1920)는 서로 중첩되도록 배치되고, 쿨링자켓(1100)의 타측면(1140)에서 실드부재(1400)의 제2 연장부(1430)와 실드부재(1900)의 제4 연장부(1930)는 서로 중첩되도록 배치될 수 있다. 이때, 실드부재(1400)의 제1 연장부(1420) 및 제2 연장부(1430) 사이의 거리는 실드부재(1900)의 제3 연장부(1920) 및 제4 연장부(1930) 사이의 거리와 상이할 수 있다. 예를 들어, 실드부재(1900)의 제3 연장부(1920) 및 제4 연장부(1930) 사이의 거리는 실드부재(1400)의 제1 연장부(1420) 및 제2 연장부(1430) 사이의 거리보다 클 수 있으며, 이에 따라, 실드부재(1400)의 제1 연장부(1420)는 실드부재(1900)의 제3 연장부(1920)와 쿨링자켓(1100)의 일측면(1130) 사이에 배치되고, 실드부재(1400)의 제2 연장부(1430)는 실드부재(1900)의 제4 연장부(1930)와 쿨링자켓(1100)의 타측면(1140) 사이에 배치될 수 있다. 이에 따르면, 쿨링자켓(1100)에 실드부재(1400)와 실드부재(1900)를 조립하기 용이하며, 실드부재(1400)와 실드부재(1900)가 조립된 상태에서 고온의 제2 유체의 침투를 방지할 수 있다.
발전 시스템은 선박, 자동차, 발전소, 지열, 등에서 발생하는 열원을 통해 발전할 수 있고, 열원을 효율적으로 수렴하기 위해 복수의 발전 장치를 배열할 수 있다. 이때, 각 발전 장치는 열전모듈과 쿨링자켓 간 접합력을 개선하여 열전소자의 저온부의 냉각 성능을 개선할 수 있으며, 이에 따라 발전 장치의 효율 및 신뢰성을 개선할 수 있으므로, 선박이나 차량 등의 운송 장치의 연료 효율을 개선할 수 있다. 따라서 해운업, 운송업에서는 운송비 절감과 친환경 산업 환경을 조성할 수 있고, 제철소 등 제조업에 적용되는 경우 재료비 등을 절감할 수 있다.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (10)

  1. 유체가 흐를 수 있는 관통홀이 형성된 쿨링자켓;
    상기 쿨링자켓 상에 배치된 제1 열전소자; 그리고
    상기 제1 열전소자 상에 배치되고 열전도성인 제1 실드부재를 포함하고,
    상기 제1 열전소자는,
    제1 기판;
    상기 제1 기판 상에 배치된 반도체 소자;
    상기 반도체 소자 상에 배치된 제2 기판;
    상기 제1 기판과 상기 반도체 소자 사이에 배치된 제1 전극; 그리고
    상기 제2 기판과 상기 반도체 소자 사이에 배치된 제2 전극을 포함하고,
    상기 제1 실드부재는 상기 제1 전극과 상기 제2 전극이 중첩된 영역 상에 배치된 중첩부를 포함하는 열전모듈.
  2. 제1항에 있어서,
    상기 쿨링자켓과 상기 제1 열전소자 사이에 배치된 서멀그리스를 더 포함하는 열전모듈.
  3. 제1항에 있어서,
    상기 제1 열전소자와 상기 제1 실드부재는 결합된 열전모듈.
  4. 제1항에 있어서,
    상기 제1 열전소자와 상기 제1 실드부재 사이에 배치된 접합층을 더 포함하는 열전모듈.
  5. 제4항에 있어서,
    상기 접합층은 솔더를 포함하는 열전모듈.
  6. 제1항에 있어서,
    상기 제1 열전소자에 전기적으로 연결된 배선부를 더 포함하고,
    상기 제1 실드부재는 상기 중첩부와 단차를 이루는 단차부를 포함하고,
    상기 쿨링자켓과 상기 중첩부 사이에는 상기 제1 열전소자의 상기 제2 기판이 배치되고, 상기 쿨링자켓과 상기 단차부 사이에는 상기 배선부가 배치된 열전모듈.
  7. 제6항에 있어서,
    상기 쿨링자켓의 일단에 배치된 유체유입부; 그리고
    상기 쿨링자켓의 타단에 배치된 유체배출부를 더 포함하고,
    상기 관통홀은 상기 유체유입부로부터 상기 유체배출부까지 연장되며,
    상기 배선부는 상기 유체유입부와 상기 제1 열전소자 사이 또는 상기 유체배출부와 상기 제1 열전소자 사이에 배치된 열전모듈.
  8. 제7항에 있어서,
    상기 쿨링자켓과 상기 단차부 사이에 배치된 더미 가이드를 더 포함하고,
    상기 더미 가이드는 상기 유체유입부와 상기 배선부 사이 또는 상기 유체배출부와 상기 배선부 사이에 배치된 열전모듈.
  9. 제8항에 있어서,
    상기 유체유입부와 상기 제1 실드부재의 상기 단차부 상에 배치된 제1 실드튜브 및 상기 유체배출부와 상기 제1 실드부재의 상기 단차부 상에 배치된 제2 실드튜브를 더 포함하는 열전모듈.
  10. 제9항에 있어서,
    상기 제1 실드튜브 아래에서 상기 유체유입부와 상기 더미가이드 사이 또는 상기 제2 실드튜브 아래에서 상기 유체배출부와 상기 더미가이드 사이에 배치된 실링재를 더 포함하는 열전모듈.
PCT/KR2023/017995 2022-11-10 2023-11-09 열전모듈 WO2024101926A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0149381 2022-11-10
KR20220149381 2022-11-10
KR1020230153539A KR20240068556A (ko) 2022-11-10 2023-11-08 열전모듈
KR10-2023-0153539 2023-11-08

