WO2021131722A1 - 接着剤、積層体、包装材、電池用包装材、電池 - Google Patents

接着剤、積層体、包装材、電池用包装材、電池 Download PDF

Info

Publication number
WO2021131722A1
WO2021131722A1 PCT/JP2020/045957 JP2020045957W WO2021131722A1 WO 2021131722 A1 WO2021131722 A1 WO 2021131722A1 JP 2020045957 W JP2020045957 W JP 2020045957W WO 2021131722 A1 WO2021131722 A1 WO 2021131722A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
acid group
adhesive
compound
group
Prior art date
Application number
PCT/JP2020/045957
Other languages
English (en)
French (fr)
Inventor
眞二郎 山田
由里香 宮前
翔 三木
勉 菅野
英美 中村
神山 達哉
良 水口
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2021526300A priority Critical patent/JP7006845B2/ja
Priority to CN202080085610.XA priority patent/CN114787311B/zh
Publication of WO2021131722A1 publication Critical patent/WO2021131722A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an adhesive, specifically an adhesive suitable for adhering a resin base material and a metal base material, a laminate obtained by using the adhesive, a packaging material obtained by using the laminate, and a battery. Regarding packaging materials and batteries.
  • a secondary battery represented by a lithium ion battery has a configuration in which a positive electrode, a negative electrode, and an electrolytic solution or the like are sealed between them. Further, as an encapsulation bag for encapsulating lead wires for extracting electricity from the positive electrode and the negative electrode to the outside, a heat seal layer made of an olefin resin, a metal base material made of a metal foil such as aluminum foil, or a metal vapor deposition layer, and plastic. It is known to use a laminated body obtained by laminating the above (Patent Document 1).
  • an electrolyte such as lithium fluoride is dissolved in a mixed solvent of cyclic carbonate and chain carbonate or a mixed solvent of cyclic carbonate and chain carboxylic acid ester. It is known to be used (Patent Documents 1 and 2).
  • the adhesive contains an olefin resin having extremely low polarity and a metal group having high polarity. Adhesiveness is required for both substrates, which are materials with different surface physical properties. Further, since the olefin resin easily permeates the organic solvent, the adhesive is required to maintain the adhesive strength even when swollen by various organic solvents contained in the olefin resin and not to be deteriorated by the electrolyte.
  • the present invention has been made in view of such a situation, and is excellent in adhesiveness to various base materials, particularly adhesiveness between a resin base material and a metal base material, and also has various solvent resistance and electrolytic solution resistance.
  • An object of the present invention is to provide an adhesive having excellent properties. Furthermore, an object of the present invention is to provide a laminate, a packaging material, a packaging material for a battery, and a battery obtained by using such an adhesive.
  • the present invention includes a first agent and a second agent, the first agent contains a resin (A) containing an acid group-containing olefin resin (A1), and the second agent is the acid group-containing olefin resin (A1).
  • the acid group-containing olefin resin (A1) contains the compound (B) that is reactive with the acid group of the acid group, and the acid group-containing olefin resin (A1) and the epoxy compound that is liquid at 25 ° C. have an epoxy excess ratio of 0.
  • the cured product of the composition blended so as to be 1 or more and 1.5 or less has a crystallization peak on the DSC curve drawn in the differential scanning calorimetry measured according to the method for measuring the crystallization temperature described in JIS-K-7121. With respect to the adhesive characterized by being observed.
  • various base materials particularly an adhesive having excellent adhesiveness between a resin base material and a metal base material, resistance to various solvents, and an electrolytic solution resistance, a laminate, a packaging material, and a battery using the same.
  • Packaging materials and batteries can be provided.
  • the adhesive of the present invention comprises a first agent containing an acid group-containing olefin resin (A1) and a second agent containing a compound (B) reactive with the acid group of the acid group-containing olefin resin (A1). It is a two-component adhesive.
  • A1 an acid group-containing olefin resin
  • B a compound reactive with the acid group of the acid group-containing olefin resin
  • the first agent contains an acid group-containing olefin resin (A1) as the resin (A).
  • the acid group contained in the acid group-containing olefin resin (A1) include a carboxyl group, an anhydrous carboxylic acid group, a sulfonic acid group, and a phosphoric acid group.
  • the acid group-containing resin may include only one of these, or may include two or more of them.
  • Examples of such an acid group-containing olefin resin (A1) include homopolymers or copolymers of acid group-containing monomers, copolymers of acid group-containing monomers and olefin-based monomers, modified acid group-containing monomers of polyolefins, and the like. Can be mentioned.
  • ethylenically unsaturated carboxylic acid or ethylenically unsaturated carboxylic acid anhydride is preferable. Specifically, acrylic acid, methacrylic acid, maleic acid, itaconic acid, citraconic acid, mesaconic acid, maleic anhydride, 4-methylcyclohexe-4-ene-1,2-dicarboxylic acid anhydride, bicyclo [2.
  • the acid group-containing monomer used for preparing the copolymer of the acid group-containing monomer and the olefin-based monomer is the same as the above-mentioned homopolymer of the acid group-containing monomer or the acid group-containing monomer used for preparing the copolymer. Can be used. It may be used alone or in combination of two or more. It is preferable to use maleic anhydride.
  • Examples of the olefin-based monomer used for preparing the copolymer of the acid group-containing monomer and the olefin-based monomer include olefins having 2 to 8 carbon atoms, such as ethylene, propylene, isobutylene, 1-butene, and 4-methyl-. 1-Pentene, hexene, vinylcyclohexane and the like can be mentioned. Among these, olefins having 3 to 8 carbon atoms are preferable, and propylene and 1-butene are more preferable, because they have good adhesion to a resin film, which will be described later, solvent resistance, and electrolytic solution resistance. In particular, it is preferable to use propylene and 1-butene in combination because they are excellent in resistance to various solvents and electrolytic solutions and adhesive strength.
  • the acid group-containing monomer used for preparing the modified acid group-containing monomer of polyolefin the same as the above-mentioned homopolymer of the acid group-containing monomer or the same as the acid group-containing monomer used for preparing the copolymer should be used. Can be done. It may be used alone or in combination of two or more. It is preferable to use maleic anhydride.
  • polyolefin used for preparing the acid group-containing monomer modified product of polyolefin examples include homopolymers and copolymers of olefins having 2 to 8 carbon atoms, and the common weight of olefins having 2 to 8 carbon atoms and other monomers.
  • examples thereof include high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polyethylene such as linear low-density polyethylene resin, polypropylene, polyisobutylene, poly (1-butene), and poly (4-methyl-.
  • a homopolymer of an olefin having 3 to 8 carbon atoms and two or more copolymers of an olefin having 3 to 8 carbon atoms are preferable from the viewpoint of particularly good adhesion, and propylene alone is preferable.
  • a polymer or a propylene / 1-butene copolymer is more preferable, and a propylene / 1-butene copolymer is particularly preferable because it is excellent in resistance to various solvents and electrolytic solutions and adhesive strength.
  • Examples of the method for modifying polyolefin with an acid group-containing monomer include graft modification and copolymerization.
  • graft modification specifically, a method in which the polyolefin is melted and an acid group-containing monomer (graft monomer) is added thereto to cause a graft reaction, or the polyolefin is dissolved in a solvent.
  • the graft reaction in the presence of a radical initiator in order to efficiently carry out the graft copolymerization of the graft monomer.
  • the graft reaction is usually carried out under the condition of 60 to 350 ° C.
  • the ratio of the radical initiator used is usually in the range of 0.001 to 1 part by weight with respect to 100 parts by weight of the polyolefin before modification.
  • the acid group-containing olefin resin (A1) used in the present invention is a mixture of the acid group-containing olefin resin (A1) and an epoxy compound that is liquid at 25 ° C. so that the epoxy excess ratio is 0.1 or more and 1.5 or less.
  • a crystallization peak is observed on the DSC curve drawn in the differential scanning calorimetry of the cured product of the obtained composition measured according to the method for measuring the crystallization temperature described in JIS-K-7121 (from the end of the melting peak).
  • a crystallization peak is observed on the DSC curve drawn when the mixture is heated to a temperature 30 ° C higher, kept at this temperature for 10 minutes, and then cooled to a temperature 50 ° C lower than the end of the crystallization peak at 10 ° C / min. ) Is used.
  • the acid group-containing olefin resin Even if the cured product itself has crystallization, a crystallization peak is not observed by the above method, and a crystallization peak (so-called cold crystal) is observed when the temperature is raised again at 10 ° C./min. Some are observed (due to crystallization).
  • the ratio of crystallization sites in the cured coating film of the adhesive is increased and the coating is applied.
  • the cohesive force of the film can be increased, and the adhesive can be an adhesive having excellent adhesive strength, resistance to various solvents, and electrolytic solution resistance.
  • the acid group-containing olefin resin (A1) preferably has a crystallization temperature of 10 ° C. or higher and 60 ° C. or lower, more preferably 20 ° C. or higher, and 50. It is below ° C.
  • the crystallization temperature of the cured product described above varies depending on the epoxy excess ratio of the acid group-containing olefin resin (A1) and the epoxy compound, but the crystallization temperature is 10 in any range of 0.1 or more and 1.5 or less. It may be °C or more and 60 °C or less.
  • the calorific value for crystallization of the above-mentioned cured product is 1 mJ / mg or more, more preferably 10 mJ / mg or more, 100 mJ / mg or less, more preferably 60 mJ / mg or less. It is preferable to use one. As a result, a laminate having excellent solvent resistance and electrolyte resistance and maintaining adhesive strength is provided even when used for containing heat-generating contents or in an environment where the ambient temperature tends to rise. can do.
  • the amount of heat of crystallization can be measured by the method described in JIS-K-7122.
  • the acid group-containing olefin resin (A1) is crystalline. From the viewpoint of solvent resistance and electrolyte resistance, the melting point of the acid group-containing olefin resin (A1) is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 65 ° C. or higher. .. Further, when the melting point of the acid group-containing olefin resin is too high, if the aging temperature is low, the adhesive is difficult to wet and spread, and the initial adhesive strength may decrease. Since the aging temperature must be set high to avoid this, the melting point of the acid group-containing olefin resin (A1) is preferably 120 ° C. or lower, more preferably 100 ° C. or lower, and 90 ° C. The following is more preferable. The melting point of the acid group-containing olefin resin (A1) can be measured by the method described in JIS-K-7121.
  • the acid group-containing olefin resin (A1) has a heat of fusion of 1 mJ / mg or more, more preferably 5 mJ / mg or more, 60 mJ / mg or less, and more preferably 45 mJ / mg or less. This makes it possible to obtain an adhesive having excellent adhesive strength, solvent resistance, and electrolytic solution resistance.
  • the amount of heat of fusion of the acid group-containing olefin resin (A1) can be measured by the method described in JIS-K-7122.
  • the weight average molecular weight of the acid group-containing olefin resin (A1) is preferably 10,000 or more in order to improve solvent resistance, electrolyte resistance, and adhesive strength. Further, in order to ensure appropriate fluidity, the weight average molecular weight of the acid group-containing olefin resin (A1) is preferably 200,000 or less. More preferably, it is 50,000 or more and 180,000 or less.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) under the following conditions.
  • HLC-8320GPC manufactured by Tosoh Corporation Column
  • TSKgel 4000HXL TSKgel 3000HXL
  • TSKgel 2000HXL TSKgel 1000HXL manufactured by Tosoh Corporation Detector
  • RI Different Refractometer
  • Multi-station GPC-8020modelII manufactured by Tosoh Corporation Measurement conditions
  • column temperature 40 ° C Solvent tetrahydrofuran Tetrahydrofuran flow velocity 0.35 ml / min Standard
  • Monodisperse polystyrene sample 0.2 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (100 ⁇ l)
  • the acid value of the acid group-containing olefin resin (A1) is preferably 0.1 mgKOH / g or more because the adhesiveness to the metal substrate is good.
  • it is preferably 50 mgKOH / g or less. More preferably, it is 5 mgKOH / g or more and 40 mgKOH / g or less, and 5 mgKOH / g or more and 30 mgKOH / g or less.
  • the first agent may contain, as the resin (A), a resin (A2) having no reactive functional group in addition to the acid group-containing olefin resin (A1).
  • the resin (A2) is preferably a crystalline olefin resin.
  • the resin (A2) is a crystalline olefin resin, the solvent resistance and the electrolytic solution resistance of the adhesive are improved.
  • Examples of the resin (A2) include homopolymers and copolymers of olefins having 2 to 8 carbon atoms, such as ethylene, propylene, isobutylene, 1-butene, 4-methyl-1-pentene, hexene, and vinylcyclohexane.
  • Examples thereof include copolymers of olefins having 2 to 8 carbon atoms and other monomers. Specific examples thereof include high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene resin.
  • two or more copolymers of olefins having 3 to 8 carbon atoms and olefins having 3 to 8 carbon atoms are particularly good in solvent resistance and electrolytic solution resistance.
  • a propylene homopolymer or a copolymer is more preferable, and a propylene homopolymer is more preferable.
  • the resin (A2) is highly soluble in a solvent and has improved coatability. Therefore, the weight average molecular weight is preferably 2,000 to 200,000.
  • the weight average molecular weight of the resin (A2) is more preferably 20,000 to 190,000, and even more preferably 40,000 to 180,000.
  • the melting point of the resin (A2) is preferably 50 ° C to 100 ° C. When the melting point is 50 ° C. or higher, the electrolytic solution resistance can be improved more reliably, and when the melting point is 100 ° C. or lower, the coatability can be kept good.
  • the melting point of the resin (A2) is more preferably 60 to 95 ° C, more preferably 70 to 90 ° C.
  • the resin (A2) has high crystallinity, and if the blending amount is too large, the resin (A2) may precipitate or the first agent may gel if the liquid temperature of the first agent becomes low during storage, and the resin (A2) may gel before use. It may be necessary to heat.
  • the compounding ratio (A1): (A2) of the acid group-containing olefin resin (A1) and the resin (A2) is, for example, 100: 0 to 10:90, and another aspect is 100: 1 to 15:85. And another aspect is 75:25 to 15:85. This makes it possible to obtain an adhesive having excellent storage stability in addition to solvent resistance and electrolyte resistance.
  • the second agent contains a compound (B) that is reactive with the acid group of the acid group-containing olefin resin (A1), that is, a so-called curing agent.
  • a compound (B) include an isocyanate compound (B1), an epoxy compound (B2), an aziridine group-containing compound (B3), a carbodiimide group-containing compound (B4), an oxazoline group-containing compound (B5), and a hydrazide group-containing compound. (B6), amino resin (B7) and the like can be mentioned.
  • the isocyanate compound (B1) is not particularly limited as long as it has a plurality of isocyanate groups in one molecule, and conventionally known compounds can be used. Specific examples include butane-1,4-diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethyl hexamethylene diisocyanate, and 2,4,4-trimethyl.
  • Cyclohexane-1,4-diisocyanate isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexanediisocyanate, isopropyridene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate, etc.
  • Alicyclic diisocyanate isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, methylcyclohexanediisocyanate, isopropyridene dicyclohexyl-4,4'-diisocyanate, norbornane diisocyanate, etc.
  • Alicyclic diisocyanate isophorone diisocyanate,
  • 1,5-naphthylene diisocyanate 4,4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 4,4'-dibenzyl diisocyanate, dialkyldiphenylmethane diisocyanate, tetraalkyldiphenylmethane diisocyanate, 1,3-phenylenediocyanate , 1,4-phenylenediocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate and other aromatic diisocyanates.
  • a compound obtained by reacting a part of the isocyanate groups of the polyfunctional isocyanate compound as described above with a compound having reactivity with the isocyanate groups may be used as the isocyanate compound (B1).
  • Compounds that have reactivity with isocyanate groups include amino group-containing compounds such as butylamine, hexylamine, octylamine, 2-ethylhexylamine, dibutylamine, ethylenediamine, benzylamine, and aniline: methanol, ethanol, propanol, and isopropanol.
  • Epoxy compounds (B2) include aliphatic compounds such as ethylene glycol, propylene glycol, hexanediol, neopentyl glycol, trimethylolethane, trimethylolpropane, pentaerythritol, glycerin, diglycerin, sorbitol, spiroglycol or hydrogenated bisphenol A.
  • Polyglycidyl ether type epoxy resin of polyol Bisphenol type epoxy resin such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AD type epoxy resin; Aromatic epoxy resins such as phenol novolac resin and novolac type epoxy resin which is a glycidyl ether of cresol novolak resin; Ethylene oxide of aromatic polyhydroxy compounds such as bisphenol A, bisphenol F, bisphenol S, bisphenol AD, or polyglycidyl ether of polyol which is an adduct of propylene oxide; Polyglycidyl ether type epoxy resin of polyether polyol such as polyethylene glycol, polypropylene glycol or polytetramethylene glycol; Cyclic aliphatic polyepoxy resins such as bis (3,4-epoxycyclohexylmethyl) adipate, 3,4-epoxycyclohexylmethyl-3', 4'-epoxycyclohexylcarboxylate; Poly
  • the viscosity at 52 ° C. is preferably 0.05 Pa ⁇ s or more and 15 Pa ⁇ s or less, more preferably 0.05 Pa ⁇ s or more and 10 Pa ⁇ s or less, and 0.05 Pa ⁇ s or more and 5 Pa ⁇ s or less. It is more preferable, and it is more preferable that it is 0.05 Pa ⁇ s or more and 0.5 Pa ⁇ s or less.
  • the viscosity here refers to a value measured with a cone plate: 1 ° ⁇ R25 using a rotational viscometer. It is preferably an epoxy compound having a weight average molecular weight of 3000 or less.
  • aziridine group-containing compound (B3) examples include N, N'-hexamethylene-1,6-bis (1-aziridinecarboxyamide) and N, N'-diphenylmethane-4,4'-bis (1-aziridine).
  • Examples of the carbodiimide group-containing compound (B4) include p-phenylene-bis (2,6-xylylcarbodiimide), tetramethylene-bis (t-butylcarbodiimide), and cyclohexane-1,4-bis (methylene-t-butylcarbodiimide). ) And other compounds having a carbodiimide group, and polycarbodiimide which is a polymer having a carbodiimide group can be mentioned. Polycarbodiimide is obtained, for example, by a condensation reaction involving decarbonization of an isocyanate compound.
  • the isocyanate compound used for the synthesis of polycarbodiimide is not particularly limited, and for example, those listed as the isocyanate compound (B1) can be used.
  • Examples of the oxazoline group-containing compound (B5) include 2,2'-bis (2-oxazoline), 2,2'-ethylene-bis (4,4'-dimethyl-2-oxazoline), and 2,2'-.
  • Examples thereof include compounds having an oxazoline group such as p-phenylene-bis (2-oxazoline) and bis (2-oxazolinylcyclohexane) sulfide, and oxazoline group-containing polymers.
  • the oxazoline group-containing polymer is generally obtained by polymerizing an addition-polymerizable oxazoline such as 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline and 2-isopropenyl-2-oxazoline. Other monomers may be copolymerized with the oxazoline group-containing polymer, if necessary.
  • the polymerization method of the oxazoline group-containing polymer is not particularly limited, and a known polymerization method can be adopted.
  • Examples of the hydrazide group-containing compound (B6) include adipic acid dihydrazide, oxalic acid dihydrazide, malonic acid dihydrazide, succi acid dihydrazide, glutarate dihydrazide, isophthalic acid dihydrazide, sebacic acid dihydrazide, maleic acid dihydrazide, and fumaric acid dihydrazide.
  • amino resin (B7) examples include melamine resin, benzoguanamine resin, urea resin and the like.
  • an isocyanate compound (B1) and an epoxy compound (B2) are more preferably used, and an epoxy compound (B2) is more preferable, from the viewpoint of pot life and aging temperature.
  • the blending amount of the compound (B) is appropriately adjusted depending on the compound (B) to be used.
  • the isocyanate compound (B1) when used, the acid group contained in the first agent and the isocyanate group contained in the second agent are used. It is preferable to use the compound so that the molar ratio (isocyanate group / acid group) of is 0.5 or more and 30 or less.
  • the molar ratio (epoxy group / acid group) of the acid group contained in the first agent to the epoxy group contained in the second agent is 0.01 or more. It is preferably 0.1 or more, more preferably 0.3 or more, preferably 0.6 or more, and it is blended and used so as to be 1.5 or less. It is preferable to use the mixture so that the content is 1.3 or less.
  • the acid group of the acid group-containing olefin resin (A1) is an acid anhydride group, and the amount of the acid group contained in the first agent is calculated from the acid modification rate, or the first agent will be described later.
  • the acid anhydride groups 1 Equivalents are converted as 2 equivalents of acid groups. These values may be calculated from the isocyanate equivalent, the epoxy equivalent, and the acid value.
  • the adhesive of the present invention can secure fluidity and exhibit appropriate coatability by further blending an organic solvent in addition to the above components.
  • the organic solvent may be contained in only one of the first agent and the second agent, or both may be contained. It may be added when mixing the first agent and the second agent.
  • Such an organic solvent is not particularly limited as long as it can be volatilized and removed by overheating in the drying step at the time of coating the adhesive, and for example, an aromatic organic solvent such as toluene or xylene; n-hexane, etc.
  • Alicyclic organic solvents such as n-heptane; alicyclic organic solvents such as cyclohexane and methylcyclohexane; halogen-based organic solvents such as trichloroethylene, dichloroethylene, chlorobenzene and chloroform; ketone solvents such as methylethylketone, methylisobutylketone and cyclohexanone.
  • Ester solvents such as ethyl acetate and butyl acetate; Alcohol solvents such as ethanol, methanol, n-propanol, 2-propanol (isopropyl alcohol), butanol, hexanol; diisopropyl ether, butyl cellosolve, tetrahydrofuran, dioxane, butyl carbitol, etc.
  • Ether-based solvent such as diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether; glycol ester-based solvent such as ethylene glycol monomethyl ether acetate, proprene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate Solvents and the like may be mentioned, and these may be used alone or in combination of two or more.
  • the acid group-containing olefin resin (A1) is excellent in solubility, it is preferable to use a mixed solvent of an alicyclic organic solvent and an ester solvent, particularly a mixed solvent of methylcyclohexane and ethyl acetate. Further, in order to improve the solubility of the acid group-containing olefin resin (A1), a mixed solvent of an alicyclic organic solvent, an ester solvent and an alcohol solvent may be used. At this time, the alcohol solvent is preferably isopropyl alcohol, 2-butanol or the like.
  • an aromatic organic solvent or a ketone solvent may be used in combination with the mixed solvent of the alicyclic organic solvent and the ester solvent.
  • toluene is preferably mentioned as the aromatic organic solvent
  • methyl ethyl ketone is preferably mentioned as the ketone solvent.
  • an aromatic organic solvent or a ketone solvent may be further used in combination with the mixed solvent of the alicyclic organic solvent and the ester solvent, and the ketone may be used. It is more preferable to use a system solvent in combination.
  • toluene is preferably mentioned as the aromatic organic solvent
  • methyl ethyl ketone is preferably mentioned as the ketone solvent.
  • the amount of the organic solvent used is preferably such that the ratio of the resin (A) to the total mass of the resin (A) and the organic solvent is 5 to 30% by mass. This makes it possible to obtain an adhesive having excellent coatability and wettability to a film.
  • the adhesive of the present invention includes acid anhydrides, curing accelerators, other resins (other than resin (A)), plasticizers, thermoplastic elastomers, reactive elastomers, phosphoric acid compounds, silane coupling agents, as required.
  • Various additives such as a defoaming agent can be used. The content of these additives may be appropriately adjusted within a range that does not impair the function of the adhesive of the present invention.
  • the acid anhydride examples include cyclic aliphatic acid anhydride, aromatic acid anhydride, unsaturated carboxylic acid anhydride and the like, and one type or a combination of two or more types can be used. More specifically, for example, phthalic acid anhydride, trimellitic acid anhydride, pyromellitic acid anhydride, benzophenone tetracarboxylic acid anhydride, dodecenyl succinic anhydride, polyazipic acid anhydride, polyazereic acid anhydride, polysevacinic acid.
  • Anhydride poly (ethyloctadecanedioic acid) anhydride, poly (phenylhexadecanedioic acid) anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, hexahydrophthalic anhydride , Methylhymic acid anhydride, trialkyltetrahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, methylcyclohexene tetracarboxylic acid anhydride, ethylene glycol bistrimeritate dianhydride, het acid anhydride, nadic acid anhydride, Methylnadic acid anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexane-1,2-dicarboxylic acid anhydride, 3,4-dicar
  • the blending amount of the acid anhydride is preferably 0.01 part by mass or more, and more preferably 0.8 part by mass or more with respect to 100 parts by mass of the resin (A).
  • the blending amount of the acid anhydride is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and 1.5 parts by mass or less with respect to 100 parts by mass of the resin (A). Is more preferable.
  • the curing accelerator is appropriately selected depending on the compound (B) to be used.
  • the compound (B) is an isocyanate compound (B1), a metal-based catalyst, an amine-based catalyst, an aliphatic cyclic amide compound, etc.
  • a catalyst such as a titanium chelate complex or an organic phosphorus compound can be used.
  • the metal-based catalyst examples include a metal complex-based catalyst, an inorganic metal-based catalyst, and an organic metal-based catalyst.
  • Specific examples of the metal-based catalyst include Fe (iron), Mn (manganese), Cu (copper), and Zr (zirconium). ), Th (thorium), Ti (titanium), Al (aluminum) and Co (cobalt), which are acetylacetonate salts of metals selected from the group, for example, iron acetylacetoneate, manganese acetylacetonate, copper acetyl. Examples thereof include acetonate and zirconia acetylacetoneate. Of these, iron acetylacetoneate (Fe (acac) 3 ) or manganese acetylacetonate (Mn (acac) 2 ) is preferable from the viewpoint of toxicity and catalytic activity. ..
  • inorganic metal-based catalyst examples include catalysts selected from Fe, Mn, Cu, Zr, Th, Ti, Al, Co and the like.
  • Organic metal catalysts include stanus diacetate, stanus dioctate, stanus dilaurate, stanus dilaurate, dibutyltin oxide, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dichloride, dioctyltin dilaurate, nickel octylate, etc.
  • nickel naphthenate, cobalt octylate, cobalt naphthenate, bismuth octylate, and bismuth naphthenate are organotin catalysts, more preferably stanas dioctate and dibutyl tin dilaurate.
  • amine-based catalysts examples include triethylenediamine, 2-methyltriethylenediamine, quinuclidine, 2-methylquinuclidine, N, N, N', N'-tetramethylethylenediamine, N, N, N', N'-tetramethyl.
  • Examples of the aliphatic cyclic amide compound include ⁇ -valerolactam, ⁇ -caprolactam, ⁇ -enantol lactam, ⁇ -caprilactam, ⁇ -propiolactam and the like.
  • ⁇ -caprolactam is preferable because it has an excellent curing promoting effect.
  • the titanium chelate complex is a compound whose catalytic activity is enhanced by irradiation with ultraviolet rays, and a titanium chelate complex using an aliphatic or aromatic diketone as a ligand is preferable because it has an excellent curing promoting effect. Further, in the present invention, a ligand having an alcohol having 2 to 10 carbon atoms in addition to the aromatic or aliphatic diketone is preferable because the effect of the present invention becomes more remarkable.
  • organophosphorus compound examples include tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, tris (4-butylphenyl) phosphine, diphenylphosphine, phenylphosphine and the like.
  • the curing accelerator includes tributylphosphine, methyldiphenylphosphine, triphenylphosphine, tris (4-methylphenyl) phosphine, tris (4-butylphenyl) phosphine, diphenylphosphine, and phenyl.
  • Organic phosphine compounds such as phosphine, 2-methylimidazole, 1,2-dimethylimidazole, 2-phenyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl- Imidazole compounds such as 2-ethyl-4-methylimidazole, triethylamine, triethylenediamine, N'-methyl-N- (2-dimethylaminoethyl) piperazine, 1,8-diazabicyclo [5.4.0] undecene (DBU) , 1,5-diazabicyclo [4.3.0] -nonen, 6-dibutylamino-1,8-diazabicyclo [5.4.0] Undecene and other tertiary amines and these tertiary amines are phenol and octyl.
  • Examples thereof include compounds obtained by converting an acid into an amine salt with a quaternized tetraphenylborate salt or the like, and cation catalysts such as triallyl sulfonium hexafluoroantimonate and diallyl iodonium hexafluoroantimonate. These may be used alone or in combination of two or more. It is preferable to use at least one selected from the group consisting of organic phosphine compounds and imidazole compounds.
  • the blending amount of the curing accelerator is preferably 0.01 part by mass or more and 5 parts by mass or less, and more preferably 0.01 part by mass or more and 1 part by mass with respect to 100 parts by mass of the resin (A) of the first agent. It is more preferably 0.01 parts by mass or more and 0.5 parts by mass or less.
  • Examples of other resins include rosin-based or rosin ester-based resins, terpene-based or terpene phenol-based resins, saturated hydrocarbon resins, kumaron-based resins, kumaron inden-based resins, styrene-based resins, xylene-based resins, and phenol-based resins. , Petroleum resin and the like. Each of these may be used alone, or two or more types may be used in combination. Of these, it is preferable to use styrene resin.
  • the styrene resin is a homopolymer of a styrene-based monomer such as a homopolymer of styrene or a homopolymer of ⁇ -methylstyrene; a copolymer of styrene and ⁇ -methylstyrene; a styrene-based polymer such as styrene and ⁇ -methylstyrene.
  • the styrene resin preferably has a softening point in the range of 80 to 150 ° C., and more preferably in the range of 90 to 145 ° C. Further, those having a weight average molecular weight in the range of 800 to 3,000 are preferable.
  • the blending amount of the styrene resin is preferably 0.01 to 1.5 parts by mass with respect to 100 parts by mass of the resin (A).
  • plasticizer examples include polyisoprene, polybutene, procel oil and the like
  • thermoplastic elastomer examples include a styrene-butadiene copolymer (SBS), a hydrogenated product of a styrene-butadiene copolymer (SEBS), SBBS, and a styrene-isoprene.
  • SBS styrene-butadiene copolymer
  • SEBS hydrogenated product of a styrene-butadiene copolymer
  • SBBS hydrogenated product of a styrene-butadiene copolymer
  • styrene-isoprene examples thereof include copolymerized hydrogenated products (SEPS), styrene block copolymers (TPS), olefin-based elastomers (TPO), and reactive elastomers obtained by acid-modifying these elastomers.
  • SEPS copo
  • Examples of the phosphoric acid compound include phosphoric acids such as hypophosphoric acid, phosphoric acid, orthophosphoric acid, and hypophosphoric acid, and condensed phosphoric acids such as metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid, and ultraphosphoric acid, for example.
  • phosphoric acids such as hypophosphoric acid, phosphoric acid, orthophosphoric acid, and hypophosphoric acid
  • condensed phosphoric acids such as metaphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, polyphosphoric acid, and ultraphosphoric acid, for example.
  • Monomethyl orthophosphate monoethyl orthophosphate, monopropyl orthophosphate, monobutyl orthophosphate, mono-2-ethylhexyl orthophosphate, monophenyl orthophosphate, monomethyl phosphite, monoethyl phosphite, monopropyl phosphite, monobutyl phosphite.
  • Mono-2-ethylhexyl phosphite Monophenyl phosphite, di-2-ethylhexyl orthophosphate, dimethyl diphenyl phosphite, diethyl phosphite, dipropyl phosphite, dibutyl phosphite, phosphite
  • Monos such as di-2-ethylhexyl and diphenyl phosphite, diesterates, monos from condensed phosphoric acid and alcohols, diesterates, for example, the above phosphoric acids are added with epoxy compounds such as ethylene oxide and propylene oxide. Examples thereof include epoxy phosphoric acid esters obtained by adding the above-mentioned phosphoric acids to an aliphatic or aromatic diglycidyl ether.
  • silane coupling agent examples include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, and N- ⁇ (aminoethyl) - ⁇ -.
  • Aminosilanes such as aminopropyltrimethyldimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane; ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycid Epoxysilanes such as xypropyltriethoxysilane; vinylsilanes such as vinyltris ( ⁇ -methoxyethoxy) silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane; hexamethyldisilazane, ⁇ -mercaptopropyl Examples thereof include trimethoxysilane.
  • the defoaming agent either a silicone type or a non-silicone type can be used.
  • a silicone type either a silicone type or a non-silicone type can be used.
  • These components may be pre-blended in the first agent or the second agent, or may be added when the first agent and the second agent are mixed.
  • the adhesive of the present invention can be prepared by mixing each of the above-mentioned components. At this time, each component may be mixed at the same time to form an adhesive, but components other than the compound (B) (second agent) may be mixed in advance to adjust the premixture, and when the adhesive is used, a curing agent (cure agent) ( It is preferable to use a two-component adhesive in which B) is mixed because the adhesive is excellent in stability and workability.
  • the laminate of the present invention is arranged between the first base material, the second base material, the first base material, and the second base material, and is arranged between the first base material and the second base material.
  • the adhesive layer is a cured coating film of the above-mentioned adhesive.
  • other base materials may be contained.
  • the adhesive layer for bonding the first base material to the other base material and the second base material to the other base material may or may not be a cured coating film of the adhesive of the present invention. Good.
  • first base material examples include paper, olefin-based resin, acrylonitrile-butadiene-styrene copolymer (ABS resin), polyvinyl chloride-based resin, and fluorine-based resin.
  • Metals such as poly (meth) acrylic resin, carbonate resin, polyamide resin, polyimide resin, polyphenylene ether resin, synthetic resin film obtained from polyphenylene sulfide resin or polyester resin, copper foil, aluminum foil. Foil or the like can be used.
  • the adhesive of the present invention has excellent adhesiveness between a non-polar base material such as an olefin resin and a metal base material
  • one of the first base material and the second base material is a non-polar base material.
  • the other is preferably, but is not limited to, a metal base material.
  • the laminate of the present invention is obtained by applying the adhesive of the present invention to one of the first base material and the second base material, then laminating the other, and curing the adhesive. It is preferable to provide a drying step between the application of the adhesive and the laminating of the first base material and the second base material.
  • a gravure coater method a microgravure coater method, a reverse coater method, a bar coater method, a roll coater method, a die coater method and the like can be used.
  • the amount of the adhesive applied is preferably adjusted so that the applied weight after drying is 0.5 to 20.0 g / m 2.
  • the temperature of the laminating roll when laminating the first base material and the second base material is preferably 25 to 120 ° C., and the pressure is preferably 3 to 300 kg / cm 2. It is preferable to provide an aging step after laminating the first base material and the second base material.
  • the aging conditions are, for example, 25 to 100 ° C. and 12 to 240 hours.
  • the aging temperature is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, higher than the melting point of the acid group-containing olefin resin (A1).
  • the upper limit of the aging temperature is not particularly limited, but from the viewpoint of energy saving, as an example, the difference from the melting point of the acid group-containing olefin resin (A1) is preferably 30 ° C. or less.
  • the laminate of the present invention can be used for various purposes.
  • the laminate of the present invention since the laminate of the present invention has excellent solvent resistance, it can be preferably used as a packaging material for shampoos, conditioners, and the like. Such contents may deteriorate the adhesive layer and cause a decrease in the adhesive strength, but if the adhesive layer is made of the adhesive of the present invention, the deterioration of the adhesive layer can be suppressed.
  • the laminate of the present invention is molded and processed into various uses such as press-through packages and strip packages for accommodating foods, medical products, and daily necessities, packaging materials for battery exterior materials, and packaging materials for capacitor exterior materials. Can be preferably used.
  • the packaging material for a battery of the present invention has a first base material, a second base material, a third base material, a first base material, and a second base material bonded together. It includes an adhesive layer and a second adhesive layer for bonding the second base material and the third base material.
  • the first base material is a polyolefin film
  • the second base material is a metal foil.
  • the third base material is a resin film such as nylon or polyester.
  • the first adhesive layer is a cured coating film of the adhesive of the present invention.
  • the second adhesive layer may or may not be a cured coating film of the adhesive of the present invention.
  • Another substrate may be placed on the opposite side of the third substrate from which the second adhesive layer is provided, with or without an adhesive layer, or a coating layer may be provided. Good. It is not necessary to provide another base material or coating layer.
  • the polyolefin film may be appropriately selected from conventionally known olefin resins.
  • polyethylene, polypropylene, ethylene propylene copolymer and the like can be used. It is preferably a non-stretched film.
  • the film thickness of the polyolefin film is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more. Further, it is preferably 100 ⁇ m or less, more preferably 95 ⁇ m or less, and further preferably 90 ⁇ m or less.
  • the first base material functions as a sealant layer when the battery packaging materials of the present invention are heat-sealed and bonded to each other when the battery described later is manufactured.
  • the metal foil examples include aluminum, copper, nickel and the like. These metal foils are sandblasted, polished, degreased, etched, surface-treated by rust preventive immersion or spraying, trivalent chromium chemical conversion treatment, phosphate chemical conversion treatment, sulfide chemical conversion treatment, anodic oxide film formation, etc. It may be surface-treated such as a fluororesin coating. Among these, those subjected to trivalent chromium chemical conversion treatment are preferable because they are excellent in adhesion retention performance (environmental deterioration resistance) and corrosion resistance. Further, the thickness of this metal film is preferably in the range of 10 to 100 ⁇ m from the viewpoint of corrosion prevention.
  • polyester resin examples include polyester resin, polyamide resin, epoxy resin, acrylic resin, fluororesin, polyurethane resin, silicon resin, phenol resin, and resins such as mixtures and copolymers thereof. Film can be mentioned. Among these, polyester resin and polyamide resin are preferable, and biaxially stretched polyester resin and biaxially stretched polyamide resin are more preferable.
  • Specific examples of the polyester resin include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, copolymerized polyester, and polycarbonate.
  • polyamide resin examples include nylon 6, nylon 6, 6, a copolymer of nylon 6 and nylon 6, 6, nylon 6, 10, polymethoxylylen adipamide (MXD6), and the like. Be done.
  • the coating layer can be formed of, for example, polyvinylidene chloride, polyester resin, urethane resin, acrylic resin, epoxy resin, or the like. It is preferably formed of a two-component curable resin.
  • the two-component curable resin forming the coating layer include a two-component curable urethane resin, a two-component curable polyester resin, and a two-component curable epoxy resin.
  • Examples of the matting agent include fine particles having a particle size of about 0.5 nm to 5 ⁇ m.
  • the material of the matting agent is not particularly limited, and examples thereof include metals, metal oxides, inorganic substances, and organic substances.
  • the shape of the matting agent is also not particularly limited, and examples thereof include a spherical shape, a fibrous shape, a plate shape, an amorphous shape, and a balloon shape.
  • Specific examples of the matting agent include talc, silica, graphite, kaolin, montmoriloid, montmorillonite, synthetic mica, hydrotalcite, silica gel, zeolite, aluminum hydroxide, magnesium hydroxide, zinc oxide, magnesium oxide, and aluminum oxide.
  • These matting agents may be used alone or in combination of two or more.
  • these matting agents preferably silica, barium sulfate, and titanium oxide are mentioned from the viewpoint of dispersion stability, cost, and the like.
  • the matting agent may be subjected to various surface treatments such as an insulating treatment and a highly dispersible treatment on the surface.
  • Such a laminate is molded so that the polyolefin film, which is the first base material, is inside the third base material when it is used as a battery, and becomes the secondary battery exterior material of the present invention.
  • the molding method is not particularly limited, and examples thereof include the following methods.
  • -Heat-compressed air molding method A battery packaging material is sandwiched between a lower mold with holes for supplying high-temperature, high-pressure air and an upper mold with pocket-shaped recesses, and air is supplied while being heated and softened to form recesses.
  • -Preheater flat plate type compressed air molding method After heating and softening the packaging material for batteries, air is supplied by sandwiching it between a lower mold with holes for supplying high-pressure air and an upper mold with pocket-shaped recesses. A method of forming a recess.
  • -Drum type vacuum forming method A method in which a battery packaging material is partially heated and softened with a heating drum, and then the concave portion of a drum having a pocket-shaped concave portion is evacuated to form the concave portion.
  • -Pin molding method A method in which the bottom material sheet is heat-softened and then crimped with a pocket-shaped uneven mold.
  • -Preheater plug assist compressed air molding method After heating and softening the packaging material for batteries, air is supplied by sandwiching it between a lower mold with a hole for supplying high-pressure air and an upper mold with a pocket-shaped recess. A method of forming a concave portion, which assists molding by raising and lowering a convex plug during molding.
  • the preheater plug assist compressed air molding method which is a heating vacuum forming method, is preferable.
  • the battery packaging material of the present invention thus obtained can be suitably used as a battery container for sealing and accommodating battery elements such as a positive electrode, a negative electrode, and an electrolyte.
  • the battery of the present invention is a battery in which a battery element having a positive electrode, a negative electrode, and an electrolyte is projected outward from the metal terminals connected to each of the positive electrode and the negative electrode in the battery packaging material of the present invention. It is obtained by covering the peripheral edge of the element so that a flange portion (a region where the sealant layers come into contact with each other) can be formed, and heat-sealing the sealant layers of the flange portion with each other.
  • the battery obtained by using the battery packaging material of the present invention may be either a primary battery or a secondary battery, but is preferably a secondary battery.
  • the secondary battery is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, a lead storage battery, a nickel / hydrogen storage battery, a nickel / cadmium storage battery, a nickel / iron storage battery, a nickel / zinc storage battery, a silver oxide / zinc storage battery, etc. Examples thereof include metal air batteries, multivalent cation batteries, capacitors, and capacitors.
  • lithium ion batteries and lithium ion polymer batteries can be mentioned as suitable application targets of the packaging material for batteries of the present invention.
  • the acid value of the acid group-containing olefin resin (A1) is a coefficient obtained from a calibration line prepared by using FT-IR (manufactured by Nippon Kogaku Co., Ltd., FT-IR4200) with a chloroform solution of maleic anhydride.
  • F the absorbance (I) of the expansion and contraction peak (1780 cm -1 ) of the anhydrous ring of maleic anhydride and the absorbance (II) of the expansion and contraction peak (1720 cm -1 ) of the carbonyl group of maleic acid in the maleic anhydride-modified polyolefin solution.
  • Crystallization temperature (Crystallization temperature, calorific value of crystallization)
  • the crystallization temperature of the cured product of the acid group-containing olefin resin (A1) and the epoxy compound was measured according to JIS-K-7121, and the calorific value of crystallization was measured according to JIS-K-7122.
  • the cooling temperature is 10 ° C./min. Unless otherwise specified, the unit of crystallization temperature is ° C., and the unit of calorific value for crystallization is mJ / mg.
  • melting point heat of fusion
  • the melting point of the acid group-containing olefin resin was measured according to JIS-K-7121, and the amount of heat of fusion was measured according to JIS-K-7122. Unless otherwise specified, the unit of melting point is ° C. and the unit of heat of fusion is mJ / mg.
  • a crystallization peak is observed in the process of lowering the temperature from 150 ° C to -50 ° C, the peak is set as the crystallization temperature, and then a crystallization peak due to cold crystallization is observed in the process of raising the temperature from -50 ° C to 150 ° C. If so, the apex was taken as the crystallization temperature. The calorific value of crystallization was calculated from the area separated by the crystallization peak and the baseline. Further, the apex of the melting peak observed in the process of raising the temperature from ⁇ 50 ° C. to 150 ° C. was defined as the melting temperature, and the amount of heat of melting was calculated from the area separated by the melting peak and the baseline.
  • A1> The following maleic anhydride-modified propylene-butene copolymers were used as acid-modified olefin resins (A1-1) to (A1-4).
  • the crystallization temperature and calorific value of crystallization were measured for the cured products of the acid-modified olefin resins (A1-1) to (A1-4) and Denacol® EX-321L with the epoxy excess ratio set to the following values, respectively. , Table 2.
  • the values in parentheses in the numerical values of the crystallization temperature are the cold crystallization temperature, and the crystallization peak is not observed by the method described in JIS-K-7121, and the crystallization peak is measured when the melting point is measured. Means that was observed.
  • the value in parentheses in the numerical value of the calorific value of crystallization means that it is the calorific value of crystallization calculated from the crystallization peak due to cold crystallization.
  • the hydroxyl equivalent of the modified polyhydric phenols is 364 g / eq.
  • the viscosity is 40 mPa ⁇ s (150 ° C., ICI viscometer), and the average value of m in the following structural formula Ep1'calculated from the hydroxyl group equivalent is 3.21 for the component m ⁇ 1 and the component m ⁇ 0. It was 1.16.
  • the epoxy equivalent of this epoxy compound is 462 g / eq.
  • the viscosity is 12000 mPa ⁇ s (25 ° C., Canon Fenceke method), and the average value of n in the structural formula Ea-1 calculated from the epoxy equivalent is 2.97 for the component n ⁇ 1, and n ⁇ 0.
  • the component of was 1.35. This was used as an epoxy compound (B2-4).
  • Example 2-17 The adhesive of Example 2-17 was adjusted in the same manner as in Example 1 except that the components used and the blending amount thereof were changed as shown in Table 3-5.
  • Comparative Example 1-5 (Comparative Example 1)-(Comparative Example 5)
  • the adhesive of Comparative Example 1-5 was prepared in the same manner as in Example 1 except that the components used and the blending amount thereof were changed as shown in Table 6.
  • the blending amounts in the table are all solid content (nonvolatile content). Since the blending amounts of the isocyanate compound (B1) and the epoxy compound (B2) are rounded off to the third decimal place, there may be a slight deviation from the epoxy excess ratio and the NCO / COOH ratio.
  • FRR8120 Styrene-based monomer homopolymer (manufactured by Mitsui Chemicals, Inc., weight average molecular weight 1500, non-volatile content 100% by mass)
  • YH-306 Trialkyltetrahydrophthalic anhydride (manufactured by Mitsubishi Chemical Corporation)
  • KBM-403 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • the adhesive blended so as to be 1/10 was applied with a bar coater at a coating amount of 4 g / m 2 (dry), and then a stretched polyamide film having a thickness of 25 ⁇ m was laminated. Then, curing (aging) was carried out at 80 ° C. for 2 days to obtain a laminate of Example 1.
  • Example 2-17 Laminates of Example 2-17 and Comparative Example 1-5 were obtained in the same manner as in Example 1 except that the adhesive used was changed to Example 2-17 and Comparative Example 1-5, respectively.
  • the adhesive of the present invention was excellent in adhesive strength, various solvent resistance, and electrolyte resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

種々の基材への接着性、特に樹脂基材と金属基材との接着性に優れるとともに、種々の耐溶剤性、耐電解液性に優れる接着剤を提供する。 第1剤と、第2剤とを含み、第1剤は酸基含有オレフィン樹脂(A1)を含む樹脂(A)を含み、第2剤は前記酸基含有オレフィン樹脂(A1)が有する酸基と反応性を有する化合物(B)を含み、酸基含有オレフィン樹脂(A1)は、酸基含有オレフィン樹脂(A1)と25℃で液体であるエポキシ化合物とがエポキシ過剰率が0.1以上1.5以下となるよう配合された組成物の硬化物を、JIS-K-7121に記載の結晶化温度の測定方法に従って測定した示差走査熱量測定において描かれるDSC曲線に結晶化ピークが観測されることを特徴とする接着剤。

Description

接着剤、積層体、包装材、電池用包装材、電池
 本発明は、接着剤、詳しくは樹脂基材と金属基材とを接着するのに好適な接着剤、当該接着剤を用いて得られる積層体、当該積層体を用いて得られる包装材、電池用包装材、電池に関する。
 リチウムイオン電池に代表される二次電池は、正極、負極およびその間に、電解液等を封入した構成をとっている。また、正極と負極の電気を外部に取り出すためのリード線を封入するための封入袋として、オレフィン樹脂からなるヒートシール層と、アルミニウム箔等の金属箔や金属蒸着層からなる金属基材とプラスチックを貼り合せた積層体を用いることが知られている(特許文献1)。
 リチウムイオン電池の電解液に用いられる電解質としては、環状カーボネートと鎖状カーボネートとの混合溶剤や、環状カーボネートと鎖状カルボン酸エステルとの混合溶剤にフッ化リチウム等の電解質を溶解させたものを用いることが知られている(特許文献1、2)。
特開2007-294381号公報 特開2019-215959号公報
 このような用途に用いられる積層体において、接着剤を介してオレフィン樹脂からなるヒートシール層と金属基材とを貼り合わせる場合、接着剤には極性が極めて低いオレフィン樹脂と、極性が高い金属基材という表面物性が異なる基材双方に対する接着性が必要となる。さらにオレフィン樹脂は有機溶剤を浸透させ易いため、接着剤にはオレフィン樹脂が内包する種々の有機溶剤によって膨潤した場合にも接着強度を維持し、電解質によっても劣化しないことが求められる。
 本発明はこのような状況に鑑みなされたものであって、種々の基材への接着性、特に樹脂基材と金属基材との接着性に優れるとともに、種々の耐溶剤性、耐電解液性に優れる接着剤を提供することを目的とする。さらに、このような接着剤を用いて得られる積層体、包装材、電池用包装材、電池を提供することを目的とする。
 本発明は、第1剤と、第2剤とを含み、第1剤は酸基含有オレフィン樹脂(A1)を含む樹脂(A)を含み、第2剤は前記酸基含有オレフィン樹脂(A1)が有する酸基と反応性を有する化合物(B)を含み、酸基含有オレフィン樹脂(A1)は、酸基含有オレフィン樹脂(A1)と25℃で液体であるエポキシ化合物とがエポキシ過剰率が0.1以上1.5以下となるよう配合された組成物の硬化物を、JIS-K-7121に記載の結晶化温度の測定方法に従って測定した示差走査熱量測定において描かれるDSC曲線に結晶化ピークが観測されることを特徴とする接着剤に関する。
 本発明によれば、種々の基材、特に樹脂基材と金属基材との接着性、各種溶剤への耐性、耐電解液に優れた接着剤、これを用いた積層体、包装材、電池用包装材、電池を提供することができる。
<接着剤>
 本発明の接着剤は、酸基含有オレフィン樹脂(A1)を含む第1剤と、酸基含有オレフィン樹脂(A1)が有する酸基と反応性を有する化合物(B)を含む第2剤とからなる2液型接着剤である。以下、本発明の接着剤の各成分について詳細に説明する。
(第1剤)
 第1剤は、樹脂(A)として、酸基含有オレフィン樹脂(A1)を含む。酸基含有オレフィン樹脂(A1)が備える酸基としては、カルボキシル基、無水カルボン酸基、スルホン酸基、リン酸基等が挙げられる。酸基含有樹脂はこれらのうち1種のみを備えるものであってもよいし、2種以上を備えるものであってもよい。
 このような酸基含有オレフィン樹脂(A1)としては、酸基含有モノマーの単独重合体または共重合体、酸基含有モノマーとオレフィン系モノマーとの共重合体、ポリオレフィンの酸基含有モノマー変性体等が挙げられる。
 酸基含有モノマーの単独重合体または共重合体の調整に用いられる酸基含有モノマーとしては、エチレン性不飽和カルボン酸またはエチレン性不飽和カルボン酸無水物が好ましい。具体的には、アクリル酸、メタクリル酸、マレイン酸、イタコン酸、シトラコン酸、メサコン酸、無水マレイン酸、4-メチルシクロヘキセ-4-エン-1,2-ジカルボン酸無水物、ビシクロ[2.2.2]オクト-5-エン-2,3-ジカルボン酸無水物、1,2,3,4,5,8,9,10-オクタヒドロナフタレン-2,3-ジカルボン酸無水物、2-オクタ-1,3-ジケトスピロ[4.4]ノン-7-エン、ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸無水物、マレオピマル酸、テトラヒドロフタル酸無水物、メチル-ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボン酸無水物、メチル―ノルボルネン-5-エン-2,3-ジカルボン酸無水物、ノルボルン-5-エン-2,3-ジカルボン酸無水物等が挙げられる。
 酸基含有モノマーとオレフィン系モノマーとの共重合体の調整に用いられる酸基含有モノマーとしては、上述した酸基含有モノマーの単独重合体または共重合体の調整に用いられる酸基含有モノマーと同様のものを用いることができる。単独で用いてもよいし、2種以上を併用してもよい。無水マレイン酸を用いることが好ましい。
 酸基含有モノマーとオレフィン系モノマーとの共重合体の調整に用いられるオレフィン系モノマーとしては、炭素原子数が2~8のオレフィン、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、4-メチル-1-ペンテン、ヘキセン、ビニルシクロヘキサンなどが挙げられる。これらのなかでも特に後述する樹脂フィルムとの接着性や耐溶剤性、耐電解液性が良好なものとなることから炭素原子数3~8のオレフィンが好ましく、プロピレン、及び1-ブテンがより好ましく、とりわけプロピレンと1-ブテンとを併用することが各種溶剤や電解液に対する耐性、接着強度に優れる点から好ましい。
 酸基含有モノマーとオレフィン系モノマーとの共重合体の調整には、上述した酸基含有モノマー、オレフィン系モノマーに加え、その他のエチレン性不飽和基を持つ化合物、例えばスチレン、ブタジエン、イソプレン等を併用してもよい。
 ポリオレフィンの酸基含有モノマー変性体の調整に用いられる酸基含有モノマーとしては、上述した酸基含有モノマーの単独重合体または共重合体の調整に用いられる酸基含有モノマーと同様のものを用いることができる。単独で用いてもよいし、2種以上を併用してもよい。無水マレイン酸を用いることが好ましい。
 ポリオレフィンの酸基含有モノマー変性体の調整に用いられるポリオレフィンとしては、炭素原子数2~8のオレフィンの単独重合体や共重合体、炭素原子数2~8のオレフィンと他のモノマーとの共重合体等が挙げられ、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン樹脂などのポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ(4-メチル-1-ペンテン)、ポリビニルシクロヘキサン、エチレン・プロピレンブロック共重合体、エチレン・プロピレンランダム共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・へキセン共重合体、プロピレン・1-ブテン共重合体などのα―オレフィン共重合体、エチレン・酢酸ビニル共重合体、エチレン・メチルメタクリレート共重合体、エチレン・酢酸ビニル・メチルメタクリレート共重合体、アイオノマー樹脂などが挙げられる。これらの中で特に密着性が良好なものとなる点から炭素原子数3~8のオレフィンの単独重合体、炭素原子数3~8のオレフィンの2種以上の共重合体が好ましく、プロピレンの単独重合体、又はプロピレン・1-ブテン共重合体がより好ましく、とりわけプロピレン・1-ブテン共重合体が各種溶剤や電解液に対する耐性、接着強度に優れる点から好ましい。
 酸基含有モノマーによりポリオレフィンを変性する方法としては、グラフト変性や共重合化が挙げられる。グラフト変性によりポリオレフィンに酸基含有モノマーを反応させるには、具体的には、ポリオレフィンを溶融し、そこに酸基含有モノマー(グラフトモノマー)を添加してグラフト反応させる方法、ポリオレフィンを溶媒に溶解して溶液とし、そこにグラフトモノマーを添加してグラフト反応させる方法、有機溶剤に溶解したポリオレフィンと、グラフトモノマーとを混合し、ポリオレフィンの軟化温度または融点以上の温度で加熱し溶融状態にてラジカル重合と水素引き抜き反応を同時に行う方法等が挙げられる。
 いずれの場合にもグラフトモノマーを効率よくグラフト共重合させるためには、ラジカル開始剤の存在下にグラフト反応を実施することが好ましい。グラフト反応は、通常60~350℃の条件で行われる。ラジカル開始剤の使用割合は変性前のポリオレフィン100重量部に対して、通常0.001~1重量部の範囲である。
 本発明で用いられる酸基含有オレフィン樹脂(A1)は、酸基含有オレフィン樹脂(A1)と25℃で液体であるエポキシ化合物とがエポキシ過剰率が0.1以上1.5以下となるよう配合された組成物の硬化物を、JIS-K-7121に記載の結晶化温度の測定方法に従って測定した示差走査熱量測定において描かれるDSC曲線に結晶化ピークが観測されるもの(融解ピーク終了時より30℃高い温度まで加熱し、この温度に10分間保った後、10℃/minで結晶化ピーク終了時より50℃低い温度まで冷却した際に描かれるDSC曲線に結晶化ピークが観測されるもの)を用いる。
 酸基含有オレフィン樹脂によっては、硬化物自体は結晶性を有していても上記の方法では結晶化ピークが観測されず、再度10℃/minで昇温した際に結晶化ピーク(いわゆる冷結晶化によるもの)が観測されるものもある。本発明では上述の条件にて測定したDCS曲線において結晶化ピークが観測される酸基含有オレフィン樹脂(A1)を用いることで、接着剤の硬化塗膜中における結晶化部位の比率を高め、塗膜の凝集力を増大させることができ、接着強度に優れるとともに各種溶剤への耐性、耐電解液性に優れた接着剤とすることができる。
 上述の硬化物の結晶化温度が高すぎる場合、エージング温度が低いと接着剤の硬化塗膜中における結晶化部位の比率が十分に高くならず、耐溶剤性、耐電解液性が低下するおそれがあり、これを避けるためにはエージング温度を高く設定しなければならない。作業性、省エネルギーの観点から酸基含有オレフィン樹脂(A1)は、上述の硬化物の結晶化温度が10℃以上60℃以下となるものを用いることが好ましく、より好ましくは20℃以上であり50℃以下である。なお上述の硬化物の結晶化温度は酸基含有オレフィン樹脂(A1)とエポキシ化合物とのエポキシ過剰率により変動するが、0.1以上1.5以下のいずれかの範囲で結晶化温度が10℃以上60℃以下であればよい。
 また、酸基含有オレフィン樹脂(A1)として、上述の硬化物の結晶化熱量が1mJ/mg以上、より好ましくは10mJ/mg以上であり、100mJ/mg以下、より好ましくは60mJ/mg以下となるものを用いることが好ましい。これにより、発熱する内容物を内包する用途や、周囲の温度が上昇しやすい環境で使用する場合であっても耐溶剤性、耐電解液性に優れ、接着強度が維持される積層体を提供することができる。なお結晶化熱量は、JIS-K-7122に記載の方法で測定することができる。
 酸基含有オレフィン樹脂(A1)は結晶性である。耐溶剤性、耐電解液性の観点から酸基含有オレフィン樹脂(A1)の融点は50℃以上であることが好ましく、60℃以上であることがより好ましく、65℃以上であることがより好ましい。また、酸基含有オレフィン樹脂の融点が高すぎる場合、エージング温度が低いと接着剤が濡れ広がり難く、初期接着強度が低下するおそれがある。これを避けるためにはエージング温度を高く設定しなければならないことから、酸基含有オレフィン樹脂(A1)の融点は120℃以下であることが好ましく、100℃以下であることがより好ましく、90℃以下であることがより好ましい。酸基含有オレフィン樹脂(A1)の融点は、JIS-K-7121に記載の方法で測定することができる。
 酸基含有オレフィン樹脂(A1)は、融解熱量が1mJ/mg以上、より好ましくは5mJ/mg以上であり、60mJ/mg以下、より好ましくは45mJ/mg以下である。これにより接着強度、耐溶剤性、耐電解液性に優れた接着剤とすることができる。なお、酸基含有オレフィン樹脂(A1)の融解熱量はJIS-K-7122に記載の方法で測定することができる。
 耐溶剤性、耐電解液性、接着強度を良好なものとするため酸基含有オレフィン樹脂(A1)の重量平均分子量は10,000以上であることが好ましい。また、適度な流動性を確保するため酸基含有オレフィン樹脂(A1)の重量平均分子量は200,000以下であることが好ましい。より好ましくは50,000以上180,000以下である。
 尚、本願発明において、重量平均分子量(Mw)、数平均分子量(Mn)は、下記条件のゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。
 測定装置 ;東ソー株式会社製 HLC-8320GPC
 カラム  ;東ソー株式会社製 TSKgel 4000HXL、TSKgel 3000HXL、TSKgel 2000HXL、TSKgel 1000HXL
 検出器  ;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件 ;カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    0.35ml/分
 標準   ;単分散ポリスチレン
 試料   ;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 酸基含有オレフィン樹脂(A1)の酸価は金属基材への接着性が良好なものとなることから0.1mgKOH/g以上であることが好ましい。一方で、オレフィン鎖の構造にもよるが、酸価が高いと硬化塗膜中で架橋点が多いためにオレフィン鎖が結晶化し難くなる傾向にある。よって耐溶剤性、耐電解液性の観点から50mgKOH/g以下であることが好ましい。より好ましくは5mgKOH/g以上40mgKOH/g以下であり、5mgKOH/g以上30mgKOH/g以下である。
 第1剤は、樹脂(A)として、酸基含有オレフィン樹脂(A1)に加えて反応性の官能基を有しない樹脂(A2)を含んでいてもよい。樹脂(A2)は結晶性のオレフィン樹脂であることが好ましい。樹脂(A2)が結晶性オレフィン樹脂であると接着剤の耐溶剤性や耐電解液性が向上する。
 樹脂(A2)としては、炭素原子数2~8のオレフィン、例えば、エチレン、プロピレン、イソブチレン、1-ブテン、4-メチル-1-ペンテン、ヘキセン、ビニルシクロヘキサンなどの単独重合体や共重合体、炭素原子数2~8のオレフィンと他のモノマーとの共重合体等が挙げられ、具体的には、例えば、高密度ポリエチレン(HDPE)、低密度ポリエチレン(LDPE)、線状低密度ポリエチレン樹脂などのポリエチレン、ポリプロピレン、ポリイソブチレン、ポリ(1-ブテン)、ポリ(4-メチル-1-ペンテン)、ポリビニルシクロヘキサン、エチレン・プロピレンブロック共重合体、エチレン・プロピレンランダム共重合体、エチレン・1-ブテン共重合体、エチレン・4-メチル-1-ペンテン共重合体、エチレン・へキセン共重合体などのα―オレフィン共重合体、エチレン・メチルメタクリレート共重合体、プロピレン・1-ブテン共重合体などが挙げられる。これらの中で特に耐溶剤性や耐電解液性が良好なものとなる点から炭素原子数3~8のオレフィンの単独重合体、炭素原子数3~8のオレフィンの2種以上の共重合体が好ましく、プロピレンの単独重合体、又は共重合体がより好ましく、プロピレンの単独重合体がより好ましい。
 樹脂(A2)は溶剤への溶解性が高く、塗工性が向上することから重量平均分子量が2,000~200,000であることが好ましい。樹脂(A2)の重量平均分子量は20,000~190,000であることがより好ましく、40,000~180,000であることがより好ましい。
 樹脂(A2)の融点は50℃~100℃であることが好ましい。融点が50℃以上であることで、耐電解液性をより確実に向上させることができ、100℃以下であることで塗工性を良好に保つことができる。樹脂(A2)の融点は60~95℃であることがより好ましく、70~90℃であることがより好ましい。
 樹脂(A2)は結晶性が高く、配合量が多すぎると保存中に第1剤の液温が低くなると樹脂(A2)が析出したり、第1剤がゲル化したりして、使用前に加温する必要が生じる場合がある。
 酸基含有オレフィン樹脂(A1)と樹脂(A2)との配合比(A1):(A2)は一例として100:0~10:90であり、他の一態様としては100:1~15:85であり、他の一態様として75:25~15:85である。これにより、耐溶剤性、耐電解液性に加え、保存安定性に優れた接着剤とすることができる。
(第2剤)
 第2剤は、酸基含有オレフィン樹脂(A1)が有する酸基と反応性を有する化合物(B)、いわゆる硬化剤を含む。このような化合物(B)としては、イソシアネート化合物(B1)、エポキシ化合物(B2)、アジリジン基含有化合物(B3)、カルボジイミド基含有化合物(B4)、オキサゾリン基含有化合物(B5)、ヒドラジド基含有化合物(B6)、アミノ樹脂(B7)等が挙げられる。
 イソシアネート化合物(B1)は一分子中に複数のイソシアネート基を有するものであれば特に限定されず従来公知のものを用いることができる。具体例としては、ブタン-1,4-ジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、オクタメチレンジイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,6,11-ウンデカントリイソシアネート、キシリレンジイソシアネート、m-テトラメチルキシリレンジイソシアネート、リジンジイソシアネート、リジンエステルトリイソシアネート等の脂肪族ジイソシアネート、
 シクロヘキサン-1,4-ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、メチルシクロヘキサンジイソシアネート、イソプロピリデンジシクロヘキシル-4,4’-ジイソシアネート、ノルボルナンジイソシアネート等の脂環族ジイソシアネート、
 1,5-ナフチレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、4,4’-ジベンジルジイソシアネート、ジアルキルジフェニルメタンジイソシアネート、テトラアルキルジフェニルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の芳香族ジイソシアネートが挙げられる。
 これらから誘導された化合物、即ち、前記イソシアネートのイソシアヌレート体、アダクト体、ビウレット型、ウレトジオン体、アロファネート体、イソシアネート残基を有するプレポリマー(ジイソシアネートとポリオールから得られる低重合体)、若しくはこれらの複合体等を用いることもできる。
 上述したような多官能イソシアネート化合物の一部のイソシアネート基を、イソシアネート基と反応性を有する化合物と反応させて得られる化合物をイソシアネート化合物(B1)として使用してもよい。イソシアネート基と反応性を有する化合物としては、ブチルアミン、ヘキシルアミン、オクチルアミン、2-エチルヘキシルアミン、ジブチルアミン、エチレンジアミン、ベンジルアミン、アニリン等のアミノ基を含有する化合物類:メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノール、オクタノール、2-エチルヘキシルアルコール、ドデシルアルコール、エチレングリコール、プロピレングリコール、ベンジルアルコール、フェノール等の水酸基を含有する化合物類:アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル等のエポキシ基を有する化合物類:酢酸、ブタン酸、ヘキサン酸、オクタン酸、コハク酸、アジピン酸、セバシン酸、フタル酸等のカルボン酸を含有する化合物等が挙げられる。
 エポキシ化合物(B2)としては、エチレングリコール、プロピレングリコール、ヘキサンジオール、ネオペンチルグリコール、トリメチロールエタン、トリメチロールプロパン、ペンタエリトリトール、グリセリン、ジグリセリン、ソルビトール、スピログリコールもしくは水添ビスフェノールA等の脂肪族ポリオールのポリグリシジルエーテル型エポキシ樹脂;
 ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂等のビスフェノール型エポキシ樹脂;
 フェノールノボラック樹脂やクレゾールノボラック樹脂のグリシジルエーテルであるノボラック型エポキシ樹脂等の芳香族エポキシ樹脂;
 ビスフェノールA、ビスフェノールF、ビスフェノールS、ビスフェノールADなどの芳香族系ポリヒドロキシ化合物のエチレンオキシドもしくはプロピレンオキシド付加体であるポリオールのポリグリシジルエーテル;
 ポリエチレングリコール、ポリプロピレングリコールもしくはポリテトラメチレングリコール等のポリエーテルポリオールのポリグリシジルエーテル型エポキシ樹脂;
 ビス(3,4-エポキシシクロヘキシルメチル)アジペート、3,4-エポキシシクロヘキシルメチル-3’,4’-エポキシシクロヘキシルカルボキシレート等の環状脂肪族型ポリエポキシ樹脂;
 プロパントリカルボン酸、ブタンテトラカルボン酸、アジピン酸、フタル酸、テレフタル酸もしくはトリメリット酸等のポリカルボン酸のポリグリシジルエステル型エポキシ樹脂;
 ブタジエン、ヘキサジエン、オクタジエン、ドデカジエン、シクロオクタジエン、α-ピネンもしくはビニルシクロヘキセン等の炭化水素系ジエンのビスエポキシ樹脂;
 ポリブタジエンもしくはポリイソプレン等のジエンポリマーのエポキシ樹脂;
 テトラグリシジルジアミノジフェニルメタン、トリグリシジルパラアミノフェノール、テトラグリシジルビスアミノメチルシクロヘキサン、ジグリシジルアニリン、テトラグリシジルメタキシリレンジアミン等のグリシジルアミン型エポキシ樹脂;
 トリアジン、ヒダントイン等の複素環を含有するエポキシ樹脂;
 樹脂骨格中にゴム骨格(例えばポリブタジエン、アクリロニトリルブタジエンゴム、カルボキシル基末端アクリロニトリルブタジエンゴム等)を有するゴム変性エポキシ樹脂やウレタン結合を有するウレタン変性エポキシ樹脂等が挙げられる。
 これらは単独で用いてもよいし、2種以上組み合わせて用いてもよい。
 エポキシ化合物(B2)は、流動性が高いものを用いることが好ましい。52℃における粘度が0.05Pa・s以上15Pa・s以下であることが好ましく、0.05Pa・s以上10Pa・s以下であることがより好ましく、0.05Pa・s以上5Pa・s以下であることがより好ましく、0.05Pa・s以上0.5Pa・s以下であることがより好ましい。なおここでの粘度は回転粘度計を用い、コーン・プレート:1°×R25で測定した値をいう。重量平均分子量が3000以下であるエポキシ化合物であることが好ましい。
 アジリジン基含有化合物(B3)としては、例えば、N,N’-ヘキサメチレン-1,6-ビス(1-アジリジンカルボキシアミド)、N,N’-ジフェニルメタン-4,4´-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート)、N,N´-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)、トリエチレンメラミン、トリメチロールプロパン-トリ-β(2-メチルアジリジン)プロピオネート、ビスイソフタロイル-1-2-メチルアジリジン、トリ-1-アジリジニルフォスフィンオキサイド、トリス-1-2-メチルアジリジンフォスフィンオキサイド等が挙げられる。
 カルボジイミド基含有化合物(B4)としては、p-フェニレン-ビス(2,6-キシリルカルボジイミド)、テトラメチレン-ビス(t-ブチルカルボジイミド)、シクロヘキサン-1,4-ビス(メチレン-t-ブチルカルボジイミド)等のカルボジイミド基を有する化合物や、カルボジイミド基を有する重合体であるポリカルボジイミドが挙げられる。ポリカルボジイミドは例えば、イソシアネート化合物の脱二酸化炭素を伴う縮合反応により得られる。ポリカルボジイミドの合成に用いられるイソシアネート化合物は特に限定されず、例えばイソシアネート化合物(B1)として挙げたものを用いることができる。
 オキサゾリン基含有化合物(B5)としては、例えば、2,2’-ビス(2-オキサゾリン)、2,2’-エチレン-ビス(4,4’-ジメチル-2-オキサゾリン)、2,2’-p-フェニレン-ビス(2-オキサゾリン)、ビス(2-オキサゾリニルシクロヘキサン)スルフィド等のオキサゾリン基を有する化合物や、オキサゾリン基含有ポリマー等が挙げられる。オキサゾリン基含有ポリマーは、一般に2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等の付加重合性オキサゾリンを重合させることにより得られる。オキサゾリン基含有ポリマーには、必要に応じて他の単量体が共重合されていてもよい。オキサゾリン基含有ポリマーの重合方法としては、特に限定されず、公知の重合方法を採用することができる。
 ヒドラジド基含有化合物(B6)としては、アジピン酸ジヒドラジド、シュウ酸ジヒドラジド、マロン酸ジヒドラジド、コハク酸ジヒドラジド、グルタル酸ジヒドラジド、イソフタル酸ジヒドラジド、セバシン酸ジヒドラジド、マレイン酸ジヒドラジド、フマル酸ジヒドラジド、イタコン酸ジヒドラジドなどの2~10個、特に4~6個の炭素原子を含有するジカルボン酸ジヒドラジド;エチレン-1,2-ジヒドラジン、プロピレン-1,3-ジヒドラジン、ブチレン-1,4-ジヒドラジンなどの2~4個の炭素原子を有する脂肪族の水溶性ジヒドラジンなどが挙げられる。
 アミノ樹脂(B7)としては、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂等が挙げられる。
 これらの化合物は1種または2種以上を併用して用いることができる。化合物(B)としては、ポットライフ、エージング温度の観点から、イソシアネート化合物(B1)、エポキシ化合物(B2)を用いることがより好ましく、エポキシ化合物(B2)がより好ましい。
 化合物(B)の配合量は、用いる化合物(B)により適宜調整されるが、例えばイソシアネート化合物(B1)を用いる場合には、第1剤に含まれる酸基と第2剤に含まれるイソシアネート基のモル比(イソシアネート基/酸基)が0.5以上30以下となるよう配合して用いることが好ましい。
 また、化合物(B)がエポキシ化合物(B2)である場合には、第1剤に含まれる酸基と第2剤に含まれるエポキシ基のモル比(エポキシ基/酸基)が0.01以上であることが好ましく、0.1以上であることがより好ましく、0.3以上であることがより好ましく、0.6以上であることが好ましく、また1.5以下となるよう配合して用いることが好ましく、1.3以下となるよう配合して用いることが好ましい。
 なお、いずれの場合も酸基含有オレフィン樹脂(A1)が有する酸基が酸無水物基であり第1剤に含まれる酸基の量を酸変性率から算出する場合や、第1剤が後述する酸無水物を含み、第1剤に含まれる酸基の量を酸無水物の配合量から算出する場合(第1剤に含まれる酸基の量を実測しない場合)は酸無水物基1当量を酸基2当量として換算する。イソシアネート当量、エポキシ当量、酸価からこれらの値を算出してもよい。
(有機溶剤)
 本発明の接着剤は、上記各成分に加え、さらに有機溶剤を配合することにより流動性を確保し、適正な塗工性を発現させることができる。有機溶剤は第1剤または第2剤のいずれか一方のみに含まれていてもよいし、両方が含んでいてもよい。第1剤と第2剤とを混合する際に添加してもよい。このような有機溶剤としては、接着剤塗工時の乾燥工程における過熱により揮発させて除去できるものであれば特に限定されず、例えば、トルエン、キシレン等の芳香族系有機溶剤;n-ヘキサン、n-ヘプタン等の脂肪族系有機溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族系有機溶剤;トリクロロエチレン、ジクロロエチレン、クロロベンゼン、クロロホルム等のハロゲン系有機溶剤;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶剤;酢酸エチル、酢酸ブチル等のエステル系溶剤;エタノール、メタノール、n-プロパノール、2-プロパノール(イソプロピルアルコール)、ブタノール、ヘキサノール等のアルコール系溶剤;ジイソプロピルエーテル、ブチルセロソルブ、テトラヒドロフラン、ジオキサン、ブチルカルビトール等のエーテル系溶剤;ジエチレングリコールモノメチルエーテル、トリエチレングルコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル系溶剤;エチレングリコールモノメチルエーテルアセテート、プロプレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶剤等が挙げられ、これらは単独で使用しても良いし、2種以上を併用しても良い。
 酸基含有オレフィン樹脂(A1)の溶解性に優れることから、脂環族系有機溶剤と、エステル系溶剤との混合溶剤、特に、メチルシクロヘキサンと酢酸エチルとの混合溶剤を用いることが好ましい。さらに酸基含有オレフィン樹脂(A1)の溶解性を向上させるために脂環族系有機溶剤と、エステル系溶剤と、アルコール系溶剤の混合溶剤を用いてもよい。このとき、アルコール系溶剤としてはイソプロピルアルコールや2-ブタノール等が好ましい。
 また、イソシアネート化合物(B1)の溶解性を向上させるために、脂環族系有機溶剤とエステル系溶剤との混合溶剤に、さらに芳香族系有機溶剤やケトン系溶剤を併用してもよい。このとき、芳香族系有機溶剤としてはトルエンが好ましく挙げられ、ケトン系溶剤としてはメチルエチルケトンが好ましく挙げられる。
 また、エポキシ化合物(B2)の溶解性を向上させるために、脂環族系有機溶剤とエステル系溶剤との混合溶剤に、さらに芳香族系有機溶剤やケトン系溶剤を併用してもよく、ケトン系溶剤を併用することがより好ましい。このとき、芳香族系有機溶剤としてはトルエンが好ましく挙げられ、ケトン系溶剤としてはメチルエチルケトンが好ましく挙げられる。
 有機溶剤の使用量としては、樹脂(A)と有機溶剤との合計質量に対する、樹脂(A)の割合が5~30質量%となる割合であることが好ましい。これにより、塗工性、フィルムへの濡れ性に優れた接着剤とすることができる。
(その他の化合物)
 本発明の接着剤は、必要に応じて酸無水物、硬化促進剤、その他(樹脂(A)以外)の樹脂、可塑剤、熱可塑性エラストマー、反応性エラストマー、リン酸化合物、シランカップリング剤、消泡剤等の各種添加剤を用いることができる。これらの添加剤の含有量は、本発明の接着剤の機能を損なわない範囲内で適宜調整すればよい。
 酸無水物としては、環状脂肪族酸無水物、芳香族酸無水物、不飽和カルボン酸無水物等が挙げられ、1種または2種以上を組み合わせて用いることができる。より具体的には、例えば、フタル酸無水物、トリメリット酸無水物、ピロメリット酸無水物、ベンゾフェノンテトラカルボン酸無水物、ドデセニルコハク酸無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物、ポリ(エチルオクタデカン二酸)無水物、ポリ(フェニルヘキサデカン二酸)無水物、テトラヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルハイミック酸無水物、トリアルキルテトラヒドロフタル酸無水物、メチルシクロヘキセンジカルボン酸無水物、メチルシクロヘキセンテトラカルボン酸無水物、エチレングリコールビストリメリテート二無水物、ヘット酸無水物、ナジック酸無水物、メチルナジック酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキサン-1,2-ジカルボン酸無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1-メチル-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物等が挙げられる。
 また、酸無水物として上述した化合物をグリコールで変性したものを用いてもよい。変性に用いることができるグリコールとしては、エチレングリコール、プロピレングリコール、ネオペンチルグリコール等のアルキレングリコール類;ポリエチレングリコール、ポリプロピレングリコール、ポチテトラメチレンエーテルグリコール等のポリエーテルグリコール類等が挙げられる。更には、これらのうちの2種類以上のグリコール及び/又はポリエーテルグリコールの共重合ポリエーテルグリコールを用いることもできる。
 酸無水物の配合量は、樹脂(A)100質量部に対して0.01質量部以上であることが好ましく、0.8質量部以上であることがより好ましい。また、酸無水物の配合量は、樹脂(A)100質量部に対して10質量部以下であることが好ましく、8質量部以下であることがより好ましく、1.5質量部以下であることがより好ましい。
 硬化促進剤としては、用いる化合物(B)により適宜選択されるが、一例として化合物(B)がイソシアネート化合物(B1)である場合には、金属系触媒、アミン系触媒、脂肪族環状アミド化合物、チタンキレート錯体、有機リン系化合物等の触媒を用いることができる。
 金属系触媒としては、金属錯体系、無機金属系、有機金属系を挙げることができ、金属錯体系として具体的には、Fe(鉄)、Mn(マンガン)、Cu(銅)、Zr(ジルコニウム)、Th(トリウム)、Ti(チタン)、Al(アルミニウム)及びCo(コバルト)からなる群より選ばれる金属のアセチルアセトナート塩であり、例えば、鉄アセチルアセトネート、マンガンアセチルアセトネート、銅アセチルアセトネート、ジルコニアアセチルアセトネート等が挙げられるが、これらのうち、毒性と触媒活性の点から、鉄アセチルアセトネート(Fe(acac))又はマンガンアセチルアセトネート(Mn(acac))が好ましい。
 無機金属系触媒としては、Fe、Mn、Cu、Zr、Th、Ti、Al及びCo等から選ばれる触媒を挙げることができる。
 有機金属系触媒としては、スタナスジアセテート、スタナスジオクトエート、スタナスジオレエート、スタナスジラウレート、ジブチル錫オキサイド、ジブチル錫ジアセテート、ジブチル錫ジラウレート、ジブチル錫ジクロライド、ジオクチル錫ジラウレート、オクチル酸ニッケル、ナフテン酸ニッケル、オクチル酸コバルト、ナフテン酸コバルト、オクチル酸ビスマス、ナフテン酸ビスマス等が挙げられる。これらのうち好ましい化合物としては有機錫触媒であり、更に好ましくはスタナスジオクトエート、ジブチル錫ジラウレートである。
 アミン系触媒としては、トリエチレンジアミン、2-メチルトリエチレンジアミン、キヌクリジン、2-メチルキヌクリジン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチルプロピレンジアミン、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’,N”,N”-ペンタメチル-(3-アミノプロピル)エチレンジアミン、N,N,N’,N”,N”-ペンタメチルジプロピレントリアミン、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、ジメチルエタノールアミン、ジメチルイソプロパノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチル-N’-(2-ヒドロキシエチル)エチレンジアミン、N,N-ジメチル-N’-(2-ヒドロキシエチル)プロパンジアミン、ビス(ジメチルアミノプロピル)アミン、ビス(ジメチルアミノプロピル)イソプロパノールアミン、3-キヌクリジノール、N,N,N’,N’-テトラメチルグアニジン、1,3,5-トリス(N,N-ジメチルアミノプロピル)ヘキサヒドロ-S-トリアジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7、1,5-ジアザビシクロ[4.3.0]ノネン-5、N-メチル-N’-(2-ジメチルアミノエチル)ピペラジン、N,N’-ジメチルピペラジン、ジメチルシクロヘキシルアミン、N-メチルモルホリン、N-エチルモルホリン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ジメチルアミノプロピルイミダゾール、N,N-ジメチルヘキサノールアミン、N-メチル-N’-(2-ヒドロキシエチル)ピペラジン、1-(2-ヒドロキシエチル)イミダゾール、1-(2-ヒドロキシプロピル)イミダゾール、1-(2-ヒドロキシエチル)-2-メチルイミダゾール、1-(2-ヒドロキシプロピル)-2-メチルイミダゾール等の3級アミン及びこれら3級アミン類をフェノール、オクチル酸、4級化テトラフェニルボレート塩等でアミン塩にした化合物等が挙げられる。
 脂肪族環状アミド化合物は、例えば、δ-バレロラクタム、ε-カプロラクタム、ω-エナントールラクタム、η-カプリルラクタム、β-プロピオラクタム等が挙げられる。これらの中でも硬化促進効果に優れる点からε-カプロラクタムが好ましい。
 チタンキレート錯体は、紫外線照射により触媒活性が高められる化合物であり、脂肪族又は芳香族ジケトンをリガンドとするチタンキレート錯体であることが硬化促進効果に優れる点から好ましい。また、本発明ではリガンドとして芳香族又は脂肪族ジケトンに加え、炭素原子数2~10のアルコールを持つものがより本発明の効果が顕著なものとなる点から好ましい。
 有機リン系化合物としては、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等が挙げられる。
 化合物(B)がエポキシ化合物である場合の硬化促進剤としては、トリブチルホスフィン、メチルジフェニルホスフィン、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、トリス(4-ブチルフェニル)ホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン化合物、2-メチルイミダゾール、1,2-ジメチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール等のイミダゾール化合物、トリエチルアミン、トリエチレンジアミン、N’-メチル-N-(2-ジメチルアミノエチル)ピペラジン、1,8-ジアザビシクロ[5.4.0]ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-ノネン、6-ジブチルアミノ-1,8-ジアザビシクロ[5.4.0]ウンデセン等の3級アミン類及びこれら3級アミン類をフェノール、オクチル酸、4級化テトラフェニルボレート塩等でアミン塩にした化合物、トリアリルスルホニウムヘキサフルオロアンチモネート、ジアリルヨードニウムヘキサフルオロアンチモネート等のカチオン触媒などが挙げられる。これらは単独で使用しても良いし、2種以上を併用しても良い。有機ホスフィン系化合物およびイミダゾール化合物からなる群から選ばれる少なくとも1種を用いることが好ましい。
 硬化促進剤の配合量は、第1剤の樹脂(A)100質量部に対し、0.01質量部以上5質量部以下であることが好ましく、より好ましくは0.01質量部以上1質量部以下であることがより好ましく、0.01質量部以上0.5質量部以下であることがより好ましい。
 その他の樹脂としては、例えば、ロジン系又はロジンエステル系樹脂、テルペン系又はテルペンフェノール系樹脂、飽和炭化水素樹脂、クマロン系樹脂、クマロンインデン系樹脂、スチレン系樹脂、キシレン系樹脂、フェノール系樹脂、石油系樹脂などが挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。なかでもスチレン樹脂を用いることが好ましい。
 スチレン樹脂は、スチレンの単独重合体、α-メチルスチレンの単独重合体等のスチレン系モノマーの単独重合体;スチレンとα-メチルスチレンとの共重合体;スチレン及びα-メチルスチレン等のスチレン系モノマーと重合性脂肪族モノマーとの共重合体;スチレン及びα-メチルスチレン等のスチレン系モノマーと重合性芳香族モノマーとの共重合体等が挙げられる。
 スチレン樹脂は、軟化点が80~150℃の範囲にあるものが好ましく、90~145℃の範囲にあるものがより好ましい。また重量平均分子量が800~3,000の範囲にあるものが好ましい。
 スチレン樹脂の配合量は、樹脂(A)100質量部に対して0.01~1.5質量部であることが好ましい。
 可塑剤としては、ポリイソプレン、ポリブテン、プロセルオイル等が挙げられ、熱可塑性エラストマーとしてはスチレン・ブタジエン共重合物(SBS)、スチレン・ブタジエン共重合の水素添加物(SEBS)、SBBS、スチレン・イソプレン共重合の水素添加物(SEPS)、スチレンブロック共重合体(TPS)、オレフィン系エラストマー(TPO)等が、反応性エラストマーはこれらのエラストマーを酸変性したものが挙げられる。
 リン酸化合物としては、例えば次亜リン酸、亜リン酸、オルトリン酸、次リン酸等のリン酸類、例えばメタリン酸、ピロリン酸、トリポリリン酸、ポリリン酸、ウルトラリン酸等の縮合リン酸類、例えばオルトリン酸モノメチル、オルトリン酸モノエチル、オルトリン酸モノプロピル、オルトリン酸モノブチル、オルトリン酸モノ-2-エチルヘキシル、オルトリン酸モノフェニル、亜リン酸モノメチル、亜リン酸モノエチル、亜リン酸モノプロピル、亜リン酸モノブチル、亜リン酸モノ-2-エチルヘキシル、亜リン酸モノフェニル、オルトリン酸ジ-2-エチルヘキシル、オルトリン酸ジフェニル亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジプロピル、亜リン酸ジブチル、亜リン酸ジ-2-エチルヘキシル、亜リン酸ジフェニル等のモノ、ジエステル化物、縮合リン酸とアルコール類とからのモノ、ジエステル化物、例えば前記のリン酸類に、例えばエチレンオキシド、プロピレンオキシド等のエポキシ化合物を付加させたもの、例えば脂肪族又は芳香族のジグリシジルエーテルに前記のリン酸類を付加させて得られるエポキシリン酸エステル類等が挙げられる。
 シランカップリング剤としては例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメチルジメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン等のアミノシラン;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシシラン;ビニルトリス(β-メトキシエトキシ)シラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のビニルシラン;ヘキサメチルジシラザン、γ-メルカプトプロピルトリメトキシシラン等を挙げることが出来る。
 消泡剤としては、シリコーン系、非シリコーン系のいずれも用いることができ、例えばビックケミー社製BYKシリーズ(BYK-051N/052N/053N/054/055/057/063/065/066N/067A/077/081/088/088A/141/354/392/1752/1790/1791/1794/011/012/014/015/017/018/019/021/022/023/024/025/028/038/044/093/094/1610/1615/1650/1710/1711/1730/1740/1770/1780/1785/1798/A530/A555)、共栄社化学株式会社製フローレンシリーズ(AC-202/220F/247/253/265/300/300HF/300VF/303/303HF/324/326F/901/901HF/902/903/903HF/950/970MS/1160/1160HF/1170/1170HF/1190/1190HF/2000/2000HF/2200HF/2230EF/2300C、AO-5/82/98/106/108/108EF)、信越シリコーン社製KF-96、FA-630、X-50-1039A、KS-7708、KS-66、KSP-69、X-50-1105G、KS-602A、KSP-600、KS-508/530/531/537/538/540、東レ・ダウコーニング社製FSアンチフォームシリーズ(DB-110N/EPL/025/92/93/1224/1233/1277/013A)、SH5507、DK Q1-1247、AFE-1530、SM5572F、SM5571、旭化成ワッカーシリコーン社製AKシリーズ(AK-350/12500/60000)、AF98/1000、モメンティブ・パフォーマンス・マテリアルズ社製TSAシリーズ(TSA750/720/750S)等が挙げられる。
 これらの成分は、第1剤または第2剤に予め配合されていてもよいし、第1剤と第2を混合する際に添加してもよい。
 上述した各成分を混合することにより本発明の接着剤を調整することができる。この際、各成分は同時に混合して接着剤としてもよいが、化合物(B)(第2剤)以外の成分を予め混合してプレミクスチャーを調整しておき、接着剤の使用時に硬化剤(B)を混合する2液型の接着剤とすることが接着剤の安定性、作業性に優れることから好ましい。
<積層体>
 本発明の積層体は、第1の基材と、第2の基材と、第1の基材と第2の基材との間に配置され、第1の基材と第2の基材とを貼り合せる接着層とを含む。接着層は、上述した接着剤の硬化塗膜である。第1の基材、第2の基材に加えてさらに他の基材を含んでいてもよい。第1の基材と他の基材、第2の基材と他の基材とを貼り合せる接着層は、本発明の接着剤の硬化塗膜であってもよいし、そうでなくてもよい。
 第1の基材、第2の基材、他の基材としては、例えば、紙、オレフィン系樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリ塩化ビニル系樹脂、フッ素系樹脂、ポリ(メタ)アクリル系樹脂、カーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリフェニレンエーテル系樹脂、ポリフェニレンスルフィド系樹脂やポリエステル系樹脂から得られた合成樹脂フィルム、銅箔、アルミニウム箔の様な金属箔等を用いることが出来る。
 本発明の接着剤は、オレフィン樹脂のような非極性の基材と、金属基材との接着性に優れるため、第1の基材と第2の基材のうち一方が非極性の基材であり、他方が金属基材であることが好ましいが、これに限定されない。
 本発明の積層体は、第1の基材と第2の基材の一方に本発明の接着剤を塗布し、次いで他方を積層し、接着剤を硬化させて得られる。接着剤を塗布した後、第1の基材と第2の基材とを積層するまでの間に乾燥工程を設けることが好ましい。
 接着剤の塗工方式としては、グラビアコーター方式、マイクログラビアコーター方式、リバースコーター方式、バーコーター方式、ロールコーター方式、ダイコーター方式等を用いることが出来る。接着剤の塗布量は、乾燥後の塗布重量が0.5~20.0g/mとなるよう調整することが好ましい。0.5g/mを下回ると連続均一塗布性が低下し易くなり、20.0g/mを上回ると塗布後における溶剤離脱性も低下し、作業性の低下や残留溶剤の問題が生じ易くなる。
 第1の基材と第2の基材とを積層する際のラミネートロールの温度は25~120℃、圧力は3~300kg/cmであることが好ましい。
 第1の基材と第2の基材とを貼り合せた後、エージング工程を設けることが好ましい。エージング条件は、一例として25~100℃、12~240時間である。エージング温度は酸基含有オレフィン樹脂(A1)の融点よりも5℃以上高いことが好ましく、10℃以上高いことがより好ましい。これにより、接着剤がより濡れ広がりやすく、また硬化塗膜中における結晶化部位の比率をより高めることができ、接着強度、耐溶剤性、耐電解液性に優れた接着剤とすることができる。エージング温度の上限は特に限定されないが、省エネルギーの観点から一例として酸基含有オレフィン樹脂(A1)の融点との差が30℃以下であることが好ましい。
<包装材、加工品>
 本発明の積層体は各種用途に用いることができる。例えば本発明の積層体は耐溶剤性に優れるため、シャンプーやリンスなどの包装材に好ましく用いることができる。このような内容物は接着層を劣化させ、接着強度の低下を招くおそれがあるが、接着層が本発明の接着剤によるものであれば、接着層の劣化を抑制することができる。
 また、本発明の積層体を成型加工して、例えば食品、医療品、日用品を収容するプレススルーパッケージやストリップパッケージ、電池の外装材用包装材、コンデンサの外装材用包装材等、種々の用途の好適に用いることができる。
<電池用包装材>
 本発明の電池用包装材は、一例として、第1の基材と、第2の基材と、第3の基材と、第1の基材と第2の基材を貼り合せる第1の接着層と、第2の基材と第3の基材とを貼り合せる第2の接着層とを含む。第1の基材はポリオレフィンフィルムであり、第2の基材は金属箔である。第3の基材はナイロン、ポリエステル等の樹脂フィルムである。第1の接着層は本発明の接着剤の硬化塗膜である。第2の接着層は本発明の接着剤の硬化塗膜であってもよいし、そうでなくてもよい。第3の基材の第2の接着層が設けられるのとは反対側に、さらに接着層を介して、または介さずに他の基材を配置してもよいし、コーティング層を設けてもよい。他の基材やコーティング層を設けなくてもよい。
 ポリオレフィンフィルムとしては、従来から公知のオレフィン樹脂の中から適宜選択すればよい。例えば、特に限定されないが、ポリエチレン、ポリプロピレン、エチレンプロピレン共重合体などを用いることができる。無延伸フィルムであることが好ましい。ポリオレフィンフィルムの膜厚は、特に限定されないが、10μm以上であることが好ましく、20μm以上であることがより好ましく、25μm以上であることがさらに好ましい。また、100μm以下であることが好ましく、95μm以下であることがより好ましく、90μm以下であることがさらに好ましい。
 第1の基材は、後述する電池を製造する際に、本発明の電池用包装材同士をヒートシールして貼り合せる際のシーラント層として機能する。
 金属箔としては、アルミニウム、銅、ニッケル等が挙げられる。これらの金属箔は、サンドブラスト処理、研磨処理、脱脂処理、エッチング処理、防錆剤浸漬又はスプレーによる表面処理、3価クロム化成処理、リン酸塩化成処理、硫化物化成処理、陽極酸化被膜形成、フッ素樹脂コーティング等の表面処理を施したものであってもよい。これらのなかでも3価クロム化成処理を施したものが密着性保持性能(耐環境劣化性)、防食性に優れる点から好ましい。また、この金属フィルムの厚みは腐食防止の観点から10~100μmの範囲であることが好ましい。
 第3の基材として用いることができる樹脂フィルムとしては、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリウレタン樹脂、珪素樹脂、フェノール樹脂、及びこれらの混合物や共重合物等の樹脂フィルムが挙げられる。これらの中でも、好ましくはポリエステル樹脂、ポリアミド樹脂が挙げられ、より好ましくは2軸延伸ポリエステル樹脂、2軸延伸ポリアミド樹脂が挙げられる。ポリエステル樹脂としては、具体的には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、共重合ポリエステル、ポリカーボネート等が挙げられる。また、ポリアミド樹脂としては、具体的には、ナイロン6、ナイロン6,6、ナイロン6とナイロン6,6との共重合体、ナイロン6,10、ポリメタキシリレンアジパミド(MXD6)等が挙げられる。
 コーティング層は、例えばポリ塩化ビニリデン、ポリエステル樹脂、ウレタン樹脂、アクリル樹脂、エポキシ樹脂などにより形成することができる。2液硬化型樹脂により形成することが好ましい。コーティング層を形成する2液硬化型樹脂としては、例えば、2液硬化型ウレタン樹脂、2液硬化型ポリエステル樹脂、2液硬化型エポキシ樹脂などが挙げられる。また、コーティング層には、マット化剤を配合してもよい。
 マット化剤としては、例えば、粒径が0.5nm~5μm程度の微粒子が挙げられる。マット化剤の材質については、特に制限されないが、例えば、金属、金属酸化物、無機物、有機物等が挙げられる。また、マット化剤の形状についても、特に制限されないが、例えば、球状、繊維状、板状、不定形、バルーン状等が挙げられる。マット化剤として、具体的には、タルク,シリカ,グラファイト、カオリン、モンモリロイド、モンモリロナイト、合成マイカ、ハイドロタルサイト、シリカゲル、ゼオライト、水酸化アルミニウム、水酸化マグネシウム、酸化亜鉛,酸化マグネシウム,酸化アルミニウム,酸化ネオジウム,酸化アンチモン、酸化チタン、酸化セリウム、硫酸カルシウム,硫酸バリウム、炭酸カルシウム,ケイ酸カルシウム、炭酸リチウム、安息香酸カルシウム,シュウ酸カルシウム,ステアリン酸マグネシウム、カーボンブラック、カーボンナノチューブ類、高融点ナイロン、架橋アクリル、架橋スチレン、架橋ポリエチレン、ベンゾグアナミン、金、アルミニウム、銅、ニッケル等が挙げられる。これらのマット化剤は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらのマット化剤の中でも、分散安定性やコスト等の観点から、好ましくはりシリカ、硫酸バリウム、酸化チタンが挙げられる。また、マット化剤には、表面に絶縁処理、高分散性処理等の各種表面処理を施しておいてもよい。
 このような積層体を、電池とした際に第1の基材であるポリオレフィンフィルムが第3の基材よりも内側になるようにして成型し、本発明の二次電池外装材となる。成型方法としては、特に制限はなく、一例として以下のような方法が挙げられる。
・加熱圧空成型法:電池用包装材を高温、高圧のエアーが供給される孔を有する下型と、ポケット形状の凹部を有する上型に挟み、加熱軟化させながらエアーを供給して凹部を形成する方法。 
・プレヒーター平板式圧空成型法:電池用包装材を加熱軟化させた後、高圧のエアーが供給される孔を有する下型と、ポケット形状の凹部を有する上型に挟み、エアーを供給して凹部を形成する方法。
・ドラム式真空成型法:電池用包装材を加熱ドラムで部分的に加熱軟化後、ポケット形状の凹部を有するドラムの該凹部を真空引きして凹部を成型する方法。 
・ピン成型法:底材シートを加熱軟化後ポケット形状の凹凸金型で圧着する方法。 
・プレヒータープラグアシスト圧空成型法:電池用包装材を加熱軟化させた後、高圧のエアーが供給される孔を有する下型と、ポケット形状の凹部を有する上型に挟み、エアーを供給して凹部を形成する方法であって、成型の際に、凸形状のプラグを上昇及び降下をさせて成型を補助する方法。 
 成型後の底材の肉厚が均一であることから、加熱真空成型法であるプレヒータープラグアシスト圧空成型法が好ましい。
 このようにして得られた本発明の電池用包装材は、正極、負極、電解質等の電池素子を密封して収容する電池用容器として好適に使用することができる。
<電池>
 本発明の電池は、正極、負極、及び電解質を備えた電池素子を、本発明の電池用包装材で、前記正極及び負極の各々に接続された金属端子が外側に突出させた状態で、電池素子の周縁にフランジ部(シーラント層同士が接触する領域)が形成できるようにして被覆し、前記フランジ部のシーラント層同士をヒートシールして密封させることによって得られる。
 本発明の電池用包装材を用いて得られる電池としては、一次電池、二次電池のいずれであってもよいが、好ましくは二次電池である。二次電池としては特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池、ニッケル・鉄蓄電池、ニッケル・亜鉛蓄電池、酸化銀・亜鉛蓄電池、金属空気電池、多価カチオン電池、コンデンサー、キャパシター等が挙げられる。これらの二次電池の中でも、本発明の電池用包装材の好適な適用対象として、リチウムイオン電池及びリチウムイオンポリマー電池が挙げられる。
 以下、実施例と比較例により本発明を説明するが、本発明はこれに限定されるものではない。配合組成その他の数値は特記しない限り質量基準である。
<測定方法>
(酸価)
 本実施例において、酸基含有オレフィン樹脂(A1)の酸価は、FT-IR(日本分光社製、FT-IR4200)を使用し、無水マレイン酸のクロロホルム溶液によって作成した検量線から得られる係数(f)、無水マレイン酸変性ポリオレフィン溶液における無水マレイン酸の無水環の伸縮ピーク(1780cm-1)の吸光度(I)とマレイン酸のカルボニル基の伸縮ピーク(1720cm-1)の吸光度(II)を用いて下記式により算出した値であり、特記しない限り単位はmgKOH/gである。下記式において無水マレイン酸の分子量を98.06、水酸化カリウムの分子量は56.11とした。
Figure JPOXMLDOC01-appb-M000001
(結晶化温度、結晶化熱量)
 酸基含有オレフィン樹脂(A1)とエポキシ化合物との硬化物の結晶化温度はJIS-K-7121に、結晶化熱量はJIS-K-7122に従って測定した。なお冷却温度は10℃/minである。特記しない限り結晶化温度の単位は℃であり、結晶化熱量の単位はmJ/mgである。
(融点、融解熱量)
 酸基含有オレフィン樹脂の融点はJIS-K-7121に、融解熱量はJIS-K-7122に従って測定した。特記しない限り融点の単位は℃であり、融解熱量の単位はmJ/mgである。
 実際の測定条件は以下の通りである。
装置:X-DSC7000AS-3DX(日立ハイテクサイエンス社製)
容器:オープン型アルミ製容器(カバーあり、日立ハイテクサイエンス社製)
試料:3.5mg
リファレンス:空容器
雰囲気:窒素ガスフロー 20ml/min
測定温度:-50℃(10min保持)→10℃/min→150℃(10min保持)→-10℃/min→-50℃(10min保持)→10℃/min→150℃(10min保持)
 150℃から-50℃に降温する過程で結晶化ピークが観測された場合はその頂点を結晶化温度とし、その後-50℃から150℃に昇温する過程で冷結晶化による結晶化ピークが観測された場合はその頂点を結晶化温度とした。結晶化ピークとベースラインで区切られた面積から結晶化熱量を算出した。
 また、-50℃から150℃に昇温する過程で観測された融解ピークの頂点を融解温度とし、融解ピークとベースラインで区切られた面積から融解熱量を算出した。
<酸基含有オレフィン樹脂(A1)>
 以下の無水マレイン酸変性プロピレン-ブテン共重合体を酸変性オレフィン樹脂(A1-1)~(A1-4)として用いた。酸変性オレフィン樹脂(A1-1)~(A1-4)とデナコール(登録商標)EX-321Lとを、エポキシ過剰率をそれぞれ以下の値とした硬化物について結晶化温度、結晶化熱量を測定し、表2にまとめた。なお表2において結晶化温度の数値に括弧を付した値は冷結晶化温度であり、JIS-K-7121に記載の方法では結晶化ピークが観測されず、融点を測定した際に結晶化ピークが観測されたことを意味する。結晶化熱量の数値に括弧を付した値は冷結晶化による結晶化ピークから算出した結晶化熱量であることを意味する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
<化合物(B)>
 以下のイソシアネート化合物(B1)、エポキシ化合物(B2)を化合物(B)として用いた。
(イソシアネート化合物(B1-1))
 ビゥレット型ヘキサメチレンジイソシアネート
(イソシアネート化合物(B1-2))
 トリレンジイソシアネートのトリメチロールプロパンアダクト体
(エポキシ化合物(B2-1))
 デナコール(登録商標)EX-321L(ナガセケムテックス(株)製、トリメチロールプロパンポリグリシジルエーテル、エポキシ当量130)
(エポキシ化合物(B2-2))
 エピクロン(登録商標)860-80SE(DIC(株)製、BPA型エポキシ樹脂 、エポキシ当量240)
(エポキシ化合物(B2-3))
 エピクロン(登録商標)N-665(DIC(株)製、クレゾールノボラック型エポキシ樹脂、エポキシ当量200-215)
(エポキシ化合物(B2-4))
 後述の方法で合成したものをエポキシ化合物(B2-4)として用いた。
(エポキシ化合物(B2-5))
 エピクロン(登録商標)TSR960(DIC(株)製、ゴム変性エポキシ樹脂、エポキシ当量230-250)
(エポキシ化合物(B2-4)の合成)
 温度計、撹拌機を取り付けたフラスコにビスフェノールA228g(1.00モル)とトリエチレングリコールジビニルエーテル(ISP社製:商品名Rapi-Cure DVE-3)172g(0.85モル)を仕込み、120℃まで1時間要して昇温した後、さらに120℃で6時間反応させて透明半固形の変性多価フェノール類400gを得た。
 得られた変性多価フェノール類(ph-1a)は、NMRスペクトル(13C)と、マススペクトルでn=1、n=2の理論構造に相当するM+=658,M+=1088のピークが得られたことから下記構造式Ep1’で表される構造をもつものであることが確認された。変性多価フェノール類の水酸基当量は364g/eq.、粘度は40mPa・s(150℃,ICI粘度計)、水酸基当量より算出される下記構造式Ep1’中のmの平均値は、m≧1の成分で3.21、及びm≧0の成分で1.16であった。
Figure JPOXMLDOC01-appb-C000004
 温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに得られた変性多価フェノール類400g(水酸基当量364g/eq.)、エピクロルヒドリン925g(10モル)、n-ブタノール185gを仕込み溶解させた。その後、窒素ガスパージを施しながら65℃に昇温した後に共沸する圧力までに減圧し、49%水酸化ナトリウム水溶液122g(1.5モル)を5時間かけて滴下した。滴下終了後0.5時間撹拌を続けた。この間、共沸で留出してきた留出分をディーンスタークトラップで分離して水層を除去し、有機層を反応系内に戻しながら反応させた。その後、未反応のエピクロルヒドリンを減圧蒸留して留去させた。得られた粗エポキシ樹脂にメチルイソブチルケトン1000gとn-ブタノール100gを加え溶解させ、更にこの溶液に10%水酸化ナトリウム水溶液20gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水300gで水洗を3回繰り返した。次いで共沸によって系内を脱水し精密濾過を経た後に溶媒を減圧下で留去して透明液体のエポキシ化合物457gを得た。エポキシ化合物は、NMRスペクトル(13C)と、マススペクトルでn=1、n=2の理論構造に相当するM+=770,M+=1200のピークが得られたことから下記構造式Ep1で表される構造のエポキシ化合物を含有することが確認された。
Figure JPOXMLDOC01-appb-C000005
 得られたエポキシ化合物は、上記構造式Ep1においてn=0の化合物と、n=1以上の化合物との混合物であり、GPCで確認したところ該混合物中n=0の化合物を20質量%の割合で含有するものであった。また、このエポキシ化合物のエポキシ当量は462g/eq.、粘度は12000mPa・s(25℃,キャノンフェンスケ法)、エポキシ当量から算出される前記構造式Ea-1中のnの平均値は、n≧1の成分で2.97、及びn≧0の成分で1.35であった。これをエポキシ化合物(B2-4)として用いた。
<接着剤の調整>
(実施例1)
 酸基含有オレフィン樹脂(A1-1)の溶液(メチルシクロヘキサン/酢酸エチル=8/1):100部(固形分)、エポキシ化合物(B2-1)の酢酸エチル溶液:1.06部(固形分)、トリフェニルホスフィン:0.05部をよく撹拌し、さらにメチルシクロヘキサン/酢酸エチル=8:1の混合溶剤でドライラミネートに適した粘度に希釈して実施例1の接着剤を調整した。
(実施例2)-(実施例17)
 用いる成分やその配合量を表3-5に示すように変更した以外は実施例1と同様にして実施例2-17の接着剤を調整した。
(比較例1)-(比較例5)
 用いる成分やその配合量を表6に示すように変更した以外は実施例1と同様にして比較例1-5の接着剤を調整した。
 なお、表中における配合量は全て固形分(不揮発分)である。イソシアネート化合物(B1)、エポキシ化合物(B2)の配合量は、小数点第3位を四捨五入しているため、エポキシ過剰率、NCO/COOH比とは若干のずれが生じる場合がある。
 また、表中に記載のうち上記で説明のない化合物の詳細は以下の通りである。
(FTR8120)
 スチレン系モノマーの単独重合体(三井化学社製、重量平均分子量1500、不揮発分100質量%)
(YH-306)
 トリアルキルテトラヒドロ無水フタル酸(三菱化学社製)
(KBM-403)
 3-グリシドキシプロピルトリメトキシシラン(信越化学工業社製)
<積層体>
(実施例1)
 実施例1の接着剤をクロメート処理アルミニウム箔(膜厚:40μm)の光沢面にバーコーターで塗布量3g/m(dry)で塗布し、80℃-1分間乾燥させた後、未延伸ポリオレフィンフィルム(膜厚:40μm)と80℃で貼り合せた。次にアルミニウム箔のマット面に「ディックドライ LX-906」(DIC株式会社製)を主剤とし、「KW-75」(DIC株式会社製)を硬化剤として、重量比が主剤/硬化剤=100/10となるように配合した接着剤をバーコーターで塗布量4g/m(dry)で塗布した後、厚さ25μmの延伸ポリアミドフィルムを積層した。その後80℃2日間の養生(エージング)を行い、実施例1の積層体を得た。
(実施例2)-(実施例17)、(比較例1)-(比較例5)
用いる接着剤を実施例2-17、比較例1-5にそれぞれ変更した以外は実施例1と同様にして実施例2-17、比較例1-5の積層体を得た。
<評価>
 以下のようにして実施例、比較例の積層体を評価し、結果を表3-6にまとめた。
(初期接着強度の測定)
 株式会社島津製作所の「オートグラフAGS-J」を使用し、積層体のアルミニウム箔と未延伸ポリオレフィンフィルムの界面の接着強度を剥離速度50mm/min、剥離幅15mm、剥離形態T型の条件で評価した。単位はN/15mmである。
(耐溶剤性)
 カーボネート系溶剤(エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=1:1:1(wt%)の混合溶剤)35gに、エージング後の積層体を60℃で1日間浸漬させた。積層体を引き上げた直後(溶剤が乾燥する前の状態で)に積層体のアルミニウム箔と未延伸ポリオレフィンフィルムの界面の接着強度を剥離速度50mm/miん、剥離幅15mm、剥離形態T型の条件で測定した。浸漬前後の接着強度の保持率から以下のように評価した。
 また、浸漬させる溶剤とカーボネート系溶剤からメチルエチルケトン、イソプロパノール、カーボネート系エステル系混合溶剤(エチレンカーボネート:プロピレンカーボネート:プロピオン酸プロピル=24.5:13.5:62.0(wt%))にそれぞれ変更した以外は同様にしてこれらの溶剤に対する耐溶剤性を評価した。
 ◎:90%以上
 〇:75%以上90%未満
 △:60%以上75%未満
 ×:60%未満
(耐電解液性)
 エチレンカーボネート:エチルメチルカーボネート:ジメチルカーボネート=1:1:1(wt%)混合液に、LiPF6が1mol/l、ビニレンカーボネートが1wt%、水1000ppmとなるようそれぞれを添加した溶液を用意した。エージング後の積層体を溶液35gに85℃で7日間浸漬させた。積層体を引き上げた直後(溶液が乾燥する前の状態)に積層体のアルミニウム箔と未延伸ポリオレフィンフィルムの界面の接着強度を剥離速度50mm/min、剥離幅15mm、剥離形態T型の条件で測定した。浸漬前後の接着強度の保持率から以下のように評価した。
 ◎:90%以上
 〇:75%以上90%未満
 △:60%以上75%未満
 ×:60%未満
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表3-6から明らかなように、本発明の接着剤は、接着強度、種々の耐溶剤性、耐電解液性に優れたものであった。

Claims (16)

  1.  第1剤と、第2剤とを含み、
     前記第1剤は酸基含有オレフィン樹脂(A1)を含む樹脂(A)を含み、
     前記第2剤は前記酸基含有オレフィン樹脂(A1)が有する酸基と反応性を有する化合物(B)を含み、
     前記酸基含有オレフィン樹脂(A1)は、前記酸基含有オレフィン樹脂(A1)と25℃で液体であるエポキシ化合物とがエポキシ過剰率が0.1以上1.5以下となるよう配合された組成物の硬化物を、JIS-K-7121に記載の結晶化温度の測定方法に従って測定した示差走査熱量測定において描かれるDSC曲線に結晶化ピークが観測されることを特徴とする接着剤。
  2.  前記硬化物の結晶化温度が10℃以上60℃以下にある請求項1に記載の接着剤。
  3.  前記硬化物の結晶化熱量が1mJ/mg以上100mJ/mg以下である請求項1または2のいずれか一項に記載の接着剤。
  4.  前記酸基含有オレフィン樹脂が、プロピレンとブテンとを含む共重合体骨格を有する請求項1~3のいずれか一項に記載の接着剤。
  5.  前記酸基含有オレフィン樹脂の酸価が0.1mgKOH/g以上50mgKOH/g以下である請求項1~4のいずれか一項に記載の接着剤。
  6.  前記酸基含有オレフィン樹脂の重量平均分子量が10,000以上200,000以下である請求項1~5のいずれか一項に記載の接着剤。
  7.  前記化合物(B)が、イソシアネート化合物(B1)、エポキシ化合物(B2)、アジリジン基含有化合物(B3)、カルボジイミド基含有化合物(B4)、オキサゾリン基含有化合物(B5)、ヒドラジド基含有化合物(B6)、アミノ樹脂(B7)からなる群から選ばれる少なくとも一種である請求項1~6のいずれか一項に記載の接着剤。
  8.  前記化合物(B)がイソシアネート化合物(B1)であり、
     前記第1剤に含まれる酸基と前記第2剤に含まれるイソシアネート基とのモル比(イソシアネート基/酸基)が0.5以上30以下である請求項1~6のいずれか一項に記載の接着剤。
  9.  金属系触媒、アミン系触媒、脂肪族環状アミド化合物、チタンキレート錯体、有機リン系化合物からなる群から選ばれる少なくとも一種の硬化促進剤を含み、
     前記樹脂(A)100質量部に対する前記硬化促進剤の配合量が0.01質量部以上5質量部以下である請求項8に記載の接着剤。
  10.  前記化合物(B)がエポキシ化合物(B2)であり、
     前記第1剤に含まれる酸基と前記第2剤に含まれるエポキシ基とのモル比(エポキシ基/酸基)が0.01以上1.5以下である請求項1~6のいずれか一項に記載の接着剤。
  11.  有機ホスフィン化合物、イミダゾール化合物、3級アミン類およびその塩からなる群から選ばれる少なくとも一種の硬化促進剤を含み、
     前記樹脂(A)100質量部に対する前記硬化促進剤の配合量が0.01質量部以上5質量部以下である請求項10に記載の接着剤。
  12.  非食品包装用である請求項1~11のいずれか一項に記載の接着剤。
  13.  第一の基材と、
     第二の基材と、
     前記第一の基材と前記第二の基材とを貼り合わせる接着層と、を有し、
     前記接着層が請求項1~12のいずれか一項に記載の接着剤の硬化物である積層体。
  14.  請求項13に記載の積層体からなる包装材。
  15.  請求項13に記載の積層体からなる電池用包装材。
  16.  請求項15に記載の電池用包装材を用いてなる電池。
PCT/JP2020/045957 2019-12-25 2020-12-10 接着剤、積層体、包装材、電池用包装材、電池 WO2021131722A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021526300A JP7006845B2 (ja) 2019-12-25 2020-12-10 接着剤、積層体、包装材、電池用包装材、電池
CN202080085610.XA CN114787311B (zh) 2019-12-25 2020-12-10 粘接剂、层叠体、包装材、电池用包装材、电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019234214 2019-12-25
JP2019-234214 2019-12-25

Publications (1)

Publication Number Publication Date
WO2021131722A1 true WO2021131722A1 (ja) 2021-07-01

Family

ID=76575455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045957 WO2021131722A1 (ja) 2019-12-25 2020-12-10 接着剤、積層体、包装材、電池用包装材、電池

Country Status (4)

Country Link
JP (1) JP7006845B2 (ja)
CN (1) CN114787311B (ja)
TW (1) TW202134378A (ja)
WO (1) WO2021131722A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447522A (zh) * 2021-12-30 2022-05-06 广东粤港澳大湾区黄埔材料研究院 一种聚氨酯隔膜及其制备方法与应用
WO2023123820A1 (zh) * 2021-12-30 2023-07-06 江苏睿捷新材料科技有限公司 金属复合膜、锂离子电池装置用外包装材料及锂离子电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021102700A (ja) * 2019-12-25 2021-07-15 Dic株式会社 コーティング剤、積層体、成型体及び包装材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199761A (ja) * 2013-03-29 2014-10-23 凸版印刷株式会社 外装材、蓄電池、及び外装材の製造方法
JP2014220172A (ja) * 2013-05-10 2014-11-20 大日本印刷株式会社 電池用包装材料
WO2017038615A1 (ja) * 2015-08-28 2017-03-09 Dic株式会社 ラミネート用接着剤、多層フィルム、及びこれを用いた二次電池
WO2018066670A1 (ja) * 2016-10-05 2018-04-12 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
WO2019069896A1 (ja) * 2017-10-04 2019-04-11 Dic株式会社 接着剤、積層体、電池用部材及び電池
JP2019182976A (ja) * 2018-04-09 2019-10-24 Dic株式会社 接着剤、積層体、電池用部材及び電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10347877B2 (en) * 2013-02-06 2019-07-09 Dai Nippon Printing Co., Ltd. Battery packaging material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199761A (ja) * 2013-03-29 2014-10-23 凸版印刷株式会社 外装材、蓄電池、及び外装材の製造方法
JP2014220172A (ja) * 2013-05-10 2014-11-20 大日本印刷株式会社 電池用包装材料
WO2017038615A1 (ja) * 2015-08-28 2017-03-09 Dic株式会社 ラミネート用接着剤、多層フィルム、及びこれを用いた二次電池
WO2018066670A1 (ja) * 2016-10-05 2018-04-12 大日本印刷株式会社 電池用包装材料、その製造方法、及び電池
WO2019069896A1 (ja) * 2017-10-04 2019-04-11 Dic株式会社 接着剤、積層体、電池用部材及び電池
JP2019182976A (ja) * 2018-04-09 2019-10-24 Dic株式会社 接着剤、積層体、電池用部材及び電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447522A (zh) * 2021-12-30 2022-05-06 广东粤港澳大湾区黄埔材料研究院 一种聚氨酯隔膜及其制备方法与应用
WO2023123820A1 (zh) * 2021-12-30 2023-07-06 江苏睿捷新材料科技有限公司 金属复合膜、锂离子电池装置用外包装材料及锂离子电池

Also Published As

Publication number Publication date
JP7006845B2 (ja) 2022-01-24
CN114787311A (zh) 2022-07-22
CN114787311B (zh) 2023-05-09
JPWO2021131722A1 (ja) 2021-12-23
TW202134378A (zh) 2021-09-16

Similar Documents

Publication Publication Date Title
JP6825677B2 (ja) 接着剤、積層体、電池用包装材及び電池
JP7006845B2 (ja) 接着剤、積層体、包装材、電池用包装材、電池
KR101629304B1 (ko) 접착제 조성물, 적층체, 축전 디바이스용 포장재, 축전 디바이스용 용기 및 축전 디바이스
JP6143147B1 (ja) ラミネート用接着剤、多層フィルム、及びこれを用いた二次電池
WO2014068986A1 (ja) 電池用包装材用ポリウレタン接着剤、電池用包装材、電池用容器および電池
JP7310298B2 (ja) 接着剤、積層体、電池用包装材及び電池
WO2017221801A1 (ja) ラミネート用接着剤組成物、積層体、及び二次電池
WO2017187904A1 (ja) ラミネート用接着剤組成物、積層体、及び二次電池
JP2021120457A (ja) 接着剤組成物、積層体、包装用積層体、および包装用容器
JP2019112611A (ja) ポリオレフィン系接着剤組成物
JP7346871B2 (ja) コーティング剤、これを塗工した積層体、包装材及び加工品
JP7275774B2 (ja) 接着剤、積層体、電池用包装材及び電池
CN110607149B (zh) 接着剂、层叠体、电池用包装材、电池用容器及电池
JP2024089905A (ja) 接着剤、積層体、電池用包装材及び電池
JP2021102700A (ja) コーティング剤、積層体、成型体及び包装材
CN116355487A (zh) 电化学电池包装用涂覆剂、使用该涂覆剂的层叠体、包装材料及包装体
JP2022100700A (ja) レジストインキ、エッチング方法、電子機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021526300

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905691

Country of ref document: EP

Kind code of ref document: A1