WO2021136055A1 - 一种含氮有机化合物和应用以及使用其的有机电致发光器件 - Google Patents

一种含氮有机化合物和应用以及使用其的有机电致发光器件 Download PDF

Info

Publication number
WO2021136055A1
WO2021136055A1 PCT/CN2020/138932 CN2020138932W WO2021136055A1 WO 2021136055 A1 WO2021136055 A1 WO 2021136055A1 CN 2020138932 W CN2020138932 W CN 2020138932W WO 2021136055 A1 WO2021136055 A1 WO 2021136055A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
carbon atoms
group
same
Prior art date
Application number
PCT/CN2020/138932
Other languages
English (en)
French (fr)
Inventor
赵宇
薛震
王金平
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to KR1020217041010A priority Critical patent/KR20220008891A/ko
Priority to US17/620,262 priority patent/US20220302391A1/en
Publication of WO2021136055A1 publication Critical patent/WO2021136055A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom

Definitions

  • the invention belongs to the technical field of organic light-emitting materials, and specifically provides a nitrogen-containing organic compound and application, and an organic electroluminescence device using the same.
  • OLED Organic light-emitting diode
  • OLED Organic light-emitting diode
  • OLED is based on the principle that when an electric field is applied between the anode and the anode, the holes on the anode side and the electrons on the cathode side move to the light-emitting layer, and combine to form excitons and excitons in the light-emitting layer.
  • the process of releasing energy from the excited state to releasing energy from the excited state to releasing energy from the ground state emits light to the outside.
  • multilayer structures are usually used in organic electroluminescent devices.
  • These multilayer structures may include one or more of the following film layers: hole injection layer (hole injection layer). Injection layer (HIL), hole transport layer (HTL), electron-blocking layer (EBL), organic electroluminescence layer (EML), hole-blocking layer (hole-blocking) layer, HBL), electron transport layer (ETL), electron injection layer (EIL), etc.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL organic electroluminescence layer
  • EML organic electroluminescence layer
  • hole-blocking layer hole-blocking layer
  • HBL hole-blocking layer
  • ETL electron transport layer
  • EIL electron injection layer
  • These films can improve the injection efficiency of carriers (holes and electrons) at the interface of each layer and balance the ability of carriers to transport between the layers, thereby improving the brightness and efficiency of the organic electroluminescent device.
  • the existing hole transport materials in organic electroluminescent devices such as NPB, TPD, m-MTDATA, etc., generally have low luminous efficiency and poor thermal stability, resulting in shorter life and lower luminous efficiency of organic electroluminescent devices.
  • the purpose of the present invention is to provide an organic electroluminescent material with excellent performance, which can be used as an electron transport layer in an organic electroluminescent device.
  • the first aspect of the present invention provides a nitrogen-containing organic compound, which has a structure represented by the following formula (1):
  • R is hydrogen or deuterium
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of: substituted or unsubstituted aryl groups with 6-60 carbon atoms, substituted or unsubstituted carbon atoms 2-60 heteroaryl groups, and substituted or unsubstituted aralkyl groups with 6-30 carbon atoms;
  • the substituents on Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of deuterium, halogen, cyano, alkyl with 1-10 carbon atoms, carbon atom Cycloalkyl groups with 3-10 carbon atoms, heterocycloalkyl groups with 2-10 carbon atoms, substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted carbon atoms with 3-30 A substituted heteroaryl group, an alkoxy group having 1 to 30 carbon atoms, and an alkylsilyl group having 1 to 30 carbon atoms.
  • the second aspect of the present invention provides the application of the nitrogen-containing organic compound described in the first aspect of the present invention in an organic electroluminescent device.
  • the third aspect of the present invention provides an organic electroluminescent device, which includes an anode, a cathode, and at least one functional layer between the anode and the cathode.
  • the functional layer includes a hole injection layer, a hole transport layer, and An electroluminescent layer, an electron transport layer, and an electron injection layer, the electron transport layer containing the nitrogen-containing organic compound according to the first aspect of the present invention.
  • the nitrogen-containing compound of the present invention is a derivative with a pyridoquinazoline as the parent nucleus. It has strong electron donating properties and contains aryl substituent groups to form a large conjugated system, which is conducive to the migration and transfer of electrons. transmission.
  • the nitrogen-containing organic compound of the present invention has high thermal stability. When used as the electron transport layer material of an organic electroluminescent device, it can improve the luminous efficiency of the organic electroluminescent device, reduce the driving voltage, and prolong the service life of the device .
  • FIG. 1 is a schematic structural diagram of a specific embodiment of the organic electroluminescent device of the present invention.
  • Fig. 2 is a schematic diagram of an embodiment of the organic electroluminescent device of the present invention used in an electronic device.
  • Anode; 200 cathode; 300, functional layer; 310, hole injection layer; 320, hole transport layer; 321, first hole transport layer; 322, second hole transport layer; 330, organic electro-induced Light-emitting layer; 340, hole blocking layer; 350, electron transport layer; 360, electron injection layer; 370, electron blocking layer; 500, electronic device.
  • the first aspect of the present invention provides a nitrogen-containing organic compound, which has a structure represented by the following formula (1):
  • R is hydrogen or deuterium
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of: substituted or unsubstituted aryl groups with 6-60 carbon atoms, substituted or unsubstituted carbon atoms 2-60 heteroaryl groups, and substituted or unsubstituted aralkyl groups with 6-30 carbon atoms;
  • the substituents on Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of deuterium, halogen, cyano, alkyl with 1-10 carbon atoms, carbon atom Cycloalkyl groups with 3-10 carbon atoms, heterocycloalkyl groups with 2-10 carbon atoms, substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted carbon atoms with 3-30 A substituted heteroaryl group, an alkoxy group having 1 to 30 carbon atoms, and an alkylsilyl group having 1 to 30 carbon atoms.
  • the chemical structure of the nitrogen-containing organic compound of the present invention is centered on pyridoquinazoline, one side is connected to contain an aryl group, and one side is connected to other aryl groups with electron transport properties to form a small molecule with an asymmetric structure OLED materials have good film-forming properties; the molecules contain large rigid groups and have high thermal stability.
  • the nitrogen-containing organic compound is applied to an OLED device as an electron transport material, and can obtain good device performance and lower voltage.
  • each... are independently” and “... are independently” and “... are independently selected from” are interchangeable, and should be understood in a broad sense, which can be either It means that in different groups, the specific options expressed between the same symbols do not affect each other, or it can mean that the specific options expressed between the same symbols do not affect each other in the same group.
  • each q is independently 0, 1, 2 or 3, and each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine", and its meaning is:
  • formula Q-1 represents q substituents R" on the benzene ring , Each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and R on two benzene rings The number q of "substituents can be the same or different, and each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that it has no substituents or is substituted by one or more substituents.
  • the substituents include, but are not limited to, deuterium, halogen groups (F, Cl, Br), cyano, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, aryloxy, arylsulfide Group, silyl group, alkylamino group, cycloalkyl group, heterocyclic group.
  • the alkyl group having 1-10 carbon atoms may be a straight-chain alkyl group or a branched-chain alkyl group.
  • the alkyl group having 1 to 10 carbon atoms may be a straight chain alkyl group having 1 to 10 carbon atoms, or a branched chain alkyl group having 3 to 10 carbon atoms; further, it may be 1 to 10 carbon atoms.
  • the alkyl group having 1-10 carbon atoms may be methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl , Neopentyl, cyclopentyl, hexyl, cyclohexyl, heptyl, octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, etc., but not limited to these .
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated by carbon-carbon bonds, and A monocyclic aryl group and a condensed ring aryl group conjugated by carbon bonds, and two or more fused ring aryl groups conjugated by a carbon-carbon bond. That is, two or more aromatic groups conjugated through carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the aryl group does not contain heteroatoms such as B, O, N, P, Si, Se, or S.
  • the aryl group with 6 to 60 carbon atoms may be a monocyclic or polycyclic aryl group with 6 to 48 carbon atoms, preferably a monocyclic or polycyclic aryl group with 6 to 30 carbon atoms; Or a monocyclic or polycyclic aryl group with 6-20 carbon atoms.
  • the aryl group having 6 to 60 carbon atoms as a monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, a tetrabiphenyl group, a 1,3,5-triphenylphenyl group, etc.
  • a polycyclic aryl group it can be naphthyl, anthryl, phenanthryl, tetracene, triphenylene, pyrenyl, perylene, Group, fluorenyl, naphthyl phenyl, anthryl phenyl, phenanthryl phenyl, triphenylene phenyl, pyrenyl phenyl, perylene phenyl, One or more of phenylphenyl, fluorenylphenyl, phenylnaphthyl, phenylphenanthryl, phenylanthryl and phenylnaphthylphenyl. However, it is not limited to this.
  • a substituted aryl group means that one or more hydrogen atoms in the aryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, Br, I, CN, hydroxyl, amino, branched alkyl, linear alkyl, cycloalkyl, alkoxy, alkylamino or other groups.
  • the substituted aryl group with 18 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 18.
  • the number of carbon atoms of 9,9-dimethylfluorenyl is 15.
  • aryl groups as substituents include, but are not limited to, phenyl, biphenyl, naphthyl, 9,9-dimethylfluorenyl, 9,9-diphenylfluorenyl, spirobifluorenyl, Anthryl, phenanthryl, base.
  • unsubstituted aryl refers to aryl groups with 6-30 carbon atoms, such as phenyl, naphthyl, pyrenyl, dimethyl fluorenyl, 9,9 diphenyl fluorene Base, spirobifluorenyl, anthracenyl, phenanthryl, Group, azulenyl, acenaphthylene, biphenyl, benzanthracenyl, spirobifluorenyl, perylene, indenyl, etc.
  • the substituted aryl group having 6-30 carbon atoms means that at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, hydroxyl, nitro, amino and the like.
  • the heteroaryl group may be a heteroaryl group including at least one of B, O, N, P, Si, Se, and S as a heteroatom.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazine Azinyl, isoquinolinyl, indolyl, carbazolyl, N-arylcarbazolyl, N-heteroarylcarbazolyl, N-alkylcarbazolyl, benzoxazolyl, benzimidazole Group, benzothiazolyl, benzo, be
  • thienyl, furanyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system
  • N-arylcarbazolyl, N-heteroarylcarbazolyl, phenyl-substituted dibenzofuranyl, Dibenzofuranyl-substituted phenyl groups and the like are heteroaryl groups of multiple aromatic ring systems conjugated through carbon-carbon bonds.
  • the heteroaryl group as the substituent includes, but is not limited to, pyridyl, pyrimidinyl, carbazolyl, dibenzofuranyl, and dibenzothienyl.
  • the number of carbon atoms of substituted or unsubstituted aryl groups can be 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 30, 32, 33;
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group can be 3, 4, 5, 12, 18, 22, or 24.
  • the "ring” in this application includes saturated rings and unsaturated rings; saturated rings are cycloalkyl, heterocycloalkyl, and unsaturated rings, namely cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl.
  • the non-positioned link in this application refers to the single bond extending from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages that penetrate the bicyclic ring. ) ⁇ Any possible connection shown in formula (f-10).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of the benzene ring on one side. It includes any possible connection modes shown in formula (X'-1) to formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be attached to any possible position in the ring system.
  • the substituent R group represented by the formula (Y) is connected to the quinoline ring through a non-localized linkage, and its meaning includes the following formula (Y-1) to Any possible connection mode shown in formula (Y-7).
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • aralkyl means having Structure group, wherein at least one of R p , R q , and R s is a substituted or unsubstituted aryl group with 1 to 30 carbon atoms, and the rest are selected from the group consisting of hydrogen, A straight chain alkyl group having 1 to 20 carbon atoms, and a branched chain alkyl group having 3 to 20 carbon atoms.
  • the nitrogen-containing organic compound has a structure represented by the following formula (1):
  • R is hydrogen or deuterium
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of: substituted or unsubstituted aryl groups with 6-60 carbon atoms, substituted or unsubstituted carbon atoms 2-60 heteroaryl groups, and substituted or unsubstituted aralkyl groups with 6-30 carbon atoms;
  • the substituents on Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of deuterium, halogen, cyano, alkyl with 1-10 carbon atoms, carbon atom Cycloalkyl groups with 3-10 carbon atoms, heterocycloalkyl groups with 2-10 carbon atoms, aryl groups with 6-30 carbon atoms, heteroaryl groups with 3-30 carbon atoms, and carbon atoms An alkoxy group having 1-30 and an alkylsilyl group having 1-30 carbon atoms.
  • the substituents on Ar 1 , Ar 2 and Ar 3 are the same or different, and are independently selected from the group consisting of deuterium, fluorine, cyano, carbon Alkyl groups with 1-5 atoms, aryl groups with 6-16 carbon atoms optionally substituted by phenyl, naphthyl, or biphenyl, and optionally phenyl, naphthyl, or biphenyl
  • the substituted heteroaryl group having 5-30 carbon atoms.
  • the substituents on Ar 1 , Ar 2 and Ar 3 are the same or different, and are independently selected from the group consisting of deuterium, fluorine, cyano, carbon An alkyl group having 1 to 5 atoms, an aryl group having 6 to 30 carbon atoms, and a heteroaryl group having 3 to 30 carbon atoms.
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of: substituted or unsubstituted aromatics with 6-35 carbon atoms Group, substituted or unsubstituted heteroaryl group having 3 to 35 carbon atoms, and substituted or unsubstituted aralkyl group having 6 to 20 carbon atoms.
  • Ar 1 , Ar 2 and Ar 3 may each independently be selected from the group consisting of: substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or Unsubstituted biphenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted naphthylphenyl, substituted or unsubstituted phenylnaphthyl, substituted or unsubstituted phenanthrylphenyl, substituted or unsubstituted Phenylphenanthryl, substituted or unsubstituted terphenyl, substituted or unsubstituted pyrenyl, substituted or unsubstituted pyrenylphenyl, substituted or unsubstituted phenylpyrenyl, substituted or unsubstituted fluorenyl, Substituted or unsubstituted
  • the Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups:
  • M 1 is selected from a single bond or
  • R', R” and R”' are the same or different, and are each independently selected from the group consisting of hydrogen, an alkyl group having 1 to 3 carbon atoms, and an aromatic group having 6 to 12 carbon atoms. Group, and at least one of R', R" and R"' is an aryl group;
  • n 1 , n 4 , n 8 and n 10 are the same or different, and are independently 0, 1, 2, 3, 4, or 5;
  • n 2 is 0, 1, 2, 3, 4, 5, 6, 7;
  • n 3 and n 11 are the same or different, and are independently 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9;
  • n 5 , n 6 , n 7 , n 9 , n 14 , n 15 and n 17 are the same or different, and are independently 0, 1, 2, 3, or 4;
  • n 12 is 0, 1 or 2;
  • n 13 and n 16 are the same or different, and are independently 0, 1, 2 or 3;
  • Y is O, S, C (E 18 E 19 ), Si (E 20 E 21 ), N (E 22 ) or Se;
  • E 1 to E 22 are the same or different, and are independently selected from the group consisting of hydrogen, deuterium, halogen, cyano, alkyl with 1-10 carbon atoms, and 6-30 carbon atoms
  • the aryl group, the heteroaryl group with 3-30 carbon atoms and the cycloalkyl group with 3-10 carbon atoms; or E 18 and E 19 are connected to form a ring, or E 20 and E 21 are connected to form a ring, where E 1.
  • E 4 , E 5 and E 17 cannot be aryl groups;
  • X 1 to X 5 are the same or different, and are independently selected from C(R') or N, and at least one of X 1 to X 5 is N, wherein R'in X 1 to X 5 is the same or Different and independently selected from the group consisting of hydrogen, alkyl with 1-10 carbon atoms, aryl with 6-18 carbon atoms, heteroaryl with 3-18 carbon atoms, and A cycloalkyl group having 3-10 carbon atoms, or adjacent R's are connected to form a ring.
  • n 1 is the number of substituent E 1 , when n 1 is greater than or equal to 2, any two E 1 are the same or different;
  • n 2 is the number of substituent E 2 , when n 2 is greater than or equal to 2.
  • n 3 is the number of substituent E 3 , when n 3 is greater than or equal to 2, any two E 3 are the same or different;
  • n 4 is the number of substituent E 4, when When n 4 is greater than or equal to 2, any two E 4 are the same or different;
  • n 5 is the number of substituent E 5 , when n 5 is greater than or equal to 2, any two E 5 are the same or different;
  • n 6 is a substituent The number of E 6 , when n 6 is greater than or equal to 2, any two E 6 are the same or different;
  • n 7 is the number of substituent E 7 , when n 7 is greater than or equal to 2, any two E 7 are the same or different ;
  • N 8 is the number of substituent
  • n 1 to n 17 are each 0, the aromatic ring is not substituted.
  • a and B “capable of being connected to form a ring” includes that A and B are independent of each other and not connected; it also includes that A and B are connected to each other to form a ring.
  • E 18 and E 19 can be connected to form a ring, including the way that E 18 and E 19 are independent and not connected, and E 18 and E 19 can be connected to each other to form a ring;
  • E 20 and E 21 can be connected to form a ring, including E 20 and E 21 are independent of each other and are not connected, including that E 20 and E 21 are connected to each other to form a ring.
  • Adjacent R' can be connected to form a ring, which means that X 1 and X 2 form a ring, or X 2 and X 3 form a ring, or X 3 and X 4 form a ring, or X 4 and X 5 form a ring, which of course also includes X 3 and X 4 form a ring, and X 1 and X 2 form a ring.
  • X 3 and X 4 can be connected to form a ring, including R'of X 3 and R'of X 4 are independent of each other and not connected, and it also includes the connection of R'of X 3 and R'of X 4 and R'.
  • the atoms are connected to form a ring.
  • the ring refers to a saturated or unsaturated ring, for example Etc., but not limited to this.
  • the ring formed above is a 3-10 membered ring.
  • the Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups: the number of substituted or unsubstituted carbon atoms is 6-20 Aryl group, substituted or unsubstituted heteroaryl group having 3-25 carbon atoms, and substituted or unsubstituted aralkyl group having 6-20 carbon atoms.
  • the substituents on Ar 1 , Ar 2 and Ar 3 are the same or different, and are independently selected from the group consisting of deuterium, fluorine, cyano, methyl Group, ethyl, isopropyl, tert-butyl, naphthyl, dibenzofuranyl, dibenzothienyl, N-phenylcarbazolyl optionally substituted by phenyl, anthryl, N-naphthalene Carbazolyl, pyrenyl, phenyl optionally substituted by phenyl, naphthyl, biphenyl, triazinyl optionally substituted by phenyl, naphthyl, biphenyl, pyridyl, phenanthryl .
  • the Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups:
  • the Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups:
  • the Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from the group consisting of the following groups:
  • the nitrogen-containing organic compound may be selected from one or more of the following compounds 1-70:
  • the second aspect of the present invention provides the application of the nitrogen-containing organic compound described in the first aspect of the present invention in an organic electroluminescent device.
  • the nitrogen-containing organic compound has good electron transport performance and thermal stability, and can be used as an electron transport material for the organic electroluminescent device.
  • the third aspect of the present invention provides an organic electroluminescent device, which includes an anode, a cathode, and at least one functional layer between the anode and the cathode.
  • the functional layer includes a hole injection layer, a hole transport layer, and
  • the electroluminescent layer, the electron transport layer, and the electron injection layer, and the electron transport layer may contain the nitrogen-containing organic compound described in the first aspect of the present invention.
  • the organic electroluminescent device of the present invention includes an anode 100, a cathode 200, and at least one functional layer 300 between the anode layer and the cathode layer.
  • 300 includes a hole injection layer 310, a hole transport layer 320, an organic electroluminescence layer 330, an electron transport layer 350, and an electron injection layer 360.
  • the hole injection layer 310, the hole transport layer 320, and the organic electroluminescence The layer 330, the electron transport layer 350, and the electron injection layer 360 may be sequentially formed on the anode 100.
  • the electron transport layer 350 may contain the nitrogen-containing organic compound described in the first aspect of the present invention, preferably containing the compounds 1 to 54 At least one.
  • the nitrogen-containing compound of the present invention can be used as the host material of the organic electroluminescent layer.
  • the functional layer 300 of the organic electroluminescent device may further include a hole blocking layer 340 and an electron blocking layer 370, and the hole blocking layer 340 may be disposed on the organic electroluminescent layer 330 and the electron transport layer Between 350, the electron blocking layer 370 may be disposed between the hole transport layer 320 and the organic electroluminescent layer 330.
  • the organic electroluminescent device of the present invention is based on the excellent performance of the nitrogen-containing organic compound of the present invention.
  • the device obtained by using the compound as the electron transport layer material can reduce the driving voltage of the organic electroluminescent device, improve the luminous efficiency, and prolong the life of the device.
  • the chromatographic column is a silica gel column.
  • Silica gel 300-400 mesh was purchased from Qingdao Ocean Chemical Plant.
  • the measurement conditions for low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column model: Zorbax SB-C18, 2.1 ⁇ 30mm, 3.5 microns, 6min, flow rate 0.6mL/min.
  • Mobile phase 5 %-95% (CH3CN containing 0.1% formic acid) in (H2O containing 0.1% formic acid), using electrospray ionization (ESI), and UV detection at 210nm/254nm.
  • the manufacturing method of an organic light emitting device includes the following steps:
  • ITO Indium tin oxide
  • the compound 2-TNATA (CAS: 185690-41-9) is vacuum deposited on the ITO electrode to form Thickness of the hole injection layer HIL, and then NPB (N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4'-diamine) Vacuum deposition on the hole injection layer to form Thickness of the hole transport layer HTL, TCTA is vapor-deposited on the hole transport layer (the structure is shown below) to form Thickness of the electron blocking layer EBL. Then the host luminescent material BPO (structure shown below) and dopant EM (structure shown below) are co-deposited on the hole transport region at a mass ratio of 96:4. Thickness of the light-emitting layer EML;
  • a hole blocking layer DPVBi (CAS: 142289-08-5) of a thickness is vacuum deposited on the light-emitting layer to form a hole blocking layer;
  • the thickness of the vapor deposited on the above cathode is N-(4-(9H-carbazol-9-yl)phenyl)-4'-(9H-carbazol-9-yl)-N-phenyl-[1,1'-biphenyl]-4 -Amine, forming a cover layer (CPL), thereby completing the manufacture of the organic light-emitting device, and the prepared organic light-emitting device is denoted as A1.
  • the organic electroluminescent device was manufactured by the same method as in Application Example 1, except that in Application Example 2-29, compound 5, compound 6, compound 7, compound 8, compound 9, and compound were used as the electron transport layer. 11.
  • Compound 12, Compound 13, Compound 17, Compound 18, Compound 37, Compound 14, Compound 55, Compound 56, Compound 57, Compound 58, Compound 59, Compound 60, Compound 61, Compound 62, Compound 63, Compound 64, Compound 65, compound 66, compound 67, compound 68, compound 69, and compound 70 replace compound 35 to prepare organic electroluminescent devices 2-29.
  • Comparative Example 1 the organic electroluminescent device was manufactured using the same method as in Application Example 1, except that Alq 3 (structure shown below) was used instead of Compound 35 of Application Example 1 as the electron transport layer material, thereby making Organic electroluminescent device D1.
  • Comparative Example 2 the organic electroluminescent device was manufactured using the same method as Application Example 1, except that Compound A (structure shown below) was used as the electron transport layer instead of Compound 35 of Application Example 1, thereby producing Electromechanical luminescence device D2.
  • Comparative Example 3 an organic electroluminescent device was manufactured using the same method as in Application Example 1, except that compound B (the structure is shown below) was used as the electron transport layer instead of Compound 35 in Application Example 1, so as to produce Electromechanical luminescence device D3.
  • the electron transport compound of the present invention as an electron transport material is compared with Comparative Example 1 using the known electron transport material Alq 3 , Comparative Example 2 using Compound A, and Comparative Example 3 using Compound B :
  • the driving voltage of the organic electroluminescent devices 1 to 29 prepared in application examples 1 to 29 is between 3.8 to 4.2V, which is at least 4.5% lower than the driving voltage (4.4V) of Comparative Example 1 Compared with the driving voltage of 2 (4.7V), it is reduced by at least 10.6%, and compared with the driving voltage of Comparative Example 3 (4.5V), it is reduced by at least 6.7%.
  • the luminous efficiency of the organic electroluminescent devices 1 to 29 is between 5.7 and 6.9 Cd/A, which is at least 5.6% higher than the luminous efficiency of Comparative Example 1 (5.4Cd/A), and the luminous efficiency of Comparative Example 2 ( Compared with 4.1Cd/A), it is increased by at least 39%, and compared with the luminous efficiency of Comparative Example 3 (5.0Cd/A), it is increased by at least 14%.
  • the external quantum efficiency from 1 to 29 is between 10.9% and 13.3%, which is at least 6.9% higher than the external quantum efficiency (10.2%) of Comparative Example 1 and at least higher than the external quantum efficiency (8.2%) of Comparative Example 2 Compared with Comparative Example 3, the external quantum efficiency (9.8%) is increased by at least 11.22%.
  • the T95 lifetime of organic electroluminescent devices 1 to 29 is between 152 and 186h, which is at least 6.3% higher than the T95 lifetime (143h) of Comparative Example 1, and at least higher than the T95 lifetime (122h) of Comparative Example 2 Compared with the T95 lifetime (131h) of Comparative Example 3, it is increased by at least 16%.
  • the organic electroluminescent devices prepared in Preparation Application Examples 1 to 29 have lower driving voltage, higher luminous efficiency, and higher external quantum efficiency compared with Preparation Examples 1-3.
  • the electron transport compound of the present invention As the material of the electron transport layer, the electron transport compound of the present invention has better luminous efficiency, better electrical stability and longer life than the comparative example.
  • the performance of organic electroluminescent devices can be significantly improved.
  • the driving voltage, luminous efficiency, external quantum efficiency, and lifetime performance of the present application are significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种含氮有机化合物和应用以及使用其的有机电致发光器件。所述含氮有机化合物的化学结构以吡啶并喹唑啉为中心,一侧连接含有芳基基团,一侧连接其它的具有电子传输性能的芳基基团,形成不对称结构的小分子OLED材料,具有良好的成膜性;分子中含有大的刚性基团,具有高的热稳定性。该含氮有机化合物作为电子传输材料应用于OLED器件中,能够获得良好的器件性能,较低的电压。

Description

一种含氮有机化合物和应用以及使用其的有机电致发光器件
相关申请的交叉引用
本申请要求于2019年12月30日递交的申请号为CN201911398125.3的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本发明属于有机发光材料技术领域,具体提供一种含氮有机化合物和应用以及使用其的有机电致发光器件。
背景技术
有机发光二极管(organic light-emitting diode),简称OLED,其原理是在阴阳两极施加电场时,阳极侧的空穴和阴极侧的电子会向发光层移动,在发光层结合形成激子,激子处于激发态向外释放能量,从激发态释放能量变为基态释放能量的过程对外发光。
自1987年美国柯达公司报道有机分子电致发光和1990年英国剑桥大学报道聚合物电致发光以来,世界各国纷纷开展研究与开发。该类材料具有结构简单、成品率高、成本低、主动发光、响应速度快、分率高等优点,且具有驱动电压低、全固态、非真空、抗荡、耐低温(-40℃)等性能,被认为是未来最有可能替代液晶显示器的一种新技术,引起极大关注。
为了提高有机电致发光器件的亮度、效率和寿命,通常在有机电致发光器件中使用多层结构,这些多层结构可以包括如下膜层中的一种或多种:空穴注入层(hole injection layer,HIL)、空穴传输层(hole transport layer,HTL)、电子阻挡层(electron-blocking layer,EBL)、有机电致发光层(emitting layer,EML)、空穴阻挡层(hole-blocking layer,HBL)、电子传输层(electron transport layer,ETL)和电子注入层(electron injection layer,EIL)等。这些膜层能够提高载流子(空穴和电子)在各层界面间的注入效率、平衡载流子在各层之间传输的能力,从而提高有机电致发光器件的亮度和效率。
有机电致器件中现有的空穴传输材料如NPB、TPD、m-MTDATA等材料发光效率普遍较低,热稳定较差,导致有机电致发光器件的寿命较短且发光效率比较低。
发明内容
本发明的目的在于提供一种性能优异的有机电致发光材料,可用作有机电致发光器件中的电子传输层。
为了实现上述目的,本发明第一方面提供一种含氮有机化合物,该含氮有机化合物具有如下式(1)所示的结构:
Figure PCTCN2020138932-appb-000001
其中,R为氢或氘;
Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-60的芳基、取代或未取代的碳原子数为2-60的杂芳基,以及取代或未取代的碳原子数为6-30的芳烷基;
Ar 1、Ar 2和Ar 3上的取代基相同或不同,且各自独立地选自如下基团所组成的组:氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基、碳原子数为1-30的烷氧基、碳原子数为1-30的烷基甲硅烷基。
本发明第二方面提供本发明第一方面所述的含氮有机化合物在有机电致发光器件中的应用。
本发明第三方面提供一种有机电致发光器件,包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,所述功能层包括空穴注入层、空穴传输层、有机电致发光层、电子传输层以及电子注入层,所述电子传输层含有本发明第一方面所述的含氮有机化合物。
本发明的含氮化合物为以吡啶并喹唑啉为母核的衍生物,其具有较强的供电子性能,且含有芳基取代基团,形成大的共轭体系,有利于电子的迁移和传输。本发明的含氮有机化合物具有较高的热稳定性,将其作为有机电致发光器件的电子传输层材料时,可以提高有机电致发光器件的发光效率、降低驱动电压,延长器件的使用寿命。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是本发明的有机电致发光器件的一种具体实施方式的结构示意图。
图2是本发明的有机电致发光器件的一种具体实施方式的用于电子设备的示意图。
图中主要元件附图标记说明如下:
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机电致发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;370、电子阻挡层;500、电子设备。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明第一方面提供一种含氮有机化合物,该含氮有机化合物具有如下式(1)所示的结构:
Figure PCTCN2020138932-appb-000002
其中,R为氢或氘;
Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-60的芳基、取代或未取代的碳原子数为2-60的杂芳基,以及取代或未取代的碳原子数为6-30的芳烷基;
Ar 1、Ar 2和Ar 3上的取代基相同或不同,且各自独立地选自如下基团所组成的组:氘、卤素、 氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基、碳原子数为1-30的烷氧基、碳原子数为1-30的烷基甲硅烷基。
本发明的含氮有机化合物的化学结构以吡啶并喹唑啉为中心,一侧连接含有芳基基团,一侧连接其它的具有电子传输性能的芳基基团,形成不对称结构的小分子OLED材料,具有良好的成膜性;分子中含有大的刚性基团,具有高的热稳定性。该含氮有机化合物作为电子传输材料应用于OLED器件中,能够获得良好的器件性能,较低的电压。
在本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2020138932-appb-000003
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,术语“取代或未取代的”是指没有取代基或者被一个或多个取代基取代。所述取代基包括但不限于,氘、卤素基团(F、Cl、Br)、氰基、烷基、烯基、炔基、卤代烷基、芳基、杂芳基、芳氧基、芳硫基、硅烷基、烷胺基、环烷基、杂环基。
在本发明中,碳原子数为1-10的烷基可以为直链烷基或支链烷基。具体而言,碳原子数为1-10的烷基可以为碳原子数1至10的直链烷基,或碳原子数3至10的支链烷基;进一步可以为碳原子数1至10的直链烷基,或碳原子数3至10的支链烷基。更具体而言,碳原子数为1-10的烷基可以为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、环戊基、己基、环己基、庚基、辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等,但是,并不限定于此。
在本发明中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、O、N、P、Si、Se或S等杂原子。具体而言,碳原子数为6-60的芳基可以为碳原子数为6-48的单环或多环芳基、优选为碳原子数为6-30的单环或多环芳基;或碳原子数为6-20的单环或多环芳基。更具体而言,碳原子数为6-60的芳基作为单环芳基可以为苯基、联苯基或三联苯基、四联苯基、1,3,5-三苯基苯基等,作为多环芳基,可以为萘基、蒽基、菲基、并四苯、三亚苯基、芘基、苝基、
Figure PCTCN2020138932-appb-000004
基、芴基、萘基苯基、蒽基苯基、菲基苯基、三亚苯基苯基、芘基苯基、苝基苯基、
Figure PCTCN2020138932-appb-000005
基苯基、芴基苯基、苯基萘基、苯基菲基、苯基蒽基和苯基萘基苯基中的一种或几种。但是,并不限定于此。
在本发明中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、Br、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基或者其他基团取代。可以理解的是,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二甲基芴基的碳原子数为15。
在本申请中,作为取代基的芳基例如但不限于苯基、联苯基、萘基、9,9-二甲基芴基、9,9-二苯基芴基、螺二芴基、蒽基、菲基、
Figure PCTCN2020138932-appb-000006
基。
在本申请中,未取代的芳基,指的是的碳原子数为6-30的芳基,例如:苯基、萘基、芘基、 二甲基芴基、9,9二苯基芴基、螺二芴基、蒽基、菲基、
Figure PCTCN2020138932-appb-000007
基、甘菊环基、苊基、联苯基、苯并蒽基、螺二芴基、苝基、茚基等。取代的碳原子数为6-30的芳基是指至少一个氢原子被氘原子、F、Cl、I、CN、羟基、硝基、氨基等取代。
在本申请中,杂芳基可以是包括B、O、N、P、Si、Se和S中的至少一个作为杂原子的杂芳基。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、N-芳基咔唑基、N-杂芳基咔唑基、N-烷基咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并甲硅烷基、二苯并呋喃基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。
在本申请中,作为取代基的杂芳基例如但不限于吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基。
在本申请中,取代或未取代的芳基的碳原子数可以是6、7、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、30、32、33;取代或未取代的杂芳基的碳原子数可以是3、4、5、12、18、22、24。
本申请中的“环”包含饱和环、不饱和环;饱和环即环烷基、杂环烷基,不饱和环,即环烯基、杂环烯基、芳基和杂芳基。
在本申请中,
Figure PCTCN2020138932-appb-000008
含义一样,均是指与其他取代基或结合位置结合的位置。
本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2020138932-appb-000009
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。例如,下式(f)中所示的,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2020138932-appb-000010
例如,下式(X’)中所示的,式(X’)所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X’-1)~式(X’-4)所示出的任一可能的连接方式。
Figure PCTCN2020138932-appb-000011
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2020138932-appb-000012
在本申请中,卤素基团例如可以为氟、氯、溴、碘。
在本发明中,芳烷基指的是具有
Figure PCTCN2020138932-appb-000013
结构的基团,其中R p、R q、和R s中的至少一者为取代或未取代的碳原子数1至30的芳基,其余为选自如下基团所组成的组:氢、碳原子数1至20的直链烷基,以及碳原子数3至20的支链烷基。
在本发明的一种实施方式中,所述含氮有机化合物具有如下式(1)所示的结构:
Figure PCTCN2020138932-appb-000014
其中,R为氢或氘;
Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-60的芳基、取代或未取代的碳原子数为2-60的杂芳基,以及取代或未取代的碳原子数为6-30的芳烷基;
Ar 1、Ar 2和Ar 3上的取代基相同或不同,且各自独立地选自如下基团所组成的组:氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为6-30的芳基、碳原子数为3-30的杂芳基、碳原子数为1-30的烷氧基、碳原子数为1-30的烷基甲硅烷基。
在本发明的一种实施方式中,所述Ar 1、Ar 2、Ar 3上的取代基相同或不同,且分别独立地选自如下基团所组成的组:氘,氟,氰基,碳原子数为1-5的烷基,任选地被苯基、萘基、联苯基取代的碳原子数为6-16的芳基,以及任选地被苯基、萘基、联苯基取代的碳原子数为5-30的杂芳基。
在本发明的一种实施方式中,所述Ar 1、Ar 2、Ar 3上的取代基相同或不同,且分别独立地选自如下基团所组成的组:氘、氟、氰基、碳原子数为1-5的烷基、碳原子数为6-30的芳基、以及碳原子数为3-30的杂芳基。
在本发明的一种实施方式中,Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-35的芳基、取代或未取代的碳原子数为3-35的杂芳基、以及取代或未取代的碳原子数为6-20的芳烷基。
在本发明的一种实施方式中,Ar 1、Ar 2和Ar 3可以各自独立地选自如下基团所组成的组:取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的萘基苯基、取代或未取代的苯基萘基、取代或未取代的菲基苯基、取代或未取代的苯基菲 基、取代或未取代的三联苯基、取代或未取代的芘基、取代或未取代的芘基苯基、取代或未取代的苯基芘基、取代或未取代的芴基、取代或未取代的螺二芴基、取代或未取代的蒽基、取代或未取代的蒽基苯基、取代或未取代的苯基蒽基、取代或未取代的三亚苯基、取代或未取代的1,3,5-三苯基苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的咔唑基苯基、取代或未取代的苯基咔唑基、取代或未取代的三嗪基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的二苯并呋喃基苯基、取代或未取代的二苯并呋喃基苯基、取代或未取代的二苯并噻吩基苯基。
在本发明的一种实施方式中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
Figure PCTCN2020138932-appb-000015
其中,
Figure PCTCN2020138932-appb-000016
表示化学键;
M 1选自单键或者
Figure PCTCN2020138932-appb-000017
R’、R”及R”’相同或不同,且各自独立地选自如下基团所组成的组:氢、碳原子数为1至3的烷基、以及碳原子数为6至12的芳基,且R’、R”及R”’中的至少一个为芳基;
n 1、n 4、n 8和n 10相同或不同,且分别独立地为0、1、2、3、4或5;
n 2为0、1、2、3、4、5、6、7;
n 3和n 11相同或不同,且分别独立地为0、1、2、3、4、5、6、7、8或9;
n 5、n 6、n 7、n 9、n 14、n 15和n 17相同或不同,且分别独立地为0、1、2、3或4;
n 12为0、1或2;
n 13和n 16相同或不同,且分别独立地为0、1、2或3;
Y为O、S、C(E 18E 19)、Si(E 20E 21)、N(E 22)或Se;
E 1至E 22相同或不同,且分别独立地选自如下基团所组成的组:氢、氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为6-30的芳基、碳原子数为3-30的杂芳基以及碳原子数3-10的环烷基;或者E 18和E 19连接成环,或者E 20和E 21连接成环,其中,E 1、E 4、E 5和E 17不能为芳基;
X 1至X 5相同或不同,且分别独立地选自C(R’)或N,且X 1至X 5中至少一个为N,其中,所述X 1至X 5中的R’相同或不同,且分别独立地选自如下基团所组成的组:氢、碳原子数为1-10烷基、碳原子数为6-18芳基、碳原子数为3-18的杂芳基以及碳原子数3-10的环烷基,或者相邻的R’连接成环。
在本发明中,n 1为取代基E 1的数量,当n 1大于或等于2时,任意两个E 1相同或不同;n 2 为取代基E 2的数量,当n 2大于或等于2时,任意两个E 2相同或不同;n 3为取代基E 3的数量,当n 3大于或等于2时,任意两个E 3相同或不同;n 4为取代基E 4的数量,当n 4大于或等于2时,任意两个E 4相同或不同;n 5为取代基E 5的数量,当n 5大于或等于2时,任意两个E 5相同或不同;n 6为取代基E 6的数量,当n 6大于或等于2时,任意两个E 6相同或不同;n 7为取代基E 7的数量,当n 7大于或等于2时,任意两个E 7相同或不同;n 8为取代基E 8的数量,当n 8大于或等于2时,任意两个E 8相同或不同;n 9为取代基E 9的数量,当n 9等于2时,任意两个E 9相同或不同;n 10为取代基E 10的数量,当n 10大于或等于2时,任意两个E 10相同或不同;n 11为取代基E 11的数量,当n 11大于或等于2时,任意两个E 11相同或不同;n 12为取代基E 12的数量,当n 12等于2时,任意两个E 12相同或不同;n 13为取代基E 13的数量,当n 13大于或等于2时,任意两个E 13相同或不同;n 14为取代基E 14的数量,当n 14大于或等于2时,任意两个E 14相同或不同;n 15为取代基E 15的数量,当n 15大于或等于2时,任意两个E 15相同或不同;n 16为取代基E 16的数量,当n 16大于或等于2时,任意两个E 16相同或不同;n 17为取代基E 17的数量,当n 17等于2时,任意两个E 17相同或不同。
在本发明中,n 1至n 17分别为0时,芳环没有被取代。
在本发明中,A与B“能够连接成环”的含义包括A与B相互独立,不连接;也包括A与B相互连接成环。例如,E 18和E 19能够连接成环,包括E 18和E 19相互独立,不连接的方式,也包括E 18和E 19相互连接成环;E 20和E 21能够连接成环,包括E 20和E 21相互独立,不连接的方式,也包括E 20和E 21相互连接成环。
相邻的R’能够连接成环,是指X 1和X 2成环,或X 2和X 3成环,或X 3和X 4成环,或X 4和X 5成环,当然也包括X 3和X 4成环且X 1和X 2成环等情况。
例如,X 3和X 4能够连接成环,包括X 3的R’与X 4的R’相互独立,不连接的方式,也包括X 3的R’与X 4的R’以及R’所连接的原子连接成环。
在本发明中,所述的环指的是饱和或不饱和的环,例如
Figure PCTCN2020138932-appb-000018
等,但不限于此。
可选地,上述所成的环为3-10元环。
在本发明的一种实施方式中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为3-25的杂芳基、以及取代或未取代的碳原子数为6-20的芳烷基。
在本发明的一种实施方式中,所述Ar 1、Ar 2、Ar 3上的取代基相同或不同,且分别独立地选自如下基团所组成的组:氘,氟,氰基,甲基,乙基,异丙基,叔丁基,萘基,二苯并呋喃基,二苯并噻吩基,任选地被苯基取代的N-苯基咔唑基,蒽基,N-萘基咔唑基,芘基,任选地被苯基、萘基取代的苯基,联苯基,任选地被苯基、萘基、联苯基取代的三嗪基,吡啶基,菲基。
在本发明的一种实施方式中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
Figure PCTCN2020138932-appb-000019
Figure PCTCN2020138932-appb-000020
其中
Figure PCTCN2020138932-appb-000021
表示化学键。
在本发明的一种实施方式中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
Figure PCTCN2020138932-appb-000022
在本发明的一种实施方式中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
Figure PCTCN2020138932-appb-000023
Figure PCTCN2020138932-appb-000024
在本发明的一种实施方式中,所述含氮有机化合物可以选自以下化合物1-70中的一种或几种:
Figure PCTCN2020138932-appb-000025
Figure PCTCN2020138932-appb-000026
Figure PCTCN2020138932-appb-000027
Figure PCTCN2020138932-appb-000028
本发明第二方面提供本发明第一方面所述的含氮有机化合物在有机电致发光器件中的应用。
根据本发明,该含氮有机化合物具有较好的电子传输性能和热稳定性,可以用作所述有机电致发光器件的电子传输材料。
本发明第三方面提供一种有机电致发光器件,包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,所述功能层包括空穴注入层、空穴传输层、有机电致发光层、电子传输层以及电子注入层,电子传输层可以含有本发明第一方面所述的含氮有机化合物。
一种具体实施方式中,如图1所示,本发明的有机电致发光器件包括阳极100、阴极200、以及介于阳极层与阴极层之间的至少一层功能层300,所述功能层300包括空穴注入层310、空穴传输层320、有机电致发光层330、电子传输层350以及电子注入层360,所述的空穴注入层310、空穴传输层320、有机电致发光层330、电子传输层350以及电子注入层360可以依次形成在所述的阳极100上,电子传输层350可以含有本发明第一方面所述的含氮有机化合物,优选含有化合物1~54中的至少一种。
进一步的一种实施方式中,本发明的含氮化合物可以作为有机电致发光层的主体材料。
进一步的一种实施方式中,该有机电致发光器件的功能层300还可以包括空穴阻挡层340和电子阻挡层370,空穴阻挡层340可以设置于有机电致发光层330与电子传输层350之间,电子阻挡层370可以设置于空穴传输层320与有机电致发光层330之间。
本发明的有机电致发光器件基于本发明的含氮有机化合物的优异性能,采用该化合物作为电子传输层材料得到的器件能够降低有机电致发光器件的驱动电压,提高发光效率,延长器件寿命。
以下,通过实施例对本申请进一步详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。
合成实施例
所属领域的专业人员将认识到:本发明所描述的化学反应可以用来合适地制备许多本发明的其他化合物,且用于制备本发明的化合物的其它方法都被认为是在本发明的范围之内。例如,根据本发明那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本发明所描述的,或将反应条件做一些常规的修改。另外,本发明所公开的反应或已知的反应条件也公认地适用于本发明其他化合物 的制备。
下面所描述的实施例,除非其他方面表明所有的温度定为摄氏度。试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company and Alfa Chemical Company,如非特别说明,使用时都没有经过进一步纯化。一般的试剂从汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂购买得到。
色谱柱是使用硅胶柱。硅胶(300-400目)购于青岛海洋化工厂。
低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲酸的CH3CN)在(含0.1%甲酸的H2O)中的比例),采用电喷雾电离(ESI),在210nm/254nm下,用UV检测。
纯的化合物的使用Agilent 1260pre-HPLC或Calesep pump 250pre-HPLC(柱子型号:NOVASEP 50/80mm DAC),在210nm/254nm用UV检测。
合成例1(化合物35):
Figure PCTCN2020138932-appb-000029
(1)向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(10mL/min)置换15min,依次加入原料35a 0.40mol、原料35b 0.48mol、碳酸钾0.80mol、四丁基溴化铵0.04mol、甲苯0.918L、无水乙醇0.230L、水0.230L。开启搅拌,升温至45~50℃,向瓶中加入四(三苯基磷)钯0.0002mol,继续升温至回流在62~65℃反应4h。用甲苯萃取并水洗,60℃用甲苯过保温柱,过柱液浓缩干即可得到0.24mol的中间体35c,收率60%。
Figure PCTCN2020138932-appb-000030
向装有机械搅拌、温度计、球形冷凝管的三口瓶中,依次加中间体35c 0.30mol、原料35d 0.62mol、三溴化磷0.90mol,1.000L二氯甲烷;开启搅拌,升温至55~60℃,反应2h。向反应液加入1.000L饱和碳酸氢钠水溶液,搅拌,静置,分液,水相再加入二氯甲烷,萃取,分液,合并有机相用水水洗2次,有机相用无水硫酸镁干燥,有机相过柱,过柱液浓缩干,加入30ml乙醇,过滤,得到0.10mol的化合物35,收率33.12%。m/z=410.16[M+H] +
1H-NMR(CDCl 3,300MHz)δ(ppm):8.71(d,1H),8.33-8.35(m,4H),7.80-7.84(m,3H),7.65(m,2H),7.58(d,1H),7.55-7.51(m,2H),7.49-7.50(m,5H),7.29(d,1H)。
合成例2-16:
采用合成例1中化合物35相同的合成步骤,使用下表1中的原料I替代原料35b,合成下表1中的化合物。
表1
Figure PCTCN2020138932-appb-000031
Figure PCTCN2020138932-appb-000032
Figure PCTCN2020138932-appb-000033
Figure PCTCN2020138932-appb-000034
合成例18(化合物17):
Figure PCTCN2020138932-appb-000035
向装有机械搅拌、温度计、球形冷凝管的三口瓶中,依次加中间体35c 0.30mol、原料17a 0.31mol、原料17b 0.31mol、三溴化磷0.90mol,1.000L二氯甲烷。开启搅拌,升温至55~60℃,反应2h。向反应液加入1.000L饱和碳酸氢钠溶液,加入二氯甲烷萃取分液,有机相用无水硫酸镁干燥,过常温柱,过柱液浓缩干即可得到0.066mol的化合物17,收率22.12%。m/z=486.16[M+H] +
1H-NMR(CDCl 3,300MHz)δ(ppm):8.72(d,1H),8.30-8.35(m,6H),7.75-7.84(m,5H),7.54-7.58(m,3H),7.49-7.51(m,6H),7.41(m,1H),7.26(d,1H)。
合成例19-20:
采用合成例17中化合物17相同的合成步骤,使用下表2中的原料I替代原料17a,原料Ⅱ替代原料17b合成下列化合物。
表2
Figure PCTCN2020138932-appb-000036
合成例21(化合物62):
Figure PCTCN2020138932-appb-000037
(1)向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(10mL/min)置换15min,依次加入原料62a 0.40mol、原料62b 0.48mol、碳酸钾0.80mol、四丁基溴化铵0.04mol、甲苯0.918L、无水乙醇0.230L、水0.230L。开启搅拌,升温至45~50℃,向瓶中加入四(三苯基磷)钯0.0002mol,继续升温至回流在62~65℃反应4h。用甲苯萃取并水洗,60℃用甲苯过保温柱,过柱液浓缩干得到0.40mol的中间体62c,收率50%。
Figure PCTCN2020138932-appb-000038
(2)向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(10mL/min)置换15min,依次加入原料62c 0.20mol、100ml四氢呋喃,降温至-35~40℃,滴加TMP2Mg 0.22mol,滴加完毕保温1h,开始滴加碘0.22mol的四氢呋喃溶液,保温1h,并逐步升至室温反应2h。反应完加150mL水使得大量固体析出,过滤后烘干得到0.14mol的中间体62d,收率70%。
Figure PCTCN2020138932-appb-000039
(3)向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(10mL/min)置换15min,依次加入原料62e 0.18mol、100ml乙醇,加入Pd/C 0.01g,通入D2后密封,于30—35℃反应5h。反应完加100mL水使得大量固体析出,过滤后烘干得到0.144mol的中间体62e,收率80%。
Figure PCTCN2020138932-appb-000040
(4)向装有机械搅拌、温度计、球形冷凝管的三口瓶中,依次加中间体62e 0.16mol、原料62f0.4mol、三溴化磷0.5mol,200mL二氯甲烷;开启搅拌,升温至55~60℃,反应2h。向反应液加入200mL饱和碳酸氢钠水溶液,搅拌,静置,分液,水相再加入二氯甲烷,萃取,分液,合并有机相用水水洗2次,有机相用无水硫酸镁干燥,有机相过柱,过柱液浓缩干,加入30ml乙醇,过滤,得到0.10mol的化合物62,收率62.5%。m/z=411.16[M+H] +
1H-NMR(CDCl 3,300MHz)δ(ppm):8.70(d,1H),8.33-8.35(m,4H),7.81-7.84(m,3H),7.65(m,2H),7.58(d,1H),7.55-7.51(m,2H),7.49-7.51(m,4H),7.26(d,1H)。
采用合成例21中化合物62相同的合成步骤,使用下表3中的原料Ⅰ替代原料62b合成下列化合物。
表3
Figure PCTCN2020138932-appb-000041
Figure PCTCN2020138932-appb-000042
以下应用例1至29用于说明本发明的电子传输化合物在有机电致发光器件中电子传输层中的 应用。
应用例1
有机发光器件的制造方法,包括如下步骤:
(1)先依次用蒸馏水、甲醇超声清洗具有
Figure PCTCN2020138932-appb-000043
氧化铟锡(ITO)电极的玻璃底板,干燥;
(2)再用氧等离子体清洗5分钟,然后将清洗干净的阳极底板装载到真空沉积设备中;
(3)将化合物2-TNATA(CAS:185690-41-9)真空沉积到ITO电极上形成
Figure PCTCN2020138932-appb-000044
厚度的空穴注入层HIL,再将NPB(N,N’-二苯基-N,N’-二(1-萘基)-1,1’-联苯-4,4’-二胺)真空沉积到空穴注入层上形成
Figure PCTCN2020138932-appb-000045
厚度的空穴传输层HTL,在空穴传输层上蒸镀TCTA(结构如下所示),形成
Figure PCTCN2020138932-appb-000046
Figure PCTCN2020138932-appb-000047
厚度的电子阻挡层EBL。然后将主体发光材料BPO(结构如下所示)和掺杂剂EM(结构如下所示)以96:4的质量比共沉积到空穴传输区域上形成
Figure PCTCN2020138932-appb-000048
厚度的发光层EML;
(4)将
Figure PCTCN2020138932-appb-000049
厚度的空穴阻挡层DPVBi(CAS:142289-08-5)真空沉积在发光层上形成空穴阻挡层;
(5)将化合物35真空沉积在空穴阻挡层上以形成
Figure PCTCN2020138932-appb-000050
厚度的电子传输层及将LiQ(8-羟基喹啉-锂)蒸镀在电子传输层上以形成
Figure PCTCN2020138932-appb-000051
厚度的电子注入层EIL,然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成
Figure PCTCN2020138932-appb-000052
厚度的阴极。此外,在上述阴极上作为蒸镀了厚度为
Figure PCTCN2020138932-appb-000053
的N-(4-(9H-咔唑-9-基)苯基)-4'-(9H-咔唑-9-基)-N-苯基-[1,1'-联苯]-4-胺,形成覆盖层(CPL),由此完成有机发光器件的制造,所制备的有机发光器件记为A1。
Figure PCTCN2020138932-appb-000054
应用例2~应用例29
采用与应用例1相同的方法制造有机电致发光器件,不同的是,应用例2-29中,分别将作为电子传输层的用化合物5、化合物6、化合物7、化合物8、化合物9、化合物11、化合物12、化合物13、化合物17、化合物18、化合物37、化合物14、化合物55、化合物56、化合物57、化合物58、化合物59、化合物60、化合物61、化合物62、化合物63、化合物64、化合物65、化合物66、化合物67、化合物68、化合物69、化合物70替代化合物35,制得有机电致发光器件2至29。
对比例1
在对比例1中,采用与应用例1相同的方法制造有机电致发光器件,区别仅在于:使用Alq 3(结构如下所示)替代应用例1的化合物35作为电子传输层材料,从而制得有机电致发光器件D1。
Figure PCTCN2020138932-appb-000055
对比例2
在对比例2中,采用与应用例1相同的方法制造有机电致发光器件,区别仅在于:使用化合物A(结构如下所示)作为电子传输层替代应用例1的化合物35,从而制得有机电致发光器件D2。
Figure PCTCN2020138932-appb-000056
对比例3
在对比例3中,采用与应用例1相同的方法制造有机电致发光器件,区别仅在于:使用化合物B(结构如下所示)作为电子传输层替代应用例1的化合物35,从而制得有机电致发光器件D3。
Figure PCTCN2020138932-appb-000057
对如上制得的有机电致发光器件1至29、D1至D3,在15mA/cm 2的条件下测试T95器件寿命,数据电压、效率、色坐标是在恒定电流密度10mA/cm 2下进行测试,结果如表4所示。
表4有机电致发光器件1至29、D1至D3的电子发光特性列表
Figure PCTCN2020138932-appb-000058
Figure PCTCN2020138932-appb-000059
根据上述的结果可知,将作为电子传输材料的本发明的电子传输化合物与使用已公知的电子传输材料Alq 3的对比例1、使用化合物A的对比例2和使用化合物B的对比例3相比:应用例1至29所制备的有机电致发光器件1至29的驱动电压在3.8~4.2V之间,与对比例1的驱动电压(4.4V)相比至少降低了4.5%,与对比例2的驱动电压(4.7V)相比至少降低了10.6%,与对比例3的驱动电压(4.5V)相比至少降低了6.7%。有机电致发光器件1至29的发光效率在5.7~6.9Cd/A之间,比对比例1的发光效率(5.4Cd/A)相比至少提高了5.6%,与对比例2的发光效率(4.1Cd/A)相比至少提高了39%,与对比例3的发光效率(5.0Cd/A)相比至少提高了14%。1至29的外量子效率在10.9%~13.3%之间,与对比例1的外量子效率(10.2%)相比至少提高了6.9%,与对比例2的外量子效率(8.2%)至少提高了33%,与对比例3的外量子效率(9.8%)至少提高了11.22%。有机电致发光器件1至29的T95寿命在152~186h之间,与对比例1的T95寿命(143h)相比至少提高了6.3%,与对比例2的T95寿命(122h)相比至少提高了24.6%,与对比例3的T95寿命(131h)相比至少提高了16%。
可见,相较于制备对比例1-3,制备应用例1至29所制备的有机电致发光器件具有更低的驱动电压、更高的发光效率、更高的外量子效率。作为电子传输层的材料,本发明的电子传输化合物相较于对比例具有更好地发光效率、更好的电稳定性和更长的寿命,在用于有机电致发光器件的电子传输层时可以显著改善有机电致发光器件的性能。此外,与对比例2和对比例3的R为芳基的化合物相比,本申请的在驱动电压、发光效率、外量子效率和寿命性能方面均有显著提高。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (15)

  1. 一种含氮有机化合物,其中,该含氮有机化合物具有如下式(1)所示的结构:
    Figure PCTCN2020138932-appb-100001
    其中,R为氢或氘;
    Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-60的芳基、取代或未取代的碳原子数为2-60的杂芳基,以及取代或未取代的碳原子数为6-30的芳烷基;
    Ar 1、Ar 2和Ar 3上的取代基相同或不同,且各自独立地选自如下基团所组成的组:氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基、碳原子数为1-30的烷氧基、碳原子数为1-30的烷基甲硅烷基。
  2. 根据权利要求1所述的含氮有机化合物,其中,所述含氮有机化合物具有如下式(1)所示的结构:
    Figure PCTCN2020138932-appb-100002
    其中,R为氢或氘;
    Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-60的芳基、取代或未取代的碳原子数为2-60的杂芳基,以及取代或未取代的碳原子数为6-30的芳烷基;
    Ar 1、Ar 2和Ar 3上的取代基相同或不同,且各自独立地选自如下基团所组成的组:氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为6-30的芳基、碳原子数为3-30的杂芳基、碳原子数为1-30的烷氧基、碳原子数为1-30的烷基甲硅烷基。
  3. 根据权利要求1或2所述的含氮有机化合物,其中,所述Ar 1、Ar 2、Ar 3上的取代基相同或不同,且分别独立地选自如下基团所组成的组:氘,氟,氰基,碳原子数为1-5的烷基,任选地被苯基、萘基、联苯基取代的碳原子数为6-16的芳基,以及任选地被苯基、萘基、联苯基取代的碳原子数为5-30的杂芳基。
  4. 根据权利要求1-3中任意一项所述的含氮有机化合物,其中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-35的芳基、取代或未取代的碳原子数为3-35的杂芳基、以及取代或未取代的碳原子数为6-20的芳烷基。
  5. 根据权利要求1-4中任意一项所述的含氮有机化合物,其中,所述Ar 1、Ar 2和Ar 3各自独立地选自如下基团所组成的组:取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的萘基苯基、取代或未取代的苯基萘基、取代或未取代的菲基苯基、取代或未取代的苯基菲基、取代或未取代的三联苯基、取代或未取代的芘基、取代或未取代的芘基苯基、取代或未取代的苯基芘基、取代或未取代的芴基、取代或未取代的螺二芴基、取代或未取代的蒽基、取代或未取代的蒽基苯基、取代或未取代的苯基蒽基、取代或未取代的三亚苯基、取代或未取代的1,3,5-三苯基苯基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代 或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的咔唑基苯基、取代或未取代的苯基咔唑基、取代或未取代的三嗪基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的二苯并呋喃基苯基、取代或未取代的二苯并呋喃基苯基,以及取代或未取代的二苯并噻吩基苯基。
  6. 根据权利要求1-5中任意一项所述的含氮有机化合物,其中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
    Figure PCTCN2020138932-appb-100003
    其中,
    Figure PCTCN2020138932-appb-100004
    表示化学键;
    M 1选自单键或者
    Figure PCTCN2020138932-appb-100005
    R’、R”及R”’相同或不同,且各自独立地选自如下基团所组成的组:氢、碳原子数为1至3的烷基,以及碳原子数为6至12的芳基,且R’、R”及R”’中的至少一个为芳基;
    n 1、n 4、n 8和n 10相同或不同,且分别独立地为0、1、2、3、4或5;
    n 2为0、1、2、3、4、5、6、7;
    n 3和n 11相同或不同,且分别独立地为0、1、2、3、4、5、6、7、8或9;
    n 5、n 6、n 7、n 9、n 14、n 15和n 17相同或不同,且分别独立地为0、1、2、3或4;
    n 12为0、1或2;
    n 13和n 16相同或不同,且分别独立地为0、1、2或3;
    Y为O、S、C(E 18E 19)、Si(E 20E 21)、N(E 22)或Se;
    E 1至E 22相同或不同,且分别独立地选自如下基团所组成的组:氢、氘、卤素、氰基、碳原子数为1-10的烷基、碳原子数为6-30的芳基、碳原子数为3-30的杂芳基以及碳原子数3-10的环烷基;或者E 18和E 19连接成环,或者E 20和E 21连接成环;
    X 1至X 5相同或不同,且分别独立地选自C(R’)或N,且X 1至X 5中至少一个为N,其中,所述X 1至X 5中的R’相同或不同,且分别独立地选自如下基团所组成的组:氢、碳原子数为1-10烷基、碳原子数为6-18芳基、碳原子数为3-18的杂芳基以及碳原子数3-10的环烷基,或者相邻的R’连接成环。
  7. 根据权利要求1-6中任意一项所述的含氮有机化合物,其特征在于,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自如下基团所组成的组:取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为3-25的杂芳基、以及取代或未取代的碳原子数为6-20的芳烷基。
  8. 根据权利要求1-7中任意一项所述的含氮有机化合物,其特征在于,所述Ar 1、Ar 2、Ar 3上的取代基相同或不同,且分别独立地选自如下基团所组成的组:氘,氟,氰基,甲基,乙基,异丙 基,叔丁基,萘基,二苯并呋喃基,二苯并噻吩基,任选地被苯基取代的N-苯基咔唑基,蒽基,N-萘基咔唑基,芘基,任选地被苯基、萘基取代的苯基,联苯基,任选地被苯基、萘基、联苯基取代的三嗪基,吡啶基,菲基。
  9. 根据权利要求1-8中任意一项所述的含氮有机化合物,其中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
    Figure PCTCN2020138932-appb-100006
  10. 根据权利要求1-9中任意一项所述的含氮有机化合物,其中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
    Figure PCTCN2020138932-appb-100007
  11. 根据权利要求1-10中任意一项所述的含氮有机化合物,其中,所述Ar 1、Ar 2及Ar 3相同或不同,且各自独立地选自以下基团所组成的组:
    Figure PCTCN2020138932-appb-100008
    Figure PCTCN2020138932-appb-100009
  12. 根据权利要求1-11中任意一项所述的含氮有机化合物,其中,所述含氮有机化合物选自以下化合物1-70中的一种或几种:
    Figure PCTCN2020138932-appb-100010
    Figure PCTCN2020138932-appb-100011
    Figure PCTCN2020138932-appb-100012
    Figure PCTCN2020138932-appb-100013
  13. 权利要求1-12中任一项所述的含氮有机化合物在有机电致发光器件中的应用。
  14. 根据权利要求13所述的应用,其中,所述含氮有机化合物用作所述有机电致发光器件的电子传输层材料。
  15. 一种有机电致发光器件,包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,所述功能层包括空穴注入层、空穴传输层、有机电致发光层、电子传输层以及电子注入层,其特征在于,所述电子传输层含有权利要求1-12中任一项所述的含氮有机化合物。
PCT/CN2020/138932 2019-12-30 2020-12-24 一种含氮有机化合物和应用以及使用其的有机电致发光器件 WO2021136055A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217041010A KR20220008891A (ko) 2019-12-30 2020-12-24 질소 함유 유기 화합물과 그 용도 및 이를 이용한 유기 전계 발광 소자
US17/620,262 US20220302391A1 (en) 2019-12-30 2020-12-24 Nitrogen-containing organic compound, use thereof, and organic electroluminescent device using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911398125.3A CN111116584B (zh) 2019-12-30 2019-12-30 一种含氮有机化合物和应用以及使用其的有机电致发光器件
CN201911398125.3 2019-12-30

Publications (1)

Publication Number Publication Date
WO2021136055A1 true WO2021136055A1 (zh) 2021-07-08

Family

ID=70505410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138932 WO2021136055A1 (zh) 2019-12-30 2020-12-24 一种含氮有机化合物和应用以及使用其的有机电致发光器件

Country Status (4)

Country Link
US (1) US20220302391A1 (zh)
KR (1) KR20220008891A (zh)
CN (1) CN111116584B (zh)
WO (1) WO2021136055A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111116584B (zh) * 2019-12-30 2021-01-22 陕西莱特光电材料股份有限公司 一种含氮有机化合物和应用以及使用其的有机电致发光器件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612238A (zh) * 2013-10-11 2016-05-25 Sfc有限责任公司 有机发光化合物以及包含该有机发光化合物的有机发光器件
CN106910833A (zh) * 2015-12-22 2017-06-30 三星显示有限公司 有机发光装置
CN111100146A (zh) * 2019-12-30 2020-05-05 陕西莱特光电材料股份有限公司 一种有机化合物和应用以及使用其的有机电致发光器件
CN111116584A (zh) * 2019-12-30 2020-05-08 陕西莱特光电材料股份有限公司 一种含氮有机化合物和应用以及使用其的有机电致发光器件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102661473B1 (ko) * 2016-04-29 2024-04-29 삼성디스플레이 주식회사 유기 발광 소자
CN116082369A (zh) * 2019-08-22 2023-05-09 武汉尚赛光电科技有限公司 一种基于三唑并吡啶的有机电致发光材料及有机电致发光器件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612238A (zh) * 2013-10-11 2016-05-25 Sfc有限责任公司 有机发光化合物以及包含该有机发光化合物的有机发光器件
CN106910833A (zh) * 2015-12-22 2017-06-30 三星显示有限公司 有机发光装置
CN111100146A (zh) * 2019-12-30 2020-05-05 陕西莱特光电材料股份有限公司 一种有机化合物和应用以及使用其的有机电致发光器件
CN111116584A (zh) * 2019-12-30 2020-05-08 陕西莱特光电材料股份有限公司 一种含氮有机化合物和应用以及使用其的有机电致发光器件

Also Published As

Publication number Publication date
KR20220008891A (ko) 2022-01-21
CN111116584A (zh) 2020-05-08
CN111116584B (zh) 2021-01-22
US20220302391A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
EP3575296B1 (en) Triazine compound, composition and organic optoelectronic device and display device
WO2022206396A1 (zh) 主体材料组合物和有机电致发光器件及电子装置
WO2022027992A1 (zh) 含氮化合物、电子元件和电子装置
WO2022206493A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021135181A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022007909A1 (zh) 含氮化合物、电子元件和电子装置
WO2023070987A9 (zh) 有机化合物及包含该有机化合物的有机电致发光器件和电子装置
WO2021135183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2022199449A1 (zh) 有机化合物及包含其的电子器件和电子装置
WO2022134602A1 (zh) 含氮化合物、电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2022233243A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021136055A1 (zh) 一种含氮有机化合物和应用以及使用其的有机电致发光器件
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2022199256A1 (zh) 化合物、有机电致发光器件及电子装置
CN113896720B (zh) 有机化合物、电子元件及电子装置
CN114057705B (zh) 一种含氮化合物以及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217041010

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20910535

Country of ref document: EP

Kind code of ref document: A1