WO2021132588A1 - 走査型眼底撮影装置 - Google Patents

走査型眼底撮影装置 Download PDF

Info

Publication number
WO2021132588A1
WO2021132588A1 PCT/JP2020/048796 JP2020048796W WO2021132588A1 WO 2021132588 A1 WO2021132588 A1 WO 2021132588A1 JP 2020048796 W JP2020048796 W JP 2020048796W WO 2021132588 A1 WO2021132588 A1 WO 2021132588A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
lens
light
fundus
group
Prior art date
Application number
PCT/JP2020/048796
Other languages
English (en)
French (fr)
Inventor
鈴木孝佳
角谷佳洋
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Publication of WO2021132588A1 publication Critical patent/WO2021132588A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure

Definitions

  • the present invention relates to a scanning fundus imaging device that captures a fundus image of an eye to be inspected.
  • a fundus imaging device has been proposed in which a galvano mirror and a polygon mirror are driven to scan laser light two-dimensionally to irradiate the fundus with the laser light, and receive the reflected light from the fundus to obtain a fundus image. (See, for example, Patent Document 1).
  • the present invention has been made in view of the problems of the above background technology, and an object of the present invention is to provide a scanning fundus photography apparatus capable of acquiring a bright and good fundus image.
  • the scanning type fundus imaging apparatus has an objective lens system having a front group and a rear group with a fundus conjugate surface as a boundary, and light from a light source is two-dimensionally placed on the fundus of the eye to be inspected.
  • a scanning unit for scanning is provided, and the main rays of the projected light having different scanning angles do not intersect on the optical axis between the scanning unit and the pupil surface of the eye to be inspected, and the front group has two positive lenses.
  • the rear group is composed of at least one negative lens and at least one positive lens, and at least one positive lens in the front group has an aspherical shape.
  • the objective lens system is divided into a front group and a rear group with a fundus conjugate surface as a boundary, and the front group is composed of two positive lenses, and at least one aspherical surface is formed.
  • Aberration can be suppressed by having the rear group including at least one negative lens and at least one positive lens, and the projected light beam is narrowed down on the pupil surface even in wide-angle scanning. be able to.
  • the cross-sectional shape of the total luminous flux in which the luminous fluxes having different scanning angles are superimposed on the pupil surface can be made relatively small, and the luminous flux efficiently passes through the pupil of the eye to be inspected and is iris-shaped. You can prevent that.
  • at least the lenses in the front group have an aspherical shape, it is possible to improve the imaging state of the main rays of the luminous flux having different scanning angles.
  • the effective light diameter of the rear group is larger than the effective light diameter of the front group.
  • the objective lens system is used as a reduction projection system to narrow down the luminous flux diameter and increase the scanning angle, so that the luminous flux can be efficiently focused at the pupil position and scan a wide range on the fundus. Can be done.
  • the lens surface closest to the rear group has an aspherical shape.
  • the correction effect due to the aspherical surface can be easily generated by making the side where the effective diameter of the light beam expands an aspherical surface.
  • the lens surfaces of the two positive lenses each have a convex shape on the rear group side.
  • the lens closest to the pupil surface a plano-convex lens having a convex shape on the rear group side
  • the distance from the lens surface closest to the pupil surface to the pupil surface can be relatively large.
  • the anterior group closest to the fundus conjugate surface between the anterior group and the posterior group.
  • the distance from the lens surface to the fundus conjugate surface can be relatively large.
  • the rear group is a combination of a junction lens consisting of a negative lens and a positive lens and a positive lens. Since the rear group has a bonded lens suitable for correcting chromatic aberration, the chromatic aberration of the luminous flux projected on the pupil surface can be minimized. In addition to the above-mentioned bonded lens, a positive lens is also added to the rear group to secure lens power.
  • the main rays of the luminous flux having different scanning angles are separated from each other between the scanning portion and the pupil surface of the eye to be inspected.
  • the diameter of the cross-sectional shape on which the total luminous flux passing through the scanning portion is superimposed on the pupil surface is 3 mm or less.
  • the diameter of the luminous flux on the pupil surface is, for example, 1 mm or less
  • the maximum amount of movement when the main ray of the luminous flux moves on the pupil surface by scanning is, for example, 1 mm about the optical axis.
  • the diameter of the cross-sectional shape of the total luminous flux is 3 mm.
  • the luminous flux is within the range of the pupil diameter of 3 mm in diameter, the luminous flux is less likely to be distorted by the iris, and the luminous flux can be efficiently guided to the fundus. As a result, uniform illumination can be achieved regardless of the scanning angle.
  • the distance between the lenses of the front group and the rear group is 0.5 times or more the sum of the combined focal lengths of the front group and the rear group.
  • a large distance from the inner lens surface of both groups to the fundus conjugate surface is secured to prevent the generation of harmful reflected light generated on the lens surface.
  • the fundus conjugate surface is not close to each lens surface of the anterior group and the posterior group regardless of the diopter correction range of -25 diopter to +25 diopter.
  • the focal length of the group and the rear group and the distance between the lenses are set.
  • FIG. 3A and 3B are conceptual diagrams for explaining the state of the total projected light beam on the pupil surface through the scanning portion of the scanning fundus photography device of FIG. 1, and FIG. 3C is a scanning of the scanning fundus photography device of the comparative example. It is a conceptual diagram explaining the state of the total light beam on the pupil surface which passed through the part. It is a flowchart explaining the method of obtaining the fundus image using the scanning fundus photography apparatus.
  • FIG. 1 is a configuration diagram showing a fundus photography apparatus 100 according to an embodiment of the present invention.
  • the fundus photography device 100 is a scanning fundus photography device, and has a light projection optical system 100a and a light receiving optical system 100b. Further, the fundus photography device 100 has a control unit 80 that is connected to each part of the device to perform communication, and the control unit 80 performs various controls of the fundus photography device 100.
  • the fundus photography device 100 scans the fundus EB with a laser beam which is a projection ML (illumination light), and captures a fundus image based on the reflected light RL from the fundus EB.
  • the fundus photography device 100 of the present embodiment performs wide-angle photography with an angle of view of about 90 °.
  • the angle of view 90 ° means the maximum angle of view at which the fundus can be photographed, and corresponds to the maximum scanning angle of the light projection rotated by the pupil surface PS of the eye to be inspected EY.
  • the fundus imaging device 100 includes an alignment mode for capturing a moving image for alignment, a color image capturing mode for capturing one color image, a visible spontaneous fluorescence imaging mode for capturing one visible autofluorescent image, and a visible mode. Five types of shooting are possible by the visible fluorescence image shooting mode in which one or a moving image of a fluorescent image is taken and the near-infrared fluorescent image shooting mode in which a near-infrared fluorescent image is taken by one or a moving image. ing.
  • the fundus photography device 100 may be integrated with other ophthalmologic devices such as an optical coherence tomography and a perimeter.
  • the light projecting optical system 100a includes a light source unit 10, a central reflection mirror 20, a first scanning device 30, a scanning relay lens system 40, a second scanning device 50, and an objective lens system 60.
  • the light receiving optical system 100b includes an objective lens system 60, a second scanning device 50, a scanning relay lens system 40, a first scanning device 30, a central reflection mirror 20, and a light receiving unit 70.
  • the objective lens system 60, the first scanning device 30, the scanning relay lens system 40, the second scanning device 50, and the central reflection mirror 20 function as both a part of the light projecting optical system 100a and a part of the light receiving optical system 100b. To do.
  • the light source unit 10 of the projectile optical system 100a includes a red laser 11 that emits red light, a green laser 12 that emits green light, a blue laser 13 that emits blue light, and a near-infrared laser 14 that emits near-infrared light.
  • the red light emitted from the red laser 11 passes through the first dichroic mirror 15, the second dichroic mirror 16, and the third dichroic mirror 17, passes through the light projecting lens 18 and the light projecting focus lens 19, and reaches the central reflection mirror 20. Incident.
  • the green light emitted from the green laser 12 is reflected by the first dichroic mirror 15, passes through the second dichroic mirror 16 and the third dichroic mirror 17, passes through the light projecting lens 18 and the light projecting focus lens 19, and is centered. It is incident on the reflection mirror 20.
  • the blue light emitted from the blue laser 13 is reflected by the second dichroic mirror 16, passes through the third dichroic mirror 17, passes through the light projecting lens 18 and the light projecting focus lens 19, and is incident on the central reflection mirror 20. ..
  • the near-infrared light emitted from the near-infrared laser 14 is reflected by the third dichroic mirror 17, passes through the projection lens 18 and the projection focus lens 19, and is incident on the central reflection mirror 20.
  • Near-infrared light is used in the alignment mode, near-infrared fluorescence image shooting mode, and visible fluorescence image shooting mode for continuous shooting, which will be described later, and the red light contained in visible light is used in the color image shooting mode.
  • the green light contained in is used in the color image shooting mode and the visible self-fluorescent image shooting mode, and the blue light contained in the visible light is used in the color image shooting mode, the visible self-fluorescent image shooting mode, and the visible fluorescent image shooting mode. ..
  • the peak wavelength of the red light emitted from the red laser 11 is 650 nm, but it is preferably set to any of the range of 650 nm ⁇ 10 nm.
  • the peak wavelength of the green light emitted from the green laser 12 is 561 nm, but is preferably set to any of the range of 560 nm ⁇ 10 nm.
  • the peak wavelength of the blue light emitted from the blue laser 13 is 488 nm, but is preferably set to any of the range of 490 nm ⁇ 10 nm.
  • the peak wavelength of the near-infrared light emitted from the near-infrared laser 14 is 785 nm, but is preferably set to any of the range of 780 nm ⁇ 10 nm.
  • the projection focus lens 19 is movable along the optical axis AX1 direction of the light source unit 10, and focuses the laser light as the projection ML emitted from each of the lasers 11 to 14 on the fundus EB of the eye to be inspected EY. Adjust against. That is, by adjusting the position of the light projection focus lens 19, the light flux is focused on the fundus EB according to the diopter of the eye to be inspected EY. Thereby, the position where the projected light ML collects light can be adjusted to the observation site (for example, the surface of the retina) of the fundus EB.
  • the light projecting pinhole P1 is provided between the light projecting lens 18 and the light projecting focus lens 19 and at a position conjugate with the fundus EB, and removes unnecessary light from the light projecting ML as a confocal aperture. ..
  • the light projecting ML that has passed through the light projecting lens 18 focuses on the aperture of the light projecting pinhole P1 and is incident on the light projecting focus lens 19.
  • the central reflection mirror 20 has a reflection portion in the central portion, and in the projection optical system 100a, the projection ML emitted from the light source portion 10 by the reflection portion is bent in the direction of the eye to be inspected EY to be measured.
  • the floodlight ML whose direction is changed by the central reflection mirror 20 is incident on the first scanning device 30.
  • the peripheral portion of the central reflection mirror 20 is a transmissive portion, and details will be described later.
  • the reflected light RL reflected by the fundus EB of the eye to be inspected EY is the peripheral portion of the central reflection mirror 20. And enter the light receiving unit 70.
  • the first scanning device 30 is a scanning unit, and since the projected ML is scanned on the fundus EB, the traveling direction of the projected ML is changed with respect to the horizontal lateral direction corresponding to the main scanning.
  • the first scanning device 30 is composed of, for example, a polygon mirror.
  • the first scanning device 30 is rotationally driven at a predetermined rotation speed by the driving unit 82 of the control unit 80, and mainly scans the projected ML in the lateral direction or the horizontal direction (X direction) at high speed.
  • the projected light ML scanned by the first scanning device 30 is incident on the scanning relay lens system 40.
  • the polygon mirror which is the first scanning device 30, performs continuous scanning 7700 times per second, for example.
  • the scanning relay lens system 40 relays the floodlight ML scanned horizontally and laterally by the first scanning device 30 to the second scanning device 50.
  • the projected ML that has passed through the scanning relay lens system 40 is focused on the second scanning device 50.
  • a fundus conjugate surface EC is arranged in the middle portion of the scanning relay lens system 40.
  • the second scanning device 50 is a scanning unit, and since the projected ML is scanned on the fundus EB, the traveling direction of the projected ML is changed with respect to the vertical vertical direction corresponding to the sub-scanning.
  • the second scanning device 50 is composed of, for example, a galvano mirror.
  • the second scanning device 50 is reciprocally driven by the driving unit 82 of the control unit 80 at a predetermined cycle, and the projected ML is subordinated at a low speed in the vertical direction or in the direction orthogonal to the main scanning direction of the first scanning device 30 (Y direction). Scan.
  • the projected light ML scanned by the second scanning device 50 is incident on the objective lens system 60.
  • the main rays of the projected ML of different optical paths (different optical paths generated by different scanning angles) emitted from the second scanning device 50 do not intersect on the optical axis AX2 in the objective lens system 60, and the pupil of the eye to be inspected EY. It converges on the surface PS. That is, between the second scanning device 50 and the pupil surface PS of the eye to be inspected EY, the main rays of the luminous flux having different scanning angles do not intersect on the optical axis AX2. In other words, the main rays of the luminous flux having different scanning angles are separated from each other between the second scanning device 50 and the pupil surface PS of the eye EY to be inspected. As a result, the imaging accuracy can be improved with a simple lens configuration.
  • the galvanometer mirror which is the second scanning device 50, continuously scans 13 times per second in, for example, an alignment mode using near-infrared light.
  • Color image shooting mode with red light, green light and blue light, visible spontaneous fluorescence image shooting mode with green light or blue light, visible fluorescence image shooting mode with blue light, or near infrared light When a single image is taken in the near-infrared fluorescent image taking mode, one scan is performed in 0.4 seconds. Further, during the moving image shooting in the visible fluorescence image shooting mode using blue light or the moving image shooting in the near-infrared fluorescence image shooting mode using near infrared light, scanning is continuously performed 10 times per second.
  • the projected ML can two-dimensionally scan the fundus EB of the eye to be inspected EY in the XY direction. it can.
  • the objective lens system 60 relays the projected ML scanned in the horizontal and vertical directions (XY directions) by the first and second scanning devices 30 and 50 to the pupil surface PS of the eye to be inspected EY.
  • the projected ML that has passed through the objective lens system 60 is focused on the pupil surface PS of the eye EY to be inspected and is projected onto the fundus EB.
  • the projected ML is in a state of being in focus on the fundus EB through the elements of the eye to be inspected EY such as the crystalline lens.
  • FIG. 2 shows a specific configuration example of the objective lens system 60.
  • the objective lens system 60 has an anterior group Gr1 and a posterior group Gr2 in order from the pupil surface PS side of the eye to be inspected EY with the fundus conjugate surface EC as a boundary.
  • the front group Gr1 and the rear group Gr2 By sandwiching the objective lens system 60 with the fundus conjugate surface EC and dividing it into two groups, the front group Gr1 and the rear group Gr2, the lenses adjacent to the fundus conjugate surface EC (in this embodiment, the second and third lenses L2 and L3). ) Can be separated.
  • the inter-lens distance D1 between the front group Gr1 and the rear group Gr2 is preferably 0.5 times or more the sum of the combined focal lengths of the front group Gr1 and the rear group Gr2.
  • the focal length of the front group Gr1 is 36 mm and the focal length of the rear group Gr2 is 84 mm, the sum of these combined focal lengths is 120 mm.
  • the distance D1 between the lenses of the front group Gr1 and the rear group Gr2 is 88 mm.
  • the inter-lens distance D1 between the front group Gr1 and the rear group Gr2 is about 0.73 times the sum of the combined focal lengths of the front group Gr1 and the rear group Gr2.
  • the fundus conjugate surface EC moves in the objective lens system 60 when focusing.
  • the objective lens system 60 has a lens configuration of two groups, and even if the fundus conjugate surface EC moves, it does not approach the lens surfaces S2 and S3 located on the fundus conjugate surface EC side of each group Gr1 and Gr2. With the configuration, it is possible to prevent unnecessary reflected light RL or the like from the lens surface of the objective lens system 60 from passing through the light receiving pinhole P2 shown in FIG. Although details will be described later, in order to block unnecessary reflected light RL by the lens surface of the objective lens system 60, a first light-shielding member 91 and a second light-shielding member 92 arranged with the light-receiving pinhole P2 interposed therebetween are used. Work more effectively.
  • the effective light diameter of the rear group Gr2 is larger than the effective light diameter of the front group Gr1.
  • the focal length of the rear group Gr2 is longer than the focal length of the front group Gr1.
  • the focal length of the rear group Gr2 has a magnification or ratio of about twice that of the front group Gr1.
  • the maximum effective light diameter of the front group Gr1 is 60 mm
  • the maximum effective diameter of the rear group Gr2 is 84 mm.
  • the combined focal length of the front group Gr1 is 36 mm
  • the combined focal length of the rear group Gr2 is 84 mm
  • the ratio of the focal length of the rear group Gr2 to the front group Gr1 is 2.3.
  • the objective lens system 60 is composed of two groups, a front group Gr1 and a rear group Gr2, and by distributing the power distribution of the lens between the front group Gr1 and the rear group Gr2, the pupil surface PS with different scanning angles ⁇ 1 and ⁇ 2 can be obtained.
  • the amount of movement of the luminous flux FL is minimized.
  • the front group Gr1 includes two positive lenses.
  • the front group Gr1 is composed of a first lens L1 having a positive refractive power and a second lens L2 having a positive refractive power.
  • At least one positive lens in the front group Gr1 has an aspherical shape. The aspherical shape is formed on both sides or one side of the positive lens.
  • the lens surfaces of the two positive lenses have a convex shape on the rear group Gr2 side.
  • the first lens L1 is a plano-convex lens
  • the second lens L2 is a plano-convex lens or a meniscus lens that is convex toward the rear group Gr2.
  • the distance D2 from the lens surface S1 of the first lens L1 to the pupil surface PS can be made relatively large.
  • the fundus photography device 100 needs to move the fundus conjugate surface EC along the optical axis AX2 in order to focus according to the diopter of the eye to be inspected EY. For example, when the diopter is -20 diopter, if the fundus conjugate surface EC overlaps the lens surface S2 inside the second lens L2 of the front group Gr1, the harmful reflected light generated on the lens surface S2 is optically transferred. It becomes very difficult to remove. Therefore, a design is required in which the distance from the lens surface S2 inside the front group Gr1 to the fundus conjugate surface EC is as large as possible.
  • the distance from the lens surface S3 inside the rear group Gr2 to the fundus conjugate surface EC From this, the distance between the inner lens surface S2 of the front group Gr1 and the inner lens surface S3 of the rear group Gr2, that is, the distance D1 between the front group Gr1 and the rear group Gr2 is as described above. , 0.5 times or more the sum of the focal lengths of the front group Gr1 and the rear group Gr2 is necessary, and preferably 0.7 times.
  • the first lens L1 is a positive lens and has a focal length of 59 mm
  • the second lens L2 is also a positive lens and has a focal length of 86 mm.
  • the objective lens system 60 it is preferable to provide an aspherical shape on the lens surface S2 on the rear group Gr2 side of the second lens L2 closest to the rear group Gr2 in the front group Gr1.
  • an aspherical shape By making the side where the effective diameter of the light beam spreads an aspherical surface, it is possible to easily generate the aberration correction effect due to the aspherical surface. That is, the amount of movement of the luminous flux FL generated by increasing the scanning angle ⁇ can be minimized on the pupil surface PS of the eye EY to be inspected.
  • the lens surface provided with the aspherical shape may be provided on the lens surface of the first lens L1, for example, other than the lens surface S2 of the second lens L2.
  • the composite focal length of the front group Gr1 is 36 mm, and the maximum light ray effective diameter of the front group Gr1 is 60 mm.
  • the distance D2 from the first lens L1 to the pupil surface PS is 22 mm, which corresponds to 0.6 times the combined focal length of 36 mm.
  • the rear group Gr2 is composed of at least one negative lens and at least one positive lens.
  • the rear group Gr2 is composed of a third lens L3 having a negative refractive power, a fourth lens L4 having a positive refractive power, and a fifth lens L5 having a positive refractive power.
  • the rear group Gr2 may be composed of two lenses or four or more lenses.
  • the order of combining the negative lens and the two positive lenses may be negative positive or negative or positive or negative in order from the pupil surface PS side.
  • the negative lens and the positive lens are preferably a junction lens CS. Since the rear group Gr2 has a junction lens CS suitable for chromatic aberration correction, the chromatic aberration of the luminous flux FL on the pupil surface PS can be minimized. That is, since the rear group Gr2 has the junction lens CS, it is effective in correcting not only monochromatic imaging aberration but also chromatic aberration.
  • the lens power of the rear group Gr2 is secured by providing the fifth lens L5, which is a positive lens, in addition to the junction lens CS.
  • the third lens L3 is a concave meniscus lens on the second scanning device 50 side
  • the fourth lens L4 is a biconvex lens.
  • the third and fourth lenses L3 and L4 are junction lenses CS.
  • the fifth lens L5 is a meniscus lens that is convex toward the pupil surface PS side.
  • the third lens L3 is a negative lens and has a focal length of ⁇ 76 mm
  • the fourth lens L4 is a positive lens and has a focal length of 70 mm
  • the focal length of the bonded lens CS after bonding is 470 mm as a positive lens.
  • the fifth lens L5 is a positive lens and has a focal length of 107 mm. Even if the focal length of the bonded lens CS is as low as 470 mm, the lens power of the rear group Gr2 (synthesis) required by combining the bonded lens CS and the fifth lens L5, which is a positive lens with a focal length of 107 mm, is required. A focal length of 84 mm) can be secured.
  • the objective lens system 60 forms a turning point Q on the optical axis AX2 of the objective lens system 60, which is a base point at which the projected MLs that have passed through the first and second scanning devices 30 and 50 shown in FIG. 1 are swiveled by scanning. ..
  • the turning point Q corresponds to the pupil surface PS, is formed on the optical axis AX2 of the objective lens system 60, and is formed at a position optically conjugated with the first and second scanning devices 30 and 50.
  • the projected ML that has passed through the first and second scanning devices 30 and 50 passes through the objective lens system 60 and is irradiated to the fundus EB via the turning point Q.
  • the main ray PR of the projected light ML that has passed through the objective lens system 60 is swiveled around the swirl point Q as the first and second scanning devices 30 and 50 operate.
  • the projected ML is two-dimensionally scanned on the fundus EB.
  • FIG. 3A is a conceptual diagram for explaining a luminous flux (or a beam region) incident on the pupil surface PS of the eye EY to be inspected by scanning the light projection ML by the fundus photography apparatus 100 in the present embodiment
  • FIG. 3B is a conceptual diagram. It is a figure explaining the best result in an embodiment
  • FIG. 3C is a figure explaining the comparative example of FIG. 3A or FIG. 3B.
  • the scanning angle is the incident inclination angle of the luminous flux when the optical axis AX2 is 0 degrees, and is based on the optical axis AX2 on the pupil surface PS.
  • the central luminous flux FL1 shows a luminous flux cross section perpendicular to the optical axis AX2 when the scanning angle is 0 degrees (the same applies to other scanning angles thereafter). Further, the surrounding luminous flux FL2 shows the luminous flux cross section when the scanning angle is 45 degrees in the upward direction, the luminous flux FL3 shows the luminous flux cross section when the scanning angle is 45 degrees in the upper right direction, and the luminous flux FL4 shows the luminous flux cross section when the scanning angle is 45 degrees in the upper right direction.
  • the luminous flux cross section when the scanning angle is 45 degrees to the right shows the luminous flux cross section when the scanning angle is 45 degrees in the lower right direction
  • the luminous flux FL6 shows the luminous flux cross section when the scanning angle is downward.
  • the luminous flux cross section when the scanning angle is 45 degrees is shown
  • the luminous flux FL7 shows the luminous flux cross section when the scanning angle is 45 degrees in the lower left direction
  • the luminous flux FL8 shows the luminous flux cross section when the scanning angle is 45 degrees in the left direction.
  • the luminous flux FL9 shows the luminous flux cross section when the scanning angle is 45 degrees in the upper left direction.
  • the luminous flux FL1 to FL9 corresponding to each of the projected MLs passed through the scanning system on the pupil surface PS of the eye to be inspected EY is one in a predetermined range as shown in FIG. 3A. Converge in place. Specifically, on the pupil surface PS, the diameter of the cross-sectional shape of the total luminous flux FL1 to FL9 at all wavelengths that have passed through the scanning system is within 3 mm.
  • the diameter of the luminous flux projected on the pupil surface PS is, for example, 1 mm or less.
  • the maximum amount of movement when the main light beam of the luminous flux moves on the pupil surface PS by scanning is, for example, 1 mm centered on the optical axis AX2.
  • the diameter of the cross-sectional shape of the total luminous flux is 3 mm. More specifically, the circular CI corresponds to the cross-sectional shape of the total luminous flux and corresponds to the turning point Q.
  • the luminous flux cross-sectional shape of the luminous flux on the pupil surface PS is 3 mm in diameter, and the main ray of the optical path inclined 45 degrees upward with respect to the optical axis AX2 is above the optical axis AX2 on the pupil surface PS.
  • Beam width of the laser beam is a projection ML has a diameter of 1 mm, the beam width is referenced to the full width at half maximum, 1 / e 2 width and the like.
  • FIG. 3B is the best example, and the diameter of the cross-sectional shape on the pupil surface PS of the total luminous flux FL1 to FL9 at all wavelengths passed through the scanning system is contained in the circle CI of 2 mm.
  • the main ray of the optical path inclined 45 degrees upward with respect to the optical axis AX2 passes on the pupil surface PS at a distance of 0.5 mm upward from the optical axis AX2.
  • the main ray of the optical path whose scanning angle is inclined downward by 45 degrees with respect to the optical axis AX2 passes on the pupil surface PS at a distance of 0.5 mm downward from the optical axis AX2.
  • the beam width of the laser beam, which is the projected ML, is 1 mm in diameter.
  • the luminous flux FL1 to FL9 are contained in the circular CI having a diameter of 2 mm centered on the optical axis AX2 on the pupil surface PS, the luminous flux FL1 to FL9 pass through the pupil even if the pupil diameter is 3 mm or less. Therefore, since the luminous flux cannot be cast by the iris, the entire luminous flux is not blocked by the iris, and uniform illumination can be performed regardless of the scanning angle.
  • the luminous fluxes FL1 to FL9 are dispersed or dispersed due to the influence of aberration. It does not fit in a circle CI with a diameter of 3 mm.
  • the beam width of the laser beam is 1 mm in diameter, but the light beam incident from a position inclined by 45 degrees in 8 directions with respect to the optical axis AX2 is 1.5 mm away from the optical axis AX2 on the pupil surface PS. Since it passes through, the cross-sectional shape of the total luminous flux is 4 mm in diameter and does not enter the center of the 3 mm diameter circle CI. In this case, if the pupil diameter is 3 mm or less, there arises a problem that the luminous fluxes FL1 to FL9 are greatly eclipsed by the iris, and the peripheral portion becomes dark, for example.
  • the light receiving optical system 100b the reflected light RL reflected by the fundus EB travels in the same optical path as the light projecting optical system 100a to the central reflection mirror 20 in the opposite direction, and the objective lens system 60, the second scanning device 50, and the scanning relay lens system 40, it enters the central reflection mirror 20 via the first scanning device 30, passes through the transmission portion of the central reflection mirror 20, and enters the light receiving portion 70.
  • the reflected light RL from the fundus EB is collimated by the objective lens system 60 in cooperation with the element of the eye to be inspected such as the crystalline lens, and reverses the same optical path as the light projecting optical system 100a. Then, it enters the light receiving unit 70.
  • the light receiving unit 70 of the light receiving optical system 100b is a red light receiving sensor 71 having a light receiving element for receiving red light contained in the reflected light RL, and a green light receiving sensor having a light receiving element for receiving green light contained in the reflected light RL.
  • 72 a blue light receiving sensor 73 having a light receiving element for receiving blue light contained in the reflected light RL, a near infrared light receiving sensor 74 having a light receiving element for receiving near infrared light contained in the reflected light RL, and the like.
  • the light receiving pinhole P2 has a conjugate relationship with the fundus EB and is confocal.
  • Condensing lenses 71a to 74a and light receiving pinholes 71b to 74b are arranged on the optical paths of the red light receiving sensor 71, the green light receiving sensor 72, the blue light receiving sensor 73, and the near infrared light receiving sensor 74, respectively.
  • first light-shielding member 91 is arranged between the light-receiving focus lens 78 and the light-receiving pinhole P2
  • second light-shielding member 92 is arranged between the light-receiving pinhole P2 and the light-receiving lens 79.
  • a bandpass filter F1 that transmits only the fluorescence wavelength for near-infrared fluorescence imaging can be provided between the fourth dichroic mirror 75 and the condenser lens 74a.
  • the bandpass filter F1 can be inserted on the optical path in the near-infrared fluorescence imaging mode. Further, between the 4th dichroic mirror 75 and the 5th dichroic mirror 76, only the bandpass filter F2 that transmits only the fluorescence wavelength for taking a visible spontaneous fluorescence image or only the fluorescence wavelength for taking a visible fluorescence image is transmitted.
  • a band pass filter F3 can be provided.
  • the bandpass filter F2 or the bandpass filter F3 can be inserted on the optical path in the visible spontaneous fluorescence image capturing mode or the visible fluorescence imaging mode. That is, two types of bandpass filters, a bandpass filter F2 for green light and a bandpass filter F3 for blue light, can be inserted between the fourth dichroic mirror 75 and the fifth dichroic mirror 76. .. Specifically, the bandpass filter F2 for green light is inserted in the spontaneous fluorescence image capturing mode using green light, and the bandpass filter for blue light is inserted in the spontaneous fluorescence imaging mode or visible fluorescence imaging mode using blue light. Insert F3. Although not shown, the bandpass filters F1 to F3 are set in a switching mechanism (not shown) and are switched and controlled by the drive unit 82 of the control unit 80.
  • the red light receiving sensor 71, the green light receiving sensor 72, and the blue light receiving sensor 73 are composed of, for example, a bandpass filter that cuts wavelengths other than the light to be received in the reflected light RL and a light receiving element.
  • a light receiving element for example, a high-sensitivity photodiode or the like is used.
  • Luminance information can be obtained in the visible region for each point of the fundus EB by the light receiving sensors 71, 72, and 73. Based on the obtained brightness information (specifically, the output intensity of each light receiving sensor 71, 72, 73) and the scanning position information of the first scanning device 30 and the second scanning device 50, a photographed image of the fundus EB.
  • the red captured image data obtained by the red light receiving sensor 71, the green captured image data obtained by the green light receiving sensor 72, and the blue captured image data obtained by the blue light receiving sensor 73 are combined.
  • Color fundus image data can be generated by performing gamma processing or the like.
  • the red captured image data obtained by the red light receiving sensor 71 and the green captured image data obtained by the green light receiving sensor 72 are combined and subjected to gamma processing or the like. It is possible to generate visible spontaneously fluorescent fundus image data.
  • the visible spontaneous fluorescence fundus image data can be generated by performing gamma processing or the like on the green captured image data obtained by the green light receiving sensor 72.
  • the visible fluorescence fundus image data can be generated by performing gamma processing or the like on the green captured image data obtained by the green light receiving sensor 72.
  • each light receiving sensor can be configured without providing a bandpass filter that cuts the wavelength band.
  • the near-infrared light receiving sensor 74 is composed of, for example, a bandpass filter that cuts a wavelength band other than the near infrared light in the reflected light RL and a light receiving element.
  • a high-sensitivity photodiode or the like is used as the light receiving element.
  • the near-infrared light receiving sensor 74 can obtain luminance information in the near-infrared region for each point of the fundus EB. Based on the obtained luminance information (specifically, the output intensity of the near-infrared light receiving sensor 74) and the scanning position information of the first scanning device 30 and the second scanning device 50, a photographed image of the fundus EB is formed. can do.
  • the light receiving sensor can be configured without providing a bandpass filter that cuts the wavelength band.
  • the photographed image data of the fundus EB that has been photographed is stored in the storage unit 83 of the control unit 80, displayed on the monitor 86, or printed by a printer (not shown).
