WO2021135818A1 - 铝基合金粉真空气雾化生产系统 - Google Patents

铝基合金粉真空气雾化生产系统 Download PDF

Info

Publication number
WO2021135818A1
WO2021135818A1 PCT/CN2020/133871 CN2020133871W WO2021135818A1 WO 2021135818 A1 WO2021135818 A1 WO 2021135818A1 CN 2020133871 W CN2020133871 W CN 2020133871W WO 2021135818 A1 WO2021135818 A1 WO 2021135818A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
storage tank
vacuum
valve
air
Prior art date
Application number
PCT/CN2020/133871
Other languages
English (en)
French (fr)
Inventor
马社俊
王洋
黄松涛
李相波
王晓腾
宋鹏
范红刚
熊志飞
靳争
袁洪彬
Original Assignee
河南省远洋粉体科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南省远洋粉体科技股份有限公司 filed Critical 河南省远洋粉体科技股份有限公司
Publication of WO2021135818A1 publication Critical patent/WO2021135818A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0844Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid in controlled atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen

Definitions

  • the invention belongs to the technical field of production and manufacture of alloy powder, and specifically relates to a vacuum atomization production system for aluminum-based alloy powder.
  • the additive manufacturing technology represented by 3D printing is becoming more and more mature, but the additive manufacturing technology requires relatively high raw materials.
  • the alloy powder is required to meet the requirements of low oxygen content and high sphericity.
  • the fluidity of the powder directly affects the powder spreading effect, the forming process and the quality of the additive manufactured parts during laser additive manufacturing.
  • the fluidity of the powder is related to the particle size, appearance, loose density and Hall flow rate of the powder. The higher the sphericity of the powder, the more uniform the particle size distribution, and the smaller the Hall flow rate, the better the fluidity of the powder.
  • the requirement of powder particle size is related to additive manufacturing technology.
  • the powder particle size is preferably in the range of 15-53 ⁇ m.
  • the high oxygen content of the powder the greater the surface activity, the worse the wettability, the more serious the spheroidization, and the worse the melting effect.
  • the alloy powder produced by vacuum atomization is welcomed by additive manufacturing due to its advantages of low oxygen, high sphericity, and good fluidity.
  • additive manufacturing technology has been proposed as a national strategy. With the continuous development of additive manufacturing technology With the development, the existing alloy powder produced by vacuum atomization can no longer meet the requirements of additive manufacturing for the sphericity and fluidity of alloy powder, and the problem of raw materials has severely restricted the development of additive manufacturing technology in China.
  • the main process flow is aluminum-based alloy vacuum smelting-nitrogen or argon atomizing powder-powder collection-gas evacuation.
  • Nitrogen or argon is an inert gas, which is used as a protective gas in the atomization powder.
  • the purity of the inert gas directly affects the oxygen content of the aluminum-based alloy powder, and the vacuum degree of the atomization powder directly affects the aluminum-based alloy powder. Sphericity and fluidity, the higher the vacuum degree, the better the sphericity of the aluminum-based alloy powder produced, the better the fluidity.
  • the existing aluminum-based alloy powder production enterprises use vacuum pumps to extract the air from the production system and maintain the vacuum of the production system.
  • the vacuum degree that the vacuum pump can achieve is not high and cannot meet the needs of atomization production.
  • the produced aluminum-based alloy powder has poor sphericity and fluidity, which cannot meet the needs of additive manufacturing.
  • the present invention provides a vacuum atomization production system for aluminum-based alloy powder, which uses high-purity liquid nitrogen as the inert gas source, and the purity of the high-purity liquid nitrogen can be Reaching 99.999%, the oxygen content of the aluminum-based alloy powder produced by high-purity liquid nitrogen atomization is less than or equal to 100PPM, and the oxygen content is low, which can fully meet the needs of additive manufacturing.
  • the vacuum pump and the roots pump are used to cooperate with each other. Vacuum, the vacuum degree can reach 0.1Pa, which can effectively improve the sphericity and fluidity of the aluminum-based alloy powder after atomization.
  • a closed-loop inert gas circulation system is designed to realize the recovery and utilization of inert gas and the pressure balance in the system , Reduce production costs and improve production efficiency.
  • a vacuum atomization production system for aluminum-based alloy powder which includes a smelting atomization device, a vacuum control device, an air pressure balance system, a classification system, and a dust removal recovery device.
  • the smelting atomization device includes a smelting furnace and an atomizing nozzle And an atomizing chamber, the discharge port of the smelting furnace is connected to the atomizing chamber through an atomizing nozzle, the air inlet of the atomizing nozzle is connected to the air outlet of the air pressure balance system, and the smelting furnace is connected through a pipe
  • the air inlet of the vacuum control device, the atomization chamber is connected to the air inlet of the vacuum control device through a pipe, the outlet of the atomization chamber is connected to the inlet of the classification system, and the outlet of the classification system Connecting the receiving tank and the vacuum packaging device, the air outlet of the grading system is connected to the air inlet of the dust removal and recovery device, and the air outlet of the dust removal and recovery device is
  • the pressure balance storage tank includes the tank body and the air inlet and outlet provided on the tank body.
  • the gas port, the safety port, the automatic exhaust port, the air supply port, the recovery port and the explosion vent, the explosion venting port of the pressure balance storage tank is provided with an explosion vent valve, and the automatic exhaust port of the pressure balance storage tank is provided
  • an automatic exhaust valve a safety valve is provided on the safety port of the pressure balance storage tank, and the air outlet of the pressure balance storage tank is connected to the air inlet of the medium pressure nitrogen storage tank through a booster pipeline.
  • the air outlet of the medium-pressure nitrogen storage tank is connected to the air inlet of the pressure regulating valve.
  • the pipe connecting the air outlet of the medium-pressure nitrogen storage tank and the air inlet of the pressure regulating valve is provided with a control valve.
  • the air outlet of the valve is connected to the air inlet of the atomizing nozzle of the smelting atomization device, the recovery port of the pressure balance storage tank is connected to the air outlet of the dust removal recovery device, and the booster pipeline includes high-efficiency filters connected in series. Radiator, cooler, gas filter and nitrogen compressor.
  • the vacuum control device includes a vacuum pump, a roots pump and a vacuum pipeline, and the air inlet of the vacuum pump and the roots pump are respectively connected to the vacuum pipeline, so
  • the vacuum pipes are respectively connected to the melting furnace and the atomizing chamber through a vacuum branch, the vacuum branch connecting the vacuum pipe to the melting furnace is provided with a vacuum melting valve, and the vacuum pipe connecting to the atomizing chamber is provided on the vacuum branch There is a vacuum atomization valve.
  • the classification system is a plurality of turbo classifiers arranged in series in sequence.
  • the technical solution of the present invention can also be realized as follows:
  • the dust removal and recovery device includes a dust collector, an induced draft fan, a recovery one-way valve and a recovery pipeline, and the air inlet of the dust collector is connected to the last turbine classifier of the classification system.
  • the air outlet of the dust collector is connected to the recovery port of the pressure balance storage tank through a recovery pipeline, and the recovery pipeline is sequentially provided with an induced draft fan and a recovery check valve from the dust collector to the pressure balance storage tank.
  • the technical solution of the present invention can also be realized as follows:
  • the gas supply pipeline includes a gas supply pipeline, a manual gas supply valve, an automatic gas supply valve, a gas supply check valve and a gas supply overflow valve.
  • One end of the pipeline is connected with the gas outlet of the low-pressure nitrogen storage tank, and the other end is connected with the air inlet of the pressure balance storage tank.
  • the gas supply pipeline is sequentially provided with manual gas supply valves from the low pressure nitrogen storage tank to the pressure balance storage tank. , Automatic air supply valve, air supply check valve and air supply overflow valve.
  • the medium pressure nitrogen storage tank is connected to the gas supply port of the pressure balance storage tank through a medium pressure gas supply line, and the medium pressure gas supply line includes a medium pressure nitrogen gas storage tank.
