WO2021135268A1 - 天线、移相馈电装置及腔体结构 - Google Patents

天线、移相馈电装置及腔体结构 Download PDF

Info

Publication number
WO2021135268A1
WO2021135268A1 PCT/CN2020/110273 CN2020110273W WO2021135268A1 WO 2021135268 A1 WO2021135268 A1 WO 2021135268A1 CN 2020110273 W CN2020110273 W CN 2020110273W WO 2021135268 A1 WO2021135268 A1 WO 2021135268A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
circuit layer
layer
shifting
ground layer
Prior art date
Application number
PCT/CN2020/110273
Other languages
English (en)
French (fr)
Inventor
李明超
陈礼涛
Original Assignee
京信通信技术(广州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信技术(广州)有限公司 filed Critical 京信通信技术(广州)有限公司
Publication of WO2021135268A1 publication Critical patent/WO2021135268A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means

Definitions

  • the present invention relates to the field of communication technology, in particular to an antenna, a phase-shifting power feeding device and a cavity structure.
  • the phase-shifting feeder is the core element of the base station antenna.
  • the electrical signal enters the corresponding antenna channel through the phase-shifting feeder for power division and phase-shift processing to achieve signal radiation.
  • the phase shifting feeder is generally composed of two separate components, a phase shifter and a feed network board; at least the phase shifter includes the phase shifter circuit and its shielding cavity. Moreover, the phase shifter needs to be fed through the cable between the feeder circuit of the feeder network board. This will result in many parts, many solder joints, long production hours, and increase the volume and weight of the phase-shifting feeder, which is not conducive to the miniaturization and light weight of the antenna.
  • the cavity structure can integrate a phase-shifting circuit layer and a feeding circuit layer, without using cables for feeding, simplifying the assembly process, and improving production efficiency.
  • the phase-shifting feeder adopts the cavity structure to reduce the volume, and because the assembly parts are greatly simplified, the weight can be effectively reduced.
  • the antenna adopts the phase-shifting feeding device, which is conducive to the development of miniaturization and light weight.
  • the present application provides a cavity structure, including a dielectric substrate, a phase shift circuit layer, and a feed circuit layer;
  • the dielectric substrate is provided with a strip groove, a first ground layer arranged in the strip groove, and a The second grounding layer outside the slot, the second grounding layer is electrically connected to the first grounding layer;
  • the phase-shifting circuit layer is arranged in the strip-shaped slot and opposite to the second grounding layer, the phase-shifting circuit layer is connected to the first grounding layer
  • the feeding circuit layer is arranged on the outer side wall of the dielectric substrate, the feeding circuit layer and the second grounding layer are spaced apart, and the feeding circuit layer is electrically connected with the phase shifting circuit layer.
  • the medium substrate can be obtained by injection molding, three-dimensional printing, machining, etc., and then electroplating, electroless plating, or LDS (Laser-Direct-Structuring, laser direct structuring) processes are used on the medium substrate.
  • the first ground layer, the second ground layer, the phase shift circuit layer and the feed circuit layer are formed in the preset position, and the second ground layer is electrically connected with the first ground layer, and the feed circuit layer is electrically connected with the phase shift circuit layer.
  • the phase shifting circuit layer and the feeding circuit layer are directly formed on the dielectric substrate, without the need to use cables for feeding, simplifying the assembly process, and improving production efficiency.
  • a first escape groove is provided between the phase shift circuit layer and the first ground layer.
  • the dielectric substrate includes a dielectric body protrudingly arranged in the strip groove, the phase shift circuit layer is arranged on the dielectric body, and the dielectric body is spaced from the inner side wall of the strip groove to form a movable The channel through which the phase media plate moves.
  • the medium body and the medium base body are integrally formed.
  • the first ground layer is provided on both the inner side wall and the inner bottom wall of the strip groove.
  • the cavity structure further includes a signal terminal for connecting the circuit layer of the phase shifter, the signal terminal and the first ground layer are arranged on the inner bottom wall of the strip groove at intervals, and the signal terminal and the feed network The circuit layers are electrically connected.
  • the first ground layer, the second ground layer, the phase shift circuit layer and the feed circuit layer are plated on the dielectric substrate.
  • phase shift circuit layer corresponds to the strip groove one to one
  • feed circuit layer corresponds to the phase shifter circuit layer one to one
  • a combiner is provided between the two feeder circuit layers.
  • the present application also provides a phase-shifting power feeding device, including the cavity structure in any of the above embodiments.
  • the phase-shifting power feeding device adopts the above-mentioned cavity structure, and the first grounding layer, the second grounding layer, the phase-shifting circuit layer, and the feeding circuit layer can be directly formed at the preset position on the dielectric substrate, and the second grounding layer can be formed.
