WO2021135269A1 - 天线及移相馈电装置 - Google Patents

天线及移相馈电装置 Download PDF

Info

Publication number
WO2021135269A1
WO2021135269A1 PCT/CN2020/110274 CN2020110274W WO2021135269A1 WO 2021135269 A1 WO2021135269 A1 WO 2021135269A1 CN 2020110274 W CN2020110274 W CN 2020110274W WO 2021135269 A1 WO2021135269 A1 WO 2021135269A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
layer
shifting
circuit layer
feeding device
Prior art date
Application number
PCT/CN2020/110274
Other languages
English (en)
French (fr)
Inventor
李明超
陈礼涛
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2021135269A1 publication Critical patent/WO2021135269A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present invention relates to the field of communication technology, in particular to an antenna and a phase-shifting power feeding device.
  • the phase-shifting feeder is the core element of the base station antenna.
  • the electrical signal enters the corresponding antenna channel through the phase-shifting feeder for power division and phase-shift processing to achieve signal radiation.
  • the phase shifting feeder is generally composed of two separate components, a phase shifter and a feed network board; at least the phase shifter includes the phase shifter circuit and its shielding cavity. Moreover, the phase shifter needs to be fed through the cable between the feeder circuit of the feeder network board. This will result in many parts, many solder joints, long production hours, and increase the volume and weight of the phase-shifting feeder, which is not conducive to the miniaturization and light weight of the antenna.
  • the phase-shifting power feeding device can simplify assembling parts and help reduce weight.
  • the antenna adopts the phase-shifting feeding device, which is conducive to the development of miniaturization and light weight.
  • the present application provides a phase-shifting power feeding device, including a cavity structure and a feeding network board;
  • the cavity structure includes a dielectric substrate, a grounding layer, and a phase-shifting circuit layer, the dielectric substrate is provided with strip grooves, and the grounding layer is provided
  • the phase-shifting circuit layer is arranged in the strip groove and is insulated from the grounding layer;
  • the feed network board is used to close the strip groove, and the feed network board includes a substrate and is arranged on one side of the substrate.
  • the conductive shielding layer and the feeding circuit layer arranged on the other side of the substrate.
  • the conductive shielding layer is arranged toward the strip groove.
  • the conductive shielding layer and the grounding layer cooperate to form a shielding cavity for accommodating the phase shifting circuit layer.
  • the phase circuit layer is insulated and arranged, and the feed circuit layer is electrically connected with the phase shift circuit layer.
  • the medium substrate can be obtained by injection molding, three-dimensional printing, machining, etc., and then electroplating, electroless plating, or LDS (Laser-Direct-Structuring, laser direct structuring) processes can be used in the medium substrate.
  • a ground layer and a phase shifting circuit layer are formed at the preset positions on the upper part, and then the feed network board is fixed on the dielectric substrate, so that the conductive shielding layer and the grounding layer cooperate to form a shielding cavity for accommodating the phase shifting circuit layer, and a phase shifter cavity is obtained
  • the conductive shielding layer is insulated from the phase-shifting circuit layer, and the feeding circuit layer is electrically connected to the phase-shifting circuit layer.
  • the ground layer is disposed on the outer sidewall of the strip groove.
  • the ground layer includes a first ground layer disposed in the strip groove, and a second ground layer disposed outside the strip groove.
  • the second ground layer is electrically connected to the first ground layer, and the second ground layer is electrically connected to the first ground layer.
  • the phase-shifting circuit layer is opposite to the phase-shifting circuit layer, and the phase-shifting circuit layer is insulated from the first grounding layer.
  • a first escape groove is provided between the phase shift circuit layer and the first ground layer.
  • the dielectric substrate includes a dielectric body protrudingly arranged in the strip-shaped groove, and the phase shift circuit layer is arranged on the dielectric body.
  • the dielectric body is provided with a protruding body provided with a protruding strip-shaped groove, and the protruding body is provided with a signal terminal for connecting the phase shift circuit layer, and the signal terminal is electrically connected with the feeding circuit layer.
  • the outer sidewalls of the protrusions are all wrapped with a conductive layer, and the conductive layer is used to form a signal terminal.
  • the feed network board is provided with a mating hole that is sleeved and matched with the convex body, and an escape area is provided between the mating hole and the conductive shielding layer.
  • the medium body is spaced from the inner side wall of the strip groove to form a channel for the phase shifting medium plate to move.
  • the present application also provides an antenna, which applies the phase-shifting power feeding device in any of the above-mentioned embodiments.
  • the antenna adopts the phase-shifting feeder, which is beneficial to the development of miniaturization and light weight.
  • FIG. 1 is a schematic diagram of a cavity structure shown in an embodiment
  • Figure 2 is a schematic diagram of a cavity structure shown in an embodiment
  • Fig. 3 is a schematic structural diagram of a phase-shifting power feeding device shown in an embodiment
  • FIG. 4 is an exploded schematic diagram of the structure of the phase-shifting feeder shown in an embodiment
  • Fig. 5 is an exploded schematic diagram of the structure of the phase-shifting feeder shown in an embodiment from another perspective.
  • Dielectric substrate 110, strip groove; 120, ground layer; 122, first ground layer; 124, second ground layer; 130, phase shift circuit layer; 140, dielectric body; 150, convex body; 160, signal Terminal; 200, feeder network board; 210, feeder circuit layer; 212, pad; 220, conductive shielding layer; 230, matching hole; 300, shielding cavity, 400, phase-shifting dielectric board.
  • an element when an element is referred to as being “fixed to”, “installed on”, “fixed on” or “installed on” another element, it can be directly on the other element or there may also be a centered element. .
  • an element When an element is considered to be “connected” to another element, it can be directly connected to the other element or an intermediate element may be present at the same time.
  • one element when one element is considered to be “electrically connected” to another element, the two can be connected by metal wires or metal vias, so that power can be fed.
  • a component and another component are perpendicular or nearly perpendicular to each other, it means that the ideal state of the two is perpendicular, but due to the influence of manufacturing and assembly, there may be a certain vertical error.
  • the terms “vertical”, “horizontal”, “left”, “right” and similar expressions used herein are for illustrative purposes only, and are not meant to be the only embodiments.
  • the antenna includes a radiation unit, a phase shifter for adjusting the downward tilt angle of the antenna, and a feed network.
  • the radiation unit is connected to the phase shifter through the feed network, so that the downward tilt angle of the antenna can be adjusted by moving the dielectric plate in the phase shifter.
  • the traditional phase shifting feeder device is formed by connecting an independent phase shifter to the feeder network circuit board through a cable. This will result in many parts, many solder joints, long production hours, and increase the volume and weight of the phase-shifting feeder, which is not conducive to the miniaturization and light weight of the antenna. Based on this, the present application provides an antenna and a phase-shifting power feeding device to solve the aforementioned problems.
  • a phase-shifting power feeding device which includes a cavity structure and a feeding network board 200.
  • the cavity structure includes a dielectric substrate 100, a ground layer 120, and a phase shift circuit layer 130.
  • the dielectric substrate 100 is provided with a strip groove 110
  • the ground layer 120 is provided on the dielectric substrate 100
  • the phase shift circuit layer 130 is provided in the strip groove 110.
  • the feeding network board 200 is used to seal the strip groove 110.
  • the feeding network board 200 includes a substrate, a conductive shielding layer 220 arranged on one side of the substrate, and a feeding circuit layer 210 arranged on the other side of the substrate.
  • the layer 220 is arranged toward the strip groove 110, the conductive shielding layer 220 and the grounding layer 120 cooperate to form a shielding cavity 300 for accommodating the phase-shifting circuit layer 130, the conductive shielding layer 220 is insulated from the phase-shifting circuit layer 130, and the feeder circuit layer 210 is The phase shift circuit layer 130 is electrically connected.
  • the medium substrate 100 can be obtained by injection molding, three-dimensional printing, machining, etc., and then electroplating, electroless plating, or LDS (Laser-Direct-Structuring, laser direct structuring) processes can be used in the medium
  • a grounding layer 120 and a phase-shifting circuit layer 130 are formed at preset positions on the base 100, and then the feed network board 200 is fixed on the dielectric base 100, so that the conductive shielding layer 220 and the grounding layer 120 cooperate to form the accommodating phase-shifting circuit layer 130
  • the shielding cavity 300 of, to obtain a phase shifter cavity, the conductive shielding layer 220 is insulated from the phase shifting circuit layer 130, and the feeding circuit layer 210 is electrically connected to the phase shifting circuit layer 130.
  • the weight of the dielectric substrate 100 is less than the weight of the metal shell, which is beneficial to reduce the weight of the phase shifter.
  • the current antenna installation space is getting smaller and smaller, and the above-mentioned phase-shifting feeder solution is beneficial to reduce the weight and volume of the antenna, and it is of great significance to complete or accelerate the construction of 4G or/and 5G antennas.
  • the reduction in weight will inevitably bring convenience to the antenna installation and reduce the burden on the antenna installation area, especially the burden on the tower.
  • the reduction in size allows the 4G or/and 5G antenna to be installed in a limited space to achieve the coverage of the 4G or/and 5G antenna in the area without adjusting or removing antennas in other frequency bands, which greatly saves debugging time .
  • the "grounding layer 120" is a conductive layer, as long as it can achieve a grounding function. Specifically, it is a metal conductive layer, which can be formed and integrated on the housing by electroplating, electroless plating, or LDS. Of course, it can also be formed by a conductive adhesive coating, which is not limited here, as long as it can be implemented in the prior art.
  • the material of the "dielectric substrate 100" can be any insulating material that can meet the requirements, including but not limited to plastics, as long as the dielectric constant meets the usage requirements.
  • phase shifting circuit layer 130 is arranged inside the shielding cavity 300, and the feeding circuit layer 210 is arranged outside the shielding cavity 300, so that the phase shifting circuit layer 130 and the feeding circuit layer 210 do not interfere with each other, which is beneficial to avoid Mutual coupling affects the radiation performance of the radiating unit.
  • the phase shifting circuit layer 130 cooperates with the shielding cavity 300 to form a phase shifter module, which can realize the function of a phase shifter. Therefore, compared with the traditional phase shifter, the cavity structure is more compact, and the dielectric substrate 100 (which is greatly reduced in weight compared to the metal shell), the ground layer 120 and the shielding plate are used to form the cavity structure of the phase shifter , Its weight can be significantly reduced, and it can also ensure that the function of the phase-shifting feeder is not affected.
  • the strip-shaped groove 110 penetrates at least one end of the dielectric substrate 100 to facilitate the entry and exit of the phase-shifting dielectric plate 400.
  • the ground layer 120 is disposed on the outer sidewall of the strip groove 110.
  • the phase shift circuit layer 130 can be provided at any position of the inner wall of the strip groove 110, and the two side walls of the strip groove 110 can be used to form the phase shift circuit layer 130, which is beneficial to reduce the volume of the dielectric substrate 100.
  • disposing the ground layer 120 outside the strip groove 110 is also beneficial to reduce the manufacturing difficulty and better surround the phase shift circuit layer 130.
  • the ground layer 120 includes a first ground layer 122 disposed in the strip groove 110, and a second ground layer 124 disposed outside the strip groove 110.
  • the ground layer 124 is electrically connected to the first ground layer 122, the second ground layer 124 is disposed opposite to the phase shifting circuit layer 130, and the phase shifting circuit layer 130 is insulated from the first ground layer 122. In this way, the cooperation of the first ground layer 122 and the second ground layer 124 can also surround the phase shift circuit layer 130.
  • first ground layer 122 and the second ground layer 124 are disposed on different sides of the strip groove 110, and can also be combined flexibly according to the position of the phase shift circuit layer 130.
  • the phase-shifting circuit layer 130 can be arranged at any position in the strip groove 110, and only the first ground layer 122 and the second ground layer 124 can be used to surround the shifter.
  • the phase circuit layer 130 is sufficient.
  • a first escape groove is provided between the phase shifting circuit layer 130 and the first ground layer 122.
  • the phase shift circuit layer 130 is insulated from the first ground layer 122 by using the first avoiding groove, and the spacing between the cables can be preset during the manufacturing process, which is easy to implement.
  • the dielectric substrate 100 includes a dielectric body 140 protrudingly arranged in the strip groove 110, and the phase shift circuit layer 130 is arranged on the dielectric body 140 .
  • disposing the phase-shifting circuit layer 130 on the dielectric body 140 can make full use of the internal space of the strip groove 110, which can increase the laying area of the phase-shifting circuit layer 130 and further reduce the width and volume of the dielectric substrate 100.
  • the dielectric body 140 is provided with a convex body 150 provided with a protruding strip groove 110, and the convex body 150 is provided with a phase shift circuit layer.
  • the signal terminal 160 of 130, the signal terminal 160 is electrically connected to the feeder circuit layer 210;
  • the feeder network board 200 is provided with a matching hole 230 that is sleeved and matched with the convex body 150, and an escape is provided between the matching hole 230 and the conductive shielding layer 220 Area.
  • the arrangement of the dielectric body 140 can make full use of the space of the strip groove 110 to form the phase shift circuit layer 130; and the cooperation of the protrusion 150 and the mating hole 230 can realize the positioning and installation of the dielectric substrate 100 and the feed network board 200
  • the signal terminal 160 is arranged on the convex body 150 to facilitate the welding and feeding of the signal terminal 160 and the feeding circuit layer 210. While the welding and feeding, the dielectric substrate 100 and the feeding network board 200 are also fixed together, which reduces The connection structure is conducive to further reducing weight.
  • the above structure not only solves the problem of fixing the dielectric substrate 100 and the feeding network board 200, but also realizes the feeding connection between the phase shifting circuit layer 130 and the feeding circuit layer 210, which simplifies the process and is beneficial to improve the assembly efficiency.
  • the outer sidewalls of the protrusion 150 are all wrapped with a conductive layer, and the conductive layer is used to form the signal terminal 160.
  • a soldering layer can be formed along the periphery of the protrusion 150, which can increase the contact area between the signal terminal 160 and the pad 212 of the feed circuit layer 210, thereby improving the electrical connection between the phase shift circuit layer 130 and the feed circuit layer 210.
  • the reliability of the connection is also conducive to improving the reliability of fixing the dielectric substrate 100 and the feed network board 200.
  • the medium body 140 and the medium base body 100 are integrally formed. In this way, the assembly process can be reduced, and the production efficiency can be improved.
  • the dielectric body 140 is spaced from the inner side wall of the strip groove 110 to form a channel for the phase shifting dielectric plate 400 to move.
  • the dielectric substrate 100 can be used to form a phase shifter, and then the phase shifting dielectric plate 400 is used to move in the channel and cooperate with the phase shifting circuit layer 130 to adjust the antenna downtilt angle.
  • the feed network board 200 can also integrate other components, such as feed pins.
  • the phase-shifting circuit layer 130 corresponds to the strip-shaped groove 110 one-to-one
  • the feeding circuit layer 210 and the phase-shifting circuit layer 130 are one-to-one.
  • the dielectric substrate 100 can be used to integrate multiple cavities to form multiple sets of phase-shifting feeders, which is conducive to further reducing the size of the antenna feed structure.
  • Two adjacent phase-shifting feeders share one side wall, which is beneficial to Further reduce the weight of the antenna.
  • At least two phase-shifting feeders can work in the same frequency band, or they can work in different frequency bands.
  • a combiner is provided between the two feeder circuit layers 210.
  • each signal output terminal is connected to the feed network and the radiating unit of the same polarization through the corresponding combiner, and the use of the combiner can further reduce the number of welding points and cables.
  • the shielding plate can be fixed to the dielectric substrate 100 by welding, clamping, screwing, or the like.
  • an antenna is provided, and the phase-shifting feeder in any of the above-mentioned embodiments is applied.
  • the antenna adopts the phase-shifting feeder, which is beneficial to the development of miniaturization and light weight.
  • the current antenna installation space is getting smaller and smaller, reducing the weight and volume of the antenna, and correspondingly completing the construction of the 4G or/and 5G antenna is of great significance.
  • the reduction in weight will inevitably bring convenience to the antenna installation and reduce the burden on the antenna installation area, especially the burden on the tower.
  • the reduction in size allows the 4G or/and 5G antenna to be installed in a limited space to achieve the coverage of the 4G or/and 5G antenna in the area without adjusting or removing antennas in other frequency bands, which greatly saves debugging time .

Landscapes

  • Waveguide Aerials (AREA)
  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本发明公开了一种天线及移相馈电装置,该移相馈电装置包括腔体结构及馈电网络板;腔体结构包括介质基体、接地层及移相电路层,介质基体设有条形槽,接地层设置于介质基体上,移相电路层设置于条形槽内,并与接地层之间绝缘设置;馈电网络板用于封闭条形槽,馈电网络板包括基板、设置于基板的一面上的导电屏蔽层、以及设置于基板的另一面上的馈电电路层,导电屏蔽层朝向条形槽设置,导电屏蔽层与接地层相配合形成收容移相电路层的屏蔽腔,导电屏蔽层与移相电路层绝缘设置,馈电电路层与移相电路层电连接。该移相馈电装置采用了该腔体结构能简化了装配零件,有利于减轻重量。该天线采用了该移相馈电装置,有利于小型化及轻量化发展。

Description

天线及移相馈电装置 技术领域
本发明涉及通信技术领域,特别是涉及一种天线及移相馈电装置。
背景技术
随着天线技术发展,小型化成为天线的发展趋势。移相馈电装置是基站天线的核心元件,电信号通过移相馈电装置进行功分、移相处理后进入对应的天线通道内,实现信号辐射。
目前,移相馈电装置一般由移相器及馈电网络板两个单独的元器件组合而成;至少移相器包括了移相器电路及其屏蔽腔体。而且,移相器需与馈电网络板的馈电线路之间,要通过电缆进行馈电。这样会造成零件多、焊点多,生产工时长,且使得移相馈电装置的体积变大、重量偏重,不利于天线的小型化、轻量化。
发明内容
基于此,有必要提供一种天线及移相馈电装置。该移相馈电装置能简化了装配零件,有利于减轻重量。该天线采用了该移相馈电装置,有利于小型化及轻量化发展。
其技术方案如下:
一方面,本申请提供一种移相馈电装置,包括腔体结构及馈电网络板;腔体结构包括介质基体、接地层及移相电路层,介质基体设有条形槽,接地层设置于介质基体上,移相电路层设置于条形槽内,并与接地层之间绝缘设置;馈 电网络板用于封闭条形槽,馈电网络板包括基板、设置于基板的一面上的导电屏蔽层、以及设置于基板的另一面上的馈电电路层,导电屏蔽层朝向条形槽设置,导电屏蔽层与接地层相配合形成收容移相电路层的屏蔽腔,导电屏蔽层与移相电路层绝缘设置,馈电电路层与移相电路层电连接。
上述移相馈电装置使用时,可以利用注塑成型、三维打印、机加工等方式获得该介质基体,然后利用电镀、化学镀或LDS(Laser-Direct-Structuring,激光直接成型)等工艺在介质基体上的预设位置形成接地层及移相电路层,然后将馈电网络板固定于介质基体上,使得导电屏蔽层与接地层相配合形成收容移相电路层的屏蔽腔,获得移相器腔体,导电屏蔽层与移相电路层绝缘设置,馈电电路层与移相电路层电连接。如此,无需利用电缆来实现移相电路层与馈电电路层的馈电,简化了装配零件,有利于提高生产效率,有利于减小移相馈电装置的整体体积及重量。
下面进一步对技术方案进行说明:
在其中一个实施例中,接地层设置于条形槽的外侧壁上。
在其中一个实施例中,接地层包括设置于条形槽内的第一接地层、以及设置于条形槽外的第二接地层,第二接地层与第一接地层电连接,第二接地层与移相电路层相对设置,移相电路层与第一接地层绝缘设置。
在其中一个实施例中,移相电路层与第一接地层之间设有第一避让槽。
在其中一个实施例中,介质基体包括凸出设置于条形槽内的介质体,移相电路层设置于介质体上。
在其中一个实施例中,介质体设有凸出条形槽设置的凸体,凸体设有用于连接移相电路层的信号端子,所述信号端子与所述馈电电路层电连接。
在其中一个实施例中,凸体的外侧壁均包裹有导电层,导电层用于形成信 号端子。
在其中一个实施例中,所述馈电网络板设有与所述凸体套接配合的配合孔,所述配合孔与所述导电屏蔽层之间设有避让区。
在其中一个实施例中,介质体与条形槽的内侧壁间隔设置形成供移相介质板移动的通道。
另一方面,本申请还提供了一种天线,应用了上述任一实施例中的移相馈电装置。
结合前述分析可知,该天线采用了该移相馈电装置,有利于小型化及轻量化发展。
附图说明
图1为一实施例中所示的腔体结构的示意图;
图2为一实施例中所示的腔体结构的示意图;
图3为一实施例中所示的移相馈电装置的结构示意图;
图4为一实施例中所示的移相馈电装置的结构爆炸示意图;
图5为一实施例中所示的移相馈电装置的另一视角下的结构爆炸示意图。
附图标记说明:
100、介质基体;110、条形槽;120、接地层;122、第一接地层;124、第二接地层;130、移相电路层;140、介质体;150、凸体;160、信号端子;200、馈电网络板;210、馈电电路层;212、焊盘;220、导电屏蔽层;230、配合孔;300、屏蔽腔;400、移相介质板。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件被认为是“电连接”另一个元件,二者可以是利用金属导线进行连接,也可以利用金属过孔进行连接,能够实现馈电即可。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中涉及的“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
天线包括辐射单元、用于调整天线下倾角的移相器以及馈电网路,辐射单元通过馈电网路与移相器连接,如此通过移动移相器内的介质板可以调整天线的下倾角。
传统的移相馈电装置由独立的移相器通过电缆与馈电网络电路板连接形成。这样会造成零件多、焊点多,生产工时长,且使得移相馈电装置的体积变 大、重量偏重,不利于天线的小型化、轻量化。基于此,本申请提供一种天线及移相馈电装置,以解决前述问题。
如图1及2所示,一实施例中,提供一种移相馈电装置,包括腔体结构及馈电网络板200。
腔体结构包括介质基体100、接地层120及移相电路层130,介质基体100设有条形槽110,接地层120设置于介质基体100上,移相电路层130设置于条形槽110内,并与接地层120之间绝缘设置。
馈电网络板200用于封闭条形槽110,馈电网络板200包括基板、设置于基板的一面上的导电屏蔽层220、以及设置于基板的另一面上的馈电电路层210,导电屏蔽层220朝向条形槽110设置,导电屏蔽层220与接地层120相配合形成收容移相电路层130的屏蔽腔300,导电屏蔽层220与移相电路层130绝缘设置,馈电电路层210与移相电路层130电连接。
上述移相馈电装置使用时,可以利用注塑成型、三维打印、机加工等方式获得该介质基体100,然后利用电镀、化学镀或LDS(Laser-Direct-Structuring,激光直接成型)等工艺在介质基体100上的预设位置形成接地层120及移相电路层130,然后将馈电网络板200固定于介质基体100上,使得导电屏蔽层220与接地层120相配合形成收容移相电路层130的屏蔽腔300,获得移相器腔体,导电屏蔽层220与移相电路层130绝缘设置,馈电电路层210与移相电路层130电连接。如此,无需利用电缆来实现移相电路层130与馈电电路层210的馈电,简化了装配零件,有利于提高生产效率,有利于减小移相馈电装置的整体体积及重量。
此外,可以理解地,相同体积的情况下,介质基体100的重量小于金属壳体的重量,有利于减轻移相器的重量。此外,无需利用基板来形成移相电路层 130,同等条件下,可以去除基板厚度空间及相应的安装结构,使得利用本腔体结构形成的移相器的体积会更小。
进一步地,目前天线安装空间越来越小,上述移相馈电装置方案有利于减轻天线的重量及体积,对应完成或加快4G或/和5G天线的建设具有重大意义。重量的减轻,必然带来天线安装的便利,减轻对天线安装区域的负担,特别是减轻铁塔的负担。而体积的减小,使得该4G或/和5G天线能够在有限的空间内进行安装,实现该区域的4G或/和5G天线的覆盖,且无需调整或拆除其他频段的天线,大大节省调试时间。
需要说明的是,“接地层120”为导电层,只要能够实现接地功能即可。具体为金属导电层,进而可以采用电镀、化学镀或LDS等形成集成到壳体上。当然了,也可以采用具有导电性能的粘接涂层形成,在此不做限制,只要现有技术中能够实现即可。
需要说明的是,“介质基体100”的材质可为任意一种能够满足要求的绝缘材料,包括但不仅限于塑料,只要介电常数满足使用要求即可。
此外,移相电路层130设置于屏蔽腔300的内部,而馈电电路层210设置于屏蔽腔300的外部,使得移相电路层130与馈电电路层210之间互不干扰,有利于避免因互耦而影响辐射单元的辐射性能。
移相电路层130与屏蔽腔300配合,构成移相器模块,可实现移相器的功能。因此,与传统移相器相比,腔体结构更加紧凑,且利用介质基体100(相比于金属壳体的重量会大大减轻)与接地层120及屏蔽板来形成移相器的腔体结构,其重量能够显著减小,还能保证移相馈电装置功能不受影响。
可选地,如图1所示,一实施例中,条形槽110至少贯穿介质基体100的一端,方便移相介质板400进出。
在上述任一实施例的基础上,如图1及图4所示,一实施例中,接地层120设置于条形槽110的外侧壁上。此时可以在条形槽110的内壁的位置任一设置移相电路层130,可以利用条形槽110的两个侧壁来形成移相电路层130,有利于缩小介质基体100的体积。
此外,将接地层120设置于条形槽110外也有利于降低制造难度,更好地包围移相电路层130。
当然了,在其他实施例中,如图2所示,接地层120包括设置于条形槽110内的第一接地层122、以及设置于条形槽110外的第二接地层124,第二接地层124与第一接地层122电连接,第二接地层124与移相电路层130相对设置,移相电路层130与第一接地层122绝缘设置。如此,利用第一接地层122与第二接地层124的配合也可以包围移相电路层130。
可以理解地,第一接地层122与第二接地层124设置于条形槽110的内外不同侧,亦可根据移相电路层130的位置灵活进行组合。如此,相比于传统的移相电路板,该移相电路层130可以设置于条形槽110内的任意位置上,只需利用第一接地层122与第二接地层124相配合能够包围移相电路层130即可。
在前述实施例的基础上,一实施例中,移相电路层130与第一接地层122之间设有第一避让槽。如此,利用第一避让槽使得移相电路层130与第一接地层122绝缘设置,可以在制造的过程中预设排线形成间隔即可,易于实施。
在上述任一实施例的基础上,如图1所示,一实施例中,介质基体100包括凸出设置于条形槽110内的介质体140,移相电路层130设置于介质体140上。如此,将移相电路层130设置于介质体140上,能够充分利用条形槽110的内部空间,既可以增大移相电路层130的铺设面积,又有利于进一步缩小介质基体100宽度体积。
在上述实施例的基础上,如图3至图5所示,一实施例中,介质体140设有凸出条形槽110设置的凸体150,凸体150设有用于连接移相电路层130的信号端子160,信号端子160与馈电电路层210电连接;馈电网络板200设有与凸体150套接配合的配合孔230,配合孔230与导电屏蔽层220之间设有避让区。此时,介质体140的设置可以充分利用条形槽110的空间来形成移相电路层130;而利用凸体150与配合孔230的配合可以实现介质基体100与馈电网络板200的定位安装,同时将信号端子160设置于凸体150上,便于信号端子160与馈电电路层210焊接馈电,而焊接馈电的同时将介质基体100与馈电网络板200也固定在一起,减少了连接结构,有利于进一步减轻重量。上述结构即解决了介质基体100与馈电网络板200的固定问题,又实现了移相电路层130与馈电电路层210的馈电连接,简化了工序,有利于提高组装效率。
进一步地,凸体150的外侧壁均包裹有导电层,导电层用于形成信号端子160。如此,沿凸体150的四周均可形成焊接层,可以增大信号端子160与馈电电路层210的焊盘212的接触面积,从而提升移相电路层130与馈电电路层210之间电连接的可靠性,也有利于提升介质基体100与馈电网络板200固定的可靠性。
可选地,一实施例中,介质体140与介质基体100一体成型。如此,可以减少装配工序,提高生产效率。
进一步地,一实施例中,介质体140与条形槽110的内侧壁间隔设置形成供移相介质板400移动的通道。如此,该介质基体100可以用于形成移相器,进而利用移相介质板400在通道内移动,并与移相电路层130的配合实现天线下倾角的调整。
该馈电网络板200还可以集成其他元件,如馈电针等。
在上述实施例的基础上,一实施例中,条形槽110至少为两个,且移相电路层130与条形槽110一一对应,馈电电路层210与移相电路层130一一对应。如此,利用该介质基体100可以集成多个腔体,形成多组移相馈电装置,有利于进一步缩小天线馈电结构的体积,相邻两个移相馈电装置共用一个侧壁,有利于进一步减轻天线的重量。
至少两个移相馈电装置可以工作于相同的频段,也可以工作于不同的频段。
在上述实施例的基础上,一实施例中,两个馈电电路层210之间设有合路器。如此,各信号输出端通过对应的合路器连接到的同一极化的馈电网络及辐射单元上,利用合路器可以进一步减少焊接点及电缆数量。
屏蔽板可通过焊接、卡接、螺接等方式与介质基体100实现固定。
一实施例中,提供了天线,应用了上述任一实施例中的移相馈电装置。
结合前述分析可知,该天线采用了该移相馈电装置,有利于小型化及轻量化发展。
此外,可以理解的,目前天线安装空间越来越小,减轻天线的重量及体积,对应完成4G或/和5G天线的建设具有重大意义。重量的减轻,必然带来天线安装的便利,减轻对天线安装区域的负担,特别是减轻铁塔的负担。而体积的减小,使得该4G或/和5G天线能够在有限的空间内进行安装,实现该区域的4G或/和5G天线的覆盖,且无需调整或拆除其他频段的天线,大大节省调试时间。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普 通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种移相馈电装置,其特征在于,包括:
    腔体结构,所述腔体结构包括介质基体、接地层及移相电路层,所述介质基体设有条形槽,所述接地层设置于所述介质基体上,所述移相电路层设置于所述条形槽内,并与所述接地层之间绝缘设置所述馈电网络板用于封闭所述条形槽;及
    馈电网络板,所述馈电网络板包括基板、设置于所述基板的一面上的导电屏蔽层、以及设置于所述基板的另一面上的馈电电路层,所述导电屏蔽层朝向所述条形槽设置,所述导电屏蔽层与所述接地层相配合形成收容所述移相电路层的屏蔽腔,所述导电屏蔽层与所述移相电路层绝缘设置,所述馈电电路层与所述移相电路层电连接。
  2. 根据权利要求1所述的移相馈电装置,其特征在于,所述接地层设置于所述条形槽的外侧壁上。
  3. 根据权利要求1所述的移相馈电装置,其特征在于,所述接地层包括设置于所述条形槽内的第一接地层、以及设置于所述条形槽外的第二接地层,所述第二接地层与所述第一接地层电连接,所述第二接地层与所述移相电路层相对设置,所述移相电路层与所述第一接地层绝缘设置。
  4. 根据权利要求3所述的移相馈电装置,其特征在于,所述移相电路层与所述第一接地层之间设有第一避让槽。
  5. 根据权利要求1至4任一项所述的移相馈电装置,其特征在于,所述介质基体包括凸出设置于所述条形槽内的介质体,所述移相电路层设置于所述介质体上。
  6. 根据权利要求5所述的移相馈电装置,其特征在于,所述介质体设有凸 出所述条形槽设置的凸体,所述凸体设有用于连接所述移相电路层的信号端子,所述信号端子与所述馈电电路层电连接。
  7. 根据权利要求6所述的移相馈电装置,其特征在于,所述凸体的外侧壁均包裹有导电层,所述导电层用于形成信号端子。
  8. 根据权利要求6所述的移相馈电装置,其特征在于,所述馈电网络板设有与所述凸体套接配合的配合孔,所述配合孔与所述导电屏蔽层之间设有避让区。
  9. 根据权利要求5所述的移相馈电装置,其特征在于,所述介质体与所述条形槽的内侧壁间隔设置形成供移相介质板移动的通道。
  10. 一种天线,其特征在于,应用了如权利要求1至9任一项所述的移相馈电装置。
PCT/CN2020/110274 2019-12-31 2020-08-20 天线及移相馈电装置 WO2021135269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911423982.4A CN111064000A (zh) 2019-12-31 2019-12-31 天线及移相馈电装置
CN201911423982.4 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135269A1 true WO2021135269A1 (zh) 2021-07-08

Family

ID=70306328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110274 WO2021135269A1 (zh) 2019-12-31 2020-08-20 天线及移相馈电装置

Country Status (2)

Country Link
CN (1) CN111064000A (zh)
WO (1) WO2021135269A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111064000A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线及移相馈电装置
CN111063999A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线、移相馈电装置及腔体结构
CN111817008B (zh) * 2020-06-30 2022-07-19 武汉虹信科技发展有限责任公司 一种移相器及基站天线
CN112787053A (zh) * 2021-01-12 2021-05-11 上海安费诺永亿通讯电子有限公司 一种移相器及天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147442A (ja) * 2007-12-11 2009-07-02 Hitachi Cable Ltd 移相器
CN109659694A (zh) * 2019-01-30 2019-04-19 京信通信技术(广州)有限公司 移相馈电装置及基站天线
CN109802234A (zh) * 2019-01-30 2019-05-24 京信通信技术(广州)有限公司 基站天线及其移相馈电装置
CN111064000A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线及移相馈电装置
CN210692765U (zh) * 2019-11-08 2020-06-05 京信通信技术(广州)有限公司 移相馈电装置、辐射阵列及大规模阵列天线
CN211088511U (zh) * 2019-12-31 2020-07-24 京信通信技术(广州)有限公司 天线及移相馈电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009147442A (ja) * 2007-12-11 2009-07-02 Hitachi Cable Ltd 移相器
CN109659694A (zh) * 2019-01-30 2019-04-19 京信通信技术(广州)有限公司 移相馈电装置及基站天线
CN109802234A (zh) * 2019-01-30 2019-05-24 京信通信技术(广州)有限公司 基站天线及其移相馈电装置
CN210692765U (zh) * 2019-11-08 2020-06-05 京信通信技术(广州)有限公司 移相馈电装置、辐射阵列及大规模阵列天线
CN111064000A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线及移相馈电装置
CN211088511U (zh) * 2019-12-31 2020-07-24 京信通信技术(广州)有限公司 天线及移相馈电装置

Also Published As

Publication number Publication date
CN111064000A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021135269A1 (zh) 天线及移相馈电装置
CN109802234B (zh) 基站天线及移相馈电装置
CN109638457B (zh) 天线及移相馈电装置
CN101496219B (zh) 波导管的连接结构
CN103733427B (zh) 高频信号传输线路及电子设备
WO2021135268A1 (zh) 天线、移相馈电装置及腔体结构
CN109659694B (zh) 移相馈电装置及基站天线
WO2022257531A1 (zh) 多频阵列天线、辐射结构及辐射结构的装配方法
WO2022001068A1 (zh) 小型化天线
KR20110107348A (ko) 소형 원형 편파 전방향 안테나
CN110931987B (zh) 移相馈电装置、辐射阵列及大规模阵列天线
CN210957014U (zh) 移相馈电装置、天线单元及阵列天线
CN210692765U (zh) 移相馈电装置、辐射阵列及大规模阵列天线
WO2021103762A1 (zh) 集成滤波器的天线
CN211088511U (zh) 天线及移相馈电装置
US20230268642A1 (en) Base station antenna, feeder component and frame component
US11329394B2 (en) Flexible antenna structure and electronic device
CN217009554U (zh) 天线装置
CN210957016U (zh) 天线及移相馈电装置
CN211126072U (zh) 天线、移相馈电装置及腔体结构
WO2021063094A1 (zh) 一种天线结构和电子设备
CN111063998A (zh) 天线及馈电校准网络装置
CN111370814B (zh) 移相器和天线
CN210957005U (zh) 天线及馈电校准网络装置
CN220122093U (zh) 基于lds或pvd工艺的波导天线固定结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908899

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29-11-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20908899

Country of ref document: EP

Kind code of ref document: A1