Publications (1)

Publication Number Publication Date
WO2024101926A1 true WO2024101926A1 (ko) 2024-05-16

Family

ID=91033354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017995 WO2024101926A1 (ko) 2022-11-10 2023-11-09 열전모듈

Country Status (1)

Country Link
WO (1) WO2024101926A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234448B2 (en) * 2010-08-06 2016-01-12 Friedrich Boysen Gmbh & Co. Kg Muffler
KR20190065763A (ko) * 2017-12-04 2019-06-12 엘지이노텍 주식회사 열변환장치
KR20210069432A (ko) * 2019-12-03 2021-06-11 엘지이노텍 주식회사 발전장치
KR20210119800A (ko) * 2020-03-25 2021-10-06 엘지이노텍 주식회사 열전 장치
KR20220037173A (ko) * 2020-09-17 2022-03-24 엘지이노텍 주식회사 열전 모듈 및 이를 포함하는 발전 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234448B2 (en) * 2010-08-06 2016-01-12 Friedrich Boysen Gmbh & Co. Kg Muffler
KR20190065763A (ko) * 2017-12-04 2019-06-12 엘지이노텍 주식회사 열변환장치
KR20210069432A (ko) * 2019-12-03 2021-06-11 엘지이노텍 주식회사 발전장치
KR20210119800A (ko) * 2020-03-25 2021-10-06 엘지이노텍 주식회사 열전 장치
KR20220037173A (ko) * 2020-09-17 2022-03-24 엘지이노텍 주식회사 열전 모듈 및 이를 포함하는 발전 장치

Similar Documents

Publication Publication Date Title
WO2020218753A1 (ko) 열변환장치
WO2019112288A1 (ko) 열변환장치
KR20210069432A (ko) 발전장치
WO2021145621A1 (ko) 발전장치
US20240260471A1 (en) Power generation device
WO2020159177A1 (ko) 열전소자
KR20220037173A (ko) 열전 모듈 및 이를 포함하는 발전 장치
WO2020246749A1 (ko) 열전소자
WO2024101926A1 (ko) 열전모듈
WO2018226046A1 (ko) 열변환장치
WO2021101267A1 (ko) 열전소자
WO2023146302A1 (ko) 열전장치
US20240040929A1 (en) Thermoelectric device
WO2023287168A1 (ko) 열전장치
WO2022270912A1 (ko) 열전장치
WO2022270914A1 (ko) 열전장치
WO2021141284A1 (ko) 열전모듈
WO2023287167A1 (ko) 열전소자
WO2020130507A1 (ko) 열전 모듈
WO2022060165A1 (ko) 열전소자
WO2021256802A1 (ko) 발전장치
WO2021251721A1 (ko) 발전장치
KR20240068556A (ko) 열전모듈
WO2021141302A1 (ko) 열전소자
WO2024123112A1 (ko) 열전 모듈 어레이 및 이를 포함하는 발전 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23889183

Country of ref document: EP

Kind code of ref document: A1