  • the layer is electrically connected with the first ground layer, and the feeding circuit layer is electrically connected with the phase shifting circuit layer to complete the connection of the relevant feeding network. In this way, the assembly parts can be greatly simplified, and the overall volume and weight of the phase-shifting power feeding device can be reduced.
  • the phase-shifting feeder device further includes a shielding plate, the shielding plate is used to close the strip-shaped slot, and the shielding plate cooperates with the first ground layer and the second ground layer to form a shielding cavity of the phase-shifting circuit layer .
  • the shielding plate is fixed on the dielectric substrate, so that the shielding plate cooperates with the first grounding layer and the second grounding layer to form a shielding cavity of the phase shifting circuit layer, thereby obtaining a phase shifter cavity.
  • the material of the shielding plate is conductive material, or the shielding plate is provided with a conductive shielding layer.
  • the present application also provides an antenna, which applies the phase-shifting power feeding device in any of the above-mentioned embodiments.
  • the antenna adopts the phase-shifting feeder, which is beneficial to the development of miniaturization and light weight.
  • FIG. 1 is a schematic diagram of a cavity structure shown in an embodiment
  • Figure 2 is a schematic diagram of a cavity structure shown in an embodiment
  • FIG. 3 is a partial enlarged schematic diagram of A shown in FIG. 2;
  • FIG. 4 is a schematic diagram of the cavity structure shown in FIG. 2 from another perspective;
  • FIG. 5 is a schematic structural diagram of a phase-shifting power feeding device shown in an embodiment
  • Fig. 6 is an exploded schematic diagram of the structure of the phase-shifting feeder shown in an embodiment
  • Fig. 7 is a schematic structural diagram of a phase-shifting power feeding device shown in an embodiment.
  • Dielectric substrate 100.
  • Dielectric substrate 110, strip groove; 120, first ground layer; 130, second ground layer; 140, dielectric body; 150, first avoidance groove; 160, ground column; 200, phase shift circuit layer; 300 , Feeding circuit layer; 310, combiner; 400, signal terminal; 500, shielding plate; 510, jack; 600, shielding cavity; 700, phase-shifting dielectric plate.
  • an element when an element is referred to as being “fixed to”, “installed on”, “fixed on” or “installed on” another element, it can be directly on the other element or there may also be a centered element. .
  • an element When an element is considered to be “connected” to another element, it can be directly connected to the other element or an intermediate element may be present at the same time.
  • one element when one element is considered to be “electrically connected” to another element, the two can be connected by metal wires or metal vias, so that power can be fed.
  • a component and another component are perpendicular or nearly perpendicular to each other, it means that the ideal state of the two is perpendicular, but due to the influence of manufacturing and assembly, there may be a certain vertical error.
  • the terms “vertical”, “horizontal”, “left”, “right” and similar expressions used herein are for illustrative purposes only, and are not meant to be the only embodiments.
  • the antenna includes a radiation unit, a phase shifter for adjusting the downward tilt angle of the antenna, and a feed network.
  • the radiation unit is connected to the phase shifter through the feed network, so that the downward tilt angle of the antenna can be adjusted by moving the dielectric plate in the phase shifter.
  • the traditional phase shifting feeder device is formed by connecting an independent phase shifter to the feeder network circuit board through a cable. This will result in many parts, many solder joints, long production hours, and increase the volume and weight of the phase-shifting feeder, which is not conducive to the miniaturization and light weight of the antenna. Based on this, the present application provides an antenna, a phase-shifting feeder, and a cavity structure to solve the aforementioned problems.
  • the cavity structure will be described first.
  • a cavity structure including a dielectric substrate 100, a phase shift circuit layer 200, and a feed circuit layer 300;
  • the dielectric substrate 100 is provided with strip grooves 110 , The first ground layer 120 arranged in the strip groove 110, and the second ground layer 130 arranged outside the strip groove 110, the second ground layer 130 is electrically connected to the first ground layer 120;
  • the phase shift circuit layer 200 is arranged In the strip groove 110 and opposite to the second ground layer 130, the phase-shifting circuit layer 200 and the first ground layer 120 are insulated from each other;
  • the feeding circuit layer 300 is arranged on the outer sidewall of the dielectric substrate 100 to feed power
  • the circuit layer 300 and the second ground layer 130 are spaced apart, and the feed circuit layer 300 is electrically connected to the phase shift circuit layer 200.
  • the dielectric substrate 100 can be obtained by injection molding, three-dimensional printing, machining, etc., and then electroplating, electroless plating, or LDS (Laser-Direct-Structuring, laser direct structuring) processes are used to form the dielectric substrate 100.
  • the first ground layer 120, the second ground layer 130, the phase shifting circuit layer 200, and the feeding circuit layer 300 are formed at preset positions on the upper surface, and the second ground layer 130 is electrically connected to the first ground layer 120, and the feeding circuit layer 300 is electrically connected to the phase shift circuit layer 200.
  • the assembly process can be simplified, the welding operation can be reduced, the solder joints can be greatly reduced, and the production efficiency can be improved.
  • phase-shifting circuit layer 200 and the feeding circuit layer 300 are directly formed on the dielectric substrate 100, without the need to use cables for feeding.
  • the overall volume of the phase-shifting power feeding device can be reduced, and the overall volume of the phase-shifting power feeding device can be reduced significantly. Small weight.
  • the current antenna installation space is getting smaller and smaller, and the above-mentioned cavity structure solution is beneficial to reduce the weight and volume of the antenna, and it is of great significance to complete or accelerate the construction of 4G or/and 5G antennas.
  • the reduction in weight will inevitably bring convenience to the antenna installation and reduce the burden on the antenna installation area, especially the burden on the tower.
  • the reduction in size allows the 4G or/and 5G antenna to be installed in a limited space to achieve the coverage of the 4G or/and 5G antenna in the area without adjusting or removing antennas in other frequency bands, which greatly saves debugging time .
  • first ground layer 120 and the "second ground layer 130" are conductive layers, as long as they can achieve the grounding function. Specifically, it is a metal conductive layer, which can be formed and integrated on the housing by electroplating, electroless plating, or LDS. Of course, it can also be formed by a conductive adhesive coating, which is not limited here, as long as it can be implemented in the prior art.
  • the material of the "dielectric substrate 100" can be any insulating material that can meet the requirements, including but not limited to plastics, as long as the dielectric constant meets the usage requirements.
  • the strip-shaped groove 110 penetrates at least one end of the dielectric substrate 100 to facilitate the entry and exit of the phase-shifting dielectric plate 700.
  • first ground layer 120 and the second ground layer 130 are arranged on different sides of the strip groove 110 inside and outside, and can be combined flexibly according to the position of the phase shift circuit layer 200.
  • a first escape groove 150 is provided between the phase shifting circuit layer 200 and the first ground layer 120.
  • the phase shift circuit layer 200 is insulated from the first ground layer 120 by using the first avoiding groove 150, and the spacing between the cables can be preset during the manufacturing process, which is easy to implement.
  • the dielectric substrate 100 includes a dielectric body 150 protrudingly disposed in the strip groove 110, and the phase shift circuit layer 200 is disposed on the dielectric body 150. ⁇ 150 ⁇ Body 150 on. In this way, disposing the phase-shifting circuit layer 200 on the dielectric body 150 can make full use of the internal space of the strip groove 110, which can increase the laying area of the phase-shifting circuit layer 200 and further reduce the width of the dielectric substrate 100.
  • the dielectric body 150 is spaced from the inner side wall of the strip groove 110 to form a channel for the phase shifting dielectric plate 700 to move.
  • the dielectric substrate 100 can be used to form a phase shifter, and then the phase shifting dielectric plate 700 is used to move in the channel and cooperate with the phase shifting circuit layer 200 to adjust the antenna downtilt angle.
  • the medium body 140 and the medium base body 100 are integrally formed. In this way, the assembly process can be reduced, and the production efficiency can be improved.
  • the first ground layer is provided on both the inner side wall and the inner bottom wall of the strip groove.
  • the first ground layer can be formed by electroplating directly in the strip-shaped groove, which facilitates the formation of a shielding cavity in cooperation with the second ground layer 130, which is beneficial to reduce the manufacturing difficulty.
  • the second ground layer 130 only needs to be disposed on the opposite surface of the dielectric body 140 to cooperate with the first ground layer 110 to form an enclosing cavity.
  • the area of the phase shift circuit layer 200 can be increased, and the second ground layer The area of 130 can be reduced, and the feeding circuit layer 300 can have more setting area, facilitating the integration of more functions.
  • the cavity structure further includes a signal terminal 400 for connecting the phase shifter circuit layer, and the signal terminal 400 and the first ground layer 120 are spaced apart from each other.
  • the inner bottom wall of the strip groove 110, and the signal terminal 400 is electrically connected to the feeding network circuit layer.
  • the signal terminal 400 can be arranged on the inner bottom wall of the strip groove 110, which is convenient to form an electrical connection with the circuit layer of the feeding network through a metal wire or a metal via, which is easy to implement and does not require a cable for feeding.
  • the signal terminal 400 can be understood as an interface for realizing signal input and output. According to different application scenarios, the number of signal terminals 400 can be adjusted accordingly.
  • the first ground layer 120, the second ground layer 130, the phase shift circuit layer 200, and the feed circuit layer 300 are plated on the dielectric substrate 100.
  • the first ground layer 120 and the second ground layer 130 are electrically connected through metal vias
  • the phase shift circuit layer 200 and the feed circuit layer 300 are electrically connected through metal vias, eliminating the need for soldering operations, which further reduces soldering. Process to improve production efficiency.
  • the phase shift circuit layer 200 corresponds to the strip groove 110 one-to-one
  • the feed circuit layer 300 corresponds to the phase shifter circuit layer.
  • the dielectric substrate 100 can be used to integrate multiple cavities to form multiple sets of phase-shifting feeders, which is conducive to further reducing the size of the antenna feed structure.
  • Two adjacent phase-shifting feeders share one side wall, which is beneficial to Further reduce the weight of the antenna.
  • At least two phase-shifting feeders can work in the same frequency band, or they can work in different frequency bands.
  • a combiner 310 is provided between the two feeder circuit layers 300.
  • each signal output terminal is connected to the feeder network and the radiating unit of the same polarization through the corresponding combiner 310.
  • the use of the combiner 310 can further reduce the number of welding points and cables.
  • phase-shifting power feeder will be described below.
  • a phase-shifting power feeding device including the cavity structure in any of the above embodiments.
  • the phase shifting power feeding device adopts the above-mentioned cavity structure, and the first grounding layer 120, the second grounding layer 130, the phase shifting circuit layer 200 and the feeding circuit layer 300 can be directly formed on the predetermined position on the dielectric substrate 100.
  • the second ground layer 130 is electrically connected to the first ground layer 120
  • the feeding circuit layer 300 is electrically connected to the first ground layer 120 and the phase shifting circuit layer 200 to complete the related feeding network connection. In this way, the assembly parts can be greatly simplified, and the overall volume and weight of the phase-shifting power feeding device can be reduced.
  • the phase-shifting power feeding device further includes a shielding plate 500, the shielding plate 500 is used to close the strip groove 110, and the shielding plate 500 cooperates with the first ground layer and the second ground layer 130 to form the shielding cavity 600 of the phase-shifting circuit layer 200 .
  • the shielding plate 500 can be fixed on the dielectric substrate 100 so that the shielding plate 500 cooperates with the first ground layer and the second ground layer 130 to form the shielding cavity 600 of the phase shifting circuit layer 200 to obtain a phase shifter cavity.
  • phase shifting circuit layer 200 is arranged inside the shielding cavity 600, and the feeding circuit layer 300 is arranged outside the shielding cavity 600, so that the phase shifting circuit layer 200 and the feeding circuit layer 300 do not interfere with each other, which is beneficial to avoid Mutual coupling affects the radiation performance of the radiating unit.
  • the current antenna installation space is getting smaller and smaller, and the above-mentioned phase-shifting feeder solution is conducive to reducing the weight and volume of the antenna, and it is of great significance to complete the construction of the 4G or/and 5G antenna.
  • the reduction in weight will inevitably bring convenience to the antenna installation and reduce the burden on the antenna installation area, especially the burden on the tower.
  • the reduction in size allows the 4G or/and 5G antenna to be installed in a limited space to achieve the coverage of the 4G or/and 5G antenna in the area without adjusting or removing antennas in other frequency bands, which greatly saves debugging time .
  • the phase shifting circuit layer 200 cooperates with the shielding cavity 600 to form a phase shifter module, which can realize the function of a phase shifter. Therefore, compared with the traditional phase shifter, the cavity structure is more compact, and the dielectric substrate 100 (which is greatly reduced in weight compared to the metal shell), the ground layer and the shield plate 500 are used to form the cavity structure of the phase shifter , Its weight can be significantly reduced, and it can also ensure that the function of the phase-shifting feeder is not affected.
  • the shielding plate 500 can be fixed to the dielectric substrate 100 by welding, clamping, screwing, or the like.
  • a grounding post 160 is provided on the side wall of the dielectric substrate 100, and the shielding plate 500 is provided with a jack 510 that is interference fit with the grounding post 160.
  • the grounding post 160 and the dielectric substrate 100 are integrally formed, and the grounding post 160 is matched with the jack 510 to realize quick installation and fixation.
  • the material of the shielding plate 500 is a conductive material, or the shielding plate 500 is provided with a conductive shielding layer.
  • the shielding plate 500 can be directly manufactured by using metal plates, or can be formed by plating a metal layer on the substrate, which makes the design and assembly more flexible and facilitates selection according to actual needs.
  • an antenna which applies the phase-shifting power feeding device in any of the above-mentioned embodiments.
  • the antenna adopts the phase-shifting feeder, which is beneficial to the development of miniaturization and light weight.
  • the current antenna installation space is getting smaller and smaller, reducing the weight and volume of the antenna, and correspondingly completing the construction of the 4G or/and 5G antenna is of great significance.
  • the reduction in weight will inevitably bring convenience to the antenna installation and reduce the burden on the antenna installation area, especially the burden on the tower.
  • the reduction in size allows the 4G or/and 5G antenna to be installed in a limited space to achieve the coverage of the 4G or/and 5G antenna in the area without adjusting or removing antennas in other frequency bands, which greatly saves debugging time .

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种天线、移相馈电装置及腔体结构,该腔体结构包括介质基体、移相电路层及馈电电路层;介质基体设有条形槽、设置于条形槽内的第一接地层、以及设置于条形槽外的第二接地层,第二接地层与第一接地层电连接;移相电路层设置于条形槽内、并与第二接地层相对设置,移相电路层与第一接地层之间绝缘设置;馈电电路层设置于介质基体的外侧壁上,馈电电路层与第二接地层间隔设置,且馈电电路层与移相电路层电连接。该腔体结构能够集成移相电路层及馈电电路层,无需利用电缆进行馈电。该移相馈电装置采用了该腔体结构能够缩小体积,且简化了装配零件,能够有效减轻重量。该天线能够小型化及轻量化发展。

Description

天线、移相馈电装置及腔体结构 技术领域
本发明涉及通信技术领域,特别是涉及一种天线、移相馈电装置及腔体结构。
背景技术
随着天线技术发展,小型化成为天线的发展趋势。移相馈电装置是基站天线的核心元件,电信号通过移相馈电装置进行功分、移相处理后进入对应的天线通道内,实现信号辐射。
目前,移相馈电装置一般由移相器及馈电网络板两个单独的元器件组合而成;至少移相器包括了移相器电路及其屏蔽腔体。而且,移相器需与馈电网络板的馈电线路之间,要通过电缆进行馈电。这样会造成零件多、焊点多,生产工时长,且使得移相馈电装置的体积变大、重量偏重,不利于天线的小型化、轻量化。
发明内容
基于此,有必要提供一种天线、移相馈电装置及腔体结构。该腔体结构能够集成移相电路层及馈电电路层,无需利用电缆进行馈电,简化装配流程,有利于提高生产效率。该移相馈电装置采用了该腔体结构能够缩小体积,且由于大大简化了装配零件,能够有效减轻重量。该天线采用了该移相馈电装置,有利于小型化及轻量化发展。
其技术方案如下:
一方面,本申请提供一种腔体结构,包括介质基体、移相电路层及馈电电路层;介质基体设有条形槽、设置于条形槽内的第一接地层、以及设置于条形槽外的第二接地层,第二接地层与第一接地层电连接;移相电路层设置于条形槽内、并与第二接地层相对设置,移相电路层与第一接地层之间绝缘设置;馈电电路层设置于介质基体的外侧壁上,馈电电路层与第二接地层间隔设置,且馈电电路层与移相电路层电连接。
上述腔体结构使用时,可以利用注塑成型、三维打印、机加工等方式获得该介质基体,然后利用电镀、化学镀或LDS(Laser-Direct-Structuring,激光直接成型)等工艺在介质基体上的预设位置形成第一接地层、第二接地层、移相电路层及馈电电路层,并使得第二接地层与第一接地层电连接、馈电电路层与移相电路层电连接。如此直接在介质基体上形成移相电路层及馈电电路层,无需利用电缆进行馈电,简化装配流程,有利于提高生产效率。
下面进一步对技术方案进行说明:
在其中一个实施例中,移相电路层与第一接地层之间设有第一避让槽。
在其中一个实施例中,介质基体包括凸出设置于条形槽内的介质体,移相电路层设置于介质体上,所述介质体与所述条形槽的内侧壁间隔设置形成供移相介质板移动的通道。
在其中一个实施例中,所述介质体与所述介质基体一体成型。
在其中一个实施例中,所述条形槽的内侧壁和内底壁上均设有所述第一接地层。
在其中一个实施例中,该腔体结构还包括用于连接移相器电路层的信号端子,信号端子与第一接地层间隔设置于条形槽的内底壁,且信号端子与馈电网络电路层电连接。
在其中一个实施例中,第一接地层、第二接地层、移相电路层及馈电电路层镀设在介质基体上。
在其中一个实施例中,条形槽至少为两个,且移相电路层与条形槽一一对应,馈电电路层与移相器电路层一一对应。
在其中一个实施例中,两个馈电电路层之间设有合路器。
另一方面,本申请还提供了一种移相馈电装置,包括上述任一实施例中的腔体结构。
该移相馈电装置采用了上述腔体结构,则可以直接在介质基体上的预设位置形成第一接地层、第二接地层、移相电路层及馈电电路层,并使得第二接地层与第一接地层电连接、馈电电路层与移相电路层电连接,完成相关馈电网路连接。如此,可以大大简化了装配零件,有利于减小移相馈电装置的整体体积及重量。
下面进一步对技术方案进行说明:
在其中一个实施例中,该移相馈电装置还包括屏蔽板,屏蔽板用于封闭条形槽,且屏蔽板与第一接地层及第二接地层相配合形成移相电路层的屏蔽腔。如此,将屏蔽板固定于介质基体上,使得屏蔽板与第一接地层及第二接地层相配合形成移相电路层的屏蔽腔,获得移相器腔体。
在其中一个实施例中,屏蔽板的材质为导电材料,或屏蔽板设有导电屏蔽层。
另一方面,本申请还提供了一种天线,应用了上述任一实施例中的移相馈电装置。
结合前述分析可知,该天线采用了该移相馈电装置,有利于小型化及轻量化发展。
附图说明
图1为一实施例中所示的腔体结构的示意图;
图2为一实施例中所示的腔体结构的示意图;
图3为图2所示的A的局部放大示意图;
图4为图2所示的腔体结构的另一视角下的示意图;
图5为一实施例中所示的移相馈电装置的结构示意图;
图6为一实施例中所示的移相馈电装置的结构爆炸示意图;
图7为一实施例中所示的移相馈电装置的结构示意图。
附图标记说明:
100、介质基体;110、条形槽;120、第一接地层;130、第二接地层;140、介质体;150、第一避让槽;160、接地柱;200、移相电路层;300、馈电电路层;310、合路器;400、信号端子;500、屏蔽板;510、插孔;600、屏蔽腔;700、移相介质板。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
需要说明的是,当元件被称为“固定于”、“设置于”、“固设于”或“安设于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。进一步地,当一个元件被认为是“电连接”另一个元件,二者可以是利用金属导线进行连接,也可以利用金属过孔进行连接,能 够实现馈电即可。当元件与另一个元件相互垂直或近似垂直是指二者的理想状态是垂直,但是因制造及装配的影响,可以存在一定的垂直误差。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本发明中涉及的“第一”、“第二”不代表具体的数量及顺序,仅仅是用于名称的区分。
天线包括辐射单元、用于调整天线下倾角的移相器以及馈电网路,辐射单元通过馈电网路与移相器连接,如此通过移动移相器内的介质板可以调整天线的下倾角。
传统的移相馈电装置由独立的移相器通过电缆与馈电网络电路板连接形成。这样会造成零件多、焊点多,生产工时长,且使得移相馈电装置的体积变大、重量偏重,不利于天线的小型化、轻量化。基于此,本申请提供一种天线、移相馈电装置及腔体结构,以解决前述问题。
下面先对腔体结构进行说明。
如图1、图2及图4所示,本实施例中,提供一种腔体结构,包括介质基体100、移相电路层200及馈电电路层300;介质基体100设有条形槽110、设置于条形槽110内的第一接地层120、以及设置于条形槽110外的第二接地层130,第二接地层130与第一接地层120电连接;移相电路层200设置于条形槽110内、并与第二接地层130相对设置,移相电路层200与第一接地层120之间绝 缘设置;馈电电路层300设置于介质基体100的外侧壁上,馈电电路层300与第二接地层130间隔设置,且馈电电路层300与移相电路层200电连接。
上述腔体结构使用时,可以利用注塑成型、三维打印、机加工等方式获得该介质基体100,然后利用电镀、化学镀或LDS(Laser-Direct-Structuring,激光直接成型)等工艺在介质基体100上的预设位置形成第一接地层120、第二接地层130、移相电路层200及馈电电路层300,并使得第二接地层130与第一接地层120电连接、馈电电路层300与移相电路层200电连接。如此可以简化装配流程,减少焊接操作,能大量减少焊点,有利于提高生产效率。且直接在介质基体100上形成移相电路层200及馈电电路层300,无需利用电缆进行馈电,应用于移相馈电装置能够减小移相馈电装置的整体体积,且能够显著减小重量。
进一步地,目前天线安装空间越来越小,上述腔体结构方案有利于减轻天线的重量及体积,对应完成或加快4G或/和5G天线的建设具有重大意义。重量的减轻,必然带来天线安装的便利,减轻对天线安装区域的负担,特别是减轻铁塔的负担。而体积的减小,使得该4G或/和5G天线能够在有限的空间内进行安装,实现该区域的4G或/和5G天线的覆盖,且无需调整或拆除其他频段的天线,大大节省调试时间。
需要说明的是,“第一接地层120”及“第二接地层130”为导电层,只要能够实现接地功能即可。具体为金属导电层,进而可以采用电镀、化学镀或LDS等形成集成到壳体上。当然了,也可以采用具有导电性能的粘接涂层形成,在此不做限制,只要现有技术中能够实现即可。
需要说明的是,“介质基体100”的材质可为任意一种能够满足要求的绝缘材料,包括但不仅限于塑料,只要介电常数满足使用要求即可。
可选地,条形槽110至少贯穿介质基体100的一端,方便移相介质板700 进出。
可以理解地,第一接地层120与第二接地层130设置于条形槽110的内外不同侧,可以根据移相电路层200的位置灵活进行组合。
在上述任一实施例的基础上,如图3所示,一实施例中,移相电路层200与第一接地层120之间设有第一避让槽150。如此,利用第一避让槽150使得移相电路层200与第一接地层120绝缘设置,可以在制造的过程中预设排线形成间隔即可,易于实施。
在上述任一实施例的基础上,如图3及图4所示,一实施例中,介质基体100包括凸出设置于条形槽110内的介质体150,移相电路层200设置于介质体150上。如此,将移相电路层200设置于介质体150上,能够充分利用条形槽110的内部空间,既可以增大移相电路层200的铺设面积,又有利于进一步缩小介质基体100宽度尺寸。
进一步地,如图5所示,一实施例中,介质体150与条形槽110的内侧壁间隔设置形成供移相介质板700移动的通道。如此,该介质基体100可以用于形成移相器,进而利用移相介质板700在通道内移动,并与移相电路层200的配合实现天线下倾角的调整。
可选地,一实施例中,介质体140与介质基体100一体成型。如此,可以减少装配工序,提高生产效率。
可选地,一实施例中,条形槽的内侧壁和内底壁上均设有第一接地层。如此,可以直接在条形槽内进行电镀形成第一接地层,便于与第二接地层130相配合形成屏蔽腔,有利于降低制造难度。
此外,该第二接地层130只需设置于介质体140的相对面即可与第一接地层110相配合形成包围腔,此时移相电路层200的设置面积可以增大,第二接 地层130的面积可以缩小,馈电电路层300的可以有更多的设置面积,便于集成更多的功能。
在上述实施例的基础上,如图3所示,一实施例中,该腔体结构还包括用于连接移相器电路层的信号端子400,信号端子400与第一接地层120间隔设置于条形槽110的内底壁,且信号端子400与馈电网络电路层电连接。如此,该信号端子400可以设置于条形槽110的内底壁,方便通过金属导线或金属过孔等形成与馈电网络电路层电连接,易于实施,无需理由电缆进行馈电。
该信号端子400可以理解为一个接口,用于实现信号的输入及输出,根据应用场景的不同,信号端子400的数量可对应调整。
在上述任一实施例的基础上,一实施例中,第一接地层120、第二接地层130、移相电路层200及馈电电路层300镀设在介质基体100上。如此,第一接地层120与第二接地层130之间通过金属过孔电连接,移相电路层200与馈电电路层300之间通过金属过孔电连接,无需进行焊接操作,进一步减少焊接工序,提高生产效率。
在上述任一实施例的基础上,一实施例中,条形槽110至少为两个,且移相电路层200与条形槽110一一对应,馈电电路层300与移相器电路层一一对应。如此,利用该介质基体100可以集成多个腔体,形成多组移相馈电装置,有利于进一步缩小天线馈电结构的体积,相邻两个移相馈电装置共用一个侧壁,有利于进一步减轻天线的重量。
至少两个移相馈电装置可以工作于相同的频段,也可以工作于不同的频段。
在上述实施例的基础上,如图7所示,一实施例中,两个馈电电路层300之间设有合路器310。如此,各信号输出端通过对应的合路器310连接到的同一极化的馈电网络及辐射单元上,利用合路器310可以进一步减少焊接点及电缆 数量。
下面对移相馈电装置进行说明。
如图5至图7所示,一实施例中,提供了一种移相馈电装置,包括上述任一实施例中的腔体结构。
该移相馈电装置采用了上述腔体结构,则可以直接在介质基体100上的预设位置形成第一接地层120、第二接地层130、移相电路层200及馈电电路层300,并使得第二接地层130与第一接地层120电连接、馈电电路层300与第一接地层120及移相电路层200电连接,完成相关馈电网路连接。如此,可以大大简化了装配零件,有利于减小移相馈电装置的整体体积及重量。
该移相馈电装置还包括屏蔽板500,屏蔽板500用于封闭条形槽110,且屏蔽板500与第一接地层及第二接地层130相配合形成移相电路层200的屏蔽腔600。如此,可以将屏蔽板500固定于介质基体100上,使得屏蔽板500与第一接地层及第二接地层130相配合形成移相电路层200的屏蔽腔600,获得移相器腔体。
此外,移相电路层200设置于屏蔽腔600的内部,而馈电电路层300设置于屏蔽腔600的外部,使得移相电路层200与馈电电路层300之间互不干扰,有利于避免因互耦而影响辐射单元的辐射性能。
进一步地,目前天线安装空间越来越小,上述移相馈电装置方案有利于减轻天线的重量及体积,对应完成4G或/和5G天线的建设具有重大意义。重量的减轻,必然带来天线安装的便利,减轻对天线安装区域的负担,特别是减轻铁塔的负担。而体积的减小,使得该4G或/和5G天线能够在有限的空间内进行安装,实现该区域的4G或/和5G天线的覆盖,且无需调整或拆除其他频段的天线,大大节省调试时间。
移相电路层200与屏蔽腔600配合,构成移相器模块,可实现移相器的功能。因此,与传统移相器相比,腔体结构更加紧凑,且利用介质基体100(相比于金属壳体的重量会大大减轻)与接地层及屏蔽板500来形成移相器的腔体结构,其重量能够显著减小,还能保证移相馈电装置功能不受影响。
屏蔽板500可通过焊接、卡接、螺接等方式与介质基体100实现固定。
具体到本实施例中,如图5及图6所示,介质基体100的侧壁上设有接地柱160,屏蔽板500设有与接地柱160过盈配合的插孔510。接地柱160与介质基体100为一体成型的结构,接地柱160与插孔510配合,可实现快速安装固定。
在上述实施例的基础上,一实施例中,屏蔽板500的材质为导电材料,或屏蔽板500设有导电屏蔽层。如此,该屏蔽板500可以直接利用金属板材制造而成,也可以在基板上镀上一层金属层形成,设计组装更加灵活,便于根据实际需要进行选择。
一实施例中,提供了一种天线,应用了上述任一实施例中的移相馈电装置。
结合前述分析可知,该天线采用了该移相馈电装置,有利于小型化及轻量化发展。
此外,可以理解的,目前天线安装空间越来越小,减轻天线的重量及体积,对应完成4G或/和5G天线的建设具有重大意义。重量的减轻,必然带来天线安装的便利,减轻对天线安装区域的负担,特别是减轻铁塔的负担。而体积的减小,使得该4G或/和5G天线能够在有限的空间内进行安装,实现该区域的4G或/和5G天线的覆盖,且无需调整或拆除其他频段的天线,大大节省调试时间。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特 征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种腔体结构,其特征在于,包括:
    介质基体,所述介质基体设有条形槽、设置于所述条形槽内的第一接地层、以及设置于所述条形槽外的第二接地层,所述第二接地层与所述第一接地层电连接;
    移相电路层,所述移相电路层设置于所述条形槽内、并与所述第二接地层相对设置,所述移相电路层与所述第一接地层之间绝缘设置;及
    馈电电路层,所述馈电电路层设置于所述介质基体的外侧壁上,所述馈电电路层与所述第二接地层间隔设置,且所述馈电电路层与所述移相电路层电连接。
  2. 根据权利要求1所述的腔体结构,其特征在于,所述移相电路层与所述第一接地层之间设有第一避让槽。
  3. 根据权利要求1所述的腔体结构,其特征在于,所述介质基体包括凸出设置于所述条形槽内的介质体,所述移相电路层设置于所述介质体上,所述介质体与所述条形槽的内侧壁间隔设置形成供移相介质板移动的通道。
  4. 根据权利要求3所述的壳体结构,其特征在于,所述介质体与所述介质基体一体成型。
  5. 根据权利要求3所述的壳体结构,其特征在于,所述条形槽的内侧壁和内底壁上均设有所述第一接地层。
  6. 根据权利要求1所述的壳体结构,其特征在于,还包括用于连接所述移相器电路层的信号端子,所述信号端子与所述第一接地层间隔设置于条形槽的内底壁,且所述信号端子与所述馈电网络电路层电连接。
  7. 根据权利要求1所述的腔体结构,其特征在于,所述第一接地层、所述 第二接地层、所述移相电路层及所述馈电电路层镀设在所述介质基体上。
  8. 根据权利要求1至7任一项所述的腔体结构,其特征在于,所述条形槽至少为两个,且所述移相电路层与所述条形槽一一对应,所述馈电电路层与所述移相器电路层一一对应。
  9. 根据权利要求8所述的腔体结构,其特征在于,两个所述馈电电路层之间设有合路器。
  10. 一种移相馈电装置,其特征在于,包括如权利要求1至9任一项所述的腔体结构。
  11. 根据权利要求10所述的移相馈电装置,其特征在于,还包括屏蔽板,所述屏蔽板用于封闭所述条形槽,且所述屏蔽板与所述第一接地层及所述第二接地层相配合形成所述移相电路层的屏蔽腔。
  12. 根据权利要求11所述的移相馈电装置,其特征在于,所述屏蔽板的材质为导电材料,或所述屏蔽板设有导电屏蔽层。
  13. 一种天线,其特征在于,应用了如权利要求10至12任一项所述的移相馈电装置。
PCT/CN2020/110273 2019-12-31 2020-08-20 天线、移相馈电装置及腔体结构 WO2021135268A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911418033.7 2019-12-31
CN201911418033.7A CN111063999A (zh) 2019-12-31 2019-12-31 天线、移相馈电装置及腔体结构

Publications (1)

Publication Number Publication Date
WO2021135268A1 true WO2021135268A1 (zh) 2021-07-08

Family

ID=70305895

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110273 WO2021135268A1 (zh) 2019-12-31 2020-08-20 天线、移相馈电装置及腔体结构

Country Status (2)

Country Link
CN (1) CN111063999A (zh)
WO (1) WO2021135268A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111063999A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线、移相馈电装置及腔体结构
DE112021001202T5 (de) * 2021-03-15 2022-12-22 Boe Technology Group Co., Ltd. Antenne und Temperatursteuersystem für die Antenne

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2802036A1 (fr) * 2013-05-06 2014-11-12 Alcatel- Lucent Shanghai Bell Co., Ltd Déphaseur passif à déplacement longitudinal
CN109638457A (zh) * 2019-01-30 2019-04-16 京信通信技术(广州)有限公司 天线及其移相馈电装置
CN109802234A (zh) * 2019-01-30 2019-05-24 京信通信技术(广州)有限公司 基站天线及其移相馈电装置
CN111064000A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线及移相馈电装置
CN111063999A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线、移相馈电装置及腔体结构
CN210957014U (zh) * 2019-12-12 2020-07-07 京信通信技术(广州)有限公司 移相馈电装置、天线单元及阵列天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2802036A1 (fr) * 2013-05-06 2014-11-12 Alcatel- Lucent Shanghai Bell Co., Ltd Déphaseur passif à déplacement longitudinal
CN109638457A (zh) * 2019-01-30 2019-04-16 京信通信技术(广州)有限公司 天线及其移相馈电装置
CN109802234A (zh) * 2019-01-30 2019-05-24 京信通信技术(广州)有限公司 基站天线及其移相馈电装置
CN210957014U (zh) * 2019-12-12 2020-07-07 京信通信技术(广州)有限公司 移相馈电装置、天线单元及阵列天线
CN111064000A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线及移相馈电装置
CN111063999A (zh) * 2019-12-31 2020-04-24 京信通信技术(广州)有限公司 天线、移相馈电装置及腔体结构

Also Published As

Publication number Publication date
CN111063999A (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
WO2021135269A1 (zh) 天线及移相馈电装置
CN109802234B (zh) 基站天线及移相馈电装置
EP3223368B1 (en) Baffle board for base station antenna and base station antenna array structure
US20200313305A1 (en) Antenna module and terminal thereof
CN109638457B (zh) 天线及移相馈电装置
US6677909B2 (en) Dual band slot antenna with single feed line
WO2021135268A1 (zh) 天线、移相馈电装置及腔体结构
WO2020155723A1 (zh) 移相馈电装置及基站天线
CN210957014U (zh) 移相馈电装置、天线单元及阵列天线
CN210692758U (zh) 集成滤波器的天线
WO2022001068A1 (zh) 小型化天线
CN110931987A (zh) 移相馈电装置、辐射阵列及大规模阵列天线
CN203968495U (zh) 高频信号线路及电子设备
CN112186348B (zh) 基站天线及移相馈电装置
WO2021103762A1 (zh) 集成滤波器的天线
CN210692765U (zh) 移相馈电装置、辐射阵列及大规模阵列天线
CN211088511U (zh) 天线及移相馈电装置
US20230268642A1 (en) Base station antenna, feeder component and frame component
US11329394B2 (en) Flexible antenna structure and electronic device
CN112864548A (zh) 腔体移相器以及基站天线
CN211126072U (zh) 天线、移相馈电装置及腔体结构
CN210957016U (zh) 天线及移相馈电装置
CN210430036U (zh) 腔体移相器以及基站天线
CN116349089A (zh) 天线装置
CN111063998A (zh) 天线及馈电校准网络装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910090

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/11/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20910090

Country of ref document: EP

Kind code of ref document: A1