  • the medium-pressure supplementary gas pipeline between the gas outlet of the pressure balance tank and the supplementary port of the pressure balance storage tank, and the medium pressure supplementary valve, Y-type filter, and supplementary gas overflow are arranged in order from the medium pressure nitrogen storage tank to the pressure balance storage tank on the medium pressure supplementary gas pipeline. Flow valve and air supplement check valve.
  • the technical solution of the present invention can also be realized as follows: the gas outlet of the high-purity liquid nitrogen tank is connected to the pressure regulating valve through the gas supplement pipeline, and the gas supplement pressure relief valve is provided on the gas supplement pipeline.
  • the present invention uses high-purity liquid nitrogen as the inert gas source, and the purity of the high-purity liquid nitrogen can reach 99.999%.
  • the aluminum-based alloy powder produced by the atomization of high-purity liquid nitrogen has an oxygen content of less than or equal to 100PPM. The amount is low, and it can fully meet the needs of additive manufacturing.
  • the vacuum pump and the roots pump are used to achieve vacuum, and the vacuum can reach 0.1Pa, thereby effectively improving the sphericity and fluidity of the aluminum-based alloy powder after atomization.
  • Design a closed-loop inert gas circulation system to realize the recovery and utilization of inert gas and balance the pressure in the system, reduce production costs and improve production efficiency.
  • the present invention is equipped with a pressure balance storage tank, and nitrogen is added to the pressure balance tank through the gas supply pipeline and the medium pressure gas supplement pipeline, so as to maintain the inert gas balance of the entire vacuum atomization production system, so that the aluminum-based alloy powder is slightly positive It is produced under the protection of inert gas under pressure, thereby effectively preventing air from entering the alloy powder production system, preventing the quality of alloy powder products from reducing and increasing the risk of production.
  • the nitrogen gas is dedusted by the dust collector under the action of the induced draft fan and then enters the pressure balance storage tank to realize the recovery of the nitrogen gas.
  • a closed-circuit nitrogen circulation system is formed, thereby effectively improving the nitrogen utilization rate and reducing the production cost of aluminum-based alloy powder, making the present invention suitable for large-scale vacuum atomization devices.
  • the gas outlet of the high-purity liquid nitrogen tank of the present invention is connected to the pressure regulating valve through the gas supply pipeline.
  • the high-purity liquid nitrogen tank can be directly supplemented to the smelting atomization device and the grading system Nitrogen ensures the smooth production of aluminum-based alloy powder.
  • the nitrogen in the pressure balance storage tank of the present invention passes through a high-efficiency filter, a cooler, and is pressurized by a nitrogen compressor and then sent to a medium-pressure nitrogen storage tank, and then participates in the production and classification of aluminum-based alloy powder atomization.
  • a nitrogen compressor In order to ensure the production of aluminum-based alloy powder and the pressure stability of the medium-pressure nitrogen storage tank, it is necessary to ensure that the nitrogen flow of the pressure balance storage tank entering the nitrogen compressor is equal to the nitrogen flow participating in the production of aluminum-based alloy powder.
  • the nitrogen flow rate involved in the production of aluminum-based alloy powder atomization is constantly changing, while the gas flow rate entering the nitrogen compressor is relatively stable.
  • the present invention provides a medium-pressure supplementary gas pipeline, that is, to ensure Under the premise that the gas output of the nitrogen compressor is greater than the flow of the atomizing gas, the remaining part of the nitrogen is directly added to the pressure balance storage tank through the medium pressure gas supply line to achieve the pressure maintenance of the pressure balance storage tank and the medium pressure nitrogen storage tank The purpose of balance.
  • the present invention has simple structure and convenient use, can effectively realize the vacuum atomization production of aluminum-based alloy powder, and at the same time, reduce the oxygen content of the aluminum-based alloy powder produced by increasing the purity of the nitrogen gas involved in the production of aluminum-based alloy powder It can improve the sphericity and fluidity of aluminum-based alloy powder by increasing the vacuum degree, and provide materials with high sphericity, low oxygen content and good fluidity for my country's additive manufacturing.
  • Figure 1 is a schematic diagram of the structure of the present invention.
  • a vacuum atomization production system for aluminum-based alloy powder includes a smelting atomization device 1, a vacuum control device 2, an air pressure balance system 3, a classification system 4, and a dust removal and recovery device 5.
  • the device 1 includes a smelting furnace 11, an atomizing nozzle 12, and an atomizing chamber 13.
  • the discharge port of the smelting furnace 11 is connected to the atomizing chamber 13 through the atomizing nozzle 12, and the air inlet of the atomizing nozzle 12 Connected to the air outlet of the air pressure balance system 3, the smelting furnace 11 is connected to the air inlet of the vacuum control device 2 through a pipe, and the atomization chamber 13 is connected to the air inlet of the vacuum control device 2 through a pipe.
  • the device 2 includes a vacuum pump 21, a roots pump 22, and a vacuum pipe 23.
  • the air inlet of the vacuum pump 21 and the air inlet of the roots pump 22 are respectively connected to the vacuum pipe 23, and the vacuum pipe 23 is connected through a vacuum branch pipe.
  • the smelting furnace 11 and the atomizing chamber 13, the vacuum pipe connecting the vacuum pipe 23 and the smelting furnace 11 is provided with a vacuum melting valve 24, and the vacuum pipe 23 connecting with the atomizing chamber 13 is provided with a vacuum pipe Atomization valve 25.
  • the discharge port of the atomization chamber 13 is connected to the feed port of the classification system 4, and the classification system 4 is three turbo classifiers arranged in series in sequence, including a first turbo classifier 41 and a second turbo classifier.
  • the feed port of the first turbo classifier 41 is connected to the discharge port of the atomization chamber 13 through a pipe, and the air outlet of the first turbo classifier 41 is connected to the second turbine
  • the inlet of the classifier 42, the air outlet of the second turbo classifier 42 is connected to the inlet of the third turbo classifier 43, the first turbo classifier 41, the second turbo classifier 42, and the third turbo classifier 43
  • the discharge ports are respectively connected to the receiving tank and the vacuum packaging device.
  • the air outlet of the third turbine classifier 43 is connected to the air inlet of the dust removal and recovery device 5.
  • the dust removal and recovery device 5 includes a dust remover 51, an induced draft fan 52, Recovery check valve 53 and recovery pipeline 54.
  • the air inlet of the dust collector 51 is connected to the air outlet of the third turbo classifier 43, and the air outlet of the dust collector 51 is connected to the pressure of the air pressure balance system 3 through the recovery pipeline 54
  • the recovery port of the balance storage tank 33, the recovery pipeline 54 is provided with an induced draft fan 52 and a recovery check valve 53 in sequence from the dust collector 51 to the pressure balance storage tank 33.
  • the pressure balance system 3 includes a high purity liquid nitrogen tank 31, a low pressure nitrogen storage tank 32, a pressure balance storage tank 33, a high efficiency filter 34, a cooler 35, a gas filter 36, a nitrogen compressor 37, and a medium pressure nitrogen storage tank.
  • the gas outlet of the high-purity liquid nitrogen tank 31 is connected to the gas inlet of the low-pressure nitrogen storage tank 32, and the gas outlet of the low-pressure nitrogen storage tank 32 is connected to the pressure balance storage tank 33 through the gas supply line.
  • the air inlet, the pressure balance storage tank 33 includes the tank body and the air inlet, the air outlet, the safety port, the automatic exhaust port, the air supplement port, the recovery port and the explosion vent provided on the tank body.
  • the explosion relief port of the balance storage tank 33 is provided with an explosion relief valve
  • the automatic exhaust port of the pressure balance storage tank 33 is provided with an automatic exhaust valve
  • the safety port of the pressure balance storage tank 33 is provided with a safety valve
  • the air outlet of the pressure balance storage tank 33 is connected to the air inlet of the intermediate pressure nitrogen storage tank 38 through the booster pipeline 311, and the air outlet of the intermediate pressure nitrogen storage tank 38 is connected to the air inlet of the pressure regulating valve 39
  • a control valve 310 is provided on the pipe connecting the air outlet of the intermediate pressure nitrogen storage tank 38 and the air inlet of the pressure regulating valve 39, and the air outlet of the pressure regulating valve 39 is connected to the mist of the smelting atomization device 1.
  • the air inlet of the chemical nozzle 12, the recovery port of the pressure balance storage tank 33 is connected to the air outlet of the dust removal recovery device 5, and the booster pipeline 311 includes a high efficiency filter 34, a cooler 35, Gas filter 36 and nitrogen compressor 37.
  • the air supply pipeline includes an air supply pipeline 312, a manual air supply valve 313, an automatic air supply valve 314, an air supply check valve 315, and an air supply overflow valve 316.
  • One end of the air supply pipeline 312 is connected to a low-pressure nitrogen storage
  • the gas outlet of the tank 32 is connected, and the other end is connected to the gas inlet of the pressure balance storage tank 33.
  • the gas supply pipeline 312 is provided with a manual gas supply valve 313 in sequence from the low pressure nitrogen storage tank 32 to the pressure balance storage tank 33. , Automatic air supply valve 314, air supply check valve 315 and air supply overflow valve 316.
  • the medium pressure nitrogen storage tank 38 is connected to the gas supply port of the pressure balance storage tank 33 through a medium pressure gas supply line, and the medium pressure gas supply line includes a gas outlet connecting the medium pressure nitrogen gas storage tank 38 and the pressure balance storage tank 33
  • the medium-pressure supplemental gas pipeline 317 of the supplementary port of the medium-pressure supplementary gas pipeline 317, the medium-pressure supplementary valve 318, the Y-type filter 319, and the supplemental gas overflow are sequentially arranged from the medium-pressure nitrogen storage tank 38 to the pressure balance storage tank 33 on the medium-pressure supplementary gas pipeline 317.
  • the gas outlet of the high-purity liquid nitrogen tank 31 is connected to the pressure regulating valve 39 through the gas supplement pipeline 322, and the gas supplement pressure relief valve 323 is provided on the gas supplement pipeline 322.
  • the high-pressure nitrogen in the high-purity liquid nitrogen tank 31 enters the low-pressure nitrogen storage tank 32, and then the manual gas supply valve 313 is manually opened, or the automatic gas supply valve 314 is automatically opened, and the nitrogen in the low-pressure nitrogen storage tank 32 passes through the gas supply pipe 312 Enter the pressure balance storage tank 33, and then the nitrogen in the pressure balance storage tank 33 passes through the high efficiency filter 34, the cooler 35, the gas filter 36, and then enters the nitrogen compressor 37 to be pressurized, and the pressurized nitrogen enters the medium pressure nitrogen storage
  • the tank 38 is stored, and the pressure regulating valve 39 is opened to set the nitrogen pressure required for the production of aluminum-based alloy powder.
  • the control valve 310 is closed at this time ,
  • the high-pressure nitrogen in the high-purity liquid nitrogen tank 31 is released to the nitrogen pressure required for the production of aluminum-based alloy powder through the gas supply pipeline 322 and the gas-relief valve 323, and enters the atomization nozzle 12 through the pressure regulating valve 39 to participate in the aluminum-based alloy
  • the aluminum-based alloy is smelted into a melt in the smelting chamber under vacuum, and the melt is atomized through the atomizing nozzle 12 under the protection of nitrogen.
  • the atomized aluminum-based alloy powder enters the classification system 4 under the protection of nitrogen for classification.
  • the aluminum-based alloy powder is classified according to its particle size.
  • the aluminum-based alloy powder is collected in a collection tank, and finally vacuum packaged by a vacuum packaging machine.
  • Nitrogen carries a small amount of alloy powder into the dust collector 51, and a small amount of alloy powder carried in the nitrogen in the dust collector 51 After being recovered, the nitrogen gas enters the pressure balance storage tank 33 through the recovery pipe 54 under the action of the induced draft fan 52.
  • the nitrogen in the low-pressure nitrogen storage tank 32 enters the pressure balance storage tank 33 through the gas supply line, and the recovered nitrogen enters the pressure balance storage tank 33 through the recovery pipe 54.
  • the pressure of the nitrogen in the pressure balance storage tank 33 continues to increase, and at the same time, the pressure
  • the nitrogen in the balance storage tank 33 enters the medium pressure nitrogen storage tank 38 through the pressurization pipeline 311, the nitrogen pressure in the medium pressure nitrogen storage tank 38 increases, and the nitrogen pressure in the medium pressure nitrogen storage tank 38 reaches the pressure of the pressure regulating valve 39
  • the gas pressure relief valve 323 of the gas supply pipe 322 is closed, and the control valve 310 is opened.
  • the nitrogen in the medium pressure nitrogen storage tank 38 participates in the aluminum-based alloy powder atomization production, and at the same time, the low pressure nitrogen storage tank 32 continues to
  • the pressure balance storage tank 33 delivers nitrogen until the nitrogen in the pressure balance storage tank 33 and the intermediate pressure nitrogen storage tank 38 reach the upper limit of the set pressure.
  • the pressure is set for the pressure balance storage tank 33, the medium pressure nitrogen storage tank 38, and the low pressure nitrogen storage tank 32 of the pressure balance system.
  • the pressure is set in this embodiment.
  • the upper pressure limit of the balance storage tank 33 is 10 KPa and the lower pressure limit is 5 KPa; the upper pressure limit of the medium pressure nitrogen storage tank 38 is set to 8 MPa, the lower pressure limit is set to 6 MPa, and the lower pressure limit of the low pressure nitrogen storage tank 32 is set to 0.3 MPa.
  • the pressure balance storage tank 33 When the pressure of the pressure balance storage tank 33 is less than 5KPa, the pressure balance storage tank 33 needs to be supplemented with inert gas. At this time, if the pressure of the medium pressure nitrogen storage tank 38 is greater than 8MPa, the medium pressure gas supply pipeline is connected, and the medium pressure gas supply pipeline is connected. The medium pressure gas supply valve 318 on the 317 is opened, the inert gas in the medium pressure nitrogen storage tank 38 is filtered by the Y-type filter 319, and flows from the gas supply port of the pressure balance storage tank 33 into the pressure balance storage tank 33, and then flows to the pressure balance storage tank 33. The tank 33 is filled with inert gas. During this process, the pressure of the medium pressure nitrogen storage tank 38 gradually decreases.
  • the medium pressure gas supply valve 318 on the medium pressure gas supply pipe 317 is closed.
  • the automatic gas supply pipeline connecting the low pressure nitrogen storage tank 32 and the pressure balance storage tank 33 is opened.
  • the low pressure nitrogen storage tank 32 replenishes the pressure balance storage tank 33 and the medium pressure nitrogen storage tank 38 with inert gas, and the pressure in the medium pressure nitrogen storage tank 38 gradually
  • the automatic gas supply pipeline is closed, the medium pressure supplementary gas pipeline is opened, and the medium pressure nitrogen storage tank 38 replenishes the pressure balance storage tank 33 with inert gas, and the cycle repeats until The pressure of the pressure balance storage tank 33 is ⁇ 10KPa.
  • the pressure balance storage tank 33 When the pressure of the pressure balance storage tank 33 is less than 5KPa, the pressure balance storage tank 33 needs to be supplemented with inert gas. At this time, if the pressure of the medium pressure nitrogen storage tank 38 is ⁇ 6 MPa, and the pressure of the low pressure nitrogen storage tank 32 is> 0.3 MPa, then The low-pressure nitrogen storage tank 32 replenishes the pressure balance storage tank 33 with inert gas. The inert gas enters the pressure balance storage tank 33 and is filtered by a filter. After being cooled by the cooler 35, it is pressurized by the nitrogen compressor 37 and then transferred to the medium pressure nitrogen storage tank. 38 Replenish inert gas. The pressure in the medium pressure nitrogen storage tank 38 gradually rises.
  • the medium pressure gas supply pipeline is automatically opened, and the medium pressure nitrogen storage tank 38 supplies the pressure balance storage tank 33 Inert gas, the pressure in the medium-pressure nitrogen storage tank 38 gradually decreases.
  • the low-pressure nitrogen storage tank 32 replenishes the pressure balance storage tank 33 with inert gas, and the cycle repeats until the pressure is balanced.
  • the pressure of the tank 33 is ⁇ 10KPa.
  • the pressure balance storage tank 33 When the pressure of the pressure balance storage tank 33 is less than 5KPa, the pressure balance storage tank 33 needs to be supplemented with inert gas. At this time, if the pressure of the medium pressure nitrogen storage tank 38 is ⁇ 6 MPa and the pressure of the low pressure nitrogen storage tank 32 is ⁇ 0.3 MPa, then The medium-pressure nitrogen gas storage tank 38 is forced to open the medium-pressure gas supply pipeline for supplying gas to the pressure balance storage tank 33, and the medium-pressure nitrogen gas storage tank 38 is forcibly supplied with inert gas to the pressure balance storage tank 33 to maintain the pressure balance.
  • the pressure in the pressure balance storage tank 33 is only less than 5KPa before air supplement is started.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种铝基合金粉真空气雾化生产系统,包括熔炼雾化装置(1)、真空控制装置(2)、气压平衡系统(3)、分级系统(4)及除尘回收装置(5),该系统是采用高纯液氮作为惰性气体源,高纯液氮的纯度能够达到99.999%,利用高纯液氮雾化生产出的铝基合金粉的含氧量小于等于100PPM,含氧量低,完全能够达到增材制造需要,同时,利用真空泵(21)和罗茨泵(22)相互配合实现真空,其真空度能够达到0.1Pa,从而有效的提高雾化后铝基合金粉的球形度及流动性,设计一种闭路循环的惰性气体循环系统,实现惰性气体的回收利用及系统内压力平衡,降低生产成本,提高生产效率。

Description

铝基合金粉真空气雾化生产系统 技术领域:
本发明属于合金粉的生产制造技术领域,具体涉及一种铝基合金粉真空气雾化生产系统。
背景技术:
目前,以3D打印为代表的增材制造技术越来越成熟,但是增材制造技术对原材料要求比较高,以利用合金粉末进行增材制造来说,要求合金粉末满足氧含量低、球形度高及流动性好等性能,粉体的流动性直接影响激光增材制造时铺粉效果、成形过程以及增材制造件质量。粉体的流动性与粉体的粒度、外观形貌、松装密度及霍尔流速等特征有关。粉体的球形度越高、粒度分布越均匀、霍尔流速越小,则粉体的流动性越好。粉体粒度的要求与增材制造技术有关,对于基于铺粉式粉末床的激光增材制造技术,其粉体粒度最好在15~53μm范围内。而粉体的氧含量高,表面活性越大,润湿性越差,球化现象越严重,导致熔化效果差。
真空气雾化生产的合金粉末以其低氧、球形度高、流动性好等优势受到增材制造的欢迎,目前,增材制造技术已经被作为国家战略提出,随着增材制造技术的不断发展,现有的真空气雾化生产的合金粉末已经无法满足增材制造对合金粉末的球形度及流动性的要求,原材料问题已经严重制约我国增材制造技术的发展。
以真空气雾化生产铝基合金粉末为例,其主要工艺流程为铝基合金真空熔炼-氮气或氩气雾化制粉-粉末收集-气体排空。氮气或氩气为惰性气体,其在雾化制粉中作为保护气体使用,惰性气体的纯度直接影响铝基合金粉末的含氧量,而雾化制粉的真空度直接影响铝基合金粉末的球形度及流动性,真空度高则生产的铝基合金粉末球形度越好流动性好。目前铝基合金粉生产企业其采用的氮气大多是通过制氮机生产氮气,制氮机生产氮气,氮气成本低,但是,制氮机生产出的氮气纯度最高只能达到99.99%,利用该纯度的氮气真空雾化出的铝基合金粉的含氧量在800PPM左右,无法满足增材制造的需要,而且,氮气在粉末收集后直接排放,造成氮气使用效率较低,真空气雾化生产合金粉末的生产成本难以降低,而且,大量的惰性保护气体被排向大气也不利于大气环境保护。
另外,现有铝基合金粉生产企业其采用真空泵将生产系统中的空气抽走,保持生产系统真空,但是,真空泵所能达到的真空度不高,不能满足雾化生产需要。导致生产出的铝基合金粉球形度及流动性较差,不能够满足增材制造的需要。
发明内容
综上所述,为了克服现有技术问题的不足,本发明提供了一种铝基合金粉真空气雾 化生产系统,它是采用高纯液氮作为惰性气体源,高纯液氮的纯度能够达到99.999%,利用高纯液氮雾化生产出的铝基合金粉的含氧量小于等于100PPM,含氧量低,完全能够达到增材制造需要,同时,利用真空泵和罗茨泵相互配合实现真空,其真空度能够达到0.1Pa,从而有效的提高雾化后铝基合金粉的球形度及流动性,设计一种闭路循环的惰性气体循环系统,实现惰性气体的回收利用及系统内压力平衡,降低生产成本提高生产效率。
为解决上述技术问题,本发明的技术方案是这样实现的:
一种铝基合金粉真空气雾化生产系统,其中:包括熔炼雾化装置、真空控制装置、气压平衡系统、分级系统及除尘回收装置,所述的熔炼雾化装置包括熔炼炉、雾化喷嘴及雾化室,所述的熔炼炉的出料口通过雾化喷嘴连通雾化室,所述的雾化喷嘴的进气口连通气压平衡系统的出气口,所述的熔炼炉的通过管道连接真空控制装置的进气口,雾化室的通过管道连接真空控制装置的进气口,所述的雾化室的出料口连通分级系统的进料口,所述的分级系统的出料口连通收料罐及真空包装装置,所述的分级系统的出风口连通除尘回收装置的进风口,所述的除尘回收装置的出风口连通气压平衡系统,所述的气压平衡系统包括高纯液氮罐、低压氮气储罐、压力平衡储罐、高效过滤器、冷却器、气体过滤器、氮气压缩机、中压氮气储罐及压力调节阀,所述的高纯液氮罐的出气口连通低压氮气储罐的进气口,低压氮气储罐的出气口通过供气管路连通压力平衡储罐的进气口,所述的压力平衡储罐包括罐体及罐体上设置的进气口、出气口、安全口、自动排气口、补气口、回收口及泄爆口,所述的压力平衡储罐的泄爆口上设置有泄爆阀,所述的压力平衡储罐的自动排气口上设置有自动排气阀,所述的压力平衡储罐的安全口上设置有安全阀,所述的压力平衡储罐的出气口通过增压管路连通中压氮气储罐的进气口,所述的中压氮气储罐的出气口连通压力调节阀的进气口,所述的中压氮气储罐的出气口与压力调节阀的进气口连通的管道上设置有控制阀,所述的压力调节阀的出气口连通熔炼雾化装置的雾化喷嘴的进气口,所述的压力平衡储罐的回收口连通除尘回收装置的出风口,所述的增压管路包括依次串联连接的高效过滤器、冷却器、气体过滤器及氮气压缩机。
本发明的技术方案还可以是这样实现的:所述的真空控制装置包括真空泵、罗茨泵及真空管道,所述的真空泵的进气口与罗茨泵进气口分别与真空管道连通,所述的真空管道分别通过真空分管连接熔炼炉和雾化室,所述的真空管道与熔炼炉连接的真空分管上设置有真空熔炼阀,所述的真空管道与雾化室连接的真空分管上设置有真空雾化阀。
本发明的技术方案还可以是这样实现的:所述的分级系统为多个依次串联布置的涡轮分级机。
本发明的技术方案还可以是这样实现的:所述的除尘回收装置包括除尘器、引风机、回收单向阀及回收管道,所述的除尘器的进风口连接分级系统的最后一个涡轮分级机的出风口,所述的除尘器的出风口通过回收管道连接压力平衡储罐的回收口,所述的回收管道上从除尘器到压力平衡储罐依次设置引风机及回收单向阀。
本发明的技术方案还可以是这样实现的:所述的供气管路包括供气管道、手动供气阀、自动供气阀、供气单向阀及供气溢流阀,所述的供气管道一端与低压氮气储罐的出气口连接,其另一端与压力平衡储罐的进气口连接,所述的供气管道上从低压氮气储罐到压力平衡储罐依次设置有手动供气阀、自动供气阀、供气单向阀及供气溢流阀。
本发明的技术方案还可以是这样实现的:所述的中压氮气储罐通过中压补气管路连通压力平衡储罐的补气口,所述的中压补气管路包括连通中压氮气储罐的出气口与压力平衡储罐的补气口的中压补气管道,中压补气管道上从中压氮气储罐到压力平衡储罐依次设置的中压补气阀、Y型过滤器、补气溢流阀及补气单向阀。
本发明的技术方案还可以是这样实现的:所述的高纯液氮罐的出气口通过补气管路连通压力调节阀,所述的补气管路上设置有补气泄压阀。
本发明的有益效果为:
1、本发明是采用高纯液氮作为惰性气体源,高纯液氮的纯度能够达到99.999%,利用高纯液氮雾化生产出的铝基合金粉的含氧量小于等于100PPM,含氧量低,完全能够达到增材制造需要,同时,利用真空泵和罗茨泵相互配合实现真空,其真空度能够达到0.1Pa,从而有效的提高雾化后铝基合金粉的球形度及流动性,设计一种闭路循环的惰性气体循环系统,实现惰性气体的回收利用及系统内压力平衡,降低生产成本提高生产效率。
2、本发明设置有压力平衡储罐,并通过供气管路及中压补气管路向气压平衡罐内补充氮气,保持整个真空气雾化生产系统的惰性气体平衡,使铝基合金粉末在微正压惰性气体保护下生产,从而有效的防止空气进入合金粉生产系统,防止造成合金粉产品品质降低和增加生产的危险性。
3、本发明的真空熔炼后气雾化产生的铝基合金粉经分级系统分级并真空包装后,氮气在引风机的作用下经除尘器除尘后进入压力平衡储罐,实现对氮气的回收,形成闭路循环的氮气循环系统,从而有效的提高氮气利用率,降低铝基合金粉的生产成本,使本发明适合大型真空气雾化装置。
4、本发明的高纯液氮罐的出气口通过补气管路连通压力调节阀,则当中压氮气储罐的压力不足时,可以从高纯液氮罐直接向熔炼雾化装置及分级系统补充氮气,保证铝基合金 粉的顺利生产。
5、本发明的压力平衡储罐内的氮气通过高效过滤器、冷却器,被氮气压缩机加压后送至中压氮气储罐,然后通过参与铝基合金粉雾化生产及分级。为保证铝基合金粉生产和中压氮气储罐的压力稳定,必须保证压力平衡储罐进入氮气压缩机的氮气流量和参与铝基合金粉生产的氮气流量相等。但是,参与铝基合金粉雾化生产的氮气流量是时刻变化的,而进入氮气压缩机的气体流量是相对稳定的,为了保证二者平衡,本发明设置中压补气管路,即,在保证氮气压缩机的产气量大于雾化气体流量的前提下,将所剩余部分氮气通过中压补气管路直接补入压力平衡储罐内,来达到压力平衡储罐和中压氮气储罐的压力保持平衡的目的。
6、本发明结构简单、使用方便,能够有效的实现铝基合金粉的真空气雾化生产,同时,通过提高参与铝基合金粉生产的氮气的纯度而降低生产的铝基合金粉的含氧量,通过提高真空度达到提升铝基合金粉球形度及流动性的目的,为我国增材制造提供球形度高、氧含量低、流动性好的材料。
附图说明:
图1为本发明的结构示意图。
具体实施方式
下面结合附图对本发明作进一步的详细说明。
如图1所示,一种铝基合金粉真空气雾化生产系统,包括熔炼雾化装置1、真空控制装置2、气压平衡系统3、分级系统4及除尘回收装置5,所述的熔炼雾化装置1包括熔炼炉11、雾化喷嘴12及雾化室13,所述的熔炼炉11的出料口通过雾化喷嘴12连通雾化室13,所述的雾化喷嘴12的进气口连通气压平衡系统3的出气口,所述的熔炼炉11的通过管道连接真空控制装置2的进气口,雾化室13的通过管道连接真空控制装置2的进气口,所述的真空控制装置2包括真空泵21、罗茨泵22及真空管道23,所述的真空泵21的进气口与罗茨泵22进气口分别与真空管道23连通,所述的真空管道23分别通过真空分管连接熔炼炉11和雾化室13,所述的真空管道23与熔炼炉11连接的真空分管上设置有真空熔炼阀24,所述的真空管道23与雾化室13连接的真空分管上设置有真空雾化阀25。所述的雾化室13的出料口连通分级系统4的进料口,所述的分级系统4为三个依次串联布置的涡轮分级机,包括第一涡轮分级机41、第二涡轮分级机42及第三涡轮分级机43,所述的第一涡轮分级机41的进料口通过管道连接雾化室13的出料口,所述的第一涡轮分级机41的出风口连接第二涡轮分级机42的进料口,第二涡轮分级机42的出风口连接第三涡轮分级机43的进料口,第一涡轮分级机41、第二涡轮分级机42及第三涡轮分级机43的出料口分别连接 收料罐及真空包装装置,所述的第三涡轮分级机43的出风口连通除尘回收装置5的进风口,所述的除尘回收装置5包括除尘器51、引风机52、回收单向阀53及回收管道54,所述的除尘器51的进风口连接第三涡轮分级机43的出风口,所述的除尘器51的出风口通过回收管道54连接气压平衡系统3的压力平衡储罐33的回收口,所述的回收管道54上从除尘器51到压力平衡储罐33依次设置引风机52及回收单向阀53。
所述的气压平衡系统3包括高纯液氮罐31、低压氮气储罐32、压力平衡储罐33、高效过滤器34、冷却器35、气体过滤器36、氮气压缩机37、中压氮气储罐38及压力调节阀39,所述的高纯液氮罐31的出气口连通低压氮气储罐32的进气口,低压氮气储罐32的出气口通过供气管路连通压力平衡储罐33的进气口,所述的压力平衡储罐33包括罐体及罐体上设置的进气口、出气口、安全口、自动排气口、补气口、回收口及泄爆口,所述的压力平衡储罐33的泄爆口上设置有泄爆阀,所述的压力平衡储罐33的自动排气口上设置有自动排气阀,所述的压力平衡储罐33的安全口上设置有安全阀,所述的压力平衡储罐33的出气口通过增压管路311连通中压氮气储罐38的进气口,所述的中压氮气储罐38的出气口连通压力调节阀39的进气口,所述的中压氮气储罐38的出气口与压力调节阀39的进气口连通的管道上设置有控制阀310,所述的压力调节阀39的出气口连通熔炼雾化装置1的雾化喷嘴12的进气口,所述的压力平衡储罐33的回收口连通除尘回收装置5的出风口,所述的增压管路311包括依次串联连接的高效过滤器34、冷却器35、气体过滤器36及氮气压缩机37。所述的供气管路包括供气管道312、手动供气阀313、自动供气阀314、供气单向阀315及供气溢流阀316,所述的供气管道312一端与低压氮气储罐32的出气口连接,其另一端与压力平衡储罐33的进气口连接,所述的供气管道312上从低压氮气储罐32到压力平衡储罐33依次设置有手动供气阀313、自动供气阀314、供气单向阀315及供气溢流阀316。
所述的中压氮气储罐38通过中压补气管路连通压力平衡储罐33的补气口,所述的中压补气管路包括连通中压氮气储罐38的出气口与压力平衡储罐33的补气口的中压补气管道317,中压补气管道317上从中压氮气储罐38到压力平衡储罐33依次设置的中压补气阀318、Y型过滤器319、补气溢流阀320及补气单向阀321。
所述的高纯液氮罐31的出气口通过补气管路322连通压力调节阀39,所述的补气管路322上设置有补气泄压阀323。
开机生产时,将铝基合金加入熔炼室内,启动真空泵21,打开真空熔炼阀24和真空雾化阀25,此时关闭压力调节阀39,真空泵21抽取熔炼室、雾化喷嘴12、雾化室13、分级系统4、除尘器51及连接管道内的空气,当雾化室13内的压力达到1kPa时,关闭真空 泵21,打开罗茨泵22,继续抽取空气,当雾化室13内的压力达到0.1Pa以下时,关闭罗茨泵22、关闭真空熔炼阀24和真空雾化阀25。
高纯液氮罐31内的高压氮气进入低压氮气储罐32内,之后,手动打开手动供气阀313、或者自动打开自动供气阀314,低压氮气储罐32内的氮气经供气管道312进入压力平衡储罐33,然后压力平衡储罐33内的氮气再经高效过滤器34、冷却器35、气体过滤器36后进入氮气压缩机37增压,增压后的氮气进入中压氮气储罐38存储,打开压力调节阀39设定铝基合金粉生产所需氮气压力,刚开机生产时,由于中压氮气储罐38内的氮气压力不能够满足生产需要,此时,控制阀310关闭,高纯液氮罐31内的高压氮气经补气管路322及补气泄压阀323泄压至铝基合金粉生产所需氮气压力,经压力调节阀39进入雾化喷嘴12参与铝基合金粉生产,熔炼室在真空状态下将铝基合金熔炼成熔液,熔液经雾化喷嘴12在氮气保护下雾化,雾化后的铝基合金粉在氮气保护下进入分级系统4分级,铝基合金粉按其粒径大小分级,铝基合金粉进入收集罐收集,最后经真空包装机真空包装,氮气携带少量合金粉进入除尘器51,在除尘器51内氮气中携带的少量合金粉被回收,氮气在引风机52的作用下经回收管道54进入压力平衡储罐33。
低压氮气储罐32内的氮气经供气管路进入压力平衡储罐33,回收的氮气经回收管道54进入压力平衡储罐33,则压力平衡储罐33内的氮气压力持续升高,同时,压力平衡储罐33内的氮气经增压管路311进入中压氮气储罐38,则中压氮气储罐38内的氮气压力增高,当中压氮气储罐38内的氮气压力达到压力调节阀39的设定值时,关闭补气管路322的补气泄压阀323,打开控制阀310,中压氮气储罐38内的氮气参与铝基合金粉雾化生产,同时,低压氮气储罐32持续向压力平衡储罐33输送氮气,直至压力平衡储罐33及中压氮气储罐38内的氮气均达到设定压力上限。
为保持铝基合金粉持续生产所需的氮气压力,对压力平衡系统的压力平衡储罐33、中压氮气储罐38、低压氮气储罐32进行压力的设定,本实施例中设定压力平衡储罐33的压力上限为10KPa、压力下限5KPa;中压氮气储罐38的压力上限设为8MPa、压力下限设为6MPa,低压氮气储罐32的压力下限设定为0.3MPa。
压力平衡系统具体工作如下:
当压力平衡储罐33的压力≥10KPa时,此时无需向压力平衡储罐33补气。
当压力平衡储罐33的压力<5KPa时,需要向压力平衡储罐33补充惰性气体,此时,如果中压氮气储罐38的压力>8MPa,中压补气管路连通,中压补气管道317上的中压补气阀318开启,中压氮气储罐38内的惰性气体经Y型过滤器319过滤后,从压力平衡储 罐33的补气口流入压力平衡储罐33,向压力平衡储罐33内补充惰性气体,在此过程中,中压氮气储罐38压力逐渐降低,当中压氮气储罐38压力低于6MPa时,中压补气管道317上的中压补气阀318关闭,低压氮气储罐32与压力平衡储罐33连通的自动供气管路打开,低压氮气储罐32向压力平衡储罐33及中压氮气储罐38补充惰性气体,中压氮气储罐38内压力逐渐升高,当中压氮气储罐38内的压力超过8MPa时,自动供气管路关闭,中压补气管路打开,中压氮气储罐38向压力平衡储罐33补充惰性气体,如此循环往复,直至压力平衡储罐33的压力≥10KPa。
当压力平衡储罐33的压力<5KPa时,需要向压力平衡储罐33补充惰性气体,此时,如果中压氮气储罐38的压力≤6MPa,低压氮气储罐32的压力>0.3MPa,则低压氮气储罐32向压力平衡储罐33补充惰性气体,惰性气体进入压力平衡储罐33再经过滤器过滤,经冷却器35冷却后,再经氮气压缩机37增压后向中压氮气储罐38补充惰性气体,中压氮气储罐38内压力逐渐升高,当中压氮气储罐38内压力超过8MPa时,中压补气管路自动打开,中压氮气储罐38向压力平衡储罐33补充惰性气体,中压氮气储罐38内压力逐渐降低,等中压氮气储罐38压力低于6MPa时,低压氮气储罐32向压力平衡储罐33补充惰性气体,如此循环往复,直至压力平衡储罐33的压力≥10KPa。
当压力平衡储罐33的压力<5KPa时,需要向压力平衡储罐33补充惰性气体,此时,如果中压氮气储罐38的压力≤6MPa且低压氮气储罐32的压力≤0.3MPa,则中压氮气储罐38向压力平衡储罐33补气的中压补气管路强制打开,中压氮气储罐38强制向压力平衡储罐33补充惰性气体,以维持气压平衡。
当所有线路都没有补气时,压力平衡储罐33压力只有小于5KPa,方开始补气。
需要说明的是,以上所述实施例是对本发明技术方案的说明而非限制,所属技术领域普通技术人员的等同替换或者根据现有技术而做的其它修改,只要没超出本发明技术方案的思路和范围,均应包含在本发明所要求的权利范围之内。

Claims (7)

  1. 一种铝基合金粉真空气雾化生产系统,其特征在于:包括熔炼雾化装置(1)、真空控制装置(2)、气压平衡系统(3)、分级系统(4)及除尘回收装置(5),所述的熔炼雾化装置(1)包括熔炼炉(11)、雾化喷嘴(12)及雾化室(13),所述的熔炼炉(11)的出料口通过雾化喷嘴(12)连通雾化室(13),所述的雾化喷嘴(12)的进气口连通气压平衡系统(3)的出气口,所述的熔炼炉(11)的通过管道连接真空控制装置(2)的进气口,雾化室(13)的通过管道连接真空控制装置(2)的进气口,所述的雾化室(13)的出料口连通分级系统(4)的进料口,所述的分级系统(4)的出料口连通收料罐及真空包装装置,所述的分级系统(4)的出风口连通除尘回收装置(5)的进风口,所述的除尘回收装置(5)的出风口连通气压平衡系统(3),所述的气压平衡系统(3)包括高纯液氮罐(31)、低压氮气储罐(32)、压力平衡储罐(33)、高效过滤器(34)、冷却器(35)、气体过滤器(36)、氮气压缩机(37)、中压氮气储罐(38)及压力调节阀(39),所述的高纯液氮罐(31)的出气口连通低压氮气储罐(32)的进气口,低压氮气储罐(32)的出气口通过供气管路连通压力平衡储罐(33)的进气口,所述的压力平衡储罐(33)包括罐体及罐体上设置的进气口、出气口、安全口、自动排气口、补气口、回收口及泄爆口,所述的压力平衡储罐(33)的泄爆口上设置有泄爆阀,所述的压力平衡储罐(33)的自动排气口上设置有自动排气阀,所述的压力平衡储罐(33)的安全口上设置有安全阀,所述的压力平衡储罐(33)的出气口通过增压管路(311)连通中压氮气储罐(38)的进气口,所述的中压氮气储罐(38)的出气口连通压力调节阀(39)的进气口,所述的中压氮气储罐(38)的出气口与压力调节阀(39)的进气口连通的管道上设置有控制阀(310),所述的压力调节阀(39)的出气口连通熔炼雾化装置(1)的雾化喷嘴(12)的进气口,所述的压力平衡储罐(33)的回收口连通除尘回收装置(5)的出风口,所述的增压管路(311)包括依次串联连接的高效过滤器(34)、冷却器(35)、气体过滤器(36)及氮气压缩机(37)。
  2. 根据权利要求1所述的铝基合金粉真空气雾化生产系统,其特征在于:所述的真空控制装置(2)包括真空泵(21)、罗茨泵(22)及真空管道(23),所述的真空泵(21)的进气口与罗茨泵(22)进气口分别与真空管道(23)连通,所述的真空管道(23)分别通过真空分管连接熔炼炉(11)和雾化室(13),所述的真空管道(23)与熔炼炉(11)连接的真空分管上设置有真空熔炼阀(24),所述的真空管道(23)与雾化室(13)连接的真空分管上设置有真空雾化阀(25)。
  3. 根据权利要求1所述的铝基合金粉真空气雾化生产系统,其特征在于:所述的分级系统(4)为多个依次串联布置的涡轮分级机。
  4. 根据权利要求1所述的铝基合金粉真空气雾化生产系统,其特征在于:所述的除尘回收装置(5)包括除尘器(51)、引风机(52)、回收单向阀(53)及回收管道(54),所述的除尘器(51)的进风口连接分级系统(4)的最后一个涡轮分级机的出风口,所述的除尘器(51)的出风口通过回收管道(54)连接压力平衡储罐(33)的回收口,所述的回收管道(54)上从除尘器(51)到压力平衡储罐(33)依次设置引风机(52)及回收单向阀(53)。
  5. 根据权利要求1所述的铝基合金粉真空气雾化生产系统,其特征在于:所述的供气管路包括供气管道(312)、手动供气阀(313)、自动供气阀(314)、供气单向阀(315)及供气溢流阀(316),所述的供气管道(312)一端与低压氮气储罐(32)的出气口连接,其另一端与压力平衡储罐(33)的进气口连接,所述的供气管道(312)上从低压氮气储罐(32)到压力平衡储罐(33)依次设置有手动供气阀(313)、自动供气阀(314)、供气单向阀(315)及供气溢流阀(316)。
  6. 根据权利要求1所述的铝基合金粉真空气雾化生产系统,其特征在于:所述的中压氮气储罐(38)通过中压补气管路连通压力平衡储罐(33)的补气口,所述的中压补气管路包括连通中压氮气储罐(38)的出气口与压力平衡储罐(33)的补气口的中压补气管道(317),中压补气管道(317)上从中压氮气储罐(38)到压力平衡储罐(33)依次设置的中压补气阀(318)、Y型过滤器(319)、补气溢流阀(320)及补气单向阀(321)。
  7. 根据权利要求1所述的铝基合金粉真空气雾化生产系统,其特征在于:所述的高纯液氮罐(31)的出气口通过补气管路(322)连通压力调节阀(39),所述的补气管路(322)上设置有补气泄压阀(323)。
PCT/CN2020/133871 2020-01-03 2020-12-04 铝基合金粉真空气雾化生产系统 WO2021135818A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010003686.5A CN110976894A (zh) 2020-01-03 2020-01-03 铝基合金粉真空气雾化生产系统
CN202010003686.5 2020-01-03

Publications (1)

Publication Number Publication Date
WO2021135818A1 true WO2021135818A1 (zh) 2021-07-08

Family

ID=70080656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133871 WO2021135818A1 (zh) 2020-01-03 2020-12-04 铝基合金粉真空气雾化生产系统

Country Status (2)

Country Link
CN (1) CN110976894A (zh)
WO (1) WO2021135818A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110976894A (zh) * 2020-01-03 2020-04-10 河南省远洋粉体科技股份有限公司 铝基合金粉真空气雾化生产系统
CN113042741B (zh) * 2021-03-15 2023-04-07 中天上材增材制造有限公司 用于3d打印的金属粉末或合金粉末的制备方法及节能型自动化系统
CN113828787B (zh) * 2021-09-24 2022-09-27 湖南奥科新材料科技有限公司 气体循环纯化及控温的单金属或合金粉末制备方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146411A (ja) * 2000-09-04 2002-05-22 Mitsui Mining & Smelting Co Ltd 電池用亜鉛又は亜鉛合金粉末の製造方法
CN1923414A (zh) * 2006-07-24 2007-03-07 林刚 一种雾化制备球形镁粉的生产设备和制备方法
CN106891015A (zh) * 2017-03-31 2017-06-27 成都惠锋新材料科技股份有限公司 一种微晶、非晶态金属粉末制造装置及其制造方法
CN107559589A (zh) * 2017-09-27 2018-01-09 河南省远洋粉体科技股份有限公司 真空气雾化生产合金粉用惰性气体循环保护系统
CN109202093A (zh) * 2018-09-30 2019-01-15 湖南金天铝业高科技股份有限公司 一种微细球形铝合金粉的工业化制备方法
CN109226777A (zh) * 2018-11-20 2019-01-18 泸溪县群祥新材料有限责任公司 一种2219铝基合金粉及其生产方法
CN110976894A (zh) * 2020-01-03 2020-04-10 河南省远洋粉体科技股份有限公司 铝基合金粉真空气雾化生产系统
CN211386911U (zh) * 2020-01-03 2020-09-01 河南省远洋粉体科技股份有限公司 铝基合金粉真空气雾化生产系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423597A1 (de) * 1984-06-27 1986-01-09 Leybold-Heraeus GmbH, 5000 Köln Anlage zur metallpulver-herstellung durch edelgas- oder stickstoffverduesung
JP2004160376A (ja) * 2002-11-14 2004-06-10 Japan Synchrotron Radiation Research Inst 真空装置を窒素置換後に大気圧に開放する器具
CN105327859B (zh) * 2015-11-30 2017-12-15 河南省远洋粉体科技股份有限公司 铝粉生产用在线分级系统
CN205869473U (zh) * 2016-08-04 2017-01-11 浙江亚通焊材有限公司 一种制备增材制造金属粉末的无坩埚气雾化装置
CN106424748A (zh) * 2016-12-03 2017-02-22 东北大学 一种激光3d打印用球形合金粉末制备装置及方法
CN107008912A (zh) * 2017-04-28 2017-08-04 江苏威拉里新材料科技有限公司 一种用于熔炼炉的气体净化系统
CN209077795U (zh) * 2018-09-30 2019-07-09 湖南金天铝业高科技股份有限公司 一种微细球形铝合金粉的生产系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146411A (ja) * 2000-09-04 2002-05-22 Mitsui Mining & Smelting Co Ltd 電池用亜鉛又は亜鉛合金粉末の製造方法
CN1923414A (zh) * 2006-07-24 2007-03-07 林刚 一种雾化制备球形镁粉的生产设备和制备方法
CN106891015A (zh) * 2017-03-31 2017-06-27 成都惠锋新材料科技股份有限公司 一种微晶、非晶态金属粉末制造装置及其制造方法
CN107559589A (zh) * 2017-09-27 2018-01-09 河南省远洋粉体科技股份有限公司 真空气雾化生产合金粉用惰性气体循环保护系统
CN109202093A (zh) * 2018-09-30 2019-01-15 湖南金天铝业高科技股份有限公司 一种微细球形铝合金粉的工业化制备方法
CN109226777A (zh) * 2018-11-20 2019-01-18 泸溪县群祥新材料有限责任公司 一种2219铝基合金粉及其生产方法
CN110976894A (zh) * 2020-01-03 2020-04-10 河南省远洋粉体科技股份有限公司 铝基合金粉真空气雾化生产系统
CN211386911U (zh) * 2020-01-03 2020-09-01 河南省远洋粉体科技股份有限公司 铝基合金粉真空气雾化生产系统

Also Published As

Publication number Publication date
CN110976894A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
WO2021135818A1 (zh) 铝基合金粉真空气雾化生产系统
CN107559589B (zh) 真空气雾化生产合金粉用惰性气体循环保护系统
CN211386911U (zh) 铝基合金粉真空气雾化生产系统
CN101417340B (zh) 循环式雾化金属粉末制备方法和装置
CN102030314B (zh) 一种制氧机
CN107964576B (zh) 一种用于vod精炼炉的真空泵系统及其工作方法
CN207279279U (zh) 真空气雾化生产合金粉用惰性气体循环保护系统
CN114017993B (zh) 一种利用绿电电解水制氢副产氧气的装置及方法
CN111014702B (zh) 一种用于气雾化制粉设备的节能系统
CN110451467A (zh) 一种多工况氩气回收装置
CN213285982U (zh) 一种氮气回收系统
CN220707875U (zh) 一种生产磷酸铁锂配套的空分精馏供氧装置
CN201940608U (zh) 一种制造锌粉或合金锌粉的雾化器
CN207325945U (zh) 硬质合金脱蜡烧结炉
CN205241715U (zh) 一种高炉富氧系统
CN216113353U (zh) 一种制氢加氢一体化加氢站供应系统
CN114326381B (zh) 一种炼钢产消蒸汽平衡的建模和控制方法
CN220205700U (zh) 蒸压养护釜热回收系统
CN216325083U (zh) 一种防止超细钼粉出炉自燃的设备
CN220397284U (zh) 一种高炉煤气效能提升系统
CN217875307U (zh) 一种液化天然气气化站内冷能回收利用系统
CN113403481B (zh) 一种铜冶炼白烟尘梯级分离系统及工艺
CN216447916U (zh) 一种低温液体用卸车装置
CN217265836U (zh) 一种高炉均压放散煤气回收装置
CN201843743U (zh) 空压机气量不足时的氮气补充装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908604

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908604

Country of ref document: EP

Kind code of ref document: A1