WO2021139155A1 - 电磁驱动液体雾化装置 - Google Patents

电磁驱动液体雾化装置 Download PDF

Info

Publication number
WO2021139155A1
WO2021139155A1 PCT/CN2020/108660 CN2020108660W WO2021139155A1 WO 2021139155 A1 WO2021139155 A1 WO 2021139155A1 CN 2020108660 W CN2020108660 W CN 2020108660W WO 2021139155 A1 WO2021139155 A1 WO 2021139155A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
droplet
heating element
atomization
cavity
Prior art date
Application number
PCT/CN2020/108660
Other languages
English (en)
French (fr)
Inventor
韩熠
李寿波
李廷华
朱东来
巩效伟
吕茜
吴俊�
张霞
赵伟
洪鎏
Original Assignee
云南中烟工业有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云南中烟工业有限责任公司 filed Critical 云南中烟工业有限责任公司
Priority to EP20912560.8A priority Critical patent/EP3909443B1/en
Priority to US17/426,638 priority patent/US11246348B1/en
Priority to JP2021541624A priority patent/JP7096440B1/ja
Publication of WO2021139155A1 publication Critical patent/WO2021139155A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • A24F40/465Shape or structure of electric heating means specially adapted for induction heating
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts

Definitions

  • the invention belongs to the technical field of electronic atomization, and specifically relates to a device that uses electromagnetically to drive a liquid and makes the extruded part of the liquid contact the surface of an electric heating element to atomize it.
  • the core of the electronic atomization cigarette is the atomizer, and its performance directly affects the atomization efficiency, aerosol properties, inhalation quality and inhalation safety of the atomized liquid, which is the focus of the current development of electronic atomization cigarettes.
  • the first electronic atomization atomizers all adopted atomizer technology with heating wire as electric heating element. In recent years, with technological progress and people's increasing awareness of safety and sensory quality, atomizer technology has made great progress.
  • Representative atomizer technologies include ceramic atomizer core technology, metal grid heating technology and metal flake heating technology.
  • the ceramic atomization core technology uses porous ceramic materials. It is a ceramic body obtained by high-temperature sintering. There are a large number of three-dimensional interpenetrating pores inside.
  • a closed electronic cigarette launched by a foreign tobacco company uses a metal grid heating element, which is characterized by uniform heating and a smaller resistance change rate than traditional heating wires.
  • An electronic cigarette launched by another foreign tobacco company uses blade-type ultra-thin stainless steel to replace the traditional heating wire and oil core heating mechanism to heat the smoke liquid to generate aerosols.
  • the thickness of the heating sheet used is ultra-thin (equivalent to the diameter of a human hair). It has a surface area 10 times larger than that of the traditional heating wire and oil guide core heating system.
  • these electric heating elements Compared with traditional heating wires, these electric heating elements have improved heating surface area and heating uniformity. However, because the delivery amount of smoke liquid cannot be controlled, the smoke liquid accumulates on the surface of the metal grid or sheet metal or even wraps the entire heating element. It is unavoidable that the uneven heating of the smoke liquid still exists, resulting in a great reduction in the electric heating efficiency of the metal grid or metal sheet.
  • the present invention proposes an electromagnetically driven liquid atomization device.
  • the device of the present invention uses the principle of electromagnetic driving to drive the liquid to form a convex thin-layer liquid film or droplets.
  • the convex thin-layer liquid film or droplets are quickly atomized to form an aerosol after contacting the surface of a hot electric heating element.
  • the sucker inhales.
  • An electromagnetically driven liquid atomizing device which includes an atomizing core 2 and an electromagnetic driving unit 31;
  • the atomization core 2 includes a liquid storage tank 21 and an electric heating element 22; the liquid storage tank 21 has a driving cavity 211 and an extrusion cavity 212, and the driving cavity 211 and the extrusion cavity 212 are in liquid communication;
  • the upper wall of the cavity 211 has an elastic diaphragm 2111 and a permanent magnet piece 2112; the extrusion cavity 212 has an opening at the upper end of the liquid releasing hole 2121;
  • the electric heating element 22 is arranged on the upper part of the droplet releasing hole 2121, so that the electric heating element
  • the surface 221 is opposite to the droplet releasing hole 2121 and keeps a certain distance; the liquid storage tank 21 contains the liquid 200 for vaporization.
  • the electromagnetic drive unit 31 is arranged at the bottom of the atomization core 2.
  • the magnetic field generated by the electromagnetic drive unit 31 can penetrate the liquid storage tank 21 and the liquid 200 inside and be induced by the permanent magnet sheet 2112.
  • the surface 221 of the electric heating element is parallel to the plane where the droplet releasing hole 2121 is located, and the distance between the two is 100um-2mm.
  • the area of the droplet releasing hole 2121 is less than 3mm ⁇ 3mm.
  • the apparent contact angle of water on the surface 221 of the electric heating element is less than 90°.
  • the volume of the liquid storage bin 21 is 1-2 ml.
  • the atomizing core 2 further has a pressing sheet 2113, an upper sealing gasket 2114, an extrusion cavity frame 2115, a driving cavity 2116, a lower sealing gasket 2117, a substrate 2118 and a base 23; the driving cavity 2116 And the elastic diaphragm 2111 and the upper sealing gasket 2114, and the lower sealing gasket 2117 and the substrate 2118 enclose the liquid storage tank 21; the pressing piece 2113 is arranged on the outer wall of the elastic diaphragm 2111, and the permanent magnet
  • the sheet 2112 is arranged between the pressing sheet 2113 and the elastic diaphragm 2111 and is attached to the wall of the elastic diaphragm 2111; the inside of the extrusion cavity frame 2115 is an extrusion cavity 212, the mouth of the extrusion cavity 212 Is a droplet releasing hole 2121; the pressing piece 2113, the permanent magnet piece 2112, and the elastic diaphragm 2111 have holes in the middle corresponding to the droplet releasing hole
  • the electromagnetic drive unit 31 is located in the cavity of the electromagnetic drive rod 3, and the atomization core 2 is arranged on the outer wall of the electromagnetic drive rod 3 through a base 23.
  • the electric heating element 22 is electrically connected to the control chip and the power supply through a wire 222.
  • the electromagnetically driven single droplet atomization device further includes a suction nozzle end cover 1, which is sleeved on the periphery of the atomization core 2 to form an atomizer 4, and the suction nozzle end cover
  • An air intake passage 10 is provided between the bottom surface of the middle part of 1 and the heating element 22 to communicate with the outside, which can ensure that the air entering through the air intake passage 10 smoothly brings the aerosol formed on the surface 221 of the heating element into the suction nozzle and is sucked The sucker inhales.
  • liquid channel 2110 between the driving cavity 211 and the extrusion cavity 212.
  • an aerosol release hole 12 is opened inside the mouthpiece end cover 1 to communicate with the air intake channel 10, and an observation window 11 is opened on the side wall of the mouthpiece end cover 1.
  • the aerosol release hole 12 is used to deliver the atomized liquid droplets into the mouth of the person to be sucked, that is, the mouthpiece.
  • the invention adopts an electromagnetic drive liquid supply method, and the liquid supply amount of each port is controllable, which is different from the prior art method of passively siphoning and guiding the liquid to the heating element through a medium such as liquid guiding cotton; and it uses a pumping mechanism with the prior art
  • the liquid supply device (liquid extrusion device) of the present invention itself is a part of the liquid storage tank, which not only improves the integration level, but also avoids the increase of the overall device volume and the liquid storage caused by the external pump body.
  • the volume of the liquid film or droplets extruded by the droplet releasing hole is very small, the distance between the droplet releasing hole and the surface of the electric heating element is very small ( ⁇ 2mm, even only a few hundred microns), and the liquid in the extrusion cavity is driven Short stroke (such as ⁇ 5mm) and rapid heating rate of the heating element (usually no more than hundreds of milliseconds), when the liquid droplet extruded from the droplet release hole or the convex surface of the liquid film is in contact with the surface of the heating element, evaporation fog will occur.
  • the atomization efficiency of the liquid film or droplets is very high.
  • the surface treatment of the heating element improves the wettability and spreading speed of the droplets on the surface of the heating element, thereby accelerating the atomization. Therefore, no liquid residue on the surface of the heating element will occur during the atomization of the liquid film or droplets; while the liquid film or droplets are in contact with the atomization, the remaining liquid on the outer edge of the droplet release hole will quickly flow back and squeeze.
  • the relaxation time is usually no more than hundreds of milliseconds, which can ensure that no liquid remains outside the droplet release hole after atomization.
  • a liquid column with a flat liquid surface will usually adhere to the inner wall of the extrusion cavity and will not flow out of the droplet release hole and overflow. Therefore, the device of the present invention overcomes the defect that the leak-proof structure and leak-proof technology of the prior art cannot fundamentally solve the problem of liquid leakage.
  • the electromagnetic drive of the present invention solves the defect that the drive force is greatly reduced due to the difficult deformation of the piezoelectric element when the size of the device is reduced.
  • the electromagnetically driven liquid of the present invention is a small-volume droplet or liquid film, which has the following advantages compared with the large-volume liquid of the prior art: the passive liquid-conducting electronic atomization of the prior art no matter what kind of electric heating element (such as Porous ceramic core, metal grid sheet, ultra-thin metal sheet, conventional electric heating wire) heating, all belong to the integral contact atomization of the atomized liquid and the electric heating element and the large-volume atomization of the liquid, which causes the electric heating conversion efficiency of the electric heating element to decrease.
  • electric heating element such as Porous ceramic core, metal grid sheet, ultra-thin metal sheet, conventional electric heating wire
  • the droplet or liquid film formation process of the present invention is fast and controllable, which is different from the traditional large-volume liquid with uncontrollable liquid supply.
  • Contact atomization the small-volume atomization of the liquid droplet or liquid film of the present invention has the characteristics of surface contact atomization and small-volume atomization.
  • the device of the invention has the advantages of instantaneous atomization of a small volume of liquid on the surface of the electric heating element, and adjustment of the surface temperature to avoid the film boiling temperature range, which eliminates The vapor film blocks the liquid from the surface of the heating element, and there is no residue of unatomized liquid on the surface of the heating element.
  • the air entering through the air intake channel of the present invention will quickly exchange heat with the surface of the electric heating element. Under the suction state of negative pressure, the heat-carrying steam generated on the surface of the electric heating element will be absorbed by the air. Take off the surface of the heating element.
  • the surface of the heating element will quickly cool down after the droplets are atomized. Therefore, when the droplets are atomized to form an aerosol and are taken away by the air, the surface of the heating element will quickly cool down, which will effectively avoid the problem of dry burning on the surface of the heating element due to no new liquid contact after the droplets are atomized. It also avoids the risk that the residual liquid outside the droplet releasing hole cannot be retracted into the extrusion cavity due to high temperature adhesion and causing the droplet releasing hole to be blocked. Therefore, the device of the present invention avoids the generation of undesirable smells such as burnt smell.
  • the liquid volume in the liquid storage tank of the present invention is small (1-2mL), the distance between the permanent magnet piece and the electromagnetic drive unit is very short (no more than 5mm), and only a low-power electromagnetic drive device can produce enough to drive a small volume
  • the magnetic force formed by the liquid, the electromagnetic drive unit has low power consumption, and under the premise that the magnetic drive produces stable and small-volume droplets or liquid films, the volume of the liquid in the storage tank is reduced due to the continuous consumption of atomization and the device is held in hand
  • the angle of inclination, the size of the suction force, etc. will not have a significant impact on the droplet or liquid film formation behavior, the size of the extruded droplet or liquid film, and the droplet or liquid film atomization properties.
  • liquid storage bin of the present invention is highly integrated, simple in structure, cheap and easy to obtain, and is more suitable for occasions where the disposable atomizer is replaceable and portable, that is, the atomizer is disposable and can be discarded after use.
  • the device of the present invention is not limited to being used for electronic atomization cigarettes, and can also be used for other applications where small-volume droplets or liquid films are atomized to form steam or aerosol products with a controllable dosage.
  • Figure 1 is a disassembled diagram of the electromagnetically driven liquid atomizing device of the present invention.
  • Figure 2 is a disassembly diagram of the liquid storage bin of the present invention.
  • Figure 3 is a cross-sectional view of the atomizer of the present invention.
  • Figure 4 is a cross-sectional view of the interface between the atomizer and the electromagnetic drive rod of the present invention.
  • FIG. 5 is a schematic diagram of the surface state of the liquid storage tank and the electric heating element when the liquid surface of the liquid droplet discharge hole of the present invention is concave.
  • Fig. 6 is a schematic diagram of the state where the liquid surface of the droplet discharge hole of the present invention is convex and the liquid convex surface is in contact with the surface of the heating element.
  • Fig. 7 is the current-time curve diagram (top) and the liquid surface position-time curve diagram (bottom) of the present invention.
  • FIG. 8 is a schematic diagram of the shape and position of the liquid surface at each time segment of the liquid droplet or liquid film formation cycle of the present invention.
  • the reference signs are: 1. Nozzle end cover; 10, air intake channel; 101, concave surface; 103, convex surface; 11, observation window; 12, aerosol release hole; 2. atomization core; 200, liquid; 21 , Liquid storage bin; 211, driving cavity; 2110, liquid channel; 2111, elastic diaphragm; 2112, permanent magnet sheet; 2113, pressing sheet; 2114, upper sealing gasket; 2115, extrusion cavity frame; 2116, driving cavity 2117. Lower sealing gasket; 2118. Substrate; 212. Extrusion cavity; 2121. Liquid drop release hole; 22. Electric heating element; 221. Surface of electric heating element; 222. Wire; 23. Base; 3. Electromagnetic drive rod 31. Electromagnetic drive unit; 4. Atomizer.
  • the electromagnetically driven single-drop atomization device of the present invention includes a nozzle end cover 1, an atomization core 2 and an electromagnetic drive rod 3 which are connected in sequence;
  • the atomization core 2 includes a liquid storage tank 21 and an electric heating element 22 and base 23.
  • the liquid storage compartment 21 is composed of a pressing piece 2113, a permanent magnet piece 2112, an elastic diaphragm 2111, an upper sealing gasket 2114, an extrusion cavity frame 2115, a driving cavity 2116, and a lower sealing gasket from top to bottom. 2117 and the substrate 2118 are assembled, and the internal volume of the liquid storage tank of the present invention is 1-2 mL.
  • the interior of the extrusion cavity frame 2115 is an extrusion cavity 212, and the interior of the drive cavity 2116 constitutes a drive cavity 211.
  • the drive cavity 211 and the extrusion cavity 212 are inside the liquid storage tank 21 and communicate with each other through a liquid channel 2110.
  • the electric heating element 22, the liquid storage bin 21 and the base 23 together form the atomization core 2.
  • the electric heating element 22 is arranged on the upper part of the droplet releasing hole 2121, and the surface 221 of the electric heating element faces the droplet releasing hole 2121 of the extrusion cavity 212, and is parallel to the surface of the droplet releasing hole 2121 while keeping a certain distance.
  • the nozzle end cap 1 is sleeved on the outside of the atomizing core 2 to form an atomizer 4 together.
  • the electromagnetic drive rod 3 includes a built-in electromagnetic drive unit 31, a power supply and a control chip. As shown in Figure 4, the atomization core 2 is arranged on the outer wall of the electromagnetic drive rod 3 through a base 23.
  • the atomizer 4 and the electromagnetic drive rod 3 constitute the electromagnetic drive liquid atomization device of the present invention.
  • the magnetic field generated by the electromagnetic drive unit 31 can penetrate the substrate 2118 and the atomized liquid 200 inside the liquid storage tank 21 and be induced by the permanent magnet sheet 2112.
  • the electric heating element 22 is electrically connected to the control chip and the power supply through a wire 222.
  • the distance between the surface 221 of the electric heating element and the droplet releasing hole 2121 is 100um-2mm; the area of the middle hole of the pressing piece 2113, the permanent magnet piece 2112 and the elastic diaphragm 2111 is larger than that of the droplet releasing hole 2121
  • the area of the droplet releasing hole 2121 is less than 3mm ⁇ 3mm; the area where the surface 221 of the electric heating element is in contact with the droplet is also less than 3mm ⁇ 3mm.
  • an air intake channel 10 is provided between the bottom surface of the middle bottom of the nozzle end cover 1 and the electric heating element 22 of the present invention to communicate with the outside, and the nozzle end cover 1 has an aerosol release hole 12 inside. It is connected to the air intake channel 10, the side wall of the nozzle end cover 1 is provided with an observation window 11, and the nozzle end cover 1 is sleeved on the periphery of the atomizing core 2 to form an atomizer 4;
  • the channel 10 can ensure that when the aerosol formed by the atomization of droplets is inhaled, the air entering through the air inlet channel 10 smoothly brings the atomized vapor formed on the surface of the heating element 221 into the aerosol release hole 12 and is inhaled by the inhaler .
  • the permanent magnet piece 2112 may be a ring-shaped rubidium magnet, a ferrite magnet, an alnico permanent magnet piece, or a samarium cobalt permanent magnet piece.
  • the elastic membrane 2111 can be made of polysiloxane elastic materials such as polydimethylsiloxane (PDMS), polyester elastic materials such as polyurethane (PU), and the like.
  • the upper sealing gasket 2114 and the lower sealing gasket 2117 can be made of polyimide silicone material or similar sealing materials.
  • the extrusion cavity frame 2115 can be made of high temperature resistant materials such as polycarbonate (PC), polycarbonate and ABS composite materials.
  • the driving cavity 2116 can be made of polycarbonate (PC), polycarbonate and ABS composite materials, ABS, polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyamide (PA), polycarbonate Methyl acrylate (acrylic or PMMA) and other materials.
  • the substrate 2118 can be made of materials that can penetrate magnetic fields, such as hard glass, transparent plastics (such as PC, PMMA), and the like.
  • the electromagnetic drive unit 31 can use a miniaturized or miniaturized electromagnetic coil to generate enough magnetic force to displace the permanent magnet piece 2112, thereby squeezing or stretching the elastic diaphragm 2111 to bend. For this reason, it is necessary to apply a driving voltage to the electromagnetic driving unit 31 to generate a magnetic field; at the same time, a suitable driving frequency should be selected to realize the rapid response of the bending deformation of the elastic diaphragm 2111 to time.
  • methods including MEMS micro-manufacturing technology can be used to manufacture electromagnetic micro-coils or planar non-helical micro-coils.
  • the manufacturing process of the drive device can be simplified by reducing the total number of coils. And increase the total number of coil turns to reduce the size of the coil.
  • the electric heating element 22 is a thin-layer sheet structure. Considering the electric heating efficiency, the workability of the sheet structure, the wettability and evaporation characteristics of the droplets on the surface 221 of the electric heating element, and the miniaturization of the size, the electric heating element Porous or rough surface metal/alloy heating sheet, metal/alloy grid heating sheet, micro-nano porous metal/alloy felt, porous ceramic heating sheet, metal foil resistor, metal electric heating film, smooth surface metal/alloy heating sheet, based on Various electric heating elements with different surface characteristics and thermal properties, such as silicon-based heating chips manufactured by MEMS technology.
  • the assembly process of the electromagnetic driven single drop atomization device of the present invention is as follows:
  • the substrate 2118 and the driving cavity 2116 are bonded together with the lower sealing gasket 2117 with double-sided adhesive, and then the extrusion cavity frame 2115 and the substrate 2118 are bonded together.
  • the side of the extrusion cavity frame 2115 is provided with a channel 2110 for the liquid 200 in the driving cavity 211 and the extrusion cavity 212 to flow back and forth.
  • the permanent magnet piece 2112 is pressed on the elastic diaphragm 2111, and then the pressing piece 2113 is pressed on the permanent magnet piece 2112. At this point, the assembly of the liquid storage bin 21 is completed.
  • the assembled liquid storage bin 21 is fixed on the base 23; the wire 222 of the electric heating element 22 is clamped into the wire-clamping groove on the outer wall of the driving cavity 2116.
  • the end cap 1 of the suction nozzle is sleeved on the outside of the atomization core 2, and the bottom of the end cap 1 is installed on the base 23 to form the atomizer 4.
  • the atomizer 4 is connected to the outer wall of the electromagnetic drive rod 3 through the base 23 to form the electromagnetic drive liquid atomization device of the present invention.
  • the first step electromagnetically drive the liquid to form a liquid film or droplet and its atomization:
  • the electromagnetic drive rod 3 of the device of the present invention is connected to the atomizer 4 and the power is turned on, a drive voltage and a drive current of a certain waveform are applied to the electromagnetic drive unit 31, and at the same time, the electric heating element 22 undergoes electrothermal conversion to rapidly heat up.
  • the electromagnetic drive unit 31 undergoes electromagnetic conversion to generate a magnetic field.
  • the magnetic field penetrates the substrate 2118 and the liquid 200 at the bottom of the liquid storage tank 21 through the shell at the connection point of the electromagnetic drive rod 3 and the atomizer 4 to act on the permanent magnet sheet 2112.
  • the liquid in the extrusion cavity 212 continues to move in the direction of the droplet release hole 2121, while the liquid surface morphology transitions from the concave surface 101 to the flat surface and approaches the droplet.
  • the liquid surface along the inner edge of the opening of the droplet release hole 2121 is squeezed to the outside of the opening of the droplet release hole 2121, and the liquid A liquid film or droplet with a convex surface 103 is formed between the drop release hole 2121 and the heating element surface 221 of the heating element 22.
  • the convex surface 103 contacts the high temperature heating element surface 221, it will be under the action of surface tension and capillary force.
  • the liquid film or droplets exposed outside the droplet releasing hole 2121 overcome its own gravity and the adhesive force of the droplet releasing hole 2121, and quickly wet and spread on the surface of the heating element 221 and quickly atomize.
  • the atomized aerosol is The air sucked in through the air intake passage 10 is brought into the aerosol release hole 12 of the mouthpiece end cover 1 and is inhaled by the sucker.
  • Step 2 Electromagnetic relaxation eliminates liquid film or droplets and electromagnetic action stops
  • the liquid By setting the length of the liquid film or droplet formation period, the duration of each inhalation and the relationship between them, on the one hand, the liquid can be driven in the extrusion cavity, the formation of the liquid film or droplets outside the extrusion cavity, the liquid film or The contact atomization process of the droplet and the surface of the heating element is synchronized with the continuous process of each inhalation action.
  • the duration of each inhalation action exceeds the length of the liquid film or droplet formation period, the duration of the inhalation action is too short, the inhalation action is suddenly stopped or the power supply is insufficient, the device automatically cuts off the electrical connection, driving voltage and driving current Immediately return to zero and the electromagnetic drive unit 31 stops working. Due to the instantaneous disappearance of the magnetic field and magnetic force, the liquid level position and shape of the liquid in the extrusion cavity 212 will immediately return to the initial position and plane state of the liquid film or droplet formation period before the interruption.
  • the present invention explains the liquid film and the liquid drop as follows: when the liquid forms the vertical distance between the highest point of the convex liquid surface formed at the opening of the liquid droplet discharge hole 2121 and the opening plane of the liquid droplet discharge hole 2121, that is, when the height of the convex liquid surface is low, It is defined as “liquid film”; when the height of the convex surface is higher, it is defined as “droplet”. These two situations are collectively referred to as “liquid film or droplet”. In the present invention, “liquid film”, “droplet” or “liquid film or droplet” collectively refer to the state of the liquid at the droplet releasing hole 2121.
  • Factors affecting the formation of droplets include the geometric size of the droplet releasing hole 2121, the material properties of the droplet extrusion cavity and the droplet releasing hole 2121, the properties of the extruded liquid 200, driving conditions, and so on. Among them, two factors, the wettability of the material of the droplet extrusion cavity 212 and the droplet release hole 2121, and the surface tension of the liquid, which play an important role in the droplet formation process, need to be considered. The entire inner wall of the extrusion cavity 212 and the inner wall of the droplet releasing hole 2121 directly contact the liquid, so the wettability has a significant influence on the adhesion.
  • the present invention prefers hydrophilic (such as contact angle ⁇ 60°) and stronger adhesion to the liquid droplet extrusion cavity 212 and the inner wall of the droplet release hole 2121.
  • the liquid meniscus can be concave and higher.
  • the curvature ensures that the concave shape of the liquid is more stable in the droplet extrusion cavity; on the other hand, it can avoid the droplet tailing at the hydrophobic droplet release hole 2121 and make the extruded droplet and the droplet release hole 2121 sticky. Attach and slow down the droplet extrusion rate and there is residue outside the droplet release hole 2121, which reduces the atomization rate and affects the atomization quality of the droplets.
  • the surface tension of the liquid significantly affects the formation and changes of the droplets, increasing the surface tension of the droplets, which can make the droplets outside the opening of the droplet release hole 2121 atomize, and the liquid attached outside or inside the opening of the droplet release hole 2121
  • the liquid surface quickly retracts into the extrusion cavity, which not only avoids the residue of liquid droplets outside or in the opening of the droplet release hole 2121, increases the formation rate of the droplet, but also avoids the retention of residual liquid at the droplet release hole.
  • adhesion to avoid liquid leakage and high temperature solidification to block the droplet release hole 2121, to ensure the consistency of the atomization effect of each drop and each mouth.
  • the above two aspects can not only ensure that the liquid can be stabilized in the extrusion cavity without spilling before the droplet is formed, but also ensure that no liquid remains at the droplet release hole 2121 after the extruded droplet is driven to atomize, that is, : The risk of liquid leakage from the extrusion cavity 212 at any time can be prevented.
  • a suitable liquid viscosity should be selected to ensure that the liquid droplets are extruded from the extrusion cavity at a suitable speed and volume.
  • the driving mode of the liquid in the liquid storage tank 21 will determine the droplet formation process and the change of the liquid surface shape.
  • the input current and driving voltage of the electromagnetic driving device are essential for driving the liquid to move quickly and stably in the extrusion cavity 212 and to form droplets of the required size and shape.
  • the input current parameters that control the formation of droplets include the waveform and amplitude of the input current, and the width of electrical pulses.
  • the important and key indicator for the formation of droplets by electromagnetic drive is the waveform of the input current.
  • the driving current waveform of the present invention can be sine wave current, triangle wave current, square wave current, etc., priority is given to obtaining the required bidirectional current through square wave current and adjustable frequency, and the change of electromagnetic polarity is realized by changing the direction of the current , So as to control the driving process of the liquid, the change of the liquid surface shape and the formation of droplets; to ensure that there is a very short time interval between the steps of liquid driving, droplet formation and droplet atomization, and the control is performed within a specified time period.
  • the above steps have precise electrical control to ensure the stability and consistency of the liquid surface position, shape and the formation of droplets.
  • a current-time curve must be established, including driving the liquid to move in the extrusion cavity 212 and the droplet releasing hole 2121 The liquid droplet is extruded and stabilized, the liquid surface of the liquid droplet release hole 2121 is retracted and moved into the extrusion cavity 212, etc., to achieve a single droplet formation cycle, to achieve the input current size and direction change, liquid level change, liquid The time coordination between the three face shape changes.
  • the current-time curve and liquid surface position-time curve of the single drop formation period (cycle) can be divided into 5 stages (stages I-V), and the corresponding liquid surface shape and position are shown in Figure 8. :
  • Phase I Liquid drive preparation phase.
  • a drive current is applied to the electromagnetic drive unit 31, and the current changes from 0 to a negative value i 1 and stabilizes at this value.
  • the magnetic force received by the permanent magnet piece 2112 is a repulsive force, and the elastic diaphragm 2111 bends out of the drive cavity 211, making it squeeze
  • the liquid in the outlet cavity 212 is located at a certain liquid level position A and maintains the concave shape with the largest curvature (Figure 8-a), corresponding to time 0-t 1 ;
  • Stage II Liquid drive and droplet formation stage.
  • the driving voltage increases and the heating element 22 rapidly heats up.
  • the direction of the driving current gradually changes from negative current to positive current.
  • the magnetic force received by the permanent magnet piece 2112 rapidly changes from repulsive force to attractive force.
  • the elastic film 2111 quickly bends into the driving cavity 211, the liquid in the extrusion cavity 212 moves toward the droplet release hole 2121 under pressure, and the liquid level movement stroke in the extrusion cavity 212 is divided into two steps: the first step is to drive the current from When the negative value i 1 becomes 0, the liquid surface moves from position A to the inner edge of the droplet release hole (position 0), corresponding to time t 1 -t 2 , the shape of the liquid surface changes from a concave surface at position A to a plane at position 0 ( Figure 8-b); In the second step, the driving current is further increased from 0 to a positive value i 2 , and the liquid level moves from the inner edge of the droplet releasing hole (position 0) to a certain position B on the outer edge of the droplet releasing hole, Corresponding to time t 2 -t 3 , the shape of the liquid surface changes from a plane at position 0 to a convex
  • Stage III The droplet atomization stage.
  • the driving voltage is kept constant, the current is kept at the maximum value i 2 , the magnetic force received by the permanent magnet piece 2112 is attractive and the largest, and the elastic diaphragm 2111 has the largest curvature into the drive cavity 211, which is extruded from the droplet release hole 2121
  • the droplets are wetted and spread on the surface of the heating element 221, separated from the liquid in the extrusion cavity (pinch off) and quickly atomized, corresponding to time t 3 -t 4 ( Figure 8-c);
  • Stage IV Liquid reverse driving and retraction stage.
  • the driving current changes from i 2 to 0, the liquid level moves from position B to the inner edge of the droplet release hole (position 0), corresponding to time t 4 -t 5 , the shape of the liquid surface changes from the convex surface at position B to position plane 0 (FIG. 8-d);
  • a second step the drive current is further reduced to a negative value from 0 i 1, the liquid surface becomes a concave surface shape; drive current i 1 a period of stabilization, level holding concave shape ( Figure 8-e), corresponding to time t 6 -t 7 ;
  • Stage V Liquid stabilization and stop driving stage.
  • the electrical connection of the electromagnetic drive device is disconnected, the drive current becomes 0, the states of the permanent magnet piece 2112 and the elastic diaphragm 2111 remain unchanged, and the liquid level in the extrusion cavity 212 changes to a plane at position 0 ( Figure 8-b or Figure 8- d).
  • the suction is over.
  • the liquid level of the liquid in the driving cavity 211 and the extrusion cavity 212 will gradually drop.
  • the movement state of the liquid in the extrusion cavity, the change of the liquid surface shape, the formation rate of the liquid drop, the liquid surface retraction rate, the height of the extruded liquid drop, and the atomization state on the surface of the heating element 221 are in each single drop.
  • the formation period remains constant.
  • the driving voltage, input current amplitude, electromagnetic driving frequency and electromagnetic pulse width (time) and other parameters of each single drop formation period need to be optimized and changed synchronously. ;
  • the elastic diaphragm 2111 of elastic modulus ensures that the liquid surface in the driving cavity 211 can maintain complete contact with the inner wall surface of the elastic diaphragm 2111 during each single drop formation period.
  • the element 22 is turned on synchronously with the power source, the electromagnetic drive is activated and the squeezing liquid 200 moves from the extrusion cavity 212 to the droplet release hole 2121, the electric heating element 22 is synchronized and rapidly heats up, and the convex surface of the droplet extruded at the droplet release hole 2121 When in direct contact with the surface 221 of the heating element, the contact liquid droplets rapidly atomize on the surface 221 of the heating element and are inhaled by the sucker.
  • the specific measures are: under the condition that the heating rate of the heating element 22 is greater than or equal to the electromagnetically driven droplet formation rate, once the droplet is formed and contacts the heating surface, it can be atomized immediately; or set the effective single-port inhalation duration equal to a single drop Formation period.
  • the duration of inhalation of aerosol exceeds a single droplet formation period, the entire device will automatically enter the power-off protection state, and the electromagnetic drive unit 31 and the electric heating element 22 will stop working to avoid the period beyond the single droplet formation period.
  • the problem of idling and dry burning of the heating element occurs due to the lack of droplets.
  • the viscosity and surface tension of the liquid should not only satisfy that the droplet can be extruded from the extrusion cavity 212 at an appropriate speed and volume, but also consider the liquid surface tension, viscosity, and surface wettability of the heating element.
  • the effect of the droplet on the surface of the heating element 221 The impact of spreading and retraction.
  • the high viscosity of the liquid will inhibit its spreading and shrinkage on the surface, because the liquid droplet of the present invention is in contact with the high-temperature surface, the surface tension and viscosity of the liquid droplet will be greatly reduced at the moment of contact with the heating surface, thus promoting the liquid
  • the spreading and retraction of drops on the surface will not affect the atomization efficiency of high-viscosity droplets.
  • the distance between the droplet releasing hole 2121 and the surface 221 of the electric heating element and the area of the droplet releasing hole of the present invention are two important parameters that affect the amount of atomization and the amount of aerosol inhalation.
  • the droplet releasing hole 2121 and the surface 221 of the heating element with close surface area are preferred, so that the extruded liquid surface and the surface of the heating element are quickly contacted, and the liquid droplet wets quickly on the surface of the heating element and obtains the maximum spreading diameter to realize the droplet. Rapid atomization and full use of the electric heating efficiency of the electric heating element surface 221.
  • the material and surface area of the electric heating element with suitable electric heating properties, the area of the droplet releasing hole 2121 of the appropriate size, and the appropriate distance between the droplet releasing hole and the surface 221 of the electric heating element can be selected to realize the convex surface 103 of the extruded droplet. Quick contact with the surface 221 of the electric heating element, rapid spreading and wetting and rapid uniform atomization on the surface 221 of the electric heating element, so as to obtain a suitable amount of atomization and aerosol inhalation.
  • the distance between the droplet releasing hole 2121 and the surface of the heating element used in the present invention is in the range of 100um-2mm, so that the extruded single drop forms a convex surface with a corresponding height between the droplet releasing hole 2121 and the surface of the heating element.
  • the length of the extrusion cavity 212 is short, and it is different from the rapid impact of the liquid drop on the surface (typical impact rate is m/s level).
  • the surface 221 of the heating element has a slower contact speed (typical contact rate is mm/s), which greatly slows down the impact of the droplets on the surface 221 of the heating element, avoids the violent evaporation of the droplets, and makes the extrusion rate affect the surface of the heating element. 221 The influence of temperature is minimized. Therefore, the droplet driving/extrusion rate and the contact angle between the droplet and the surface 221 of the heating element will not significantly affect the formation and atomization of the droplet.
  • the thermal properties of the material of the electric heating element 22 and the surface characteristics of the material that have the greatest influence on the droplet atomization characteristics of the present invention include thermal conductivity, heat capacity, and oxidation of the heating surface; selecting materials with higher thermal conductivity can speed up the spreading speed of droplets on the surface of the heating element 221, so that the droplets can be completely evaporated during the spreading stage.
  • the temperature of the surface 221 of the heating element can be increased to increase the heat transfer rate, thereby shortening the contact time of the droplet-solid; selecting the surface of the heating element that is not easy to oxidize can also increase the spreading diameter of the droplet and shorten the droplet and the surface of the heating element 221 Contact time.
  • the boiling heat transfer of the droplets can be promoted by changing the surface characteristics of the heating element surface roughness, micro-nano structure and surface wettability.
  • the spreading diameter of 221 makes it easier to spread the droplets and shortens the contact time between the droplets and the surface 221 of the heating element.
  • the use of porous electric heating element surface 221 can increase the porosity, thereby increasing the surface roughness, so that the above-mentioned steam formed between the liquid droplet and the heating element surface 221 penetrates into the pores, releasing the pressure generated when the steam escapes the surface, and improving
  • the Leidenfrost temperature can delay or completely prevent the film boiling of liquid droplets on the surface of the heating element 221; due to the increase of porosity, the actual surface area of the pores in contact with the liquid is reduced, and the surface of the heating element is also reduced. Air and steam are trapped in the 221 cavity, resulting in reduced heat transfer efficiency.
  • the contact between the liquid droplet and the surface 221 of the heating element of the present invention is a slow contact process.
  • the liquid droplet does not penetrate into the surface pores at a high enough speed during the contact process, it can spread on the surface to form a thin film.
  • the surface of the heating element 221 adopts micro-nano structures such as nano-texture or nano-fiber structure, which can improve the contact between the droplets and the surface 221 of the heating element. When the liquid surface spreads on the surface 221 of the heating element, no droplets will occur.
  • Phenomenon such as the retreat or bounce of the liquid droplet is conducive to the complete evaporation of the droplet in the micro-nano structure.
  • the temperature of the surface 221 of the electric heating element is a very critical parameter.
  • the surface temperature of the electric heating element of the selected electric heating material should be lower than the Leidenfrost temperature to avoid the film boiling of the droplets and greatly increase the evaporation time of the droplets, resulting in a decrease in the evaporation rate; on the other hand, the surface temperature of the heating element should be Try to fall within the range of nucleate boiling, because the droplet in this area has a larger solid-liquid contact area, better wettability of the droplet, and the increase in surface roughness promotes nucleate boiling, and has the shortest evaporation time. Rapid atomization occurs, and the evaporation time of the droplets changes little with the increase of surface temperature, and the droplets maintain a constant evaporation state, which can achieve uniform atomization.
  • the influence of air on the evaporation and atomization of the droplets in contact with the surface of the heating element 221 is mainly manifested in two aspects: one is that when the air flow rate on the heating surface increases, the wetting area of the droplets increases, the height of the droplets decreases, and the evaporation time Shorten; Second, in the process of inhaling atomized aerosol, a certain negative pressure is formed on the heating surface, which increases the diffusion coefficient of atomized vapor and increases the evaporation rate of droplets. Therefore, the design of the air inlet channel 10 of the nozzle end cap 1 and the negative pressure state are conducive to the rapid atomization of liquid droplets.
  • the electric heating element material used in the present invention can be further selected to have better wettability for atomized droplets (that is, the contact angle is relatively high) on the basis of selecting metals, alloys, or silicon materials with higher thermal conductivity and surface temperature.
  • Small surface materials or modified surface materials and can use mesh, fibrous metals or alloys with higher surface roughness such as porous or micro-nano structures, or silicon-based heating chips with patterned microstructures on the surface; at the same time,
  • the surface temperature should be lower than the Leidenfrost temperature and fall within the nucleate boiling temperature range.