  • the light receiving focus lens 78 is movable along the optical axis AX3 direction of the light receiving unit 70, and adjusts the focus of the reflected light RL from the fundus EB. That is, by adjusting the position of the light receiving focus lens 78, the focus shift of the fundus image due to the diopter of the eye to be inspected EY is compensated. Thereby, the position where the reflected light RL collects can be adjusted on each of the light receiving sensors 71 to 74.
  • the light receiving pinhole P2 is provided between the light receiving focus lens 78 and the light receiving lens 79 and at a position conjugate with the fundus EB, and removes unnecessary light from the reflected light RL as a confocal diaphragm.
  • the reflected light RL that has passed through the light receiving focus lens 78 focuses on the opening of the light receiving pinhole P2 and is incident on the light receiving lens 79. Further, the first light-shielding member 91 and the second light-shielding member 92 arranged so as to sandwich the light receiving pinhole P2 remove unnecessary light generated by reflection of the lens surface of the front group Gr1 or the rear group Gr2 of the objective lens system 60. It is a necessary member for the role of.
  • the first light-shielding member 91 located on the EY side of the eye to be inspected with respect to the light-receiving pinhole P2 mainly helps to block unnecessary light generated in the front group Gr1, and is located on the opposite side of the light-receiving pinhole P2 to the eye to be inspected EY.
  • the second light-shielding member 92 is mainly useful for light-shielding unnecessary light generated in the rear group Gr2.
  • the fundus conjugate surface EC is the inner lens surfaces S2 and S3 of the front group Gr1 and the rear group Gr2. It is designed not to be close to.
  • the first and second light-shielding members 91 and 92 are effective for light-shielding unnecessary light due to reflection of the lens surfaces S2 and S3, but on the other hand, a part of the reflected light RL from the fundus EB is also light-shielded at the same time. With sacrifice. Therefore, the light-shielding sizes of the first and second light-shielding members 91 and 92 are determined in consideration of the balance between the light-shielding effect of unnecessary light and the light-shielding (sacrifice) of the reflected light RL from the fundus EB.
  • the present embodiment it is not selected to completely block unnecessary light, and the sacrifice due to shading of the reflected light RL from the fundus EB is minimized.
  • the hole of the light receiving pinhole P2 including not only the center point but also the edge of the hole is used as an object point, the light is shielded by the first light-shielding member 91 or the central reflection mirror 20 and back-projected to the EY side of the eye to be inspected. From the position of the first light-shielding member 91, that is, from the light receiving pinhole P2 so that the light flux and the light flux projected via the same scanning devices 30 and 50 do not overlap each other as much as possible on the lens surface S2 of the front group Gr1, for example. It is desirable to determine the distance and size, that is, the diameter of the shading point.
  • a part of the reflected light RL (specifically, near-infrared light) from the fundus EB incident on the light receiving unit 70 is reflected by the fourth dichroic mirror 75 and guided to the light receiving pinhole 74b by the condenser lens 74a. Then, the reflected light RL that has passed through the light receiving pinhole 74b is incident on the near infrared light receiving sensor 74. Further, a part of the reflected light RL (specifically, blue light) passes through the fourth dichroic mirror 75, is reflected by the fifth dichroic mirror 76, and is guided to the light receiving pin hole 73b by the condenser lens 73a.
  • the reflected light RL that has passed through the light receiving pin hole 73b is incident on the blue light receiving sensor 73. Further, a part of the reflected light RL (specifically, green light) is reflected by the sixth dichroic mirror 77 after passing through the fourth dichroic mirror 75 and the fifth dichroic mirror 76, and is received by the condenser lens 72a. The reflected light RL that is guided to the pin hole 72b and passes through the light receiving pin hole 72b is incident on the green light receiving sensor 72.
  • a part of the reflected light RL (specifically, red light) passes through the 4th dichroic mirror 75, the 5th dichroic mirror 76, and the 6th dichroic mirror 77, and receives the light receiving pin hole 71b by the condenser lens 71a.
  • the reflected light RL that has passed through the light receiving pin hole 71b is incident on the red light receiving sensor 71.
  • the light receiving pinholes 71b, 72b, 73b, 74b are arranged in front of the light receiving sensors 71, 72, 73, 74, respectively, but since they are in a position conjugate with the light receiving pinhole P2 which is a confocal pinhole, the light receiving pinhole P2 A size that is optically larger than is preferable.
  • the light receiving pinholes 71b, 72b, 73b, 74b are arranged at positions conjugate with the fundus EB of the eye to be inspected EY.
  • the stray light which is unnecessary for measurement generated at a part away from the fundus EB is the light receiving pinhole 71b.
  • 72b, 73b, 74b are removed, and a high-contrast fundus image can be taken.
  • the control unit 80 has an electronic circuit or the like that performs control processing and arithmetic processing of each part of the fundus photography apparatus 100.
  • the control unit 80 includes a processing unit (CPU: Central Processing Unit) 81, a drive unit 82, a storage unit 83, and an image generation unit 84. Further, the control unit 80 is provided with an input unit 85, a monitor 86, and the like.
  • CPU Central Processing Unit
  • the processing unit 81 comprehensively controls the drive unit 82, the storage unit 83, the image generation unit 84, and the like.
  • the drive unit 82 controls the operations of the lasers 11 to 14, the light receiving sensors 71 to 74, and the first and second scanning devices 30 and 50, and changes the traveling direction of the projection ML. Further, the drive unit 82 controls the operation of adjusting the arrangement of the light projecting lens 18, the light projecting focus lens 19, the light receiving focus lens 78, and the light receiving lens 79, and focuses the light projecting optical system 100a and the light receiving optical system 100b by the user. Adjust based on operation or automatic focus detection.
  • the storage unit 83 stores control programs, fixed data, temporary data, and the like of each unit.
  • the storage unit 83 stores the image data acquired by the light receiving sensors 71 to 74 and the composite data thereof.
  • the image generation unit 84 generates fundus image data from the light receiving signals output from the light receiving sensors 71 to 74. Further, the image generation unit 84 generates color fundus image data and visible spontaneous fluorescence fundus image data by synthesizing the image data of each color acquired by the light receiving sensors 71 to 73 corresponding to visible light.
  • the monitor 86 displays information to be presented to the user, generated fundus image data, and the like.
  • the input unit 85 has an operation unit such as a photographing button for setting each unit of the fundus photography device 100 and switching the photographing mode by the user.
  • the fundus imaging apparatus 100 has an alignment mode in which a fundus image is captured as a moving image for alignment by near-infrared light, and a color fundus using visible light such as red light, green light, and blue light.
  • a color image shooting mode that shoots one image, a visible spontaneous fluorescent image shooting mode that shoots one spontaneously fluorescent fundus image with green light or blue light, and a fluorescent fundus image taken with one or a moving image with blue light. It has a configuration in which it is possible to switch between a visible fluorescent image shooting mode and a near infrared fluorescent image shooting mode in which a fluorescent fundus image is taken as a single image or a moving image by near infrared light.
  • the shooting mode is selected (step S11).
  • a desired mode is selected from the color image capturing mode, the visible spontaneous fluorescence imaging mode, the visible fluorescence imaging mode, and the near-infrared fluorescence imaging mode.
  • the light source used for shooting is further selected from green light or blue light.
  • the visible fluorescence image shooting mode and the near-infrared fluorescence image shooting mode one more shot or a moving image shooting is selected.
  • the bandpass filter F2 for green light is inserted between the 4th dichroic mirror 75 and the 5th dichroic mirror 76.
  • the bandpass filter F3 for blue light is inserted.
  • the bandpass filter F3 for blue light is inserted between the fourth dichroic mirror 75 and the fifth dichroic mirror 76.
  • the fundus image is aligned (step S21).
  • the near-infrared laser 14 irradiates the near-infrared laser 14 while the first scanning device 30 and the second scanning device 50 are continuously scanning, and the near-infrared fundus observation image is displayed on the monitor 86 of the control unit 80. Will be displayed live on.
  • This alignment mode is used to align the fundus image and adjust the focus.
  • the alignment mode may be performed at the same time as each image capturing mode, or the alignment mode may be omitted.
  • the alignment mode is switched to the shooting mode selected by the above mode selection by pressing the shooting button (not shown) provided on the input unit 85 of the control unit 80.
  • ⁇ Color image shooting mode> In the color image capturing mode, red light, green light, and blue light are simultaneously irradiated to the fundus EB, and the reflected light RL of each color is simultaneously received and photographed. Color fundus image data is generated by synthesizing the obtained red photographed image data, green photographed image data, and blue photographed image data.
  • the shooting button of the input unit 85 When the shooting button of the input unit 85 is pressed when switching the shooting mode, the continuous scanning of the second scanning device 50 is temporarily stopped, and the second scanning device 50 moves to the shooting start position. Next, the near-infrared laser 14 is turned off, the red laser 11, the green laser 12, and the blue laser 13 are turned on at the same time, the second scanning device 50 operates again, and the acquisition of the color fundus image is started (step). S31). In one capture of a color fundus image, image data of 3000 ⁇ 3000 pixels is simultaneously acquired for each of red light, green light, and blue light by, for example, vertical scanning for 0.4 seconds.
  • the image generation unit 84 of the control unit 80 synthesizes the obtained red photographed image data, green photographed image data, and blue photographed image data, and performs gamma processing or the like to generate color fundus image data (step S32). ..
  • the generated color fundus image data is stored in the storage unit 83 (step S71) and displayed on the monitor 86 (step S81).
  • the red laser 11, the green laser 12, and the blue laser 13 are turned off, and the driving of the first scanning device 30 and the second scanning device 50 is stopped (step S91).
  • ⁇ Visible spontaneous fluorescence image shooting mode> In the visible spontaneous fluorescence image capturing mode, the light from the light source selected in the mode selection among the green light and the blue light is applied to the fundus EB, and the reflected light RL is received and photographed. In the case of green light, visible spontaneous fluorescence fundus image data is generated by image synthesizing the obtained red photographed image data and green photographed image data. In the case of blue light, visible spontaneous fluorescence fundus image data is generated from the obtained green photographed image data.
  • the shooting button of the input unit 85 When the shooting button of the input unit 85 is pressed when switching the shooting mode, the continuous scanning of the second scanning device 50 is temporarily stopped, and the second scanning device 50 moves to the shooting start position. Next, the near-infrared laser 14 is turned off, the selected green laser 12 or blue laser 13 is turned on, the second scanning device 50 operates again, and the acquisition of the spontaneous fluorescence fundus image is started (step S41).
  • image data of 3000 ⁇ 3000 pixels is acquired by, for example, vertical scanning for 0.4 seconds.
  • the image generation unit 84 of the control unit 80 synthesizes the obtained red photographed image data and the green photographed image data in the case of green light, and performs gamma processing or the like to generate visible spontaneous fluorescent fundus image data (step).
  • step S42 In the case of blue light, the obtained green photographed image data is subjected to gamma processing or the like to generate visible spontaneous fluorescence fundus image data (step S42).
  • the generated visible spontaneous fluorescence fundus image data is stored in the storage unit 83 (step S71) and displayed on the monitor 86 (step S81).
  • the green laser 12 to the blue laser 13 is turned off, and the driving of the first scanning device 30 and the second scanning device 50 is stopped (step S91).
  • ⁇ Visible fluorescence image shooting mode> In the visible fluorescence image capturing mode, blue light is applied to the fundus EB, and the reflected light RL is received for imaging. Visible fluorescence fundus image data is generated from the obtained green photographed image data.
  • Step S51 image data of 3000 ⁇ 3000 pixels is acquired by vertical scanning for 0.4 seconds.
  • the blue laser 13 is turned on while the near-infrared laser 14 is kept on, the second scanning device 50 is operated again, and the near-infrared fundus image for alignment and the visible fluorescent fundus image are taken.
  • step S51 For example, vertical scanning is performed 10 times per second, and image data of 700 ⁇ 700 pixels is acquired each time.
  • the image generation unit 84 of the control unit 80 performs gamma processing or the like on the obtained green photographed image data to generate visible fluorescence fundus image data (step S52).
  • visible fluorescence fundus image data In the case of continuous shooting, near-infrared fundus image data is also generated (step S52).
  • the generated visible fluorescence fundus image data and near-infrared fundus image data are stored in the storage unit 83 (step S71) and displayed on the monitor 86 (step S81).
  • the blue laser 13 is turned off.
  • the driving of the first scanning device 30 and the second scanning device 50 is stopped (step S91).
  • near-infrared fluorescence image capturing mode near-infrared light is applied to the fundus EB, and the reflected light RL is received for imaging.
  • Near-infrared fluorescence fundus image data is generated from the obtained near-infrared photographed image data.
  • the bandpass filter F1 for shooting a near-infrared fluorescence image is inserted, the continuous scanning of the second scanning device 50 is temporarily stopped, and the second scanning device is temporarily stopped. 50 moves to the shooting start position.
  • the output of the near-infrared laser 14 is increased, the second scanning device 50 operates again, and the acquisition of the near-infrared fluorescent fundus image is started (step S61).
  • image data of 3000 ⁇ 3000 pixels is acquired by, for example, vertical scanning for 0.4 seconds.
  • step S62 In the case of continuous shooting, for example, vertical scanning is performed 10 times per second, and image data of 700 ⁇ 700 pixels is acquired each time.
  • the image generation unit 84 of the control unit 80 performs gamma processing or the like on the obtained near-infrared photographed image data to generate near-infrared fluorescence fundus image data (step S62).
  • the generated near-infrared fluorescence fundus image data is stored in the storage unit 83 (step S71) and displayed on the monitor 86 (step S81).
  • the near-infrared laser 14 is turned off, and the driving of the first scanning device 30 and the second scanning device 50 is stopped (step S91).
  • the objective lens system 60 is divided into a front group Gr1 and a rear group Gr2 with the fundus conjugate surface EC as a boundary, and the front group Gr1 is configured to include two positive lenses, and at least.
  • the imaging aberration on the pupil surface PS can be minimized, and the imaging aberrations at different angles can be minimized.
  • the total light beam emitted by scanning can be applied to a desired range on the pupil surface PS of the eye EY to be inspected.
  • the luminous flux scanned on the pupil surface PS side can be narrowed down within a predetermined range despite the wide scanning angle, so that the cross-sectional shape of the total luminous flux can be made relatively small, and the luminous flux can be relatively small.
  • at least the lens of the front group Gr1 has an aspherical shape, so that the aberration of image formation on the pupil surface PS can be improved.
  • only the imaging state of the luminous flux projected at different scanning angles on the pupil surface PS is described, but the imaging state of the luminous flux on the fundus EB and the light receiving pinholes 71b to 74b are used as points.
  • the objective lens system 60 is manufactured in consideration of the imaging state of the light receiving bundle of the back light beam at the fundus EB.
  • the central reflection mirror 20 which is an optical path splitting device may be changed to a beam splitter or the like.
  • the optical path dividing device may be in the shape of a perforated mirror that transmits light projection at the central portion and reflects light reception at the peripheral portion.
  • the configurations of the light source unit 10, the first scanning device 30, the second scanning device 50, the light receiving unit 70, and the like can be appropriately changed.
  • the light source unit 10 of the fundus photography apparatus 100 is composed of a laser having four wavelengths, but it can be changed as appropriate.
  • the light source unit 10 of the fundus photography apparatus 100 may have one wavelength, and may be configured to perform imaging with monochromatic light.
  • the polygon mirror is used for the first scanning device 30 and the galvano mirror is used for the second scanning device 50, but other scanning devices such as a resonant scanner and a MEMS mirror may be used.
  • the front group Gr1 is composed of two positive lenses
  • the front group Gr1 is composed of at least two positive lenses.
  • the front group Gr1 may be composed of three positive lenses or two positive lenses and one negative lens.
  • the rear group Gr2 may be configured to include at least one negative lens and at least one positive lens.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

明るく良好な眼底画像を取得可能な走査型眼底撮影装置を提供する。走査型眼底撮影装置100は、眼底共役面ECを境に前群Gr1と後群Gr2とを有する対物レンズ系60と、光源部10からの投光MLを被検眼EYの眼底EB上に2次元的に走査する走査部である第1及び第2走査デバイス30,50とを備え、第2走査デバイス50と被検眼EYの瞳面PSとの間において、異なる走査角を持つ各投光束の主光線が光軸AX2上で交差せず、前群Gr1は2枚の正レンズを含んで構成され、後群Gr2は少なくとも1枚の負レンズと少なくとも1枚の正レンズとを含んで構成され、前群Gr1のうち少なくとも1枚の正レンズは非球面形状を有する。

Description

走査型眼底撮影装置
 本発明は、被検眼の眼底画像を撮影する走査型眼底撮影装置に関する。
 ガルバノミラー及びポリゴンミラーを駆動させることにより2次元的にレーザー光を走査して眼底に対してレーザー光を照射し、眼底からの反射光を受光することにより眼底画像を得る眼底撮像装置が提案されている(例えば、特許文献1参照)。
 特許文献1の眼底撮影装置において、瞳面を基準にレーザー光を走査する場合、使用条件にもよるが、走査角の変化に応じて瞳面上における投光束の位置が移動する現象が発生する。そのため、投光束の位置が大きく移動すると、投光束が被検眼の虹彩でけられてしまい、眼底画像の周辺部が暗くなるという問題がある。
特開2016-59399号公報
 本発明は、上記背景技術の問題点に鑑みてなされたものであり、明るく良好な眼底画像を取得可能な走査型眼底撮影装置を提供することを目的とする。
 上記課題を達成するため、本発明に係る走査型眼底撮影装置は、眼底共役面を境に前群と後群とを有する対物レンズ系と、光源からの光を被検眼の眼底上に2次元的に走査する走査部とを備え、走査部と被検眼の瞳面との間において、異なる走査角を持つ投光束の主光線が光軸上で交差せず、前群は2枚の正レンズを含んで構成され、後群は少なくとも1枚の負レンズと少なくとも1枚の正レンズとを含んで構成され、前群のうち少なくとも1枚の正レンズは非球面形状を有する。
 上記走査型眼底撮影装置では、対物レンズ系が眼底共役面を境に前群と後群とに分かれており、前群が2枚の正レンズを含んで構成され、少なくとも1面の非球面を有し、後群が少なくとも1枚の負レンズ及び少なくとも1枚の正レンズを含んで構成されることにより、収差を抑えることができ、広角走査であっても、瞳面上で投光束を絞り込むことができる。これにより、異なる走査角を持つ投光束を瞳面上に重畳した全投光束の断面形状を比較的小さくすることができ、投光束が被検眼の瞳孔を効率良く通過して、虹彩でけられることを防ぐことができる。また、少なくとも前群のレンズが非球面形状を有することにより、異なる走査角を持つ投光束の主光線の結像状態を改善することができる。
 本発明の具体的な側面によれば、上述の走査型眼底撮影装置において、後群の光線有効径は、前群の光線有効径よりも大きい。この場合、対物レンズ系を縮小投影系として光束径を絞り込むとともに走査角を大きくすることが容易になり、投光束を瞳位置で効率良く集光することができ、眼底上で広範囲を走査することができる。
 本発明の別の側面によれば、前群において、後群に最も近いレンズ面は非球面形状を有する。この場合、光線有効径が広がる側を非球面にすることにより、非球面による補正効果を生じやすくすることができる。
 本発明のさらに別の側面によれば、前群において、2枚の正レンズのレンズ面は後群側に凸形状をそれぞれ有する。特に、瞳面に最も近いレンズを後群側に凸形状を有する平凸レンズとすることにより、瞳面に最も近いレンズ面から瞳面までの距離を比較的大きくとることができる。さらに、2枚の正レンズの合成主点が、両凸レンズの組み合わせの場合に比べて後群側に配置されることで、前群と後群との間にある眼底共役面に最も近い前群のレンズ面から眼底共役面までの距離を比較的大きくとることができる。これにより、対物レンズ面の反射によって発生する有害光が、眼底の撮影画像に映り込むことを防ぐことができる。
 本発明のさらに別の側面によれば、後群は、負レンズと正レンズによる接合レンズと、正レンズとの組み合わせである。後群が色収差補正に適した接合レンズを有することにより、瞳面上の投光束の色収差を最小限に抑えることができる。また、後群には、上記の接合レンズの他に、正レンズも加えてレンズパワーを確保している。
 本発明のさらに別の側面によれば、走査部と被検眼の瞳面との間において、異なる走査角を持つ投光束の主光線が互いに離間する。
 本発明のさらに別の側面によれば、瞳面上において、走査部を経た全投光束を重畳した断面形状の直径は3mm以下である。瞳面上の投光束の直径が例えば1mm以下である場合、投光束の主光線が走査によって瞳面上で移動する際の最大移動量は、光軸を中心として例えば1mmである。この投光束の最大直径1mmと最大移動量1mmとの結果として、全投光束の断面形状の直径が3mmとなる。この場合、直径3mmの瞳孔径の範囲内に投光束が収まるので、投光束が虹彩でけられにくくなり、効率良く投光束を眼底に導くことが可能になる。結果として、走査角によらず均一な照明をすることができる。
 本発明のさらに別の側面によれば、前群と後群のレンズ間距離は、前群と後群の各合成焦点距離の和の0.5倍以上である。この場合、両群の内側のレンズ面から眼底共役面までの距離を大きく確保してレンズ面で発生する有害な反射光の発生を防ぐ。
 本発明のさらに別の側面によれば、被検眼の視度補正範囲が-25ジオプターから+25ジオプターのいずれにおいても、眼底共役面が前群と後群の各レンズ面に近接しないように、前群と後群の焦点距離と、レンズ間距離とが設定される。
本発明の一実施形態の走査型眼底撮影装置を説明する構成図である。 図1の走査型眼底撮影装置の対物レンズ系付近を説明する断面図である。 図3A及び3Bは、図1の走査型眼底撮影装置の走査部を経た瞳面上における全投光束の状態を説明する概念図であり、図3Cは、比較例の走査型眼底撮影装置の走査部を経た瞳面上における全投光束の状態を説明する概念図である。 走査型眼底撮影装置を用いて眼底画像を得る方法を説明するフローチャートである。
 以下、図面を参照して、本発明の一実施形態である眼底撮影装置100について説明する。
 図1は、本発明の一実施形態である眼底撮影装置100を示す構成図である。眼底撮影装置100は、走査型眼底撮影装置であり、投光光学系100aと、受光光学系100bとを有する。また、眼底撮影装置100は、装置の各部に接続されて通信を行う制御部80を有し、当該制御部80によって眼底撮影装置100の各種制御が行われる。眼底撮影装置100は、投光ML(照明光)であるレーザー光で眼底EBを走査し、眼底EBからの反射光RLに基づいて眼底画像を撮影する。本実施形態の眼底撮影装置100は、画角90°程度の広角用の撮影を行う。ここで、画角90°は、眼底を撮影できる最大画角を意味しており、被検眼EYの瞳面PSで回旋する投光の最大走査角に相当する。眼底撮影装置100は、アライメント用に動画像にて撮影するアライメントモードと、カラー画像を1枚撮影するカラー画像撮影モードと、可視自発蛍光画像を1枚撮影する可視自発蛍光画像撮影モードと、可視蛍光画像を1枚ないし動画像で撮影する可視蛍光画像撮影モードと、近赤外蛍光画像を1枚ないし動画像で撮影する近赤外蛍光画像撮影モードとにより、5種類の撮影が可能となっている。なお、眼底撮影装置100は、光干渉断層計、視野計等の他の眼科装置と一体化された構成でもよい。
 眼底撮影装置100のうち投光光学系100aは、光源部10と、中央反射ミラー20と、第1走査デバイス30と、走査リレーレンズ系40と、第2走査デバイス50と、対物レンズ系60とを有する。受光光学系100bは、対物レンズ系60と、第2走査デバイス50と、走査リレーレンズ系40と、第1走査デバイス30と、中央反射ミラー20と、受光部70とを備える。対物レンズ系60、第1走査デバイス30、走査リレーレンズ系40、第2走査デバイス50、及び中央反射ミラー20は、投光光学系100aの一部としても受光光学系100bの一部としても機能する。
 投光光学系100aのうち光源部10は、赤色光を発する赤色レーザー11と、緑色光を発する緑色レーザー12と、青色光を発する青色レーザー13と、近赤外光を発する近赤外レーザー14と、第1ダイクロイックミラー15と、第2ダイクロイックミラー16と、第3ダイクロイックミラー17と、投光レンズ18と、投光フォーカスレンズ19と、投光ピンホールP1とを有する。赤色レーザー11から発せられた赤色光は、第1ダイクロイックミラー15、第2ダイクロイックミラー16、及び第3ダイクロイックミラー17を通過し、投光レンズ18及び投光フォーカスレンズ19を経て中央反射ミラー20に入射する。緑色レーザー12から発せられた緑色光は、第1ダイクロイックミラー15で反射された後、第2ダイクロイックミラー16及び第3ダイクロイックミラー17を通過し、投光レンズ18及び投光フォーカスレンズ19を経て中央反射ミラー20に入射する。青色レーザー13から発せられた青色光は、第2ダイクロイックミラー16で反射された後、第3ダイクロイックミラー17を通過し、投光レンズ18及び投光フォーカスレンズ19を経て中央反射ミラー20に入射する。近赤外レーザー14から発せられた近赤外光は、第3ダイクロイックミラー17で反射され、投光レンズ18及び投光フォーカスレンズ19を経て中央反射ミラー20に入射する。近赤外光は後述するアライメントモード、近赤外蛍光画像撮影モード、及び連続撮影を行う可視蛍光画像撮影モードで用いられ、可視光に含まれる赤色光はカラー画像撮影モードで用いられ、可視光に含まれる緑色光はカラー画像撮影モード及び可視自発蛍光画像撮影モードで用いられ、可視光に含まれる青色光はカラー画像撮影モード、可視自発蛍光画像撮影モード、及び可視蛍光画像撮影モードで用いられる。
 本実施形態において、赤色レーザー11から発せられる赤色光のピーク波長は650nmであるが、好ましくは650nm±10nmの範囲内のいずれかに設定される。緑色レーザー12から発せられる緑色光のピーク波長は561nmであるが、好ましくは560nm±10nmの範囲内のいずれかに設定される。青色レーザー13から発せられる青色光のピーク波長は488nmであるが、好ましくは490nm±10nmの範囲内のいずれかに設定される。近赤外レーザー14から発せられる近赤外光のピーク波長は785nmであるが、好ましくは780nm±10nmの範囲内のいずれかに設定される。
 投光フォーカスレンズ19は、光源部10の光軸AX1方向に沿って移動可能となっており、各レーザー11~14から出射する投光MLとしてのレーザー光のピントを被検眼EYの眼底EBに対して調整する。つまり、投光フォーカスレンズ19の位置を調整することにより、被検眼EYの視度に合わせて眼底EBに投光束を集光させる。これにより、投光MLが集光する位置を眼底EBの観察部位(例えば、網膜表面等)に調節することができる。投光ピンホールP1は、投光レンズ18と投光フォーカスレンズ19との間であり、かつ眼底EBと共役な位置に設けられており、共焦点絞りとして投光MLから不要な光を除去する。投光レンズ18を経た投光MLは、投光ピンホールP1の開口に焦点を結び、投光フォーカスレンズ19に入射する。
 中央反射ミラー20は、中央部分に反射部を有し、投光光学系100aにおいて、反射部によって光源部10から出射された投光MLを測定対象となる被検眼EYの方向に折り曲げる。中央反射ミラー20で方向を変えられた投光MLは、第1走査デバイス30に入射する。なお、中央反射ミラー20の周辺部は透過部となっており、詳細は後述するが、受光光学系100bにおいて、被検眼EYの眼底EBで反射された反射光RLは中央反射ミラー20の周辺部を通過し、受光部70に入射する。
 第1走査デバイス30は、走査部であり、投光MLを眼底EB上で走査するため、投光MLの進行方向を主走査に対応する水平の横方向に関して変化させる。第1走査デバイス30は、例えばポリゴンミラーによって構成される。第1走査デバイス30は、制御部80の駆動部82によって所定回転数で回転駆動され、投光MLを横方向又は水平方向(X方向)に高速で主走査する。第1走査デバイス30によって走査された投光MLは、走査リレーレンズ系40に入射する。第1走査デバイス30であるポリゴンミラーは、例えば1秒間に7700回の連続走査を行う。
 走査リレーレンズ系40は、第1走査デバイス30によって水平の横方向に走査された投光MLを第2走査デバイス50へとリレーする。走査リレーレンズ系40を経た投光MLは、第2走査デバイス50に集光される。走査リレーレンズ系40の中間部には、眼底共役面ECが配置される。
 第2走査デバイス50は、走査部であり、投光MLを眼底EB上で走査するため、投光MLの進行方向を副走査に対応する鉛直の縦方向に関して変化させる。第2走査デバイス50は、例えばガルバノミラーによって構成される。第2走査デバイス50は、制御部80の駆動部82によって所定周期で往復駆動され、投光MLを縦方向又は第1走査デバイス30の主走査方向と直交する方向(Y方向)に低速で副走査する。第2走査デバイス50によって走査された投光MLは、対物レンズ系60に入射する。第2走査デバイス50から出射した異なる光路(異なる走査角によって発生した異なる光路)の投光MLの主光線は、対物レンズ系60の中の光軸AX2上で交差することなく被検眼EYの瞳面PSで収束する。つまり、第2走査デバイス50と被検眼EYの瞳面PSとの間において、異なる走査角から成る各投光束の主光線が光軸AX2上で交差しない。言い換えると、第2走査デバイス50と被検眼EYの瞳面PSとの間において、異なる走査角を持つ投光束の主光線が互いに離間している。これにより、簡単なレンズ構成で結像精度を高めることができる。第2走査デバイス50であるガルバノミラーは、例えば近赤外光によるアライメントモードでは、1秒間に13回の走査を連続して行う。赤色光と緑色光と青色光とによるカラー画像撮影モードないし、緑色光もしくは青色光による可視自発蛍光画像撮影モードないし、青色光による可視蛍光画像撮影モードの1枚画像撮影時ないし、近赤外光による近赤外蛍光画像撮影モードの1枚画像撮影時では、0.4秒間で1回の走査を行う。また、青色光による可視蛍光画像撮影モードの動画像撮影時ないし、近赤外光による近赤外蛍光画像撮影モードの動画像撮影時では、1秒間に10回の走査を連続して行う。
 第1走査デバイス30及び第2走査デバイス50の2つの走査デバイスを用いて投光MLを走査することにより、投光MLは被検眼EYの眼底EBをXY方向に2次元的に走査することができる。
 対物レンズ系60は、第1及び第2走査デバイス30,50によって横方向及び縦方向(XY方向)に走査された投光MLを被検眼EYの瞳面PSへとリレーする。対物レンズ系60を経た投光MLは、被検眼EYの瞳面PSに集光され、眼底EBへと投光される。投光MLは、水晶体等の被検眼EYの要素を経て眼底EBへとピントが合う状態となる。
 図2に対物レンズ系60の具体的な構成例を示す。対物レンズ系60は、被検眼EYの瞳面PS側から順に、眼底共役面ECを境に前群Gr1と後群Gr2とを有する。対物レンズ系60を眼底共役面ECで挟んで前群Gr1及び後群Gr2の2群に分けることにより、眼底共役面ECから隣接するレンズ(本実施形態では、第2及び第3レンズL2,L3)までの距離を離す構成とすることができる。詳細は後述するが、前群Gr1と後群Gr2のレンズ間距離D1は、前群Gr1と後群Gr2の各合成焦点距離の和の0.5倍以上であることが良い。最も良い例としては、前群Gr1の焦点距離が36mmとし、後群Gr2の焦点距離が84mmとしたとき、これらの合成焦点距離の和は120mmである。一方、前群Gr1と後群Gr2のレンズ間距離D1は88mmである。この場合、前群Gr1と後群Gr2のレンズ間距離D1は、前群Gr1と後群Gr2の各合成焦点距離の和に対して約0.73倍である。眼底撮影装置100では、患者によって視度が異なるため、ピントを合わせる際に対物レンズ系60内で眼底共役面ECが移動する。ここで、上述のように対物レンズ系60を2群のレンズ構成とし、眼底共役面ECが移動しても各群Gr1,Gr2の眼底共役面EC側に位置するレンズ面S2,S3に近接しない構成とすることにより、対物レンズ系60のレンズ面による不要な反射光RL等が図1に示す受光ピンホールP2を通過することを防ぐことができる。なお、詳細は後述するが、対物レンズ系60のレンズ面による不要な反射光RLの遮光には、受光ピンホールP2を挟んで配置された第1遮光部材91と第2遮光部材92とが、より効果的に働く。
 眼底撮影装置100において、後群Gr2の光線有効径は、前群Gr1の光線有効径よりも大きくなっている。これにより、対物レンズ系60を縮小投影系として光束径を絞り込むとともに走査角θを大きくすることが容易になり、投光束FLを瞳位置(瞳面PS)で効率良く集光することができ、眼底EB上で広範囲を走査することができる。また、後群Gr2の焦点距離は、前群Gr1の焦点距離よりも長くなっている。後群Gr2の焦点距離は、前群Gr1の2倍程度の倍率又は比率を有する。具体例としては、前群Gr1の最大光線有効径は60mm、後群Gr2の最大光線有効径は84mmである。また、前群Gr1の合成焦点距離は36mm、後群Gr2の合成焦点距離は84mmであり、前群Gr1に対する後群Gr2の焦点距離の比率は2.3である。
 対物レンズ系60は前群Gr1と後群Gr2の2群の構成としており、レンズのパワー配分を前群Gr1と後群Gr2とで分散させることで、異なる走査角θ1,θ2による瞳面PSでの投光束FLの移動量を最小限に抑えている。対物レンズ系60のうち前群Gr1は2枚の正レンズを含んで構成される。本実施形態において、前群Gr1は、正の屈折力を有する第1レンズL1と、正の屈折力を有する第2レンズL2とで構成される。前群Gr1のうち少なくとも1枚の正レンズは非球面形状を有する。非球面形状は、正レンズの両面又は片面に形成される。前群Gr1において、2枚の正レンズのレンズ面は後群Gr2側に凸形状を有する。具体的には、第1レンズL1は、平凸レンズとなっており、第2レンズL2は、平凸レンズ又は後群Gr2側に凸のメニスカスレンズとなっている。特に、第1レンズL1を後群Gr2側に凸形状を有する平凸レンズとすることにより、第1レンズL1のレンズ面S1から瞳面PSまでの距離D2を比較的大きくとることができる。第1レンズL1から瞳面PSまでの距離D2が長いほど、被検眼EYが第1レンズL1に接触する危険を回避できるため、安全性の担保の点で望ましい。さらに、第1レンズL1と第2レンズL2の合成主点が、両凸レンズの組み合わせの場合と比べて後群Gr2側に配置されることで、前群Gr1と後群Gr2との間にある眼底共役面ECに最も近い第2レンズL2の後群Gr2側のレンズ面S2から眼底共役面ECまでの距離を比較的大きくとることができる。これにより、投光MLがレンズ面S2で反射することで発生する有害光が、眼底EBの撮影画像に映り込むことを防止できる。眼底撮影装置100は、被検眼EYの視度に応じてピントを合わせるために、眼底共役面ECを光軸AX2上に沿って移動させる必要がある。例えば視度が-20ジオプターのとき、眼底共役面ECが前群Gr1の第2レンズL2の内側のレンズ面S2に重なってしまう場合、そのレンズ面S2で発生する有害な反射光を光学的に除去することが非常に困難になる。従って、前群Gr1の内側のレンズ面S2から眼底共役面ECまでの距離を出来るだけ大きくとる設計が求められる。これは、後群Gr2の内側のレンズ面S3から眼底共役面ECまでの距離においても同様なことがいえる。このことから、前群Gr1の内側のレンズ面S2と後群Gr2の内側のレンズ面S3との間の距離、つまり前群Gr1と後群Gr2との間の距離D1は、既述のように、前群Gr1と後群Gr2の焦点距離の和の0.5倍以上は必要で、好ましくは0.7倍であることが望ましい。実施例として、第1レンズL1は正レンズで焦点距離は59mm、第2レンズL2も正レンズで焦点距離は86mmである。
 対物レンズ系60において、前群Gr1のうち後群Gr2に最も近い第2レンズL2の後群Gr2側のレンズ面S2に非球面形状を設けることが好ましい。光線有効径が広がる側を非球面にすることにより、非球面による収差補正効果を生じやすくすることができる。つまり、走査角θを大きくすることに伴って発生する投光束FLの移動量を、被検眼EYの瞳面PSにて最小限に抑えることができる。なお、非球面形状を設けるレンズ面は、第2レンズL2のレンズ面S2以外、例えば第1レンズL1のレンズ面に設けてもよい。具体例としては、前群Gr1の合成焦点距離は36mm、前群Gr1の最大光線有効径は60mmである。第1レンズL1から瞳面PSまでの距離D2は、22mmであり、合成焦点距離36mmの0.6倍に相当する。
 後群Gr2は少なくとも1枚の負レンズと少なくとも1枚の正レンズとを含んで構成される。本実施形態において、後群Gr2は、負の屈折力を有する第3レンズL3と、正の屈折力を有する第4レンズL4と、正の屈折力を有する第5レンズL5とで構成される。なお、後群Gr2は、2枚のレンズで構成してもよいし、4枚以上のレンズで構成してもよい。後群Gr2を負レンズ及び正レンズの組み合わせにすることにより、被検眼EYの瞳面PSにおいて、走査角θを大きくすることに伴って発生する投光束FLの移動量を、被検眼EYの瞳面PSにて抑えることができる。さらに、3枚のレンズの組み合わせにすることで、投光束FLの移動量を最小限に抑えることができる。この場合、負レンズ及び2枚の正レンズの組み合わせの順番は、瞳面PS側から順に、負正正でも正正負でもよい。後群Gr2において、負レンズと正レンズとは接合レンズCSであることが好ましい。後群Gr2が色収差補正に適した接合レンズCSを有することにより、瞳面PS上の投光束FLの色収差を最小限に抑えることができる。つまり、後群Gr2が接合レンズCSを有することにより、単色の結像収差だけでなく、色収差の補正にも効果的な構成となっている。また、接合レンズCSにおいて、負レンズに高屈折率ガラス、正レンズに低屈折率ガラスを選択し、互いの屈折率の差が0.24以上とすることで、球面収差を好適に補正することができる。また、後群Gr2では、接合レンズCSの他に、正レンズである第5レンズL5を設けることにより、後群Gr2のレンズパワーを確保している。具体的には、第3レンズL3は、第2走査デバイス50側に凹のメニスカスレンズとなっており、第4レンズL4は、両凸レンズとなっている。第3及び第4レンズL3,L4は、接合レンズCSとなっている。また、第5レンズL5は、瞳面PS側に凸のメニスカスレンズとなっている。実施例として、第3レンズL3は負レンズで焦点距離は-76mm、第4レンズL4は正レンズで焦点距離は70mm、接合後の接合レンズCSの焦点距離は正レンズで470mmである。第5レンズL5は正レンズで焦点距離は107mmである。なお、接合レンズCSの焦点距離が470mmとレンズパワーが低くても、接合レンズCSと焦点距離107mmの正レンズである第5レンズL5とを組み合わせることで必要とする後群Gr2のレンズパワー(合成焦点距離84mm)を確保することができる。
 対物レンズ系60は、対物レンズ系60の光軸AX2上に図1に示す第1及び第2走査デバイス30,50を経た投光MLが走査によって旋回される基点となる旋回点Qを形成する。旋回点Qは、瞳面PSに対応し、対物レンズ系60の光軸AX2上であって、第1及び第2走査デバイス30,50と光学的に共役な位置に形成される。第1及び第2走査デバイス30,50を経た投光MLは、対物レンズ系60を通過することにより、旋回点Qを経て眼底EBに照射される。つまり、対物レンズ系60を通過した投光MLの主光線PRは、第1及び第2走査デバイス30,50の動作に伴って旋回点Qを中心に旋回される。その結果、眼底EB上で投光MLが2次元的に走査される。
 図3Aは、本実施形態における眼底撮影装置100による投光MLの走査によって被検眼EYの瞳面PS上に入射する投光束(又はビーム領域)を説明する概念図であり、図3Bは、本実施形態において最良な結果を説明する図であり、図3Cは、図3A又は図3Bの比較例を説明する図である。ここで、瞳面PSにおいて、走査角は光軸AX2を0度としたときの投光束の入射傾き角度であり、瞳面PS上における光軸AX2を基準としている。図3A等において、中央の投光束FL1は、走査角が0度のときの光軸AX2に垂直な光束断面(以降の他の走査角でも同様)を示す。また、周囲の投光束FL2は、走査角が上方向に45度のときの光束断面を示し、投光束FL3は、走査角が右上方向に45度のときの光束断面を示し、投光束FL4は、走査角が右方向に45度のときの光束断面を示し、投光束FL5は、走査角が右下方向に45度のときの光束断面を示し、投光束FL6は、走査角が下方向に45度のときの光束断面を示し、投光束FL7は、走査角が左下方向に45度のときの光束断面を示し、投光束FL8は、走査角が左方向に45度のときの光束断面を示し、投光束FL9は、走査角が左上方向に45度のときの光束断面を示す。上記のような対物レンズ系60により、被検眼EYの瞳面PS上において、走査系を経た各投光MLに対応する投光束FL1~FL9は、図3Aに示すように、所定範囲の1か所に収束する。具体的には、瞳面PS上において、走査系を経た全波長による全投光束FL1~FL9の断面形状の直径が3mm以下に収まる。ここで、瞳面PS上の投光束の直径は、例えば1mm以下である。投光束の主光線が走査によって瞳面PS上で移動する際の最大移動量は、光軸AX2を中心として例えば1mmである。この投光束の最大直径1mmと最大移動量1mmとの結果として、全投光束の断面形状の直径が3mmとなる。より詳細に説明すると、円CIは、全投光束の断面形状に対応し、旋回点Qに相当する。図3Aでは、瞳面PS上の投光束の光束断面形状が直径3mmであり、光軸AX2に対して上方向に45度傾斜した光路の主光線は、瞳面PS上で光軸AX2から上方向に1mm離れたところを通過し、光軸AX2に対して走査角が下方向に45度傾斜した光路の主光線は瞳面PS上で光軸AX2から下方向に1mm離れたところを通過する。投光MLであるレーザー光のビーム幅は直径1mmであり、ビーム幅は半値全幅、1/e幅等を基準としている。これにより、瞳面PS上で光軸AX2を中心とする直径3mmの円CIの中に投光束FL1~FL9が収まると、瞳孔径3mmでも投光束FL1~FL9が全て瞳孔を通過するので、虹彩で投光束がけられないため全投光束が虹彩で遮光されず、走査角によらず均一な照明をすることができる。図3Bは最良の例であり、走査系を経た全波長による全投光束FL1~FL9の瞳面PS上における断面形状の直径は2mmの円CIに収まっている。光軸AX2に対して上方向に45度傾斜した光路の主光線は、瞳面PS上で光軸AX2から上方向に0.5mm離れたところを通過する。光軸AX2に対して走査角が下方向に45度傾斜した光路の主光線は、瞳面PS上で光軸AX2から下方向に0.5mm離れたところを通過する。投光MLであるレーザー光のビーム幅は直径1mmである。これにより瞳面PS上で光軸AX2を中心とする直径2mmの円CIの中に投光束FL1~FL9が収まると、瞳孔径が3mm以下であっても、投光束FL1~FL9が瞳孔を通過するので虹彩で投光束がけられないため、全投光束が虹彩で遮光されず、走査角によらず均一な照明をすることができる。
 対物レンズ系60を上記のような構成としない場合、図3Cに示すように、全走査で投光束FL1~FL9を重ねたときに、収差の影響により投光束FL1~FL9がばらける又は分散してしまい直径3mmの円CIに収まらない。例えば、レーザー光のビーム幅は直径1mmであるが、光軸AX2に対して8方向に45度傾斜した位置から入射する光線が、瞳面PS上の光軸AX2から1.5mm離れたところを通過するため、全光束の断面形状は直径4mmとなってしまい直径3mm円CIの中央に入射しない。この場合、瞳孔径が3mm以下であると、投光束FL1~FL9が虹彩で大きくけられて、例えば周辺部が暗くなるという問題が生じる。
 以下、図1に戻って、受光光学系100bについて説明する。受光光学系100bでは、眼底EBで反射された反射光RLが中央反射ミラー20まで投光光学系100aと同じ光路を逆方向に進み、対物レンズ系60、第2走査デバイス50、走査リレーレンズ系40、第1走査デバイス30を経て中央反射ミラー20に入射し、中央反射ミラー20の透過部を通過して受光部70に入射する。つまり、受光光学系100bでは、眼底EBからの反射光RLは、対物レンズ系60によって水晶体等の被検眼EYの要素と協働してコリメートされつつ、投光光学系100aと同じ光路を逆行して受光部70に入射する。
 受光光学系100bのうち受光部70は、反射光RLに含まれる赤色光を受光する受光素子を有する赤色受光センサ71と、反射光RLに含まれる緑色光を受光する受光素子を有する緑色受光センサ72と、反射光RLに含まれる青色光を受光する受光素子を有する青色受光センサ73と、反射光RLに含まれる近赤外光を受光する受光素子を有する近赤外受光センサ74と、第4ダイクロイックミラー75と、第5ダイクロイックミラー76と、第6ダイクロイックミラー77と、受光フォーカスレンズ78と、受光レンズ79と、受光ピンホールP2とを有する。受光ピンホールP2は、眼底EBと共役な関係にあり共焦点となる。赤色受光センサ71、緑色受光センサ72、青色受光センサ73、及び近赤外受光センサ74の光路上には、集光レンズ71a~74a及び受光ピンホール71b~74bがそれぞれ配置されている。また、受光フォーカスレンズ78と受光ピンホールP2との間には第1遮光部材91が配置され、受光ピンホールP2と受光レンズ79との間には第2遮光部材92が配置されている。
 第4ダイクロイックミラー75と集光レンズ74aとの間には、近赤外蛍光画像撮影用の蛍光波長のみを透過させるバンドパスフィルタF1を設けることができる。バンドパスフィルタF1は、近赤外蛍光画像撮影モードにおいて、光路上に挿入可能となっている。また、第4ダイクロイックミラー75と第5ダイクロイックミラー76との間には、可視自発蛍光画像撮影用の蛍光波長のみを透過させるバンドパスフィルタF2、又は可視蛍光画像撮影用の蛍光波長のみを透過させるバンドパスフィルタF3を設けることができる。バンドパスフィルタF2又はバンドパスフィルタF3は、可視自発蛍光画像撮影モード又は可視蛍光画像撮影モードにおいて、光路上に挿入可能となっている。つまり、第4ダイクロイックミラー75と第5ダイクロイックミラー76との間には、緑色光用のバンドパスフィルタF2又は青色光用のバンドパスフィルタF3の2種類のバンドパスフィルタを挿入可能になっている。具体的には、緑色光による自発蛍光画像撮影モードにおいて、緑色光用のバンドパスフィルタF2を挿入し、青色光による自発蛍光画像撮影モード又は可視蛍光画像撮影モードにおいて、青色光用のバンドパスフィルタF3を挿入する。図示を省略するが、バンドパスフィルタF1~F3は、不図示の切替機構にセットされており、制御部80の駆動部82によって切り替え制御される。
 赤色受光センサ71、緑色受光センサ72、及び青色受光センサ73は、例えば反射光RLのうち受光対象光以外の波長をカットするバンドパスフィルタと受光素子とで構成される。受光素子としては、例えば高感度フォトダイオード等が用いられる。各受光センサ71,72,73により眼底EBの各点について可視域で輝度情報を得ることができる。得られた輝度情報(具体的には、各受光センサ71,72,73の出力強度)と、第1走査デバイス30及び第2走査デバイス50の走査位置情報とに基づいて、眼底EBの撮影像を形成することができ、赤色受光センサ71によって得られた赤色撮影画像データ、緑色受光センサ72によって得られた緑色撮影画像データ、及び青色受光センサ73によって得られた青色撮影画像データを合成し、ガンマ処理等を施してカラー眼底画像データを生成することができる。また、緑色光を用いた可視自発蛍光画像撮影モードでは、赤色受光センサ71によって得られた赤色撮影画像データ、及び緑色受光センサ72によって得られた緑色撮影画像データを合成し、ガンマ処理等を施して可視自発蛍光眼底画像データを生成することができる。青色光を用いた可視自発蛍光画像撮影モードでは、緑色受光センサ72によって得られた緑色撮影画像データにガンマ処理等を施して可視自発蛍光眼底画像データを生成することができる。青色光を用いた可視蛍光画像撮影モードでは、緑色受光センサ72によって得られた緑色撮影画像データにガンマ処理等を施して可視蛍光眼底画像データを生成することができる。なお、ダイクロイックミラーの特性によっては、波長帯域をカットするバンドパスフィルタを設けずに、各受光センサを構成することもできる。
 近赤外受光センサ74は、例えば反射光RLのうち近赤外光以外の波長帯域をカットするバンドパスフィルタと受光素子とで構成される。受光素子としては、例えば高感度フォトダイオード等が用いられる。近赤外受光センサ74により眼底EBの各点について近赤外域で輝度情報を得ることができる。得られた輝度情報(具体的には、近赤外受光センサ74の出力強度)と、第1走査デバイス30及び第2走査デバイス50の走査位置情報とに基づいて、眼底EBの撮影像を形成することができる。なお、ダイクロイックミラーの特性によっては、波長帯域をカットするバンドパスフィルタを設けずに受光センサを構成することもできる。撮影された眼底EBの撮影画像データは、制御部80の記憶部83に格納されたり、モニタ86に表示されたり、不図示のプリンタにより印刷される。
 受光フォーカスレンズ78は、受光部70の光軸AX3方向に沿って移動可能となっており、眼底EBからの反射光RLのピントを調整する。つまり受光フォーカスレンズ78の位置を調整することにより、被検眼EYの視度による眼底像のピントズレを補償する。これにより、反射光RLが集光する位置を各受光センサ71~74上に調節することができる。受光ピンホールP2は、受光フォーカスレンズ78と受光レンズ79との間、かつ眼底EBと共役な位置に設けられており、共焦点絞りとして反射光RLから不要な光を除去する。受光フォーカスレンズ78を経た反射光RLは、受光ピンホールP2の開口に焦点を結び、受光レンズ79に入射する。また、受光ピンホールP2を挟んで配置された第1遮光部材91と第2遮光部材92とは、対物レンズ系60の前群Gr1又は後群Gr2のレンズ面の反射で発生する不要光の除去の役割として必要な部材である。受光ピンホールP2に対して被検眼EY側に位置する第1遮光部材91は主に前群Gr1で発生する不要光の遮光に役立ち、受光ピンホールP2に対して被検眼EYと逆側に位置する第2遮光部材92は主に後群Gr2で発生する不要光の遮光に役立つ。本実施形態では、眼底撮影装置100は、患者の被検眼EYの視度の補正範囲を±25ジオプターとした場合に眼底共役面ECが前群Gr1及び後群Gr2の内側のレンズ面S2,S3に近接しないように設計されている。よって、視度補正範囲±25ジオプターの範囲において、上記した不要光の遮光が実施できる構成となる。ここで、第1及び第2遮光部材91,92はレンズ面S2,S3の反射による不要光の遮光に対して効果的であるが、一方で眼底EBからの反射光RLの一部も同時に遮光する犠牲を伴う。そのため、第1及び第2遮光部材91,92の遮光サイズに関しては、不要光の遮光効果と、眼底EBからの反射光RLの遮光(犠牲)とのバランスを考慮したうえで決める。本実施形態では、不要光を完全に遮光することは選ばず、眼底EBからの反射光RLの遮光による犠牲を最小限に留めている。また、中心点だけでなく穴のエッジも含めた受光ピンホールP2の穴部を物点として、第1遮光部材91や中央反射ミラー20で遮光されて被検眼EY側に逆投影した際の受光束と、同じ走査デバイス30,50を経由した投光束とが、例えば前群Gr1のレンズ面S2において、光束同士が出来るだけ重ならないように第1遮光部材91の位置、つまり受光ピンホールP2からの距離と、サイズ、つまり遮光点の直径とを決めるのが望ましい。
 受光部70に入射した眼底EBからの反射光RLの一部(具体的には、近赤外光)は、第4ダイクロイックミラー75で反射され、集光レンズ74aにより受光ピンホール74bへと導かれ、受光ピンホール74bを通過した反射光RLが近赤外受光センサ74に入射する。また、反射光RLの一部(具体的には、青色光)は、第4ダイクロイックミラー75を通過した後、第5ダイクロイックミラー76で反射され、集光レンズ73aにより受光ピンホール73bへと導かれ、受光ピンホール73bを通過した反射光RLが青色受光センサ73に入射する。また、反射光RLの一部(具体的には、緑色光)は、第4ダイクロイックミラー75及び第5ダイクロイックミラー76を通過した後、第6ダイクロイックミラー77で反射され、集光レンズ72aにより受光ピンホール72bへと導かれ、受光ピンホール72bを通過した反射光RLが緑色受光センサ72に入射する。また、反射光RLの一部(具体的には、赤色光)は、第4ダイクロイックミラー75、第5ダイクロイックミラー76、及び第6ダイクロイックミラー77を通過し、集光レンズ71aにより受光ピンホール71bへと導かれ、受光ピンホール71bを通過した反射光RLが赤色受光センサ71に入射する。受光ピンホール71b,72b,73b,74bは受光センサ71,72,73,74の前にそれぞれ配置するが、共焦点ピンホールである受光ピンホールP2と共役な位置であるため、受光ピンホールP2よりも光学的に大きいサイズが好ましい。
 受光部70において、各受光ピンホール71b,72b,73b,74bは、被検眼EYの眼底EBと共役となる位置に配置される。被検眼EYと共役関係にある受光ピンホール71b,72b,73b,74bに反射光RLを導くことにより、眼底EBから離れた部位で発生した、測定に不要な光である迷光が受光ピンホール71b,72b,73b,74bで除去され、コントラストの高い眼底像を撮影することができる。
 制御部80は、眼底撮影装置100の各部の制御処理と、演算処理とを行う電子回路等を有する。制御部80は、処理部(CPU:Central Processing Unit)81と、駆動部82と、記憶部83と、画像生成部84とを有する。また、制御部80には、入力部85、モニタ86等が付随して設けられている。
 処理部81は、駆動部82、記憶部83、画像生成部84等を統括的に制御する。駆動部82は、レーザー11~14、受光センサ71~74、第1及び第2走査デバイス30,50の動作を制御し、投光MLの進行方向を変化させる。また、駆動部82は、投光レンズ18及び投光フォーカスレンズ19や受光フォーカスレンズ78及び受光レンズ79の配置調整の動作を制御し、投光光学系100a及び受光光学系100bのピントをユーザーの操作又は自動の焦点検出に基づいてそれぞれ調整する。記憶部83は、各部の制御プログラム、固定データ、一時データ等を格納する。また、記憶部83は、受光センサ71~74で取得した画像データやこれらの合成データを格納する。画像生成部84は、受光センサ71~74から出力される受光信号から眼底画像データを生成する。また、画像生成部84は、可視光に対応する受光センサ71~73で取得した各色の画像データを合成することによりカラー眼底画像データ、及び可視自発蛍光眼底画像データを生成する。モニタ86は、ユーザーに提示すべき情報、生成された眼底画像データ等を表示する。入力部85は、ユーザーによって眼底撮影装置100の各部の設定を行ったり、撮影モードの切り替えを行ったりする撮影ボタン等の操作部を有する。
 以下、図4を参照しつつ、図1に示す眼底撮影装置100を用いて眼底画像を得る方法について説明する。既述のように、眼底撮影装置100は、近赤外光によってアライメント用に眼底画像を動画像にて撮影するアライメントモードと、可視光である赤色光、緑色光、及び青色光によってカラーの眼底画像を1枚撮影するカラー画像撮影モードと、緑色光ないし青色光によって自発蛍光眼底画像を1枚撮影する可視自発蛍光画像撮影モードと、青色光によって蛍光眼底画像を1枚ないし動画像で撮影する可視蛍光画像撮影モードと、近赤外光によって蛍光眼底画像を1枚ないし動画像で撮影する近赤外蛍光画像撮影モードとを切り替え可能な構成となっている。
<モード選択>
 まず、撮影モードを選択する(ステップS11)。モード選択では、カラー画像撮影モード、可視自発蛍光画像撮影モード、可視蛍光画像撮影モード、近赤外蛍光画像撮影モードの中から所望するモードを選択する。可視自発蛍光画像撮影モードでは、さらに緑色光ないし青色光から撮影に使用する光源を選択する。可視蛍光画像撮影モードと近赤外蛍光画像撮影モードでは、さらに1枚撮影ないし動画像撮影から選択する。
 可視自発蛍光画像撮影モードを選択し、使用光源として緑色光を選択すると、緑色光用のバンドパスフィルタF2が第4ダイクロイックミラー75と第5ダイクロイックミラー76の間に挿入される。また、使用光源として青色光を選択すると、青色光用のバンドパスフィルタF3が挿入される。可視蛍光画像撮影モードを選択すると、青色光用のバンドパスフィルタF3が第4ダイクロイックミラー75と第5ダイクロイックミラー76の間に挿入される。
<アライメントモード>
 次に、眼底像のアライメントを行う(ステップS21)。アライメントモードでは、第1走査デバイス30及び第2走査デバイス50が連続走査している状態で近赤外レーザー14から近赤外が照射され、近赤外の眼底観察画像が制御部80のモニタ86にライブ表示される。このアライメントモードを用いて眼底像のアライメント及びフォーカス調整を行う。なお、アライメントモードは、各画像撮影モードと同時に行われてもよいし、アライメントモードが省略されてもよい。
 アライメント状態を確認した後、制御部80の入力部85に設けられた撮影ボタン(不図示)を押すことによりアライメントモードから上述のモード選択で選択した撮影モードに切り替える。
<カラー画像撮影モード>
 カラー画像撮影モードでは、赤色光、緑色光、及び青色光が同時に眼底EBに照射され、各色の反射光RLを同時に受光して撮影する。得られた赤色撮影画像データ、緑色撮影画像データ、及び青色撮影画像データを画像合成することにより、カラー眼底画像データが生成される。
 撮影モード切り替えに際して入力部85の撮影ボタンが押されると、第2走査デバイス50の連続走査が一時的に停止し、第2走査デバイス50が撮影開始位置に移動する。次に、近赤外レーザー14が消灯し、赤色レーザー11、緑色レーザー12、及び青色レーザー13が同時に点灯し、第2走査デバイス50が再び動作し、カラー眼底画像の撮影が開始される(ステップS31)。カラー眼底画像の1回の撮影は、例えば0.4秒の縦方向走査により3000×3000画素の画像データを赤色光、緑色光、及び青色光のそれぞれについて同時に取得する。制御部80の画像生成部84によって、得られた赤色撮影画像データ、緑色撮影画像データ、及び青色撮影画像データを合成し、ガンマ処理等を施してカラー眼底画像データが生成される(ステップS32)。生成されたカラー眼底画像データは、記憶部83に格納され(ステップS71)、モニタ86に表示される(ステップS81)。
 カラー眼底画像の撮影が終了すると、赤色レーザー11、緑色レーザー12、及び青色レーザー13が消灯し、第1走査デバイス30、第2走査デバイス50の駆動が停止する(ステップS91)。
<可視自発蛍光画像撮影モード>
 可視自発蛍光画像撮影モードでは、緑色光ないし青色光の内、モード選択で選択した光源の光が眼底EBに照射され、反射光RLを受光して撮影する。緑色光の場合は、得られた赤色撮影画像データ、緑色撮影画像データを画像合成することにより、可視自発蛍光眼底画像データが生成される。青色光の場合は、得られた緑色撮影画像データから可視自発蛍光眼底画像データが生成される。
 撮影モード切り替えに際して入力部85の撮影ボタンが押されると、第2走査デバイス50の連続走査が一時的に停止し、第2走査デバイス50が撮影開始位置に移動する。次に、近赤外レーザー14が消灯し、選択した緑色レーザー12ないし青色レーザー13が点灯し、第2走査デバイス50が再び動作し、自発蛍光眼底画像の撮影が開始される(ステップS41)。自発蛍光眼底画像の1回の撮影は、例えば0.4秒の縦方向走査により3000×3000画素の画像データを取得する。制御部80の画像生成部84によって、緑色光の場合は得られた赤色撮影画像データ、及び緑色撮影画像データを合成し、ガンマ処理等を施して可視自発蛍光眼底画像データが生成される(ステップS42)。青色光の場合は、得られた緑色撮影画像データにガンマ処理等を施して可視自発蛍光眼底画像データが生成される(ステップS42)。生成された可視自発蛍光眼底画像データは、記憶部83に格納され(ステップS71)、モニタ86に表示される(ステップS81)。
 可視自発蛍光眼底画像の撮影が終了すると、緑色レーザー12ないし青色レーザー13が消灯し、第1走査デバイス30、第2走査デバイス50の駆動が停止する(ステップS91)。
<可視蛍光画像撮影モード>
 可視蛍光画像撮影モードでは、青色光が眼底EBに照射され、反射光RLを受光して撮影する。得られた緑色撮影画像データから可視蛍光眼底画像データが生成される。
 撮影モード切り替えに際して入力部85の撮影ボタンが押されると、第2走査デバイス50の連続走査が一時的に停止し、第2走査デバイス50が撮影開始位置に移動する。次に、可視蛍光眼底画像の1回の撮影の場合は、近赤外レーザー14が消灯し、青色レーザー13が点灯し、第2走査デバイス50が再び動作し、可視蛍光眼底画像の撮影が開始される(ステップS51)。例えば0.4秒の縦方向走査により3000×3000画素の画像データを取得する。連続撮影の場合は、近赤外レーザー14は点灯し続けたまま青色レーザー13が点灯し、第2走査デバイス50が再び動作し、アライメント用の近赤外眼底画像と可視蛍光眼底画像の撮影が開始される(ステップS51)。例えば1秒間に10回の縦方向走査を行い、1回につき700×700画素の画像データを取得する。制御部80の画像生成部84によって、得られた緑色撮影画像データにガンマ処理等を施して可視蛍光眼底画像データが生成される(ステップS52)。連続撮影の場合は、併せて近赤外眼底画像データも生成される(ステップS52)。生成された可視蛍光眼底画像データ及び近赤外眼底画像データは、記憶部83に格納され(ステップS71)、モニタ86に表示される(ステップS81)。
 可視蛍光眼底画像の撮影が終了すると、青色レーザー13が消灯する。連続撮影の場合は、近赤外レーザー14も消灯した後、第1走査デバイス30、第2走査デバイス50の駆動が停止する(ステップS91)。
<近赤外蛍光画像撮影モード>
 近赤外蛍光画像撮影モードでは、近赤外光が眼底EBに照射され、反射光RLを受光して撮影する。得られた近赤外撮影画像データから近赤外蛍光眼底画像データが生成される。
 撮影モード切り替えに際して入力部85の撮影ボタンが押されると、近赤外蛍光画像撮影用のバンドパスフィルタF1が挿入され、第2走査デバイス50の連続走査が一時的に停止し、第2走査デバイス50が撮影開始位置に移動する。次に、近赤外レーザー14の出力が上がり、第2走査デバイス50が再び動作し、近赤外蛍光眼底画像の撮影が開始される(ステップS61)。近赤外蛍光眼底画像の1回の撮影の場合は、例えば0.4秒の縦方向走査により3000×3000画素の画像データを取得する。連続撮影の場合は、例えば1秒間に10回の縦方向走査を行い、1回につき700×700画素の画像データを取得する。制御部80の画像生成部84によって、得られた近赤外撮影画像データにガンマ処理等を施して近赤外蛍光眼底画像データが生成される(ステップS62)。生成された近赤外蛍光眼底画像データは、記憶部83に格納され(ステップS71)、モニタ86に表示される(ステップS81)。
 近赤外蛍光眼底画像の撮影が終了すると、近赤外レーザー14が消灯し、第1走査デバイス30、第2走査デバイス50の駆動が停止する(ステップS91)。
 以上説明した眼底撮影装置100では、対物レンズ系60が眼底共役面ECを境に前群Gr1と後群Gr2とに分かれており、前群Gr1が2枚の正レンズを含んで構成され、少なくとも1面の非球面を有し、後群Gr2が負レンズ及び2枚の正レンズを含んで構成されることにより、瞳面PSへの結像収差を最小限に抑えることができ、異なる角度の走査による全投光束を被検眼EYの瞳面PS上の所望の範囲に照射することができる。これにより広い走査角であるにも関わらず、瞳面PS側で走査される光束を所定の範囲内に絞り込むことができるため、全投光束の断面形状を比較的小さくすることができ、投光束が被検眼EYの瞳孔を効率良く通過して、虹彩でけられることを防ぐことができる。また、少なくとも前群Gr1のレンズが非球面形状を有することにより、瞳面PSへの結像の収差を改善することができる。なお、本実施形態では瞳面PSでの異なる走査角の投光束の結像状態だけを記載したが、眼底EBでの投光束の結像状態、及び受光ピンホール71b~74bを物点としたときの逆光線の受光束の眼底EBでの結像状態を考慮して対物レンズ系60を作製する。
 以上、実施形態や実施例に即して本発明を説明したが、本発明は、上記実施形態等に限定されるものではない。例えば、上記実施形態において、光路分割デバイスである中央反射ミラー20は、ビームスプリッター等に変更してもよい。または光路分割デバイスは、中央部で投光を透過し、周辺部で受光を反射する、穴あきミラーの形状であっても良い。また、光源部10、第1走査デバイス30、第2走査デバイス50、及び受光部70等の構成も適宜変更することができる。
 上記実施形態において、眼底撮影装置100の光源部10を4波長のレーザーで構成したが、適宜変更することができる。例えば、眼底撮影装置100の光源部10を1波長とし、単色光での撮影を行う構成としてもよい。
 上記実施形態において、第1走査デバイス30にポリゴンミラーを用い、第2走査デバイス50にガルバノミラーを用いたが、レゾナントスキャナ、MEMSミラー等の他の走査デバイスを用いてもよい。
 上記実施形態において、前群Gr1が2枚の正レンズから構成される例を挙げたが、前群Gr1が少なくとも2枚の正レンズを含んで構成されていればよい。例えば、前群Gr1は、3枚の正レンズから構成されてもよく、2枚の正レンズと1枚の負レンズとから構成されてもよい。また、後群Gr2についても同様に、少なくとも1枚の負レンズと少なくとも1枚の正レンズとを含んで構成されていればよい。

Claims (9)

  1.  眼底共役面を境に前群と後群とを有する対物レンズ系と、光源からの光を被検眼の眼底上に2次元的に走査する走査部とを備え、
     前記走査部と前記被検眼の瞳面との間において、異なる走査角を持つ投光束の主光線が光軸上で交差せず、
     前記前群は2枚の正レンズを含んで構成され、
     前記後群は少なくとも1枚の負レンズと少なくとも1枚の正レンズとを含んで構成され、
     前記前群のうち少なくとも1枚の正レンズは非球面形状を有する走査型眼底撮影装置。
  2.  前記後群の光線有効径は、前記前群の光線有効径よりも大きい、請求項1に記載の走査型眼底撮影装置。
  3.  前記前群において、前記後群に最も近いレンズ面は非球面形状を有する、請求項1及び2のいずれか一項に記載の走査型眼底撮影装置。
  4.  前記前群において、前記2枚の正レンズのレンズ面は前記後群側に凸形状をそれぞれ有する、請求項1~3のいずれか一項に記載の走査型眼底撮影装置。
  5.  前記後群は、前記負レンズと前記正レンズによる接合レンズと、前記正レンズとの組み合わせである、請求項1~4のいずれか一項に記載の走査型眼底撮影装置。
  6.  前記走査部と前記被検眼の前記瞳面との間において、異なる走査角を持つ投光束の主光線が互いに離間する、請求項1~5のいずれか一項に記載の走査型眼底撮影装置。
  7.  瞳面上において、前記走査部を経た全投光束を重畳した断面形状の直径は3mm以下である、請求項1~6のいずれか一項に記載の走査型眼底撮影装置。
  8.  前記前群と前記後群のレンズ間距離は、前記前群と前記後群の各合成焦点距離の和の0.5倍以上である、請求項1~7のいずれか一項に記載の走査型眼底撮影装置。
  9.  被検眼の視度補正範囲が-25ジオプターから+25ジオプターのいずれにおいても、前記眼底共役面が前記前群と前記後群の各レンズ面に近接しないように、前記前群と前記後群の焦点距離と、レンズ間距離とが設定される、請求項8に記載の走査型眼底撮影装置。
PCT/JP2020/048796 2019-12-27 2020-12-25 走査型眼底撮影装置 WO2021132588A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-238625 2019-12-27
JP2019238625A JP2023015417A (ja) 2019-12-27 2019-12-27 走査型眼底撮影装置

Publications (1)

Publication Number Publication Date
WO2021132588A1 true WO2021132588A1 (ja) 2021-07-01

Family

ID=76575328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048796 WO2021132588A1 (ja) 2019-12-27 2020-12-25 走査型眼底撮影装置

Country Status (2)

Country Link
JP (1) JP2023015417A (ja)
WO (1) WO2021132588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113520299A (zh) * 2021-08-24 2021-10-22 图湃(北京)医疗科技有限公司 一种眼部多模态成像系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019526367A (ja) * 2016-09-06 2019-09-19 株式会社ニコン 反射屈折等倍アフォーカル瞳孔リレー及びこれを採用した光学撮影系

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019526367A (ja) * 2016-09-06 2019-09-19 株式会社ニコン 反射屈折等倍アフォーカル瞳孔リレー及びこれを採用した光学撮影系

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113520299A (zh) * 2021-08-24 2021-10-22 图湃(北京)医疗科技有限公司 一种眼部多模态成像系统
CN113520299B (zh) * 2021-08-24 2022-06-21 图湃(北京)医疗科技有限公司 一种眼部多模态成像系统
WO2023025062A1 (zh) * 2021-08-24 2023-03-02 图湃(北京)医疗科技有限公司 一种眼部多模态成像系统

Also Published As

Publication number Publication date
JP2023015417A (ja) 2023-02-01

Similar Documents

Publication Publication Date Title
JP5658371B2 (ja) 眼を撮像するための装置および方法
JP4878277B2 (ja) 眼科撮影装置及び該眼科撮影装置に使用するフォーカスユニット
US20070019160A1 (en) Ring light fundus camera
JP6766413B2 (ja) 眼底撮影装置
JP2015511509A (ja) 検査機器
JP2014054463A (ja) レーザ治療装置
JP2009011381A (ja) 走査型レーザ検眼鏡、及び走査型レーザ検眼鏡用広角レンズアタッチメント
JP2016028687A (ja) 走査型レーザー検眼鏡
JP2004329360A (ja) 眼科装置
JP6720653B2 (ja) 眼科撮影装置
WO2021049428A1 (ja) 眼科装置、その制御方法、及びプログラム
WO2021132588A1 (ja) 走査型眼底撮影装置
JP6919749B2 (ja) 眼科撮影装置
JP5460152B2 (ja) 眼科装置
CN112869703B (zh) 眼底相机的光学系统及眼底相机
JP7098964B2 (ja) 眼底撮影装置
KR101348939B1 (ko) 안저 카메라
JP2021122399A (ja) 眼底撮影装置
WO2020202877A1 (ja) 画像検査装置
JP2021062162A (ja) 走査型眼底撮影装置
JP7435961B2 (ja) 眼底撮影装置
WO2019088070A1 (ja) 走査型眼底撮影装置
JP7024294B2 (ja) 眼科撮影装置
JP5409410B2 (ja) 眼科撮影装置
JP6937536B1 (ja) 眼底撮影装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP