CN102030314B - 一种制氧机 - Google Patents

一种制氧机 Download PDF

Info

Publication number
CN102030314B
CN102030314B CN201010547121XA CN201010547121A CN102030314B CN 102030314 B CN102030314 B CN 102030314B CN 201010547121X A CN201010547121X A CN 201010547121XA CN 201010547121 A CN201010547121 A CN 201010547121A CN 102030314 B CN102030314 B CN 102030314B
Authority
CN
China
Prior art keywords
heat exchanger
liquid
air
high pressure
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201010547121XA
Other languages
English (en)
Other versions
CN102030314A (zh
Inventor
杜金明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201010547121XA priority Critical patent/CN102030314B/zh
Publication of CN102030314A publication Critical patent/CN102030314A/zh
Application granted granted Critical
Publication of CN102030314B publication Critical patent/CN102030314B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/42Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/50Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/58Argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/40Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
    • F25J2240/42Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval the fluid being air

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明提供了一种制氧机,包括膨胀机、主换热器和主塔,其进一步包括分子筛纯化器、低温液体储槽和高压换热器,空气经分子筛纯化器净化后,一部分空气经过主板式换热器降温后输入至所述主塔,另一部分空气输入至所述高压换热器中,与来自所述低温液体储槽的液体在所述高压换热器中进行换热后输入至所述下塔;来自所述低温液体储槽的液体在所述高压换热器中进行换热后变为气态,经第一气体管道输出。本发明的制氧机通过使用高压换热器在满足用户气体产品需求量的同时回收液体冷量,有利于节约能源,还可以降低主换热器的运行阻力,减少压缩机用电量,同时提高主塔精馏效果及单位时间内的氧、氩产量,降低能耗。

Description

一种制氧机
技术领域
本发明涉及气体制造设备,特别涉及一种能回收低温液体产品冷量的制氧机。
背景技术
制氧企业制氧机氧、氮、氩气体产品产能的大小均是依据气体用户生产装置的设计生产规模来确定。气体用户正常生产时,制氧机气体产量能满足用户需求。但在气体用户提高工艺技术或临时加大生产任务造成气体需求量大于制氧机产量时,为满足用户气体需求,能够自产液氧、液氮、液氩产品的制氧企业目前均采取将储存的低温液体用液体泵加压送至空浴式或水浴式液体汽化器复热到常温后再送入气体管网供用户使用的生产方法;不生产或只少量生产液氧、液氮、液氩的制氧企业则通过外购低温液体产品,再将所采购的液体送至空浴式或水浴式液体汽化器复热到常温后供用户使用的生产方式。
由于液体从低温复热到常温的过程需释放大量的汽化潜热及汽化热,该部分冷量是通过大量的功耗转换而来,目前利用空浴式、水浴式液体汽化器提高外供气体产量的生产方法虽能满足气体用户气量要求,但没有对液体汽化过程中的冷量进行回收,从而浪费大量功耗。
发明内容
本发明提供了一种能回收低温液体产品冷量的制氧机,在满足用户气体产品需求量的同时回收液体冷量,有利于节约能源,还可以降低主换热器的运行阻力,减少压缩机用电量,降低能耗。
本发明解决其技术问题所采用的技术方案是:
一种制氧机,包括分子筛纯化器、膨胀机、主板式换热器和主塔,所述主塔包括上塔和下塔,
进一步包括低温液体储槽和高压换热器,
空气经分子筛纯化器净化后,一部分空气经过主板式换热器降温后输入至所述下塔,
另一部分空气输入至所述高压换热器中,与来自所述低温液体储槽的液体在所述高压换热器中进行换热后输入至所述下塔;
来自所述低温液体储槽的液体在所述高压换热器中进行换热后变为气态,经第一气体管道输出,
所述膨胀机停止工作。
本发明还提供了一种制氧机,包括膨胀机、切换式换热器和主塔,所述主塔包括上塔和下塔,
进一步包括低温液体储槽、分子筛纯化器和高压换热器,
一部分空气经过切换式换热器降温后输入至所述下塔,
另一部分空气经分子筛纯化器净化后,经第一气体管道输入至所述高压换热器中,与来自所述低温液体储槽的液体在所述高压换热器中进行换热后输入至所述主塔;
来自所述低温液体储槽的液体在所述高压换热器中进行换热后变为气态,经第二气体管道输出;
所述膨胀机用于膨胀输入至上塔的气体。
本发明的制氧机通过使用高压换热器在满足用户气体产品需求量的同时回收液体冷量,有利于节约能源,还可以降低主换热器的运行阻力,减少压缩机用电量,同时提高主塔精馏效果及单位时间内的氧、氩产量,降低能耗。
附图说明
图1为本发明的制氧机的第一实施例的结构示意图。
图2为本发明的制氧机的第二实施例的结构示意图。
图3为本发明的制氧机的第三实施例的结构示意图。
图4为本发明的制氧机的第四实施例的结构示意图。
具体实施方式
本发明的目的在于提供一种能回收低温液体产品冷量的制氧机,在满足用户气体产品需求量的同时回收液体冷量。
为使本发明的目的、技术方案及优点更加清楚明白,以下参照附图并举实施例,对本实用新型作进一步详细说明。
图1为本发明的制氧机的第一实施例的结构示意图。如图1所示,本发明的制氧机,包括分子筛纯化器101、主塔102、膨胀机103、主板式换热器104、液氧或液氮储罐105和高压换热器106。在高压换热器106工作时,制氧、制氩过程中的膨胀机103停运不工作。其中,主塔102包括上塔112、下塔111。
优选地,高压换热器106中进一步包括用于增加液氧或液氮压力的柱塞泵107、液氧或液氮管道G1、空气管道G3、和氧气或氮气管道G7。
从液氧或液氮储罐105输出的低温液氧或液氮通过柱塞泵107加压至1.0~15.0MPa后,通过液氧或液氮管道G1,输入至高压换热器106的液氧或液氮通道。同时,由分子筛纯化器101纯化后的一部分空气升压至0.40MPa~0.56MPa后,通过空气管道G2输入至高压换热器106的空气通道。在高压换热器106中,低温液氧或液氮与常温空气进行能量交换。
液氧或液氮被空气复热至接近常温后通过氧气或氮气管道G7输出至用户。空气被液氧或液氮冷却至约-140℃,通过空气管道G3输入至主板式换热器104的中抽空气管道G4处进入主板式换热器104底部,此时关闭主板式换热器104的中抽阀门J1和底抽阀门J2、膨胀机103的空气进口阀门J5和J6、膨胀空气进主塔阀门J7,停运膨胀机103;同时打开空气管道G3和G5中的阀门J3和阀门J4,使低温空气从主板式换热器104冷段再次降温后通过空气管道G5与进下塔的低压空气管道G6汇合后进下塔111参加精馏。低压空气管道G6中的空气为经过分子筛纯化器纯化后的另一部分空气经主板式换热器104降温后的空气。
本发明的制氧机通过使用高压换热器106回收液氧或液氮冷量,同时通过调节进高压换热器的空气量与液氧或液氮量来控制换热后的空气温度与液氧或液氮汽化后的温度,维持分子筛净化流程制氧机的冷量平衡,并停用膨胀机,从而达到降低制氧机能耗的目的。
图2是本发明的制氧机的第二实施例的结构示意图。如图2所示,本发明的制氧机,包括分子筛纯化器101、主塔102、膨胀机103、主板式换热器104、液氩储罐205、高压换热器206。在高压换热器206工作时,制氧、制氩过程中膨胀机停运不工作。其中,主塔102包括上塔112、下塔111。
优选地,高压换热器206中进一步包括用于增加液氩压力的柱塞泵207、液氩管道G21、空气管道G23、和氩气管道G27。
从液氩储罐205输出的低温液氩通过柱塞泵207加压至1.0~15.0MPa后,通过液氩管道G21输入至高压换热器206的液氩通道,同时由分子筛纯化器101纯化后的一部分空气调压至0.40MPa~0.56MPa后,通过空气管道G22输入至高压换热器206的空气通道。在高压换热器中,低温液氩与常温空气进行能量交换。
液氩被空气复热至接近常温通过氩气管道G27输出至用户。空气被液氩冷却至约-170℃。此时关闭主板式换热器104的中抽阀门J1和底抽阀门J2、膨胀机103的空气进口阀门J5和J6和膨胀空气进主塔阀门J7,停运膨胀机103;同时打开空气管道G23中的阀门J4,使与液氩换热后的低温空气通过空气管道G23与进下塔的低压空气管道G6汇合后进下塔111参加精馏。低压空气管道G6中的空气为经过分子筛纯化器纯化后的另一部分经主板式换热器104降温后的空气。
图3是本发明的制氧机的第三实施例的结构示意图。如图3所示,本发明的制氧机,包括主塔302、膨胀机303和切换式换热器304,其进一步包括空气纯化器301、液氧或液氮储罐105和高压换热器106。其中,主塔302包括下塔311、上塔312。
优选地,高压换热器106中进一步包括用于增加液氧或液氮压力的柱塞泵107、液氧或液氮管道G31、空气管道G33、和氧气或氮气管道G7。
从液氧或液氮储罐105输出的低温液氧或液氮通过柱塞泵107加压至1.0~15.0MPa后,通过液氧或液氮管道G31输入至高压换热器106的液氧或液氮通道,同时来自空气管道G34中的一部分空气由空气纯化器301纯化后,调压至压力为0.40MPa~0.56MPa,通过空气管道G32输入至高压换热器106的空气通道。在高压换热器中,液氧或液氮与空气进行能量交换。
低温液氧或液氮被空气复热至接近常温通过氧气或氮气管道G7输出至用户。常温空气被液氧或液氮冷却至约-140℃,此时打开空气管道G33中的阀门J3,使来自高压换热器的低温空气通过空气管道G33输入至从切换式换热器304中部抽出的的环流空气管道处,与环流空气汇合进入膨胀机303中进行进一步降温,被进一步降温后通过空气管道输入至上塔312。
本发明的制氧机通过使用高压换热器106回收液氧或液氮冷量,节约能源,还可以减少进切换式换热器304的空气流量,降低其运行阻力,降低能耗。
图4是本发明的制氧机的第四实施例的结构示意图。如图4所示,本发明的制氧机,包括空气纯化器301、主塔302、膨胀机303、切换式换热器304、液氩储罐205、高压换热器206。其中,主塔302包括下塔311、上塔312。
优选地,高压换热器206中进一步包括用于增加液氩压力的柱塞泵207、液氩管道G21、空气管道G43、和氩气管道G27。
从液氩储罐205输出的低温液氩通过柱塞泵207加压至1.0~15.0MPa后,通过液氩管道G21输入至所述高压换热器206的液氩通道。同时,来自空气管道G34中的一部分空气由空气纯化器301纯化后,调压至压力为0.40MPa~0.56MPa,通过空气管道G32输至高压换热器206的空气通道。在高压换热器中,液氩与空气进行能量交换。
低温液氩被空气复热至接近常温后通过氩气管道G27输出至用户。常温空气被液氩冷却至约-170℃,此时关闭膨胀机的空气进、出口阀门J1、J4和J2,停运膨胀机;同时打开空气管道G43中的阀门J3,使来自高压换热器的低温空气通过空气通道G43输入至进下塔的低压空气管道G6处,与低压空气汇合进入下塔311参加精馏。低压空气管道G6中的空气为经过分子筛纯化器纯化后的另一部分经切换式换热器304降温后的空气。
本实施例的制氧机通过使用高压换热器106回收液氩冷量,可以停用膨胀机303,并维持切换式自清除流程制氧机的冷量平衡。
从以上方案可知,本发明提供的制氧机通过高压换热器能够回收低温液体汽化过程中释放的冷量、从而节约能源、降低能耗。由于一部分空气进入高压换热器进行工作,减少了进入主板式换热器或切换式换热器的空气量,使主板式换热器和切换式换热器的运行阻力降低,进而空压机排压降低,则空压机能耗同比下降,节约了分子筛纯化流程和自清除流程制氧机的用电量。
此外,无论使用高压液氧、液氮或高压液氩换热器,对于分子筛纯化、氧气外压流程的制氧机都可以停运膨胀机,使空气全部进下塔参加精馏,消除了膨胀空气过热度对上塔精馏工况的影响,有利于精馏段氧、氮、氩的分离,以及氧提取率的上升,且单位时间的氧产量提高、制氧能耗下降。
同时由于膨胀空气不参加精馏,氩富集区下移,有利于降低提馏段氩富集区氮组份含量,提高氩提取率。对于氧气内压流程的制氧机则可以减少或取消膨胀机的膨胀空气量,进而可降低空气增压机的压缩空气量,降低增压机电能消耗,节约制氧电量。对于切换式自清除流程的制氧机,使用高压换热器时同样具有上述效果,也可以达到节约能源、提高机组氧、氩提取率、降低能耗的目的。
因此,本发明提供的制氧机,在回收液体冷量的同时还能够提高制氧机工作效率,同时提高氧、氩产品的提取率、降低能耗。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (8)

1.一种制氧机,包括分子筛纯化器、膨胀机、主板式换热器和主塔,所述主塔包括上塔和下塔,其特征在于,
进一步包括高压换热器,
空气经分子筛纯化器净化后,一部分空气经过主板式换热器降温后输入至所述下塔,
另一部分空气输入至所述高压换热器中,与来自外界的低温液体储槽的液体在所述高压换热器中进行换热后输入至所述下塔;
来自外界的低温液体储槽的液体在所述高压换热器中进行换热后变为气态,经第一气体管道输出,
所述膨胀机停止工作。
2.根据权利要求1所述的制氧机,其特征在于,来自所述低温液体储槽的液体为液氧或液氮,
所述另一部分空气在所述高压换热器中与所述液氧或液氮进行换热后,输入至所述主板式换热器的底部,并经过主板式换热器降温后,与所述直接经过主板式换热器降温后的一部分空气汇合后输入至所述下塔。
3.根据权利要求2所述的制氧机,其特征在于,自所述低温液体储槽输入至所述高压换热器的液氧或液氮压力为1.0MPa至15.0MPa。
4.根据权利要求1所述的制氧机,其特征在于,来自所述低温液体储槽的液体为液氩,
所述另一部分空气在所述高压换热器中与所述液氩进行换热后,与所述经过主板式换热器降温后的一部分空气汇合后输入至所述下塔。
5.根据权利要求4所述的制氧机,其特征在于,自所述低温液体储槽输入至所述高压换热器的液氩压力为1.0MPa至15.0MPa。
6.根据权利要求1至5中任一权利要求所述的制氧机,其特征在于,所述高压换热器进一步包括用于增加液体压力的低温液体泵。
7.根据权利要求6所述的制氧机,其特征在于,所述空气经分子筛纯化器净化后的空气压力为0.4MPa至0.56MPa。
8.根据权利要求1所述的制氧机,其特征在于,所述膨胀机包括用于膨胀输入至上塔的空气和用于膨胀输入至下塔的空气的膨胀机。
CN201010547121XA 2010-11-12 2010-11-12 一种制氧机 Expired - Fee Related CN102030314B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010547121XA CN102030314B (zh) 2010-11-12 2010-11-12 一种制氧机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010547121XA CN102030314B (zh) 2010-11-12 2010-11-12 一种制氧机

Publications (2)

Publication Number Publication Date
CN102030314A CN102030314A (zh) 2011-04-27
CN102030314B true CN102030314B (zh) 2013-10-02

Family

ID=43883839

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010547121XA Expired - Fee Related CN102030314B (zh) 2010-11-12 2010-11-12 一种制氧机

Country Status (1)

Country Link
CN (1) CN102030314B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090611B (zh) * 2011-10-28 2015-12-09 鞍钢集团工程技术有限公司 一种液氩冷量回收方法及装置
CN102778105B (zh) * 2012-08-06 2015-02-18 济南鲍德气体有限公司 一种制氧机快速启动装置及方法
CN104406365B (zh) * 2014-11-27 2017-04-05 苏州制氧机股份有限公司 一种双膨胀机中压液体设备
CN109268681A (zh) * 2018-07-23 2019-01-25 上海加力气体有限公司 一种汽化站低温液体冷量回收系统
CN112607710B (zh) * 2020-12-30 2022-10-28 青岛精安医疗科技有限责任公司 制氧系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855598A1 (fr) * 2003-05-28 2004-12-03 Air Liquide Procede et installation de fourniture de secours d'un gaz sous pression par vaporisation de liquide cryogenique
CN1873357A (zh) * 2005-04-25 2006-12-06 林福粦 回收液化天然气冷能的空气分离系统
CN101044366A (zh) * 2004-06-29 2007-09-26 乔治洛德方法研究和开发液化空气有限公司 紧急备用供给压力气体的方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3884240B2 (ja) * 2001-05-15 2007-02-21 株式会社神戸製鋼所 空気分離装置およびその制御運転方法
JP2003294360A (ja) * 2002-04-01 2003-10-15 Jfe Steel Kk 空気分離装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2855598A1 (fr) * 2003-05-28 2004-12-03 Air Liquide Procede et installation de fourniture de secours d'un gaz sous pression par vaporisation de liquide cryogenique
CN101044366A (zh) * 2004-06-29 2007-09-26 乔治洛德方法研究和开发液化空气有限公司 紧急备用供给压力气体的方法和设备
CN1873357A (zh) * 2005-04-25 2006-12-06 林福粦 回收液化天然气冷能的空气分离系统

Also Published As

Publication number Publication date
CN102030314A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
CN102030314B (zh) 一种制氧机
CN101886871A (zh) 一种空气分离制取压力氧气的方法及装置
CN202747733U (zh) 一种制氧机快速启动装置
CN206019152U (zh) 回收氩冷量进行氧气液化装置
CN102072612A (zh) N型模式节能制气方法及n型模式节能制气装置
CN109595461B (zh) 一种lng再气化与液态空气制备系统及工作方法
CN206310233U (zh) 液态天然气储罐bog气体冷能回收利用系统
CN114017993B (zh) 一种利用绿电电解水制氢副产氧气的装置及方法
CN2849428Y (zh) 一种可实时调控供氧量的储氧装置
CN206449953U (zh) 二氧化碳纯化过程冷量回收装置
CN211782276U (zh) 一种提高产量降低能耗的空气分离系统
CN202195654U (zh) 一种空气分离装置
CN206176030U (zh) 深冷液体贮罐快速增压装置
CN201694836U (zh) 一种制氧机
CN209116371U (zh) 一种低能耗稳定供气的系统
CN209027187U (zh) 一种峰谷电生产液氧液氮装置
CN208546752U (zh) 一种天然气氧气管网协同控制管理系统
CN203572140U (zh) 合成氨化工尾气的深冷精馏液化系统
CN102778105B (zh) 一种制氧机快速启动装置及方法
CN202709784U (zh) 一种大型空分预冷系统装置
CN207716087U (zh) 一种低温液氩增压系统
CN201825723U (zh) 低压液氧蒸发装置
CN115751838B (zh) 一种节能型外液化系统及节能型氮气和氧气外液化器装置
CN111707054A (zh) 空分冷能回收系统
CN205046139U (zh) 无风机冶炼高炉供富氧空气和空分节能节电的系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131002

Termination date: 20181112

CF01 Termination of patent right due to non-payment of annual fee