Abstract

一种电磁驱动液体雾化装置,其包括雾化芯(2)和电磁驱动单元(31);雾化芯(2)包括储液仓(21)和电热元件(22);电热元件(22)布置在所述液滴释放孔(2121)的上部,使得电热元件表面(221)与所述液滴释放孔(2121)相对且保持一定距离;电磁驱动单元(31)布置在所述雾化芯(2)底部。本电磁驱动液体雾化装置尺寸较小、供液定量且为小体积液体雾化、液滴形成过程和液面形态可控、无漏液问题。

Description

电磁驱动液体雾化装置 技术领域
本发明属于电子雾化技术领域,具体涉及采用电磁驱动液体,并使液体的挤出部分与电热元件表面接触而雾化的装置。
背景技术
电子雾化烟的核心是雾化器,其性能的优劣直接影响雾化液体的雾化效率、气溶胶性质、吸入品质以及吸入安全性,是目前电子雾化烟发展的重点。最初的电子雾化烟雾化器中均采用以发热丝为电热元件的雾化器技术,近年来随着技术进步、人们对安全和感官品质意识的日益增强,雾化器技术取得了长足的进步。代表性的雾化器技术包括陶瓷雾化芯技术、金属网格加热技术和金属薄片加热技术。陶瓷雾化芯技术采用多孔陶瓷材料,它是一种经高温烧结得到的陶瓷体,其内部分布着大量三维彼此贯通的孔道,其孔径一般为微米级或亚微米级,具有稳定耐高温、安全易导油的特性,但存在热传导系数低、热阻较大及体积热容较小的缺陷。某一外国烟草公司推出的一种封闭式电子烟采用了金属网格加热元件,其特点是发热均匀而且比传统的发热丝具有更小的电阻变化率。某另一外国烟草公司推出的电子烟采用刀片式超薄不锈钢,取代传统发热丝和导油芯加热机构,加热烟液生成气溶胶,所用加热片厚度超薄(相当于人头发丝直径),具有比传统发热丝和导油芯加热系统大10倍的表面积。这些电热元件相比传统发热丝,在发热表面积和加热均匀性方面都有改善,但由于不能控制烟液的递送量,烟液累积在金属网格或金属薄片表面甚至包裹在整个电热元件的情况难以避免,烟液受热不均现象仍然存在,导致金属网格或金属薄片的电热利用效率大打折扣。
目前电子雾化烟存在的另一个较大缺陷是雾化器漏液问题,解决方案主要包括两种:一种是采用多重防漏烟弹结构设计,即利用多层吸油棉、复杂的防漏油结构和密封工艺来防止烟液从雾化器中淤积流出并锁住冷凝烟液;另一种是延长气路,尽量确保每滴烟液充分雾化,减少漏液风险。上述各种电子雾化烟防漏结构和技术只能降低漏液几率,并不能从根本上解决电子雾化烟漏液问题。
发明内容
为解决上述问题,本发明提出一种电磁驱动液体雾化装置。本发明的装置利用电磁驱动原理驱动液体,将液体形成凸面型薄层液膜或液滴,该凸面型薄层液膜或液滴与热的电热元件表面接触后快速雾化形成气溶胶而被抽吸者吸入。
本发明的技术方案如下:
电磁驱动液体雾化装置,其包括雾化芯2和电磁驱动单元31;
所述雾化芯2包括储液仓21和电热元件22;所述储液仓21具有驱动腔211和挤出腔212,所述驱动腔211和挤出腔212之间液体连通;所述驱动腔211上壁有弹性膜片2111和永磁铁片2112;所述挤出腔212上端有开口为液体释放孔2121;所述电热元件22布置在所述液滴释放孔2121的上部,使得电热元件表面221与所述液滴释放孔2121相对且保持一定距离;储液仓21内有用于气化的液体200。
所述电磁驱动单元31布置在所述雾化芯2底部。电磁驱动单元31通电产生的磁场能穿透储液仓21及内部的液体200而被永磁铁片2112感应到。
优选地,所述电热元件表面221与所述液滴释放孔2121所在的平面平行,且两者之间的距离为100um-2mm。
优选地,所述液滴释放孔2121面积小于3mm×3mm。
优选地,所述电热元件表面221的水表观接触角<90°。
优选地,所述储液仓21容积为1-2ml。
优选地,所述雾化芯2还具有压片2113、上部密封垫圈2114、挤出腔架2115、驱动腔体2116、下部密封垫圈2117、衬底2118和基座23;所述驱动腔体2116和弹性膜片2111及上部密封垫圈2114、以及下部密封垫圈2117和衬底2118围成所述储液仓21;所述压片2113布置在所述弹性膜片2111的外壁上,所述永磁铁片2112布置在所述压片2113和弹性膜片2111之间并贴合在弹性膜片2111壁上;所述挤出腔架2115内部为挤出腔212,所述挤出腔212的腔口为液滴释放孔2121;所述压片2113、永磁铁片2112和弹性膜片2111的中部有孔与所述液滴释放孔2121相对应;所述基座23布置在所述储液仓21底部;
所述电磁驱动单元31位于电磁驱动杆3腔体内,所述雾化芯2通过基座23布置在所述电磁驱动杆3的外壁上。
优选地,所述电磁驱动杆3腔体内还有电源和控制芯片,所述电热元件22通过导线222与控制芯片和电源电连接。
优选地,所述电磁驱动单液滴雾化装置还包括吸嘴端盖1,所述吸嘴端盖1套在所述雾化芯2外围共同形成雾化器4,所述吸嘴端盖1的中部底面与所述电热元件22之间设有空气进气通道10连通外部,可确保通过空气进气通道10进入的空气顺利将电热元件表面221形成的气溶胶带进吸嘴并被抽吸者吸入。
优选地,所述驱动腔211和挤出腔212之间为液体通道2110。
优选地,所述吸嘴端盖1内部开有气溶胶释放孔12与所述空气进气通道10连通,所述吸嘴端盖1侧壁开有观察视窗11。气溶胶释放孔12用于将雾化后的液滴送入被抽吸者口中,即吸嘴。
本发明的有益效果:
1、定量供液。本发明采用电磁驱动液体供液的方式,每口的供液量可控,不同于现有技术通过导液棉等介质向发热器件被动虹吸导液的方式;并且与现有技术采用泵送机构供液的方式相比,本发明的供液装置(液体挤出装置)本身就是储液仓的一部分,既提高了集成度,又避免了外置泵体造成的整体装置体积变大及储液仓与泵连接结构复杂的问题。
2、解决漏液的问题。本发明中由液滴释放孔挤出的液膜或液滴体积很小,液滴释放孔与电热元件表面间距很小(<2mm,甚至仅有几百微米),且挤出腔内液体驱动行程短(如<5mm)和电热元件升温速率很快(通常时间不超过数百毫秒),当由液滴释放孔挤出的液滴或液膜凸面与电热元件表面接触的瞬间即发生蒸发雾化,液膜或液滴雾化效率很高,加上通过对电热元件的表面处理提高了液滴在电热元件表面的润湿性和铺展速度,从而加速了雾化。因此,在液膜或液滴雾化过程中不会发生液体在电热元件表面的残留;而在液膜或液滴接触雾化的同时,液滴释放孔外沿残留的液体会迅速流回挤出腔内,弛豫时间通常不超过数百毫秒,这样可确保雾化后不会有液体残留在液滴释放孔外。当装置断电后或不使用时,液面形态为平面的液柱通常会附着在挤出腔内壁上而不会向液滴释放孔外流动而溢出。因此,本发明的装置克服了现有技术的防漏结构和防漏技术不能从根本上解决漏液问题的缺陷。
3、本发明的电磁驱动相比现有技术的压电驱动,解决了当装置尺寸缩小后, 压电元件形变困难所致的驱动力大幅减小的缺陷。
4、本发明的电磁驱动液体为小体积的液滴或液膜,相比现有技术的液体大体积具有以下优势:现有技术的被动导液式电子雾化无论采用何种电热元件(如多孔陶瓷芯、金属网格片、超薄金属片、常规电热丝)加热,均属于雾化液体与电热元件的整体接触雾化和液体的大体积雾化,既造成电热元件的电热转换效率降低,又造成电热元件的发热不均匀;另外,相比传统的滴液式雾化,本发明的液滴或液膜形成过程快速可控,不同于传统的供液量不可控的液体大体积的接触式雾化。同时,本发明的液滴或液膜的小体积雾化具有表面接触雾化和小体积雾化的特点,当液膜或液滴在电热元件表面快速润湿铺展后形成薄层液膜,加热更加均匀,也不会因为大量液体的附着造成电热元件表面局部降温使得表面温度分布不均,造成炸油或液滴溅射的问题。
5、本发明在吸味与感官品质上的优势。本发明除了上述不会漏液、雾化快速均匀的优势外,本发明的装置由于电热元件表面上小体积液体的瞬间雾化,加之调节表面温度避开其膜态沸腾温度区间,既消除了蒸汽膜对液体与电热元件表面的阻隔,也不存在未雾化液体在电热元件表面的残留。相比现有技术的电子烟雾化,本发明通过空气进气通道进入的空气会与电热元件表面快速发生热交换,在吸入的负压状态下,电热元件表面产生的携带热量的蒸汽将被空气带离电热元件表面。另外,通过调节电热元件表面的面积大小、粗糙度和控制电热元件表面温度处于泡核沸腾区间,将使电热元件表面在液滴雾化后快速降温。因此,在液滴雾化形成气溶胶并被空气带走的瞬间,电热元件表面将快速降温,这将有效避免电热元件表面因液滴雾化后无新的液体接触而出现干烧的问题,也避免了液滴释放孔外有残留液体因高温粘附而不能正常缩回挤出腔内、造成液滴释放孔堵塞的风险。因此,本发明的装置避免了焦糊味等不良气息的产生。
6、其他优势。由于本发明的储液仓内液体体积较小(1-2mL),永磁铁片与电磁驱动单元的距离很短(不超过5mm),仅需低功率的电磁驱动装置就能产生足以驱动小体积液体形成的磁力,电磁驱动单元功耗小,在满足磁力驱动产生稳定小体积的液滴或液膜的前提下,储液仓内液体因雾化不断消耗导致的体积减小以及手持所述装置的倾斜角度、吸力的大小等均不会对液滴或液膜形成行为、挤出液滴或液膜的尺寸和液滴或液膜雾化性质产生显著影响。另外,本发明 的储液仓集成度高、结构简单、材料廉价易得,更适合一次性可更换雾化器及便携使用的场合,即雾化器为一次性的,用完即可抛弃。此外,本发明的装置并不限于用于电子雾化烟,也可用于其他通过小体积的液滴或液膜雾化形成剂量可控的蒸汽或气溶胶类产品的用途。
附图说明
图1为本发明电磁驱动液体雾化装置拆解图。
图2为本发明的储液仓拆解图。
图3为本发明的雾化器剖视图。
图4为本发明的雾化器与电磁驱动杆的界面剖视图。
图5为本发明的液滴释放孔的液面为凹面时的储液仓与电热元件表面状态示意图。
图6为本发明的液滴释放孔的液面为凸面时及液体凸面与电热元件表面接触状态示意图。
图7为本发明的电流-时间曲线图(上)和液面位置-时间曲线图(下)。
图8为本发明的液滴或液膜形成周期各时间段的液面形态及位置示意图。
附图标记为:1、吸嘴端盖;10、空气进气通道;101、凹面;103、凸面;11、观察视窗;12、气溶胶释放孔;2、雾化芯;200、液体;21、储液仓;211、驱动腔;2110、液体通道;2111、弹性膜片;2112、永磁铁片;2113、压片;2114、上部密封垫圈;2115、挤出腔架;2116、驱动腔体;2117、下部密封垫圈;2118、衬底;212、挤出腔;2121、液滴释放孔;22、电热元件;221、电热元件表面;222、导线;23、基座;3、电磁驱动杆;31、电磁驱动单元;4、雾化器。
具体实施方式
下面通过实施例及附图进一步阐述本发明,目的仅在于更好地理解本发明内容,而不是对本发明的限制。
如图1所示,本发明的电磁驱动单滴雾化装置包括依次连接的吸嘴端盖1、雾化芯2和电磁驱动杆3;所述雾化芯2包括储液仓21、电热元件22和基座23。如图2所示,所述储液仓21自上而下由压片2113、永磁铁片2112、弹性膜片2111、上部密封垫圈2114、挤出腔架2115、驱动腔体2116、下部密封垫圈2117和衬底2118组装得到,本发明的储液仓内容积为1-2mL。所述挤出腔架2115内部为挤出腔212,驱动腔体2116内部构成驱动腔211,驱动腔211和挤出腔212 在储液仓21内部且相互通过液体通道2110连通。所述电热元件22、储液仓21和基座23共同组成雾化芯2。所述电热元件22布置在所述液滴释放孔2121的上部,所述电热元件表面221面向挤出腔212的液滴释放孔2121,并平行于液滴释放孔2121表面且保持一定距离。将吸嘴端盖1套在雾化芯2的外部共同组成雾化器4。所述电磁驱动杆3包含内置的电磁驱动单元31、电源和控制芯片。如图4所示,所述雾化芯2通过基座23布置在所述电磁驱动杆3的外壁上,雾化器4和电磁驱动杆3组成本发明的电磁驱动液体雾化装置,装置中的电磁驱动单元31通电产生的磁场能穿透衬底2118和储液仓21内部的雾化液体200而被永磁铁片2112感应到。所述电热元件22通过导线222与控制芯片和电源电连接。所述电热元件表面221与所述液滴释放孔2121的距离为100um-2mm;所述压片2113、永磁铁片2112和弹性膜片2111的中部孔的面积大于所述液滴释放孔2121的面积,所述液滴释放孔2121面积小于3mm×3mm;电热元件表面221与液滴接触的面积也小于3mm×3mm。
如图3所示,本发明的所述吸嘴端盖1的中部底面与所述电热元件22之间设有空气进气通道10连通外部,吸嘴端盖1内部开有气溶胶释放孔12与空气进气通道10连通,所述吸嘴端盖1侧壁开有观察视窗11,吸嘴端盖1套在所述雾化芯2外围共同形成雾化器4;设有的空气进气通道10可确保在吸入液滴雾化形成的气溶胶时,通过空气进气通道10进入的空气顺利将电热元件表面221形成的雾化蒸汽带入气溶胶释放孔12而被抽吸者吸入口中。
本发明的电磁驱动单滴雾化装置的各部件要求如下:
永磁铁片2112可采用环形铷磁铁、铁氧体磁铁、铝镍钴永磁铁片或钐钴永磁铁片等。弹性膜片2111可采用聚硅氧烷弹性材料如聚二甲基硅氧烷(PDMS)、聚酯类弹性材料如聚氨酯(PU)等。上部密封垫圈2114和下部密封垫圈2117可采用聚酰亚胺硅胶材料或类似密封性材料。挤出腔架2115可采用聚碳酸酯(PC)、聚碳酸酯与ABS复合材料等耐高温材料。驱动腔体2116可采用聚碳酸酯(PC)、聚碳酸酯与ABS复合材料、ABS、聚丙烯(PP)、聚乙烯(PE)、聚氯乙烯(PVC)、聚酰胺(PA)、聚甲基丙烯酸甲酯(亚克力或PMMA)等材料。衬底2118可采用可穿透磁场的材料如硬质玻璃、透明塑料(如PC、PMMA)等材料。
如图4所示,电磁驱动单元31可采用小型化或微型化电磁线圈,产生足够的磁力以使永磁铁片2112发生位移,从而挤压或拉伸弹性膜片2111发生弯曲。为此,需在电磁驱动单元31上施加驱动电压以产生磁场;同时还应选择合适的驱动频率以实现弹性膜片2111弯曲形变对时间的快速响应。另外,为实现驱动装置小型化以节省空间,可采用包括MEMS微制造技术在内的方法制造电磁微线圈或平面非螺旋形微线圈,特别是可以通过减小线圈总数来简化驱动装置制造过程,并增大总的线圈匝数来减小线圈的尺寸。
所述电热元件22为薄层片状结构,考虑到电热效率、片状结构的可加工性、液滴在电热元件表面221的润湿性和蒸发特性以及尺寸的微小型化等原因,电热元件可采用表面多孔或粗糙金属/合金发热片、金属/合金网格发热片、微纳多孔金属/合金毡、多孔陶瓷发热片、金属箔电阻、金属电热膜、表面光滑金属/合金发热片、基于MEMS技术制造的硅基发热芯片等各种表面特征和热性质不同的电热元件。
本发明的电磁驱动单滴雾化装置组装过程如下:
(1)组装储液仓21和注入液体:
首先用带有双面粘胶的下部密封垫圈2117将衬底2118和驱动腔体2116粘接在一起,然后,将挤出腔架2115与衬底2118粘接在一起。所述挤出腔架2115的侧面开有供驱动腔211和挤出腔212中的液体200来回流动的通道2110。向驱动腔211中注入液体200直至驱动腔211内液面到达能与弹性膜片2111内表面完全接触的高度,且挤出腔212内液体在不从液滴释放孔2121溢出的情况下到达腔内某一合适高度,然后用带有双面粘胶的上部密封垫圈2114将弹性膜片2111和驱动腔体2116粘接在一起。
待上述部件粘接完成后,将永磁铁片2112压在弹性膜片2111上方,再在永磁铁片2112上方压上压片2113。至此,储液仓21组装完成。
(2)组装雾化芯2:
将组装完成的储液仓21固定在基座23上;将电热元件22的导线222卡入驱动腔体2116外壁卡线槽中。
(3)组装电磁驱动液体雾化装置:
将吸嘴端盖1套在雾化芯2外部,其底部安装在基座23上组成雾化器4。 将雾化器4通过基座23与电磁驱动杆3外壁连接组成本发明的电磁驱动液体雾化装置。
本发明的电磁驱动单滴雾化装置的工作原理:
第一步:电磁驱动液体形成液膜或液滴及其雾化:
本发明的装置的电磁驱动杆3与雾化器4连接并启动电源后,在电磁驱动单元31上施加驱动电压和一定波形的驱动电流,同时,电热元件22发生电热转换而快速升温。此时,电磁驱动单元31发生电磁转换产生磁场,磁场经电磁驱动杆3与雾化器4连接处的壳体穿透储液仓21底部的衬底2118和液体200而作用于永磁铁片2112,使之被磁力吸引;永磁铁片2112在磁力作用下发生面向电磁驱动单元31的位移而对其下方的弹性膜片2111施加一定的压力,在该压力驱动下,弹性膜片2111发生面向驱动腔211内的弯曲形变,从而使弹性膜片2111产生对驱动腔211内液体200的压力驱动效应,驱动腔211内的液体200经储液仓21内的通道2110向挤出腔212内流动,并进一步驱动挤出腔212内的液体向液滴释放孔2121的方向移动。
随着驱动电压的增大以及驱动电流的不断增大,挤出腔212内的液体在持续朝着液滴释放孔2121的方向移动的同时,液面形态从凹面101向平面过渡并接近液滴释放孔2121的开口处,当驱动电压和驱动电流继续增大到某一最大值时,液滴释放孔2121开口内沿的液面被挤压至液滴释放孔2121的开口外,并在液滴释放孔2121与电热元件22的电热元件表面221之间形成液面形态为凸面103的液膜或液滴,凸面103与高温的电热元件表面221接触后,在表面张力和毛细力等作用下,露在液滴释放孔2121外的液膜或液滴克服自身重力和液滴释放孔2121的粘附力,在电热元件表面221快速润湿铺展并快速雾化,雾化后的气溶胶被通过空气进气通道10吸入的空气带入吸嘴端盖1的气溶胶释放孔12而被抽吸者吸入。
第二步:电磁弛豫消除液膜或液滴及电磁作用停止
在电热元件表面液膜或液滴快速雾化的同时,降低驱动电压,同步改变驱动电流大小和方向,发生弛豫,雾化后残留在液滴释放孔2121开口外的液面或开口内沿的液面回缩至挤出腔212内,且液面形态由凸面向平面再向凹面迅速转变,挤出腔212内液体进一步向其底部移动,当驱动电流达到某一反向最大值时, 挤出腔212内液面停止移动并维持液面形态为凹面。进一步地,当驱动电压和驱动电流变为零时,电磁驱动单元31停止工作,挤出腔212内液面稳定在某一位置且液面形态保持为平面。上述过程如图7和图8所示。
驱动参数与时间控制:
通过设置液膜或液滴形成周期的时长、每口吸入持续时间及其相互关系,一方面可使液体在挤出腔内的驱动、挤出腔外液膜或液滴的形成、液膜或液滴与电热元件表面的接触雾化过程与每口吸入动作持续过程同步。另一方面,当每口吸入动作持续时间超过液膜或液滴形成周期的时长、吸入动作持续时间过短、吸入动作突然中止或电源电量不足时,装置自动切断电连接,驱动电压和驱动电流立即归零,电磁驱动单元31停止工作,由于磁场和磁力瞬间消失,挤出腔212内液体的液面位置和形态将立即回复至中断前液膜或液滴形成周期的初始位置和平面状态。
本发明对液膜和液滴的解释如下:液体在液滴释放孔2121开口处形成的凸面液面最高点与液滴释放孔2121开口平面的垂直距离、即凸面液面的高度较低时,定义为“液膜”;而凸面液面的高度较高时,定义为“液滴”,这两种情况统称“液膜或液滴”。本发明中,“液膜”、“液滴”或“液膜或液滴”统指液体在液滴释放孔2121处的状态。
本发明对影响液滴形成的因素、参数和控制策略具体如下:
影响液滴形成的因素包括液滴释放孔2121的几何尺寸、液滴挤出腔体及液滴释放孔2121材料性质、挤出液体200的性质、驱动条件等。其中,需考虑对液滴形成过程起重要作用的液滴挤出腔212及液滴释放孔2121的材料润湿性、液体表面张力这两个因素。整个挤出腔212内壁及液滴释放孔2121内壁直接接触液体,因此,润湿性对粘附力有显著影响。本发明优选亲水性(如接触角<60°)、对液体附着力更强的液滴挤出腔212及液滴释放孔2121内壁,一方面可使液体弯月面为凹面且有更高的曲率,确保液体凹面形态在液滴挤出腔内更加稳定;另一方面可避免液滴在疏水性液滴释放孔2121处产生拖尾、使挤出液滴与液滴释放孔2121产生粘附、减慢液滴挤出速率并在液滴释放孔2121外有残留,使雾化速率降低并影响液滴的雾化品质。另外液体表面张力明显影响液滴的形成和变化,增大液滴表面张力,可使液滴释放孔2121开口外的液滴雾化后,液滴释放 孔2121开口外或开口内沿附着的液体液面快速向挤出腔内回缩,既避免液体在液滴释放孔2121开口外或开口内液滴的残留,增加了液滴的形成速率,又避免残留液体在液滴释放孔处的滞留和粘附,避免液体的渗漏和高温固化阻塞液滴释放孔2121,确保每滴液滴和每口雾化效果的一致性。上述两个方面既能确保液滴形成前,液体能稳定在挤出腔内而不外溢,也确保在驱动挤出液滴雾化后不会出现液体在液滴释放孔2121处的残留,即:可以杜绝液体在任何时候从挤出腔212内向外渗漏的风险。在润湿性和液体表面张力确定的情况下,需选择合适的液体粘度以确保液滴以合适的速度和体积从挤出腔中挤出。
储液仓21中液体的驱动模式将决定液滴形成过程和液面形态的变化。其中,电磁驱动装置的输入电流和驱动电压对于驱动液体在挤出腔212中快速稳定移动及形成所需尺寸和形貌的液滴至关重要。
控制液滴形成的输入电流参数包括输入电流的波形和振幅、电脉冲宽度等。通过电磁驱动形成液滴的重要和关键的指标是输入电流的波形。本发明所述驱动电流波形可为正弦波电流、三角波电流、方波电流等,优先考虑通过方波电流和可调频率来获得所需双向电流,通过电流方向的改变来实现电磁极性的变换,从而控制液体的驱动过程、液面形态的变化及液滴的形成;为保证液体驱动、液滴形成及液滴雾化等各步之间有极短的时间间隔,且在规定时长内对上述各步有精确的电学控制,从而确保液面位置、形态及形成液滴的稳定性和一致性,须建立电流-时间曲线,包括驱动液体在挤出腔212内移动、液滴释放孔2121处液滴挤出并稳定、液滴释放孔2121处液面缩回并向挤出腔212内移动等阶段,实现单滴形成循环周期,达到输入电流大小与方向变化、液面位置变化、液面形态变化三者间的时间协同。
具体实施方式如下:
如图7所示,单滴形成周期(循环)的电流-时间曲线和液面位置-时间曲线可分为5个阶段(阶段Ⅰ-Ⅴ),对应的液面形态及位置如图8所示:
阶段Ⅰ:液体驱动准备阶段。对电磁驱动单元31施加驱动电流,电流从0变为某一负值i 1并稳定在该值,永磁铁片2112所受磁力为排斥力,弹性膜片2111向驱动腔211外弯曲,使挤出腔212内的液体位于某一液面位置A且保持曲率最大的凹面形态(图8-a),对应时间0-t 1
阶段Ⅱ:液体驱动及液滴形成阶段。驱动电压增大,同时电热元件22快速升温,驱动电流方向逐渐由负电流向正电流变换,永磁铁片2112所受磁力快速由排斥力向吸引力转变,在永磁铁片挤压作用下,弹性膜片2111快速向驱动腔211内弯曲,挤出腔212内的液体在压力驱动下向液滴释放孔2121移动,挤出腔212内的液面移动行程分两步:第一步,驱动电流从负值i 1变为0,液面由位置A移动至液滴释放孔内沿(位置0),对应时间t 1-t 2,液面形态由位置A的凹面转变为位置0的平面(图8-b);第二步,驱动电流从0进一步增大至某一正值i 2,液面由液滴释放孔内沿(位置0)移动至液滴释放孔外沿某一位置B,对应时间t 2-t 3,液面形态由位置0的平面转变为位置B的凸面,此时在液滴释放孔2121外沿形成凸面液滴并与电热元件表面221直接接触;
阶段Ⅲ:液滴雾化阶段。驱动电压保持恒定,电流维持在最大值i 2,永磁铁片2112所受磁力为吸引力且最大,弹性膜片2111向驱动腔211内的弯曲曲率最大,从液滴释放孔2121处挤出的液滴在电热元件表面221润湿铺展、与挤出腔内液体分离(夹断)而快速雾化,对应时间t 3-t 4(图8-c);
阶段Ⅳ:液体反向驱动和回缩阶段。第一步,驱动电流从i 2变为0,液面由位置B移动至液滴释放孔内沿(位置0),对应时间t 4-t 5,液面形态由位置B的凸面转变为位置0的平面(图8-d);第二步,驱动电流从0进一步减少至某一负值i 1,液面形态变为凹面;驱动电流在i 1稳定一段时间,液面形态保持凹面(图8-e),对应时间t 6-t 7
(注:当电磁驱动力足够大且挤出腔长度足够短的理想情况下,可近似认为每次循环中液面在挤出腔内的起始位置A和回复位置A’的变化不会对液滴形成过程和液滴状态造成影响);
阶段Ⅴ:液体稳定和停止驱动阶段。断开电磁驱动装置电连接,驱动电流变为0,永磁铁片2112和弹性膜片2111状态保持不变,挤出腔212内液面转变为位置0的平面(图8-b或图8-d)。抽吸结束。
随着每一单滴形成周期和挤出液滴的雾化,驱动腔211和挤出腔212中液体的液面将会逐渐下降,为确保随着储液仓21中液体的逐滴消耗,液体在挤出腔内的移动状态、液面形态的变化、液滴的形成速率、液面回缩速率、挤出液滴的高度以及在电热元件表面221的雾化状态等在每个单滴形成周期保持恒定,在规 定吸入口数范围内和逐口吸入过程中,需同步优化和梯度改变每一单滴形成周期的驱动电压、输入电流振幅、电磁驱动频率和电磁脉冲宽度(时间)等参数;采用小体积液体(如1-2mL)和尺寸较小的储液仓21,确保液体体积和储液仓21尺寸对液滴形成和雾化的影响最小;采用与电磁驱动频率适配的合适弹性模量的弹性膜片2111,以确保在每个单滴形成周期,驱动腔211内的液面均能与弹性膜片2111内壁表面保持完全接触。
除了设置液体驱动和液滴形成的电流-时间曲线外,还需要考虑前述液体驱动和液滴形成时间与雾化气溶胶吸入时间的协同性,即按键或吸入动作触发使电磁驱动单元31和电热元件22与电源同步导通,电磁驱动启动并挤压液体200从挤出腔212向液滴释放孔2121移动时,电热元件22同步快速升温,当液滴释放孔2121处挤出的液滴凸面与电热元件表面221直接接触时,接触液滴在电热元件表面221快速雾化而被抽吸者吸入。具体措施为:在确保电热元件22升温速率大于或等于电磁驱动液滴形成速率的情况下,一旦液滴形成并与加热表面接触就能立即雾化;或者设置有效单口吸入持续时间等于一个单滴形成周期,当吸入气溶胶的持续时间超过一个单滴形成周期时,整个装置将自动进入断电保护状态,电磁驱动单元31及电热元件22均停止工作,以避免在超出单滴形成周期的时段因未形成液滴而发生空吸以及电热元件干烧的问题。
本发明对影响液滴蒸发雾化的因素和参数详述如下:
液体粘度和表面张力除了要满足液滴能以合适的速度和体积从挤出腔212中挤出,还应综合考虑液体表面张力、粘度和电热元件表面润湿性对液滴在电热元件表面221铺展和回缩的影响。尽管液体的高粘度会抑制其在表面的铺展和回缩,但由于本发明所述液滴与高温表面接触,液滴表面张力和粘度会在与加热表面接触的瞬间大幅降低,因此促进了液滴在表面的铺展和回缩,不会对高粘度液滴雾化效率造成影响。
本发明的液滴释放孔2121与电热元件表面221之间的距离和液滴释放孔面积是影响雾化量以及气溶胶吸入量的两个重要参数。(1)在驱动压力及液体性质一定的情况下,如果液滴释放孔与电热元件表面的距离一定,随着液滴释放孔2121孔径缩小,挤出腔212内液体在液滴释放孔2121处的挤出阻力增大,挤出液滴与电热元件表面221的接触时间延长,同时,挤出液滴半径及与电热元件表 面221的接触表面积减小,液滴在表面的铺展直径减小,造成雾化量减小且雾化速率变慢。因此,本发明优选表面积接近的液滴释放孔2121与电热元件表面221,以使挤出液面与电热元件表面快速接触,液滴在电热元件表面快速润湿并获得最大铺展直径,实现液滴快速雾化和电热元件表面221的电热效率的充分利用。(2)在驱动压力及液体性质一定的情况下,如果液滴释放孔2121的面积一定,随着液滴释放孔2121与电热元件表面221的距离增大,挤出液滴的高度增加,液滴与电热元件表面的接触时间延长,可能使雾化时间延长,尽管随着接触时间的延长,与电热元件表面221接触的液滴质量增大,可能使雾化量增大,但也可能因大质量液滴对电热元件表面221的降温作用引起电热元件表面加热不均,导致雾化量反而减小,因此,需要在雾化速率和雾化量之间达成平衡。
总之,可选择电热性质合适的电热元件材料及其表面积、合适尺寸的液滴释放孔2121的面积、液滴释放孔与电热元件表面221之间合适的距离,以实现挤出液滴的凸面103与电热元件表面221快速接触、在电热元件表面221快速铺展润湿和快速均匀雾化,从而获得合适的雾化量以及气溶胶吸入量。优选的,本发明所采用的液滴释放孔2121与电热元件表面间距为100um-2mm范围,使挤出单滴在液滴释放孔2121与电热元件表面之间形成相应高度的液面形态为凸面103的薄层液膜或液滴;液滴释放孔2121的面积不超过3mm×3mm,与液滴接触的电热元件表面221的面积也不超过3mm×3mm。
由于本发明所述的液体凸面103与电热元件表面221距离较小,挤出腔212长度较短,且与液滴对表面的快速冲击(典型冲击速率为m/s级别)不同,液滴与电热元件表面221接触时的速度较慢(典型接触速率为mm/s级别),大大减缓液滴对电热元件表面221的冲击,避免了液滴的剧烈蒸发,而且使挤出速率对电热元件表面221温度的影响降至最低。因此,液滴驱动/挤出速率以及液滴与电热元件表面221的接触角度不会对液滴形成及雾化造成明显影响。
对本发明液滴雾化特性影响最大的是电热元件22材料的热性质和材料的表面特征。所述热性质包括热导率、热容和加热表面的氧化性;选择热导率较高的材料,可加快液滴在电热元件表面221的铺展速度,为使液滴在铺展阶段能够完全蒸发,可升高电热元件表面221温度来增加热传导速率,从而缩短液滴-固体接触时间;选择不易氧化的电热元件表面,同样也可增大液滴铺展直径和缩短液 滴与电热元件表面221的接触时间。通过改变电热元件表面的粗糙度、微纳结构和表面润湿性等表面特征可促进液滴的沸腾传热。选择润湿性好(亲水性好,如表观接触角<90°)的加热表面,提高了莱顿弗罗斯特温度,阻止了液滴与电热元件表面221之间稳定蒸汽膜的形成,降低了因热导率较小的蒸汽膜对液滴与电热元件表面221阻隔所造成的液滴蒸发速率降低的缺陷;同时,增强电热元件表面221润湿性可增大液滴在电热元件表面221的铺展直径,使液滴更易铺展,缩短液滴与电热元件表面221的接触时间。采用多孔的电热元件表面221可增大孔隙率,从而增加表面粗糙度,使上述在液滴与电热元件表面221之间形成的蒸汽渗透进入孔中,释放了蒸汽逃逸表面时产生的压力,提高了莱顿弗罗斯特温度,延迟或完全阻止了液滴在电热元件表面221上发生的膜态沸腾;由于孔隙率的增大,使孔与液体接触的实际表面积减小,也使电热元件表面221腔体中捕获了空气和蒸汽,导致传热效率降低,因此,需要采用合适的电热元件表面221温度以增大传热系数。另外,本发明所述的液滴与电热元件表面221的接触属于慢速接触过程,液滴在接触过程中尽管没有足够高的速度渗入表面孔中,但可在表面铺展形成薄膜而在毛细力作用下吸入多孔表面中,电热元件表面221采用微纳结构如纳米纹理或纳米纤维结构,可改善液滴与电热元件表面221的接触,液面在电热元件表面221上铺展时不会发生液滴的后退或弹起等现象,有利于液滴在微纳结构中完全蒸发。在采用高热导率、表面润湿性好和多孔渗透性电热元件表面221时,电热元件表面221的温度是一个十分关键的参数。所选电热材料的电热元件表面温度一方面要低于莱顿弗罗斯特温度,以避免液滴发生膜态沸腾而大幅增加液滴蒸发时间,导致蒸发速率降低;另一方面电热元件表面温度应尽量落在泡核沸腾范围内,因为该区域液滴有较大的固-液接触面积、液滴润湿性更好、表面粗糙度的增加促进了泡核沸腾,有最短的蒸发时间,可发生快速雾化,同时液滴蒸发时间随表面温度升高而变化很小,液滴保持恒定的蒸发状态,可实现均匀雾化。
空气对与电热元件表面221接触的液滴蒸发雾化的影响主要表现为两个方面:一是当加热表面的空气流速增加时,液滴的润湿面积增大,液滴高度降低,蒸发时间缩短;二是吸入雾化气溶胶的过程中,在加热表面形成一定的负压,增加了雾化蒸汽的扩散系数,增大了液滴的蒸发速率。因此,吸嘴端盖1的空气进 气通道10设计和负压状态有利于液滴的快速雾化。
综上,本发明采用的电热元件材料在选择热导率和表面温度较高的金属、合金或硅等材质的基础上,可进一步选择对雾化液滴润湿性较好(即接触角较小)的表面材质或改性表面材料,并可采用具有多孔或微纳结构等表面粗糙度更高的网状、纤维状金属或合金或表面具有图案化微结构的硅基发热芯片;同时,表面温度宜低于莱顿弗罗斯特温度并落在泡核沸腾温度区间。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 电磁驱动液体雾化装置,其特征在于,其包括雾化芯(2)和电磁驱动单元(31);
    所述雾化芯(2)包括储液仓(21)和电热元件(22);所述储液仓(21)具有驱动腔(211)和挤出腔(212),所述驱动腔(211)和挤出腔(212)之间液体连通;所述驱动腔(211)上壁有弹性膜片(2111)和永磁铁片(2112);所述挤出腔(212)上端有开口为液体释放孔(2121);所述电热元件(22)布置在所述液滴释放孔(2121)的上部,使得电热元件表面(221)与所述液滴释放孔(2121)相对且保持一定距离;
    所述电磁驱动单元(31)布置在所述雾化芯(2)底部。
  2. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述电热元件表面(221)与所述液滴释放孔(2121)所在的平面平行,且两者之间的距离为100um-2mm。
  3. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述液滴释放孔(2121)面积小于3mm×3mm。
  4. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述电热元件表面(221)的水表观接触角<90°。
  5. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述储液仓(21)容积为1-2ml。
  6. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述雾化芯(2)还具有压片(2113)、上部密封垫圈(2114)、挤出腔架(2115)、驱动腔体(2116)、下部密封垫圈(2117)、衬底(2118)和基座(23);所述驱动腔体(2116)和弹性膜片(2111)及上部密封垫圈(2114)、以及下部密封垫圈(2117)和衬底(2118)围成所述储液仓(21);所述压片(2113)布置在所述弹性膜片(2111)的外壁上,所述永磁铁片(2112)布置在所述压片(2113)和弹性膜片(2111)之间并贴合在弹性膜片(2111)壁上;所述挤出腔架(2115)内部为挤出腔(212),所述挤出腔(212)的腔口为液滴释放孔(2121);所述压片(2113)、永磁铁片(2112)和弹性膜片(2111)的中部有孔与所述液滴释放孔(2121)相对应;所述基座(23)布置在所述储液仓(21)底部;
    所述电磁驱动单元(31)位于电磁驱动杆(3)腔体内,所述雾化芯(2)通 过基座(23)布置在所述电磁驱动杆(3)的外壁上。
  7. 根据权利要求6所述的电磁驱动液体雾化装置,其特征在于,所述电磁驱动杆(3)腔体内还有电源和控制芯片,所述电热元件(22)通过导线(222)与控制芯片和电源电连接。
  8. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述电磁驱动单液滴雾化装置还包括吸嘴端盖(1),所述吸嘴端盖(1)套在所述雾化芯(2)外围共同形成雾化器(4),所述吸嘴端盖(1)的中部底面与所述电热元件(22)之间设有空气进气通道(10)连通外部。
  9. 根据权利要求1所述的电磁驱动液体雾化装置,其特征在于,所述驱动腔(211)和挤出腔(212)之间为液体通道(2110)。
  10. 根据权利要求8所述的电磁驱动液体雾化装置,其特征在于,所述吸嘴端盖(1)内部开有气溶胶释放孔(12)与所述空气进气通道(10)连通,所述吸嘴端盖(1)侧壁开有观察视窗(11)。
PCT/CN2020/108660 2020-08-07 2020-08-12 电磁驱动液体雾化装置 WO2021139155A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20912560.8A EP3909443B1 (en) 2020-08-07 2020-08-12 Electromagnetically driven liquid atomization apparatus
US17/426,638 US11246348B1 (en) 2020-08-07 2020-08-12 Electromagnetic ally-driven liquid atomization device
JP2021541624A JP7096440B1 (ja) 2020-08-07 2020-08-12 電磁駆動式液体霧化装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010788548.2 2020-08-07
CN202010788548.2A CN111802706A (zh) 2020-08-07 2020-08-07 电磁驱动液体雾化装置

Publications (1)

Publication Number Publication Date
WO2021139155A1 true WO2021139155A1 (zh) 2021-07-15

Family

ID=72863716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108660 WO2021139155A1 (zh) 2020-08-07 2020-08-12 电磁驱动液体雾化装置

Country Status (5)

Country Link
US (1) US11246348B1 (zh)
EP (1) EP3909443B1 (zh)
JP (1) JP7096440B1 (zh)
CN (1) CN111802706A (zh)
WO (1) WO2021139155A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027557A (zh) * 2021-10-18 2022-02-11 深圳市真味生物科技有限公司 防止人为重复注油的雾化器及包括其的电子雾化装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112806622A (zh) * 2021-02-04 2021-05-18 云南中烟工业有限责任公司 一种用于减少气泡的凝胶态烟油制备装置和制备方法
WO2023161099A1 (en) * 2022-02-23 2023-08-31 Jt International Sa Vapour generating device with liquid flow control
DE102022110722A1 (de) 2022-05-02 2023-11-02 Innovative Sensor Technology Ist Ag Vorrichtung zum Transferieren von einem Wirkstoff in eine Gasphase

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101524187A (zh) * 2009-02-04 2009-09-09 万佳通达科技(北京)有限公司 电子烟及电子烟具
CN104000306A (zh) * 2013-03-29 2014-08-27 惠州市吉瑞科技有限公司 电子烟
CN105011379A (zh) * 2015-08-11 2015-11-04 深圳市新宜康科技有限公司 电子烟装置
US20170086505A1 (en) * 2015-09-24 2017-03-30 Lunatech, Llc Electronic Vapor Device With Film Assembly
CN108095197A (zh) * 2018-01-03 2018-06-01 云南中烟工业有限责任公司 一种具有mems微泵的电子烟
CN108523246A (zh) * 2018-07-04 2018-09-14 深圳雾芯科技有限公司 一种新型电子烟及其工作方法
KR102074931B1 (ko) * 2016-12-16 2020-02-07 주식회사 케이티앤지 에어로졸 생성 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106455705A (zh) * 2014-01-22 2017-02-22 方特慕控股第私人有限公司 用于吸烟欲望救济的方法和装置
WO2018220586A2 (en) * 2017-06-01 2018-12-06 Fontem Holdings 1 B.V. Electronic cigarette fluid pump
RU2694667C1 (ru) * 2018-10-02 2019-07-16 Общество с ограниченной ответственностью "Наука и Практика" (ООО "НиП") Установка для восстановления качества рабочих и диэлектрических жидкостей
CN109770437A (zh) 2019-03-25 2019-05-21 云南中烟工业有限责任公司 一种电子烟液磁驱动泵送装置及其电子烟制品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101524187A (zh) * 2009-02-04 2009-09-09 万佳通达科技(北京)有限公司 电子烟及电子烟具
CN104000306A (zh) * 2013-03-29 2014-08-27 惠州市吉瑞科技有限公司 电子烟
CN105011379A (zh) * 2015-08-11 2015-11-04 深圳市新宜康科技有限公司 电子烟装置
US20170086505A1 (en) * 2015-09-24 2017-03-30 Lunatech, Llc Electronic Vapor Device With Film Assembly
KR102074931B1 (ko) * 2016-12-16 2020-02-07 주식회사 케이티앤지 에어로졸 생성 장치
CN108095197A (zh) * 2018-01-03 2018-06-01 云南中烟工业有限责任公司 一种具有mems微泵的电子烟
CN108523246A (zh) * 2018-07-04 2018-09-14 深圳雾芯科技有限公司 一种新型电子烟及其工作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3909443A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114027557A (zh) * 2021-10-18 2022-02-11 深圳市真味生物科技有限公司 防止人为重复注油的雾化器及包括其的电子雾化装置
CN114027557B (zh) * 2021-10-18 2024-01-30 深圳市真味生物科技有限公司 防止人为重复注油的雾化器及包括其的电子雾化装置

Also Published As

Publication number Publication date
JP2022530598A (ja) 2022-06-30
CN111802706A (zh) 2020-10-23
JP7096440B1 (ja) 2022-07-05
EP3909443B1 (en) 2022-12-07
EP3909443A1 (en) 2021-11-17
US11246348B1 (en) 2022-02-15
US20220039474A1 (en) 2022-02-10
EP3909443A4 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
WO2021139155A1 (zh) 电磁驱动液体雾化装置
JP6670956B2 (ja) コットンフリー型超音波アトマイザー及び電子タバコ
CN212629857U (zh) 用于蒸发器装置的料盒
AU2017346137B2 (en) Atomizer and electronic cigarette thereof
KR102646754B1 (ko) 무심지 기화 장치 및 방법
WO2017161715A1 (zh) 一种超声波雾化器及电子烟
CN212590281U (zh) 电磁驱动液体雾化装置
WO2021238627A1 (zh) 吸液件及其制备方法、发热组件及其制备方法
CN208573043U (zh) 一种低温雾化电子烟
CN113660968A (zh) 气溶胶供给装置
CN114916708A (zh) 发热组件、雾化器及电子雾化装置
CN108095200B (zh) 一种声表面波导液装置
CN109700100A (zh) 一种面部防护用品
WO2021000399A1 (zh) 一种雾化装置
CN105962424A (zh) 一种用于电子烟的mems雾化芯片
CN112176430B (zh) 一种口罩熔喷布生产用恒温型喷头
WO2022252479A1 (zh) 电子烟雾化芯和电子烟
CN220326835U (zh) 发热组件、雾化器及电子雾化装置
CN209609867U (zh) 一种加热式mems射流雾化健康烟
WO2023207322A1 (zh) 电子雾化装置及其储液雾化组件
CN209609868U (zh) 一种mems射流雾化健康烟
CN209609866U (zh) 一种按压式mems射流雾化健康烟
WO2023207312A1 (zh) 喷嘴组件及电子雾化装置
CN218354689U (zh) 雾化器及电子雾化装置
WO2023207320A1 (zh) 电子雾化装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021541624

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020912560

Country of ref document: EP

Effective date: 20210812

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912560

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE