WO2021131468A1 - 内視鏡システム及びその作動方法 - Google Patents

内視鏡システム及びその作動方法 Download PDF

Info

Publication number
WO2021131468A1
WO2021131468A1 PCT/JP2020/043833 JP2020043833W WO2021131468A1 WO 2021131468 A1 WO2021131468 A1 WO 2021131468A1 JP 2020043833 W JP2020043833 W JP 2020043833W WO 2021131468 A1 WO2021131468 A1 WO 2021131468A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
mode
mono
flash
observation
Prior art date
Application number
PCT/JP2020/043833
Other languages
English (en)
French (fr)
Inventor
久保 雅裕
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021567083A priority Critical patent/JP7362778B2/ja
Priority to CN202080090342.0A priority patent/CN114845625A/zh
Priority to EP20907448.3A priority patent/EP4082419A4/en
Publication of WO2021131468A1 publication Critical patent/WO2021131468A1/ja
Priority to US17/808,737 priority patent/US20220354351A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0655Control therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00006Operational features of endoscopes characterised by electronic signal processing of control signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000095Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope for image enhancement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/667Camera operation mode switching, e.g. between still and video, sport and normal or high- and low-resolution modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6811Motion detection based on the image signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/74Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • H04N7/183Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means

Definitions

  • the present invention relates to an endoscope system that switches and illuminates a plurality of illumination lights having different wavelength bands and switches and displays an observation image corresponding to each illumination light, and an operation method thereof.
  • an endoscope system equipped with a light source device, an endoscope, and a processor device is widely used.
  • the observation target is irradiated with illumination light from the endoscope, and the observation target being illuminated by the illumination light is imaged by the image sensor of the endoscope, and the observation target is based on the RGB image signal obtained. Display the image of.
  • the first illumination light and the second illumination light are switched according to a specific light emission pattern to emit light, and the first observation image and the second observation image are switched according to a specific display pattern and displayed. Is being displayed on.
  • Patent Document 1 when the tip of the endoscope moves unintentionally, or when the observation target is out of focus and the illumination light is difficult to hit the observation target, a plurality of illumination lights are switched and illuminated. Since the light emission mode may not be suitable, the multi-light emission mode is switched to the mono light emission mode that emits only specific illumination light when a preset specified condition is satisfied.
  • the multi-light emission mode that automatically switches a plurality of illumination lights to illuminate the observation target is switched to the mono-emission mode that emits only a specific illumination light
  • the multi-emission mode does not impose a load on the user. It is an object of the present invention to provide an endoscopic system capable of switching to a light emitting mode and a method of operating the same.
  • the endoscope system of the present invention is a light source processor that controls a plurality of semiconductor light sources that emit light in different wavelength bands and a plurality of semiconductor light sources, and emits only specific illumination light having a specific emission ratio.
  • a plurality of illumination lights including a mono emission mode and a first illumination light having a first emission ratio and a second illumination light having a second emission ratio different from the first emission ratio are emitted in a specific manner.
  • a light source processor that controls a multi-light emission mode that emits light while switching according to a pattern and an image control processor are provided, and the image control processor can be selected from the multi-light emission mode by satisfying a predetermined mono-light emission switching condition. When the mode is automatically switched to the mono-light emission mode, the mono-light emission mode is automatically switched to the multi-light emission mode when the preset multi-light emission restart condition is satisfied.
  • the image control processor automatically switches from the mono-flash mode to the multi-flash mode when the multi-flash restart condition is satisfied and the restart tolerance condition is satisfied, the multi-flash restart condition is satisfied, and the restart tolerance condition is satisfied. If not, it is preferable to prohibit automatic switching to the multi-flash mode.
  • the restart allowable condition is when the user has not selected the mono-flash mode.
  • the restart permissible condition is preferably a case where the restart permissible time has not elapsed since the mode was switched to the mono-flash mode.
  • the restart permissible condition is preferably a case where the multi-flash mode can be implemented. It is preferable to have a magnification changing unit for changing the magnification of the observation target, and the restart permissible condition is when the magnification changing unit is not used or not switched. It is preferable that the restart tolerance condition can be set by the user.
  • the multi-flash restart condition is when the observation target returns to the first part within a certain period of time after changing from the first part to the second part, or changes from the second part to the first part. It is a case of returning to the second part within a certain period of time, and the brightness of the observation target is equal to or greater than the first brightness threshold or greater than or equal to the first brightness threshold and less than or equal to the second brightness threshold.
  • the magnification of the observation target is changed, the magnification change amount of the observation target is less than the magnification threshold, and the change amount of the observation distance is less than the distance threshold.
  • the condition is a combination of at least one of the above and the case where the amount of blurring of the observation image obtained by imaging the observation target is equal to or less than the threshold value for the amount of blurring.
  • the image control processor controls to display a specific observation image obtained by imaging an observation target illuminated by a specific illumination light on the display in the case of the mono-emission mode, and displays a specific observation image on the display in the case of the multi-emission mode.
  • the present invention is a plurality of semiconductor light sources that emit light in different wavelength bands, and a light source processor that controls a plurality of semiconductor light sources, and has a mono-emission mode that emits only specific illumination light having a specific luminous ratio. While switching a plurality of illumination lights including a first illumination light having a first emission ratio and a second illumination light having a second emission ratio different from the first emission ratio according to a specific emission pattern.
  • the image control processor satisfies a predetermined mono-light emission switching condition and multi-light emission.
  • the mono-light emission mode is automatically switched to the multi-light emission mode when the preset multi-light emission restart condition is satisfied.
  • the user when switching from the multi-light emission mode that automatically switches a plurality of illumination lights to illuminate the observation target to the mono-emission mode that emits only a specific illumination light, the user is not burdened. , Can be switched to multi-flash mode.
  • the endoscope system 10 includes an endoscope 12, a light source device 14, a processor device 16, a display 18, and a user interface 19.
  • the endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16.
  • the endoscope 12 includes an insertion portion 12a to be inserted into the subject, an operation portion 12b provided at the base end portion of the insertion portion 12a, and a curved portion 12c and a tip portion 12d provided on the tip end side of the insertion portion 12a. have.
  • the angle knob 12e of the operation unit 12b By operating the angle knob 12e of the operation unit 12b, the bending unit 12c bends. Along with this bending motion, the tip portion 12d is directed in a desired direction.
  • the user interface 19 includes a mouse and the like in addition to the illustrated keyboard.
  • the operation unit 12b is provided with a mode switching SW13a, a still image acquisition instruction unit 13b, and a zoom operation unit 13c.
  • the mode switching SW13a is used for switching between the mono emission mode and the multi emission mode.
  • the mono emission mode normal light (specific illumination light) is emitted and a normal image (specific observation image) is displayed on the display 18.
  • the multi-emission mode the first illumination light for emphasizing the surface blood vessels and the second illumination light for emphasizing the deep blood vessels are switched according to a specific emission pattern to emit light.
  • the first observation image obtained by illuminating the observation target with the first illumination light and the second observation image obtained by illuminating the observation target with the second illumination light are displayed in a specific display pattern.
  • the display is switched according to the above.
  • either the first illumination light or the second illumination light may be emitted in addition to the normal light.
  • the still image acquisition instruction unit 13b is used for instructing the still image storage unit 63 (see FIG. 2) to store the still image to be observed.
  • the zoom operation unit 13c is used to operate the zoom lens 47 and the zoom drive unit 47a (see FIG. 2) provided in the endoscope 12.
  • the processor device 16 is electrically connected to the display 18 and the user interface 19.
  • the display 18 outputs and displays image information and the like.
  • the user interface 19 functions as a UI (User Interface) that accepts input operations such as function settings.
  • An external recording unit (not shown) for recording image information or the like may be connected to the processor device 16.
  • the light source device 14 includes a light source unit 20, a light source processor 21, and an optical path coupling unit 23.
  • the light source unit 20 emits light in a plurality of wavelength bands, and the light emission ratio of the light in each wavelength band can be changed.
  • "light of a plurality of wavelength bands different from each other" does not mean that a plurality of wavelength bands do not overlap at all, and a plurality of wavelength bands may partially overlap. means.
  • the light source unit 20 emits light in a plurality of wavelength bands, so that the V-LED (Violet Light Emitting Diode) 20a, B-LED (Blue Light Emitting Diode) 20b, G-LED (Green Light Emitting Diode) 20c, R- It has an LED (Red Light Emitting Diode) 20d. Since it is sufficient that the light source unit 20 is provided with a plurality of semiconductor light sources, an LD (Laser Diode) may be used instead of the LED.
  • V-LED Volt Light Emitting Diode
  • B-LED Blue Light Emitting Diode
  • G-LED Green Light Emitting Diode
  • R- It has an LED (Red Light Emitting Diode) 20d. Since it is sufficient that the light source unit 20 is provided with a plurality of semiconductor light sources, an LD (Laser Diode) may be used instead of the LED.
  • LD Laser Diode
  • the light source processor 21 controls the drive of the LEDs 20a to 20d.
  • the optical path coupling unit 23 couples the optical paths of the four colors of light emitted from the four colors of LEDs 20a to 20d.
  • the light coupled by the optical path coupling portion 23 is irradiated into the subject through the light guide 41 and the illumination lens 45 inserted into the insertion portion 12a.
  • the V-LED 20a generates purple light V having a center wavelength of 405 ⁇ 10 nm and a wavelength range of 380 to 420 nm.
  • the B-LED 20b generates blue light B having a center wavelength of 460 ⁇ 10 nm and a wavelength range of 420 to 500 nm.
  • the G-LED 20c generates green light G having a wavelength range of 480 to 600 nm.
  • the R-LED 20d generates red light R having a center wavelength of 620 to 630 nm and a wavelength range of 600 to 650 nm.
  • the light source processor 21 controls to light the V-LED20a, B-LED20b, G-LED20c, and R-LED20d in any of the observation modes. Further, the light source processor 21 emits normal light having a light intensity ratio of Vc: Bc: Gc: Rc among purple light V, blue light B, green light G, and red light R in the mono emission mode. In addition, each LED 20a to 20d is controlled (see FIG. 3). By imaging the observation target illuminated by the normal light, as shown in FIG. 4, a first observation image in which the surface blood vessels are emphasized can be obtained.
  • the luminous ratio refers to the light intensity ratio of each semiconductor light source, and includes the case where the light intensity ratio is 0 (zero).
  • the light intensity ratio between the purple light V, the blue light B, the green light G, and the red light R is 1: 0: 0: 0, only one of the semiconductor light sources is turned on, and the other three are turned on. Even if one does not light up, it shall have a luminous ratio.
  • the first illumination light emitted in the multi-emission mode has a luminous ratio of purple light V, blue light B, green light G, and red light R of Vs1: Bs1: Gs1: Rs1.
  • Each LED 20a to 20d is controlled so as to emit light at.
  • the first illumination light preferably has a peak at 400 nm or more and 440 nm or less. Therefore, as shown in FIG. 5, the first illumination light has Vs1: Bs1 so that the light intensity of the purple light V is larger than the light intensity of the other blue light B, green light G, and red light R.
  • Gs1: Rs1 is set (Vs1> Bs1, Gs1, Rs1).
  • the first illumination light has a first red band such as red light R, the color of the mucous membrane can be accurately reproduced. Further, since the first illumination light has a first blue band and a first green band such as purple light V, blue light B, and green light G, in addition to the superficial blood vessels as described above, Various structures such as glandular structure and unevenness can be emphasized.
  • the second illumination light illuminated in the multi-emission mode has a luminous ratio of purple light V, blue light B, green light G, and red light R of Vs2: Bs2: Gs2: Rs2.
  • Each LED 20a to 20d is controlled so as to emit light at.
  • the second illumination light preferably has a larger intensity ratio of 460 nm, 540 nm, and 630 nm with respect to the first illumination light.
  • the second illumination light is the blue light B, the green light G, and the red light as compared with the light amounts of the blue light B, the green light G, and the red light R in the first illumination light.
  • Vs2: Bs2: Gs2: Rs2 is set so that the amount of light of R becomes large.
  • Vs2: Bs2: Gs2: Rs2 is set so that the light intensity of the purple light V is smaller than the light intensity of the blue light B, the green light G, and the red light R (Vs2 ⁇ Bs2, Gs2). , Rs2).
  • the second illumination light has a second red band such as red light R, the color of the mucous membrane can be accurately reproduced.
  • the second illumination light has a second blue band and a second green band such as purple light V, blue light B, and green light G, in addition to the deep blood vessels as described above, Various structures such as glandular structure and unevenness can be emphasized.
  • the light source processor 21 when the light source processor 21 is set to the multi-light emission mode, the light source processor 21 automatically switches between the first illumination light and the second illumination light according to a specific emission pattern to emit light.
  • a specific emission pattern the first illumination light and the second illumination light are switched and emitted at intervals of two frames.
  • the first observation image obtained by emitting the first illumination light and the second observation image obtained by emitting the second illumination light are displayed on the display 18 as a specific display pattern by switching at intervals of two frames.
  • the light guide 41 is built in the endoscope 12 and the universal cord (the cord connecting the endoscope 12, the light source device 14 and the processor device 16), and is formed in the optical path coupling portion 23.
  • the combined light propagates to the tip portion 12d of the endoscope 12.
  • a multimode fiber can be used as the light guide 41.
  • a fine fiber cable having a core diameter of 105 ⁇ m, a clad diameter of 125 ⁇ m, and a diameter of ⁇ 0.3 to 0.5 mm including a protective layer serving as an outer skin can be used.
  • the illumination optical system 30a and an imaging optical system 30b are provided at the tip portion 12d of the endoscope 12.
  • the illumination optical system 30a has an illumination lens 45, and the light from the light guide 41 is irradiated to the observation target through the illumination lens 45.
  • the image pickup optical system 30b includes an objective lens 46, a zoom lens 47, and an image pickup sensor 48.
  • the reflected light from the observation target enters the image sensor 48 via the objective lens 46 and the zoom lens 47.
  • the zoom lens 47 can be moved along the optical axis by the zoom drive unit 47a. By moving the zoom lens 47, the observation target is enlarged or reduced.
  • the "magnification changing unit" of the present invention corresponds to a configuration including a zoom operating unit 13c, a zoom lens 47, and a zoom driving unit 47a.
  • the image pickup sensor 48 is a color image pickup sensor, which captures a reflected image of a subject and outputs an image signal.
  • the image sensor 48 is preferably a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal-Oxide Semiconductor) image sensor, or the like.
  • the image sensor 48 used in the present invention is a color image sensor for obtaining RGB image signals of three colors of R (red), G (green) and B (blue), that is, an R pixel provided with an R filter.
  • a so-called RGB imaging sensor including a G pixel provided with a G filter and a B pixel provided with a B filter.
  • the image sensor 48 is a so-called complementary color image sensor provided with complementary color filters of C (cyan), M (magenta), Y (yellow), and G (green) instead of the RGB color image sensor. May be.
  • the image signal of four colors of CMYG is output, so it is necessary to convert the image signal of four colors of CMYG into the image signal of three colors of RGB by the complementary color-primary color conversion. ..
  • the image sensor 48 may be a monochrome image sensor without a color filter. In this case, the light source processor 21 needs to turn on the blue light B, the green light G, and the red light R in a time-divided manner, and add a simultaneous process in the processing of the imaging signal.
  • the image signal output from the image sensor 48 is transmitted to the CDS / AGC circuit 50.
  • the CDS / AGC circuit 50 performs correlated double sampling (CDS (Correlated Double Sampling)) and automatic gain control (AGC (Auto Gain Control)) on an image signal which is an analog signal.
  • CDS Correlated Double Sampling
  • AGC Automatic gain control
  • the image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by the A / D converter (A / D (Analog / Digital) converter) 52.
  • the A / D converted digital image signal is input to the processor device 16.
  • the processor device 16 is provided with a program memory (not shown) for programs related to processing such as automatic mode switching.
  • the central control unit 68 configured by the image control processor operates the program in the program memory to operate the image acquisition unit 53, the DSP (Digital Signal Processor) 56, and the noise removal unit.
  • the functions of 58, the image processing unit 60, the parameter switching unit 62, the display control unit 66, and the mode automatic switching unit 69 are realized.
  • a digital color image signal from the endoscope 12 is input to the image acquisition unit 53.
  • the color image signal is composed of an R image signal output from the R pixel of the image sensor 48, a G image signal output from the G pixel of the image sensor 48, and a B image signal output from the B pixel of the image sensor 48. It is a constituent RGB image signal.
  • the DSP 56 performs various signal processing such as defect correction processing, offset processing, gain processing, color adjustment processing, gamma conversion processing, and demosaic processing on the received image signal.
  • defect correction process the signal of the defective pixel of the image sensor 48 is corrected.
  • offset processing the dark current component is removed from the RGB image signal subjected to the defect correction processing, and an accurate zero level is set.
  • the signal level is adjusted by multiplying the RGB image signal after the offset processing by a specific gain parameter.
  • the specific gain parameters are different for each observation mode. For example, in the case of the mono-emission mode, a gain process for normal light is performed by multiplying the image signal obtained by illumination and imaging of normal light by a gain parameter for normal light as a specific gain parameter. Further, in the case of the multi-emission mode, when the first illumination light is illuminated, the gain for the first illumination light is used as a specific gain parameter for the RGB image signal obtained by the illumination and imaging of the first illumination light.
  • the RGB image signal obtained by the illumination and imaging of the second illumination light is set as a specific gain parameter. 2
  • the gain process for illumination light is performed by multiplying the gain parameter for illumination light.
  • the RGB image signal after the linear matrix processing is subjected to demosaic processing (also referred to as isotropic processing and simultaneous processing), and a signal of a color lacking in each pixel is generated by interpolation.
  • demosaic processing also referred to as isotropic processing and simultaneous processing
  • the noise removing unit 58 removes noise from the RGB image signal by performing noise removing processing (for example, moving average method, median filter method, etc.) on the RGB image signal that has been gamma-corrected by DSP56.
  • noise removing processing for example, moving average method, median filter method, etc.
  • the RGB image signal from which noise has been removed is transmitted to the image processing unit 60.
  • the image processing unit 60 performs various image processing on the RGB image signal.
  • Various types of image processing include image processing performed under the same conditions regardless of the mono-emission mode or multi-emission mode, and image processing performed under different conditions for each mode.
  • the image processing performed under different conditions for each mode includes a color adjustment process for enhancing color reproducibility and a structure enhancement process for emphasizing various structures such as blood vessels and irregularities.
  • the color adjustment process and the structure enhancement process are processes using a two-dimensional LUT (Look Up Table), a three-dimensional LUT (Look Up Table), a matrix, or the like.
  • the color enhancement processing parameters set for each observation mode and the structure enhancement processing parameters are used. Switching of these color enhancement processing parameters or structure enhancement processing parameters is performed by the parameter switching unit 62.
  • the parameter switching unit 62 switches between the normal light color enhancement processing parameter and the normal light structure enhancement processing parameter. Then, the RGB image signal is subjected to the normal light color enhancement processing using the normal light color enhancement processing parameter, and the RGB image signal is used for the normal light using the normal light structure enhancement processing parameter. Perform structure enhancement processing. Then, the RGB image signal subjected to the above processing is input to the display control unit 66 as a normal image.
  • the image processing unit 60 When the image processing unit 60 is set to the multi-emission mode, when the first illumination light is illuminated, the image processing unit 60 performs the first illumination light color enhancement process and the first illumination light structure enhancement process on the RGB image signal. Give. Then, the RGB image signal subjected to the above processing is input to the display control unit 66 as the first observation image. Further, when the second illumination light is illuminated, the RGB image signal is subjected to the second illumination light color enhancement process and the second illumination light structure enhancement process. Further, when the image processing unit 60 is set to the multi-emission mode, the mucosal color balance that makes the color of the normal mucous membrane included in the observation target the same between the first observation image and the second observation image. Processing is done.
  • the first observation image is subjected to the first mucosal color balance treatment
  • the second observation image is subjected to the second mucosa color balance treatment based on the result of the first mucosal color balance treatment.
  • the RGB image signal subjected to the above processing is input to the display control unit 66 as the second observation image.
  • the average color of the entire screen is It is automatically adjusted to a specific color balance.
  • This first mucosal color balance treatment is performed on the assumption that the mucosal color is dominant in the observation target. Then, by performing the first mucosal color balance treatment, a B1 * image signal, a G1 * image signal, and an R1 * image signal that have undergone the first mucosal color balance treatment can be obtained.
  • B1ave represents the average pixel value of the B1 image signal (the sum of the pixel values of the entire screen (effective pixels) / the number of effective pixels).
  • G1ave represents the average pixel value of the G1 image signal (sum of pixel values of the entire screen (effective pixels) / number of effective pixels).
  • R1ave represents the average pixel value of the R1 image signal (sum of pixel values of the entire screen (effective pixels) / number of effective pixels).
  • the average color of the entire screen is It is automatically adjusted to a specific color balance.
  • B1ave, G1ave, and R1ave calculated in the first mucosal color balance treatment are used.
  • a B2 * image signal, a G2 * image signal, and an R2 * image signal that have undergone the second mucosal color balance treatment can be obtained.
  • the display control unit 66 controls to display the normal image, the first observation image, or the second observation image input from the image processing unit 60 as an image that can be displayed on the display 18.
  • the display control unit 66 displays a normal image on the display 18.
  • the display control unit 66 displays the first observation image or the second observation image while switching according to a specific display pattern (“two frame intervals” in the present embodiment, see FIG. 9). Display on 18.
  • the central control unit 68 executes the program and also controls each unit of the processor device 16. Further, the central control unit 68 receives information from the endoscope 12 or the light source device 14, and based on the received information, controls each part of the processor device 16 and controls the endoscope 12 or the light source device 14. Do.
  • the mode automatic switching unit 69 switches between the first observation mode and the second observation mode as shown in FIG. A process of switching from the multi-flash mode displayed on the display 18 to the mono-flash mode in which only the normal image is continuously displayed on the display 18 is performed.
  • the reason why the mode can be automatically switched in this way is that when the observation target is unchanged and there is almost no change, the mode switching may be forgotten. Since it may be difficult for the user to know which of the multi-flash mode and the mono-flash mode is set, the display 18 displays that the multi-flash mode is "multi-flash mode". In the case of the mono-flash mode, it is displayed that the mode is "mono-flash mode".
  • the usage time of the multi-flash mode is set to be equal to or longer than a predetermined time threshold.
  • a time measuring unit (not shown) provided in the processor device 16 measures the time after being set to the multi-flash mode by the mode switching SW13a. Then, when the measured time exceeds the time threshold value, as shown in FIG. 11, the multi-flash mode is automatically switched to the mono-flash mode.
  • the number of times the still image to be observed is saved is set to be equal to or more than a predetermined number of times threshold value.
  • the number of times counting unit (not shown) provided in the processor device 16 counts the number of times the still image acquisition instruction unit 13b is operated. Then, when the number of times counted exceeds the threshold value for the number of times, as shown in FIG. 12, the multi-light emission mode is automatically switched to the mono-light emission mode.
  • the mono-flash switching condition is assumed to be when the shooting conditions related to the observation target change.
  • the shooting condition acquisition unit 70 is provided in the image processing unit 60 of the processor device 16. As shown in FIG. 13, the photographing condition acquisition unit 70 includes an observation portion acquisition unit 72, a brightness calculation unit 74, a magnification acquisition unit 76, an observation distance acquisition unit 78, and a blur amount calculation unit 80. There is.
  • the observation site which is one of the imaging conditions
  • the observation site currently being imaged changes from the first site (for example, "esophagus") to the second site (for example, "esophagus”).
  • the observation site changes to "stomach"
  • the observation site changes it is considered that the tip portion 12d of the endoscope is moving, and the first illumination light or the second illumination light emitted alternately may not be reliably illuminated on the observation target. In such a case, it is not suitable for the multi-flash mode.
  • the observation site acquisition unit 72 determines the observation site from the image feature amount of the first observation image or the second observation image obtained in the multi-emission mode. For example, when the central part of the screen is darker than the other peripheral parts in the first observation image or the second observation image, the observation part is determined to be the "esophagus”. Further, when the central part of the screen is brighter than the other peripheral parts in the first observation image or the second observation image, it is determined that the observation part is the “stomach”.
  • FIG. As a mono-flash switching condition, when the brightness of the observation target, which is one of the shooting conditions, is equal to or less than the first brightness threshold value or greater than or equal to the first brightness threshold value, FIG. As shown in, it automatically switches from the multi-flash mode to the mono-flash mode.
  • the entire observation target When the brightness is equal to or less than the first brightness threshold value, the entire observation target is dark, and the state is not suitable for the multi-flash mode.
  • the brightness is equal to or higher than the second brightness threshold value, the entire observation target is extremely bright, such as when halation occurs, so that the state is not suitable for the multi-flash mode.
  • Information on the brightness is acquired by the brightness calculation unit 74.
  • the brightness calculation unit 74 calculates the average value of the pixel values from the first observation image or the second observation image, and calculates the brightness from the calculated average value of the pixel values.
  • the larger the average value of the pixel values the larger the brightness.
  • the multi-flash mode is automatically switched to the mono-flash mode as shown in FIG. Switch.
  • the magnification of the observation target changes significantly and the amount of change in magnification exceeds the magnification threshold value, the illumination distribution of the illumination light for the observation target changes, which is often not suitable for the multi-emission mode.
  • the zoom information of which magnification is set is transmitted to the magnification acquisition unit 76.
  • the mode automatic switching unit 69 determines whether or not the magnification change amount exceeds the magnification threshold value with reference to the zoom information acquired by the magnification acquisition unit 76.
  • FIG. As a mono-emission switching condition, with respect to the observation distance (distance between the tip end 12d of the endoscope and the observation target), which is one of the imaging conditions, when the amount of change in the observation distance exceeds the distance threshold, FIG. As shown, it automatically switches from multi-flash mode to mono-flash mode. Similar to the magnification of the observation target, when the observation distance changes significantly and the amount of change in the observation distance exceeds the distance threshold, the illumination distribution of the illumination light for the observation target changes, and the multi-emission mode is set. Often not suitable.
  • the observation distance acquisition unit 78 calculates the average value of the pixel values from the first observation image or the second observation image obtained in the multi-emission mode, and observes the distance from the calculated average value of the pixel values. Ask for. Here, it is said that the larger the average value of the pixel values, the smaller the observation distance.
  • the blur amount calculation unit 80 obtains the contrast from the first observation image or the second observation image obtained in the multi-emission mode, and calculates the amount of blur from the contrast. The lower the contrast, the greater the amount of blur. In addition to using contrast, the amount of blur may be calculated from the frequency components of the first observation image or the second observation image (the lower the frequency component, the larger the amount of blur). ..
  • the mono-flash switching conditions used for automatic switching from the multi-flash mode to the mono-flash mode can be appropriately set by the user.
  • the user operates the user interface 19 to display the mono-flash switching condition setting menu 82 shown in FIG. 19 on the display 18.
  • the “time threshold” and the “number of times threshold” can be set.
  • the multi emission mode is changed to mono when the usage time of the multi emission mode reaches "100 seconds". It automatically switches to the flash mode.
  • the same multi-flash restart condition setting menu as the mono flash switching condition setting menu 82 is displayed on the display 18. , It is preferable to be able to set as appropriate.
  • first part and second part can be set.
  • the observation part changes from “esophagus” to “stomach”, or from “stomach” to “stomach”.
  • it changes to "esophagus” it automatically switches from multi-flash mode to mono-flash mode.
  • the "first brightness threshold value” and the “second brightness threshold value” can be set.
  • the “first brightness threshold” is set to P1 and the “second brightness threshold” is set to P2 (> P1), when the brightness of the observation target is P1 or less, or P2 or more, It automatically switches from multi-flash mode to mono-flash mode.
  • the "threshold value for magnification” can be set.
  • the “magnification threshold” is set to "5 times”
  • the multi-flash mode is automatically switched to the mono-flash mode when the amount of change in the magnification of the observation target exceeds "5 times”.
  • the “distance threshold” can be set.
  • the “threshold value for blur amount” can be set.
  • the “threshold value for blur amount” is set to Br, when the blur amount exceeds Br, the multi-flash mode is automatically switched to the mono flash mode.
  • the mode automatic switching unit 69 When the mode automatic switching unit 69 automatically switches from the multi-flash mode to the mono-flash mode by satisfying the mono-flash switching condition, the mode automatic switching unit 69 satisfies the preset multi-flash restart condition as shown in FIG. In this case, it automatically switches from mono-flash mode to multi-flash mode.
  • the mode When the shooting conditions for the observation target change, the mode is automatically switched to mono-flash mode, but when the change in the shooting conditions for the observation target is within the permissible range, or when the multi-flash restart condition is satisfied. Is preferably automatically switched from the mono-flash mode to the multi-flash mode. It should be noted that the change in the shooting conditions within the permissible range does not affect the visibility of the switching display between the first observation image and the second observation image obtained by the multi-flash mode even if the change in the shooting conditions is obtained. Say that.
  • the multi-luminescence restart condition is when the observation target changes from the first part (for example, "esophagus") to the second part (for example, "stomach") and then returns to the first part within a certain period of time. Or, it is preferable that the case returns to the second part within a certain period of time after changing from the second part to the first part.
  • the mono emission mode is automatically switched to the multi emission mode. This is because when the observed part immediately returns to the original part, the lighting conditions do not change so much and the light emitting state by the multi-light emitting mode is not affected.
  • Information about the observation site is acquired by the observation site acquisition unit 72 in the same manner as described above.
  • the multi-flash restart condition is preferably when the brightness of the observation target is equal to or higher than the first brightness threshold value or equal to or lower than the first brightness threshold value.
  • the mono emission mode is automatically switched to the multi emission mode. Even if the brightness becomes darker or brighter, if it returns to the original normal brightness (above the first brightness threshold or below the first brightness threshold) after a certain period of time, it is multi. This is because it does not affect the light emitting state depending on the light emitting mode.
  • Information on the brightness is acquired by the brightness calculation unit 74 in the same manner as described above.
  • the magnification change amount of the observation target is less than the magnification threshold value.
  • the mono emission mode is automatically switched to the multi emission mode. If the change in the magnification of the observation target is not so large and the amount of change in the magnification temporarily exceeds the magnification threshold value and immediately falls below the magnification threshold value, the light emission state is set to the multi-flash mode. This is because it does not affect it.
  • the magnification of the observation target is acquired by the magnification acquisition unit 76 in the same manner as described above.
  • the multi-flash restart condition is preferably when the amount of change in the observation distance is equal to or less than the distance threshold.
  • the mono emission mode is automatically switched to the multi emission mode. If the change in the observation distance is not so large and the amount of change in the observation distance temporarily exceeds the distance threshold value and immediately falls below the distance threshold value, the light emission state is set to the multi-flash mode. This is because it does not affect it.
  • the observation distance is acquired by the observation distance acquisition unit 78 in the same manner as described above.
  • the multi-flash restart condition is preferably when the blur amount of the observed image is equal to or less than the blur amount threshold.
  • the mono emission mode is automatically switched to the multi emission mode. If the amount of blur in the image is not so large and the amount of blur exceeds the threshold for the amount of blur temporarily, and immediately falls below the threshold for the amount of blur, it affects the light emission state by the multi-flash mode. This is because it does not give.
  • the amount of blur is calculated by the blur amount calculation unit 80 in the same manner as described above.
  • the mode automatic switching unit 69 performs multi-flash from the mono-flash mode when the multi-flash restart condition and the restart allowable condition are satisfied.
  • the restart tolerance condition can be set by the user.
  • a restart permissible presence / absence flag indicating the restart permissible condition is used. When the restart allowance flag is "1", it means that the restart allowance condition is not satisfied, and when the restart allowance flag is "0", it means that the restart allowance condition is satisfied (FIGS. 20 to 25). reference).
  • the restart allowable condition is when the user has not selected the mono-flash mode. It is preferable to operate the user interface 19 to select the mono emission mode. When the user selects the mono emission mode, the restart allowance flag is set to "0", and when the mono emission mode is not selected, the restart allowance flag is set to "1". When the user voluntarily selects the mono-flash mode, it is preferable not to automatically switch to the multi-flash mode.
  • the restart permissible condition is a case where the restart permissible time has not elapsed since the mono-flash switching condition was satisfied and the multi-flash mode was automatically switched to the mono-flash mode.
  • the time measuring unit (not shown) measures the time after switching to the mono-flash mode. If the measured time does not elapse the restart allowance time, the restart allowance flag is maintained at "1". Then, when the measured time has passed the restart permissible time, the restart permissible presence / absence flag is switched to "0". After the resumption allowable time has elapsed, it is considered that the state is suitable for observation based on the mono-emission mode, and therefore it is preferable not to automatically switch to the multi-emission mode.
  • the restart permissible condition is preferably when the multi-flash mode can be implemented.
  • the determination of whether or not the multi-flash mode can be performed is performed by the multi-flash mode enablement determination unit (not shown) of the processor device 16.
  • the multi-light emission mode enablement determination unit detects an abnormality related to the endoscope 12, the light source device 14, and the processor device 16, and determines whether the multi-light emission mode can be implemented or not based on the detection result. judge. In this case, if the multi-flash mode enablement determination unit determines that the multi-flash mode is feasible, the restart allowance flag is set to "1", and if it is determined that the multi-flash mode cannot be implemented, the multi-flash mode is not feasible.
  • the restart allowance flag is set to "0".
  • the restart permissible condition is when the magnification change unit is not used or not switched.
  • the use of the magnification changing unit means a state in which the magnification can be changed by turning the zoom operation unit 13c "ON".
  • the non-use of the magnification changing unit means a state in which the zoom operation unit 13c is set to "OFF" and the magnification is not changed. In this case, if the mono-flash switching condition is satisfied and the mode is automatically switched to the mono-flash mode, and then there is no switching between use and non-use of the magnification changing unit, the restart permission presence / absence flag is set to "1".
  • the restart permission presence / absence flag is set to "0".
  • the magnification change unit is used or not used, an object different from the previous multi-flash mode is observed, and the multi-flash mode is not always used. Therefore, the multi-flash mode is selected. It is preferable not to switch automatically.
  • the first illumination light and the second illumination light are switched and emitted according to a specific emission pattern (interval between two frames in the present embodiment). Then, the first observation image obtained by imaging the observation object illuminated by the first illumination light and the second observation image obtained by imaging the observation object illuminated by the second illumination light are displayed in a specific manner. It is switched and displayed on the display 18 according to a pattern (interval between two frames in this embodiment).
  • the mono-flash switching condition includes a case where the usage time of the multi-flash mode exceeds the time threshold value and a case where the number of times the still image is saved exceeds the number-time threshold value.
  • the shooting conditions related to the observation target may change.
  • the processor device 16 monitors whether or not the multi-flash restart condition is satisfied.
  • the multi-flash restart condition is satisfied and the restart allowable condition is satisfied
  • the mono-flash mode is automatically switched to the multi-flash mode.
  • the multi-flash restart condition is satisfied, if the restart allowable condition is not satisfied, it is prohibited to automatically switch to the multi-flash mode. Further, even if the multi-flash restart condition is not satisfied, it is prohibited to automatically switch to the multi-flash mode. If automatic switching to the multi-flash mode is prohibited, the mono-flash mode is continued.
  • the first illumination light and the second illumination light are switched and emitted according to a specific emission pattern, and the first observation image and the second illumination light corresponding to the first illumination light are used.
  • the corresponding second observation image is switched and displayed on the display 18 according to a specific display pattern, but three or more types of illumination lights having different wavelength bands are emitted while switching according to a specific light emission pattern.
  • three or more types of observation images corresponding to each illumination light may be switched and displayed on the display 18 according to a specific display pattern.
  • a processing unit included in the processor device 16, such as an image acquisition unit 53, a DSP 56, a noise removal unit 58, an image processing unit 60, a parameter switching unit 62, a central control unit 68, and a mode automatic switching unit 69.
  • the hardware structure of) is various processors as shown below.
  • the circuit configuration is changed after manufacturing the CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units. It includes a programmable logic device (PLD), which is a possible processor, a dedicated electric circuit, which is a processor having a circuit configuration specially designed for executing various processes, and the like.
  • PLD programmable logic device
  • One processing unit may be composed of one of these various processors, or may be composed of a combination of two or more processors of the same type or different types (for example, a plurality of FPGAs or a combination of a CPU and an FPGA). May be done. Further, a plurality of processing units may be configured by one processor. As an example of configuring a plurality of processing units with one processor, first, as represented by a computer such as a client or a server, one processor is configured by a combination of one or more CPUs and software. There is a form in which this processor functions as a plurality of processing units.
  • SoC System On Chip
  • a processor that realizes the functions of the entire system including a plurality of processing units with one IC (Integrated Circuit) chip is used.
  • the various processing units are configured by using one or more of the above-mentioned various processors as a hardware-like structure.
  • the hardware structure of these various processors is, more specifically, an electric circuit in the form of a combination of circuit elements such as semiconductor elements.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Endoscopes (AREA)

Abstract

複数の照明光を自動的に切り替えて観察対象に照明するマルチ発光モードから、特定の照明光のみを発光するモノ発光モードに切り替えた場合において、ユーザーに負荷をかけることなく、マルチ発光モードに切り替えることができる内視鏡システム及びその作動方法を提供する。 予め定めたモノ発光切替条件を満たすことにより、マルチ発光モードからモノ発光モードに自動的に切り替えた場合において、予め設定されたマルチ発光再開条件を満たした場合に、モノ発光モードからマルチ発光モードに自動的に切り替える。

Description

内視鏡システム及びその作動方法
 本発明は、波長帯域が異なる複数の照明光を切り替えて照明し、各照明光に対応する観察画像を切り替えて表示する内視鏡システム及びその作動方法に関する。
 近年の医療分野では、光源装置、内視鏡、プロセッサ装置を備える内視鏡システムが広く用いられている。内視鏡システムでは、内視鏡から観察対象に照明光を照射し、その照明光で照明中の観察対象を内視鏡の撮像素子で撮像して得られるRGB画像信号に基づいて、観察対象の画像をディスプレイ上に表示する。
 また、近年においては、波長帯域が異なる複数の照明光を用いて、観察対象の照明を行うことにより、観察対象から多くの診断情報を得ることも行われている。例えば、特許文献1では、第1照明光と第2照明光とを、特定の発光パターンに従って、切り替えながら発光し、第1観察画像と第2観察画像を、特定の表示パターンに従って、切り替えてディスプレイに表示することが行われている。
国際公開第2019/093356号
 特許文献1では、内視鏡の先端部が意図せず動いたり、また、観察対象のピントがずれて照明光が観察対象に当たりにくくなる場合などには、複数の照明光を切り替えて照明するマルチ発光モードが適さないことがあるから、予め設定された指定条件を満たした場合に、マルチ発光モードから、特定の照明光のみを発光するモノ発光モードに切り替えるようにしている。
 しかしながら、モノ発光モードに切り替えた場合であっても、観察対象に関する撮影条件の変化が一時的であり、直ぐに、マルチ発光モードに適した撮影条件に回復する場合には、ユーザーが再びマルチ発光モードによる観察を望むことが多い。このような場合に、ユーザーが手動でマルチ発光モードを選択し直すのは、非常に煩雑、かつストレスフルである。
 本発明は、複数の照明光を自動的に切り替えて観察対象に照明するマルチ発光モードから、特定の照明光のみを発光するモノ発光モードに切り替えた場合において、ユーザーに負荷をかけることなく、マルチ発光モードに切り替えることができる内視鏡システム及びその作動方法を提供することを目的とする。
 本発明の内視鏡システムは、互いに異なる波長帯域の光を発光する複数の半導体光源と、複数の半導体光源を制御する光源用プロセッサであり、特定の発光比率を有する特定の照明光のみを発光するモノ発光モードと、第1の発光比率を有する第1の照明光と第1の発光比率と異なる第2の発光比率を有する第2の照明光とを含む複数の照明光を、特定の発光パターンに従って、切り替えながら発光するマルチ発光モードとに関する制御を行う光源用プロセッサと、画像制御用プロセッサとを備え、画像制御用プロセッサは、予め定めたモノ発光切替条件を満たすことにより、マルチ発光モードからモノ発光モードに自動的に切り替えた場合において、予め設定されたマルチ発光再開条件を満たした場合に、モノ発光モードからマルチ発光モードに自動的に切り替える。
 画像制御用プロセッサは、マルチ発光再開条件を満たし、且つ、再開許容条件を満たす場合に、モノ発光モードからマルチ発光モードに自動的に切り替え、マルチ発光再開条件を満たし、且つ、再開許容条件を満たさない場合に、マルチ発光モードに自動的に切り替えることを禁止することが好ましい。
 再開許容条件は、ユーザーがモノ発光モードを選択していない場合であることが好ましい。再開許容条件は、モノ発光モードに切り替えてから再開許容時間を経過していない場合であることが好ましい。再開許容条件は、マルチ発光モードの実施が可能である場合であることが好ましい。観察対象の倍率を変化させるための倍率変更部を有し、再開許容条件は、倍率変更部の使用又は不使用の切替えが行われていない場合であることが好ましい。再開許容条件はユーザーにより設定が可能であることが好ましい。
 マルチ発光再開条件は、観察対象に関する撮影条件の変化が許容範囲内であることが好ましい。マルチ発光再開条件は、観察対象が、第1の部位から第2の部位に変わってから一定時間内に、第1の部位に戻った場合、または第2の部位から第1の部位に変わってから一定時間内に、第2の部位に戻った場合であること、観察対象の明るさが、第1明るさ用閾値以上、または第1明るさ用閾値より大きい第2明るさ閾値以下となった場合であること、観察対象の倍率を変化させる場合において、観察対象の倍率変化量が倍率用閾値未満となった場合であること、観察距離の変化量が距離用閾値以下となった場合であること、及び、観察対象を画像化した観察画像のブレ量がブレ量用閾値以下となった場合であることのうち少なくとも1以上を組み合せた条件であることが好ましい。
 画像制御用プロセッサは、モノ発光モードの場合には、特定の照明光により照明された観察対象を撮像して得られる特定の観察画像をディスプレイに表示する制御を行い、マルチ発光モードの場合には、第1の照明光により照明された観察対象を撮像して得られる第1の観察画像と第2の照明光により照明された観察対象を撮像して得られる第2の観察画像とを含む複数の観察画像を、特定の表示パターンに従って、切り替えてディスプレイに表示する制御を行うことが好ましい。
 本発明は、互いに異なる波長帯域の光を発光する複数の半導体光源と、複数の半導体光源を制御する光源用プロセッサであり、特定の発光比率を有する特定の照明光のみを発光するモノ発光モードと、第1の発光比率を有する第1の照明光と第1の発光比率と異なる第2の発光比率を有する第2の照明光とを含む複数の照明光を、特定の発光パターンに従って、切り替えながら発光するマルチ発光モードとに関する制御を行う光源用プロセッサと、画像制御用プロセッサとを備える内視鏡システムの作動方法において、画像制御用プロセッサは、予め定めたモノ発光切替条件を満たして、マルチ発光モードからモノ発光モードに自動的に切り替えた場合において、予め設定されたマルチ発光再開条件を満たした場合に、モノ発光モードからマルチ発光モードに自動的に切り替える。
 本発明によれば、複数の照明光を自動的に切り替えて観察対象に照明するマルチ発光モードから、特定の照明光のみを発光するモノ発光モードに切り替えた場合において、ユーザーに負荷をかけることなく、マルチ発光モードに切り替えることができる。
第1実施形態の内視鏡システムの外観図である。 第1実施形態の内視鏡システムの機能を示すブロック図である。 紫色光V、青色光B、緑色光G、及び赤色光Rの発光スペクトルを示すグラフである。 通常画像を示す画像図である。 紫色光V、青色光B、緑色光G、及び赤色光Rを含む第1照明光の発光スペクトルを示すグラフである。 第1観察画像を示す画像図である。 紫色光V、青色光B、緑色光G、及び赤色光Rを含む第2照明光の発光スペクトルを示すグラフである。 第2観察画像を示す画像図である。 マルチ発光モードにおける第1照明光及び第2照明光の発光と第1観察画像及び第2観察画像の表示を示す説明図である。 マルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 マルチ発光モードの使用時間が時間用閾値以上となった場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 静止画の保存回数が回数用閾値以上となった場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 撮影条件取得部の機能を示すブロック図である。 観察部位が第1の部位から第2の部位に変化した場合、又は観察部位が第2の部位から第1の部位に変化した場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 明るさが第1明るさ用閾値以下、又は明るさが第2明るさ閾値以上となる場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 倍率変化量が倍率用閾値を超える場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 観察距離の変化量が距離用閾値を超える場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 ブレ量がブレ量用閾値を超える場合にマルチ発光モードからモノ発光モードに自動切替することを示す説明図である。 モノ発光切替条件設定メニューを示す画像図である。 モノ発光モードからマルチ発光モードに自動切替することを示す説明図である。 元の観察部位に戻って観察する場合にモノ発光モードからマルチ発光モードに自動切替することを示す説明図である。 明るさが第1明るさ用閾値以上、又は明るさが第2明るさ閾値以下となる場合にモノ発光モードからマルチ発光モードに自動切替することを示す説明図である。 倍率変化量が倍率用閾値未満となる場合にモノ発光モードからマルチ発光モードに自動切替することを示す説明図である。 観察距離の変化量が距離用閾値以下となる場合にモノ発光モードからマルチ発光モードに自動切替することを示す説明図である。 ブレ量がブレ量用閾値以下となる場合にモノ発光モードからマルチ発光モードに自動切替することを示す説明図である。 本発明を含む一連の流れを示すフローチャートである。
 図1に示すように、内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16と、ディスプレイ18と、ユーザーインターフェース19とを有する。内視鏡12は光源装置14と光学的に接続され、且つ、プロセッサ装置16と電気的に接続される。内視鏡12は、被検体内に挿入される挿入部12aと、挿入部12aの基端部分に設けられた操作部12bと、挿入部12aの先端側に設けられる湾曲部12c及び先端部12dを有している。操作部12bのアングルノブ12eを操作することにより、湾曲部12cは湾曲動作する。この湾曲動作に伴って、先端部12dが所望の方向に向けられる。なお、ユーザーインターフェース19は図示したキーボードの他、マウスなどが含まれる。
 また、操作部12bには、アングルノブ12eの他、モード切替SW13a、静止画取得指示部13b、ズーム操作部13cが設けられている。モード切替SW13aは、モノ発光モードと、マルチ発光モードの切り替えに用いられる。モノ発光モードは、通常光(特定の照明光)を発光して、通常画像(特定の観察画像)をディスプレイ18に表示する。マルチ発光モードは、表層血管を強調するための第1照明光と深層血管を強調するための第2照明光とを、特定の発光パターンに従って、切り替えて発光を行う。また、マルチ発光モードでは、第1照明光を観察対象に照明して得られる第1観察画像と、第2照明光を観察対象に照明して得られる第2観察画像とを、特定の表示パターンに従って、切り替えてディスプレイ18に表示する。なお、モノ発光モードでは、通常光の他に、第1照明光又は第2照明光のいずれかを発光してもよい。
 静止画取得指示部13bは、観察対象の静止画を静止画保存部63(図2参照)に保存するための指示に用いられる。ズーム操作部13cは、内視鏡12に設けられたズームレンズ47及びズーム駆動部47a(図2参照)の操作に用いられる。
 プロセッサ装置16は、ディスプレイ18及びユーザーインターフェース19と電気的に接続される。ディスプレイ18は、画像情報等を出力表示する。ユーザーインターフェース19は、機能設定等の入力操作を受け付けるUI(User Interface:ユーザーインターフェース)として機能する。なお、プロセッサ装置16には、画像情報等を記録する外付けの記録部(図示省略)を接続してもよい。
 図2に示すように、光源装置14は、光源部20と、光源用プロセッサ21と、光路結合部23とを有している。光源部20は、複数波長帯域の光を発光し、且つ、各波長帯域の光の発光比率の変更が可能となっている。なお、本明細書において、「互いに異なる複数の波長帯域の光」とは、複数の波長帯域が全く重ならないことを意味するものではなく、複数の波長帯域が一部重なっていてもよいことを意味する。光源部20は、複数波長帯域の光を発するために、V-LED(Violet Light Emitting Diode)20a、B-LED(Blue Light Emitting Diode)20b、G-LED(Green Light Emitting Diode)20c、R-LED(Red Light Emitting Diode)20dを有している。なお、光源部20には複数の半導体光源を設けられていればよいため、LEDの代わりに、LD(Laser Diode)を用いてもよい。
 光源用プロセッサ21は、LED20a~20dの駆動を制御する。光路結合部23は、4色のLED20a~20dから発せられる4色の光の光路を結合する。光路結合部23で結合された光は、挿入部12a内に挿通されたライトガイド41及び照明レンズ45を介して、被検体内に照射される。
 図3に示すように、V-LED20aは、中心波長405±10nm、波長範囲380~420nmの紫色光Vを発生する。B-LED20bは、中心波長460±10nm、波長範囲420~500nmの青色光Bを発生する。G-LED20cは、波長範囲が480~600nmに及ぶ緑色光Gを発生する。R-LED20dは、中心波長620~630nmで、波長範囲が600~650nmに及ぶ赤色光Rを発生する。
 光源用プロセッサ21は、いずれの観察モードにおいても、V-LED20a、B-LED20b、G-LED20c、及びR-LED20dを点灯する制御を行う。また、光源用プロセッサ21は、モノ発光モード時には、紫色光V、青色光B、緑色光G、及び赤色光R間の光強度比がVc:Bc:Gc:Rcとなる通常光を発光するように、各LED20a~20dを制御する(図3参照)。この通常光により照明された観察対象を撮像することにより、図4に示すように、表層血管が強調された第1観察画像が得られる。なお、本明細書において、発光比率とは、各半導体光源の光強度比をいい、光強度比は0(ゼロ)の場合を含む。したがって、各半導体光源のいずれか1つまたは2つ以上が点灯しない場合を含む。例えば、紫色光V、青色光B、緑色光G、及び赤色光R間の光強度比が1:0:0:0の場合のように、半導体光源の1つのみを点灯し、他の3つは点灯しない場合も、発光比率を有するものとする。
 また、光源用プロセッサ21は、マルチ発光モードの場合に発光される第1照明光は、紫色光V、青色光B、緑色光G、及び赤色光Rの発光比率がVs1:Bs1:Gs1:Rs1にて発光するように、各LED20a~20dを制御する。第1照明光は、400nm以上440nm以下にピークを有することが好ましい。そのため、第1照明光は、図5に示すように、紫色光Vの光強度が、その他の青色光B、緑色光G、及び赤色光Rの光強度よりも大きくなるように、Vs1:Bs1:Gs1:Rs1が設定されている(Vs1>Bs1、Gs1、Rs1)。この第1照明光により照明された観察対象を撮像することにより、図6に示すように、表層血管が強調された第1観察画像が得られる。
 また、第1照明光には、赤色光Rのような第1の赤色帯域を有しているため、粘膜の色を正確に再現することができる。さらに、第1照明光には、紫色光V、青色光B、緑色光Gのように第1の青色帯域及び第1の緑色帯域を有しているため、上記のような表層血管の他、腺管構造や凹凸など各種構造も強調することができる。
 また、光源用プロセッサ21は、マルチ発光モードの場合に照明される第2照明光は、紫色光V、青色光B、緑色光G、及び赤色光Rの発光比率がVs2:Bs2:Gs2:Rs2にて発光するように、各LED20a~20dを制御する。第2照明光は、第1照明光に対して、460nm、540nm、630nmの強度比を大きくすることが好ましい。
 そのため、第2照明光は、図7に示すように、第1照明光における青色光B、緑色光G、及び赤色光Rの光量と比較して、青色光B、緑色光G、及び赤色光Rの光量が大きくなるように、Vs2:Bs2:Gs2:Rs2が設定されている。この第2照明光により照明された観察対象を撮像することにより、図8に示すように、中深層血管が強調された第1観察画像が得られる。
 また、紫色光Vの光強度は、青色光B、緑色光G、及び赤色光Rの光強度よりも小さくなるように、Vs2:Bs2:Gs2:Rs2が設定されている(Vs2<Bs2、Gs2、Rs2)。また、第2照明光には、赤色光Rのような第2の赤色帯域を有しているため、粘膜の色を正確に再現することができる。さらに、第2照明光には、紫色光V、青色光B、緑色光Gのように第2の青色帯域及び第2の緑色帯域を有しているため、上記のような深層血管の他、腺管構造や凹凸など各種構造も強調することができる。
 また、光源用プロセッサ21は、マルチ発光モードに設定されている場合には、第1照明光と第2照明光とを、特定の発光パターンに従って、自動的に切り替えて発光する制御を行う。本実施形態では、図9に示すように、特定の発光パターンとして、第1照明光と第2照明光とを、2フレーム間隔で、切り替えて発光する。また、第1照明光の発光により得られる第1観察画像と第2照明光の発光により得られる第2観察画像は、特定の表示パターンとして、2フレーム間隔で切り替えてディスプレイ18に表示される。
 図2に示すように、ライトガイド41は、内視鏡12及びユニバーサルコード(内視鏡12と光源装置14及びプロセッサ装置16とを接続するコード)内に内蔵されており、光路結合部23で結合された光を内視鏡12の先端部12dまで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3~0.5mmの細径なファイバケーブルを使用することができる。
 内視鏡12の先端部12dには、照明光学系30aと撮像光学系30bが設けられている。照明光学系30aは照明レンズ45を有しており、この照明レンズ45を介して、ライトガイド41からの光が観察対象に照射される。撮像光学系30bは、対物レンズ46、ズームレンズ47、及び撮像センサ48を有している。観察対象からの反射光は、対物レンズ46及びズームレンズ47を介して、撮像センサ48に入射する。これにより、撮像センサ48に観察対象の反射像が結像される。ズームレンズ47はズーム駆動部47aにより光軸に沿って移動が可能である。このズームレンズ47が移動することにより、観察対象が拡大又は縮小される。なお、本発明の「倍率変更部」は、ズーム操作部13c、ズームレンズ47、及びズーム駆動部47aを含む構成に対応する。
 撮像センサ48はカラーの撮像センサであり、被検体の反射像を撮像して画像信号を出力する。この撮像センサ48は、CCD(Charge Coupled Device)撮像センサやCMOS(Complementary Metal-Oxide Semiconductor)撮像センサ等であることが好ましい。本発明で用いられる撮像センサ48は、R(赤)、G(緑)及びB(青)の3色のRGB画像信号を得るためのカラーの撮像センサ、即ち、Rフィルタが設けられたR画素、Gフィルタが設けられたG画素、Bフィルタが設けられたB画素を備えた、いわゆるRGB撮像センサである。
 なお、撮像センサ48としては、RGBのカラーの撮像センサの代わりに、C(シアン)、M(マゼンタ)、Y(イエロー)及びG(緑)の補色フィルタを備えた、いわゆる補色撮像センサであっても良い。補色撮像センサを用いる場合には、CMYGの4色の画像信号が出力されるため、補色-原色色変換によって、CMYGの4色の画像信号をRGBの3色の画像信号に変換する必要がある。また、撮像センサ48はカラーフィルタを設けていないモノクロ撮像センサであっても良い。この場合、光源用プロセッサ21は青色光B、緑色光G、及び赤色光Rを時分割で点灯させて、撮像信号の処理では同時化処理を加える必要がある。
 撮像センサ48から出力される画像信号は、CDS/AGC回路50に送信される。CDS/AGC回路50は、アナログ信号である画像信号に相関二重サンプリング(CDS(Correlated Double Sampling))や自動利得制御(AGC(Auto Gain Control))を行う。CDS/AGC回路50を経た画像信号は、A/D変換器(A/D(Analog /Digital)コンバータ)52により、デジタル画像信号に変換される。A/D変換されたデジタル画像信号は、プロセッサ装置16に入力される。
 プロセッサ装置16には、モード自動切替などの処理に関するプログラムがプログラム用メモリ(図示しない)が設けられている。プロセッサ装置16においては、画像制御用プロセッサによって構成される中央制御部68によって、プログラム用メモリ内のプログラムが動作することによって、画像取得部53と、DSP(Digital Signal Processor)56と、ノイズ除去部58と、画像処理部60と、パラメータ切替部62と、表示制御部66と、モード自動切替部69の機能が実現される。
 画像取得部53には、内視鏡12からのデジタルのカラー画像信号が入力される。カラー画像信号は、撮像センサ48のR画素から出力されるR画像信号と、撮像センサ48のG画素から出力されるG画像信号と、撮像センサ48のB画素から出力されるB画像信号とから構成されるRGB画像信号である。
 DSP56は、受信した画像信号に対して、欠陥補正処理、オフセット処理、ゲイン処理、色調整処理、ガンマ変換処理、又はデモザイク処理等の各種信号処理を施す。欠陥補正処理では、撮像センサ48の欠陥画素の信号が補正される。オフセット処理では、欠陥補正処理が施されたRGB画像信号から暗電流成分が除かれ、正確な零レベルが設定される。
 ゲイン処理では、オフセット処理後のRGB画像信号に特定のゲインパラメータを乗じることにより信号レベルが整えられる。特定のゲインパラメータは、観察モード毎に異なっている。例えば、モノ発光モードの場合であれば、通常光の照明及び撮像により得られた画像信号に対して、特定のゲインパラメータとして、通常光用ゲインパラメータを乗じる通常光用ゲイン処理を行う。また、マルチ発光モードの場合であれば、第1照明光の照明時には、第1照明光の照明及び撮像により得られたRGB画像信号に対して、特定のゲインパラメータとして、第1照明光用ゲインパラメータを乗じる第1照明光用ゲイン処理が行われ、且つ、第2照明光の照明時には、第2照明光の照明及び撮像により得られたRGB画像信号に対して、特定のゲインパラメータとして、第2照明光用ゲインパラメータを乗じる第2照明光用ゲイン処理が行われる。
 その後、ガンマ変換処理によって明るさや彩度が整えられる。リニアマトリクス処理後のRGB画像信号には、デモザイク処理(等方化処理、同時化処理とも言う)が施され、各画素で不足した色の信号が補間によって生成される。このデモザイク処理によって、全画素がRGB各色の信号を有するようになる。
 ノイズ除去部58は、DSP56でガンマ補正等が施されたRGB画像信号に対してノイズ除去処理(例えば移動平均法やメディアンフィルタ法等)を施すことによって、RGB画像信号からノイズを除去する。ノイズが除去されたRGB画像信号は、画像処理部60に送信される。
 画像処理部60は、RGB画像信号に対して、各種の画像処理を施す。各種の画像処理には、モノ発光モード又はマルチ発光モードに関わらず同じ条件で行われる画像処理の他、モード毎に異なる条件で行われる画像処理がある。モード毎に異なる条件で行われる画像処理には、色再現性を高めるための色調整処理、及び、血管や凹凸などの各種構造を強調するための構造強調処理が含まれる。色調整処理及び構造強調処理は、2次元LUT(Look Up Table)、3次元LUT(Look Up Table)、又はマトリックスなどを用いる処理である。画像処理部60では、色強調処理及び構造強調処理を行う場合には、観察モード毎に設定された色強調処理パラメータと、構造強調処理パラメータが用いられる。これら色強調処理パラメータ又は構造強調処理パラメータの切替は、パラメータ切替部62により行われる。
 画像処理部60は、モノ発光モードにセットされている場合には、パラメータ切替部62によって通常光用色強調処理パラメータと通常光用構造強調処理パラメータに切り替えられる。そして、通常光用色強調処理パラメータを用いて、RGB画像信号に対して通常光用色強調処理を施し、且つ、通常光用構造強調処理パラメータを用いて、RGB画像信号に対して通常光用構造強調処理を施す。そして、以上の処理が施されたRGB画像信号は、通常画像として、表示制御部66に入力される。
 画像処理部60は、マルチ発光モードにセットされている場合には、第1照明光の照明時には、RGB画像信号に対して第1照明光用色強調処理及び第1照明光用構造強調処理を施す。そして、以上の処理が施されたRGB画像信号は、第1観察画像として、表示制御部66に入力される。また、第2照明光の照明時には、RGB画像信号に対して第2照明光用色強調処理及び第2照明光用構造強調処理を施す。また、画像処理部60は、マルチ発光モードにセットされている場合には、第1観察画像と第2観察画像との間において、観察対象に含まれる正常粘膜の色を同じにする粘膜色バランス処理が行われる。第1観察画像に対しては、第1粘膜色バランス処理が行われ、第2観察画像に対しては、第1粘膜色バランス処理の結果に基づく第2粘膜色バランス処理が行われる。そして、以上の処理が施されたRGB画像信号は、第2観察画像として、表示制御部66に入力される。
 なお、第1粘膜色バランス処理については、第1観察画像に含まれるB1画像信号、G1画像信号、R1画像信号において、例えば、下記D1)~D3)に示すように、画面全体の平均色が特定のカラーバランスになるように自動的に調整される。この第1粘膜色バランス処理は、観察対象において粘膜の色が支配的と仮定して行われる。そして、第1粘膜色バランス処理を行うことにより、第1粘膜色バランス処理済みのB1画像信号、G1画像信号、R1画像信号が得られる。
D1)B1画像信号=B1/B1ave
D2)G1画像信号=G1/G1ave
D3)R1画像信号=R1/R1ave
ここで、B1aveは、B1画像信号の平均画素値(画面全体(有効画素)の画素値の総和/有効画素数)を表している。G1aveは、G1画像信号の平均画素値(画面全体(有効画素)の画素値の総和/有効画素数)を表している。R1aveは、R1画像信号の平均画素値(画面全体(有効画素)の画素値の総和/有効画素数)を表している。
 また、第2粘膜色バランス処理については、第2観察画像に含まれるB2画像信号、G2画像信号、R2画像信号において、例えば、下記E1)~E3)に示すように、画面全体の平均色が特定のカラーバランスになるように自動的に調整される。この第2粘膜色バランス処理では、第1粘膜色バランス処理で算出したB1ave、G1ave、R1aveが用いられる。そして、第2粘膜色バランス処理を行うことにより、第2粘膜色バランス処理済みのB2画像信号、G2画像信号、R2画像信号が得られる。
E1)B2画像信号=B2/B1ave
E2)G2画像信号=G2/G1ave
E3)R2画像信号=R2/R1ave
 表示制御部66は、画像処理部60から入力された通常画像、第1観察画像、又は第2観察画像を、ディスプレイ18で表示可能な画像として表示するための制御を行う。モノ発光モードの場合には、表示制御部66は、ディスプレイ18に通常画像を表示する。マルチ発光モードの場合には、表示制御部66は、第1観察画像又は第2観察画像を、特定の表示パターン(本実施形態では「2フレーム間隔」。図9参照。)に従って、切り替えながらディスプレイ18に表示する。
 中央制御部68は、上記したように、プログラムの実行を行う他、プロセッサ装置16の各部の制御を行う。また、中央制御部68は、内視鏡12又は光源装置14からの情報を受信し、受信した情報に基づいて、プロセッサ装置16の各部の制御や、内視鏡12又は光源装置14の制御を行う。
 モード自動切替部69は、マルチ発光モードに設定されている場合に、予め設定したモノ発光切替条件を満たした場合に、図10に示すように、第1観察モードと第2観察モードを切り替えてディスプレイ18に表示するマルチ発光モードから、通常画像のみを連続してディスプレイ18に表示するモノ発光モードに切り替える処理を行う。このようにモードを自動的に切り替えることができるようにするのは、観察対象に変わりがなくほとんど変化が無い場合などには、モードの切り替えを忘れたりすることが有るためである。なお、ユーザーにとって、マルチ発光モードとモノ発光モードのいずれに設定されているかが分かりにくい場合があるため、ディスプレイ18には、マルチ発光モードの場合には「マルチ発光モード」である旨の表示がされ、モノ発光モードの場合には「モノ発光モード」である旨の表示がされている。
 マルチ発光モードからモノ発光モードに切り替えるためのモノ発光切替条件としては、例えば、マルチ発光モードの使用時間が、予め定めた時間用閾値以上となることとする。この場合には、プロセッサ装置16内に設けられた時間計測部(図示しない)において、モード切替SW13aにより、マルチ発光モードに設定されてからの時間が計測される。そして、計測した時間が時間用閾値以上となった場合に、図11に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。
 また、モノ発光切替条件としては、例えば、観察対象の静止画の保存回数が、予め定めた回数用閾値以上となることとする。この場合には、プロセッサ装置16内に設けられた回数カウント部(図示しない)において、静止画取得指示部13bが操作された回数をカウントする。そして、カウントした回数が回数用閾値以上となった場合に、図12に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。
 また、モノ発光切替条件としては、観察対象に関する撮影条件が変化した場合とする。この場合には、撮影条件を取得するために、プロセッサ装置16の画像処理部60内に撮影条件取得部70が設けられる。撮影条件取得部70は、図13に示すように、観察部位取得部72と、明るさ算出部74と、倍率取得部76と、観察距離取得部78と、ブレ量算出部80とを備えている。
 モノ発光切替条件として、撮影条件の一つである観察部位が変化した場合は、例えば、現在撮影を行っている観察部位が、第1の部位(例えば、「食道」)から第2の部位(例えば、「胃」)に変化した場合、または第2の部位から第1の部位に変化した場合、図14に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。観察部位が変化する場合は、内視鏡の先端部12dが移動していると考えられ、交互に発光される第1照明光または第2照明光が観察対象に確実に照明されないことがあり、このような場合は、マルチ発光モードに適さない。
 観察部位に関する情報については、観察部位取得部72において取得する。観察部位取得部72は、マルチ発光モードにおいて得られる第1観察画像又は第2観察画像の画像的特徴量から、観察部位を判定する。例えば、第1観察画像又は第2観察画像において画面中央部が他の周辺部よりも明るさが暗い場合には、観察部位は「食道」であると判定される。また、第1観察画像又は第2観察画像において画面中央部が他の周辺部よりも明るさが明るい場合には、観察部位は「胃」であると判定される。
 モノ発光切替条件として、撮影条件の一つである観察対象の明るさが、第1明るさ用閾値以下、又は第1明るさ用閾値より大きい第2明るさ閾値以上となる場合は、図15に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。明るさが第1明るさ用閾値以下の場合には、観察対象全体が暗いため、マルチ発光モードに適さない状態となっている。同様にして、明るさが第2明るさ閾値以上の場合には、ハレーションが生じている場合など、観察対象全体が極めて明るいため、マルチ発光モードに適さない状態となっている。なお、明るさに関する情報は、明るさ算出部74において取得する。明るさ算出部74は、第1観察画像または第2観察画像から画素値の平均値を算出し、算出した画素値の平均値から明るさを算出する。ここで、画素値の平均値が大きければ大きいほど、明るさは大きくなる。
 モノ発光切替条件として、撮影条件の一つである観察対象の倍率について、倍率変化量が倍率用閾値を超えた場合に、図16に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。観察対象の倍率が大きく変化して、倍率変化量が倍率用閾値を超えるような場合には、観察対象に対する照明光の照明分布が変化して、マルチ発光モードに適さない場合が多い。なお、観察対象の倍率については、ズーム操作部13cが操作される毎に、いずれの倍率に設定されたかのズーム情報が倍率取得部76に送信される。モード自動切替部69は、倍率取得部76にて取得したズーム情報を参照して、倍率変化量が倍率用閾値を超えたか否かを判定する。
 モノ発光切替条件として、撮影条件の一つである観察距離(内視鏡の先端部12dと観察対象との距離)について、観察距離の変化量が距離用閾値を超えた場合に、図17に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。観察対象の倍率と同様に、観察距離が大きく変化して、観察距離の変化量が距離用閾値を超えるような場合には、観察対象に対する照明光の照明分布が変化して、マルチ発光モードに適さない場合が多い。なお、観察距離については、観察距離取得部78が、マルチ発光モードにて得られる第1観察画像または第2観察画像から画素値の平均値を算出し、算出した画素値の平均値から観察距離を求める。ここで、画素値の平均値が大きければ大きいほど、観察距離は小さいとされる。
 モノ発光切替条件として、撮影条件の一つである画像のブレ量がブレ量用閾値を超えた場合に、図18に示すように、マルチ発光モードからモノ発光モードに自動的に切り替える。画像のブレ量が大きく、ブレ量がブレ量用閾値を超えるような場合には、照明光が確実に観察対象に当たらない場合があり、マルチ発光モードに適さない場合が多い。なお、ブレ量については、ブレ量算出部80が、マルチ発光モードにて得られる第1観察画像または第2観察画像からコントラストを求め、コントラストからブレ量を算出する。コントラストが低くなるほど、ブレ量が大きくなる。ブレ量の算出方法としては、コントラストを用いる他、第1観察画像または第2観察画像の周波数成分から算出するようにしてもよい(周波数成分が低周波の成分となるほど、ブレ量が大きくなる)。
 以上のように、マルチ発光モードからモノ発光モードへの自動切替に用いるモノ発光切替条件については、ユーザーにより適宜設定可能である。この場合には、ユーザーはユーザーインターフェース19を操作して、図19に示すモノ発光切替条件設定メニュー82をディスプレイ18に表示させる。このモノ発光切替条件設定メニュー82においては、「時間用閾値」、「回数用閾値」の設定を行うことができる。「時間用閾値」の場合であれば、モノ発光切替条件設定メニュー82にて「100秒」に設定すると、マルチ発光モードの使用時間が「100秒」に達した時点で、マルチ発光モードからモノ発光モードに自動的に切り替えられる。また、「回数用閾値」の場合であれば、モノ発光切替条件設定メニュー82にて「40回」に設定すると、静止画取得指示部13bの操作回数が「40回」に達した時点で、マルチ発光モードからモノ発光モードに自動的に切り替えられる。
 なお、後述するように、モノ発光モードからマルチ発光モードへの自動切替に用いるマルチ発光再開条件については、モノ発光切替条件設定メニュー82と同様のマルチ発光再開条件設定メニューをディスプレイ18に表示して、適宜設定できるようにすることが好ましい。
 また、モノ発光切替条件設定メニュー82においては、「第1の部位」、「第2の部位」の設定を行うことができる。「第1の部位」を「食道」とし、「第2の部位」を「胃」として設定した場合には、観察部位が「食道」から「胃」に変わった場合、又は「胃」から「食道」に変わった場合に、マルチ発光モードからモノ発光モードに自動的に切り替えられる。また、モノ発光切替条件設定メニュー82においては、「第1明るさ閾値」、「第2明るさ閾値」の設定を行うことができる。「第1明るさ閾値」をP1とし、「第2明るさ閾値」をP2(>P1)として設定した場合には、観察対象の明るさがP1以下、又はP2位以上となった場合に、マルチ発光モードからモノ発光モードに自動的に切り替えられる。
 また、モノ発光切替条件設定メニュー82においては、「倍率用閾値」の設定を行うことができる。「倍率用閾値」を「5倍」とした場合には、観察対象の倍率変化量が「5倍」を超えた時点で、マルチ発光モードからモノ発光モードに自動的に切り替えられる。また、モノ発光切替条件設定メニュー82においては、「距離用閾値」の設定を行うことができる。「距離用閾値」をLxとした場合には、観察距離の変化量がLxを超えた場合に、マルチ発光モードからモノ発光モードに自動的に切り替えられる。また、モノ発光切替条件設定メニュー82においては、「ブレ量用閾値」の設定を行うことができる。「ブレ量用閾値」をBrに設定した場合には、ブレ量がBrを超えた場合に、マルチ発光モードからモノ発光モードに自動的に切り替えられる。
 モード自動切替部69は、モノ発光切替条件を満たすことにより、マルチ発光モードからモノ発光モードに自動的に切り替えた場合において、図20に示すように、予め設定されたマルチ発光再開条件を満たした場合に、モノ発光モードからマルチ発光モードに自動的に切り替える。観察対象に関する撮影条件が変化した場合などに、モノ発光モードに自動的に切り替えているが、観察対象に関する撮影条件の変化が許容範囲内である場合など、マルチ発光再開条件を満たした場合などには、モノ発光モードからマルチ発光モードに自動的に切り替えることが好ましい。なお、撮影条件の変化が許容範囲内であるとは、撮影条件の変化によっても、マルチ発光モードによって得られる第1の観察画像と第2の観察画像の切り替え表示に対する視認性に影響を与えないことをいう。
 マルチ発光再開条件は、観察対象が、第1の部位(例えば、「食道」)から第2の部位(例えば、「胃」)に変わってから、一定時間内に第1の部位に戻った場合、または、第2の部位から第1の部位に変わってから、一定時間内に第2の部位に戻った場合であることが好ましい。この場合には、図21に示すように、モノ発光モードからマルチ発光モードに自動的に切り替える。観察部位が直ぐに元の部位に戻った場合には、照明条件がそれほど変化せず、マルチ発光モードによる発光状態に影響を与えないためである。なお、観察部位に関する情報については、上記と同様に、観察部位取得部72において取得する。
 マルチ発光再開条件は、観察対象の明るさが、第1明るさ閾値以上、または第1明るさ閾値以下となった場合であることが好ましい。この場合には、図22に示すように、モノ発光モードからマルチ発光モードに自動的に切り替える。明るさが暗くなったり、又は、明るくなったりしても、一定時間後に、元の通常の明るさ(第1明るさ閾値以上、または第1明るさ閾値以下)に戻った場合には、マルチ発光モードによる発光状態に影響を与えないためである。なお、明るさに関する情報については、上記と同様に、明るさ算出部74において取得する。
 マルチ発光再開条件は、観察対象の倍率を変化させる場合において、観察対象の倍率変化量が倍率用閾値未満であることが好ましい。この場合には、図23に示すように、モノ発光モードからマルチ発光モードに自動的に切り替える。観察対象の倍率の変化がそれほど大きくなく、倍率変化量が倍率用閾値を超えたのが一時的であり、直ぐに、倍率用閾値未満に収まったような場合には、マルチ発光モードによる発光状態に影響を与えないためである。なお、観察対象の倍率については、上記と同様に、倍率取得部76において取得する。
 マルチ発光再開条件は、観察距離の変化量が距離用閾値以下となった場合であることが好ましい。この場合には、図24に示すように、モノ発光モードからマルチ発光モードに自動的に切り替える。観察距離の変化がそれほど大きくなく、観察距離の変化量が距離用閾値を超えたのが一時的であり、直ぐに、距離用閾値未満に収まったような場合には、マルチ発光モードによる発光状態に影響を与えないためである。なお、観察距離については、上記と同様に、観察距離取得部78において取得する。
 マルチ発光再開条件は、観察画像のブレ量がブレ量用閾値以下となった場合であることが好ましい。この場合には、図25に示すように、モノ発光モードからマルチ発光モードに自動的に切り替える。画像のブレ量がそれほど大きくなく、ブレ量がブレ量用閾値を超えたのが一時的であり、直ぐに、ブレ量用閾値未満に収まったような場合には、マルチ発光モードによる発光状態に影響を与えないためである。なお、ブレ量については、上記と同様に、ブレ量算出部80において算出する。
 ただし、意図せずに、マルチ発光モードに自動的に切り替わるのを防ぐため、モード自動切替部69は、マルチ発光再開条件を満たし、且つ、再開許容条件を満たす場合に、モノ発光モードからマルチ発光モードに自動的に切り替える一方、マルチ発光再開条件を満たし、且つ、再開許容条件を満たさない場合に、マルチ発光モードに自動的に切り替えることを禁止することが好ましい。再開許容条件は、ユーザーにより設定可能であることが好ましい。また、再開許容条件が満たすか否かを判定するために、再開許容条件を示す再開許容有無フラグが用いられる。再開許容有無フラグが「1」であることは、再開許容条件を満たさないことを表し、再開許容有無フラグが「0」であることは、再開許容条件を満たすことを表す(図20~図25参照)。
 再開許容条件は、ユーザーがモノ発光モードを選択していない場合であることが好ましい。モノ発光モードの選択は、ユーザーインターフェース19を操作して行うことが好ましい。ユーザーがモノ発光モードを選択した場合には、再開許容有無フラグが「0」となり、モノ発光モードを選択しない場合には、再開許容有無フラグが「1」となる。ユーザーが自発的にモノ発光モードを選択する場合には、マルチ発光モードに自動的に切り替えないことが好ましい。
 再開許容条件は、モノ発光切替条件を満たしてマルチ発光モードからモノ発光モードに自動的に切り替えてから、再開許容時間を経過していない場合であることが好ましい。この場合には、時間計測部(図示しない)において、モノ発光モードに切り替えてからの時間が計測される。計測した時間が再開許容時間を経過してない場合には、再開許容有無フラグを「1」で維持する。そして、計測した時間が再開許容時間を経過した場合には、再開許容有無フラグを「0」に切り替える。再開許容時間を経過した後は、モノ発光モードに基づく観察に適した状態と考えられるため、マルチ発光モードに自動的に切り替えないことが好ましい。
 再開許容条件は、マルチ発光モードの実施が可能である場合であることが好ましい。マルチ発光モードの実施が可能又は不可の判定については、プロセッサ装置16のマルチ発光モード実施可能判定部(図示しない)が行う。具体的には、マルチ発光モード実施可能判定部は、内視鏡12、光源装置14、及びプロセッサ装置16に関する異常などを検出し、検出結果に基づいて、マルチ発光モードの実施可能又は実施不可を判定する。この場合には、マルチ発光モード実施可能判定部が、マルチ発光モードが実施可能と判定した場合には、再開許容有無フラグを「1」とし、マルチ発光モードが実施不可と判定した場合には、再開許容有無フラグを「0」とする。内視鏡12、光源装置14、及びプロセッサ装置16に関する異常などが生じて、マルチ発光モードの実施が難しくなった場合には、マルチ発光モードに自動的に切り替えないことが好ましい。
 再開許容条件は、倍率変更部の使用又は不使用の切替が行われていない場合であることが好ましい。倍率変更部の使用とは、ズーム操作部13cを「ON」にして倍率変更が可能な状態をいう。倍率変更部の不使用とは、ズーム操作部13cを「OFF」にして倍率変更をしない状態をいう。この場合には、モノ発光切替条件を満たしてモノ発光モードに自動的に切り替えられた後、倍率変更部の使用又は不使用の切り替えがない場合には、再開許容有無フラグを「1」とする一方、倍率変更部の使用又は不使用が切り替えられた場合には、再開許容有無フラグを「0」とする。倍率変更部の使用又は不使用の切替えが行われた場合には、前回のマルチ発光モードの場合とは異なる対象を観察し、必ずしもマルチ発光モードを使用するとは限らないことから、マルチ発光モードに自動的に切り替えないことが好ましい。
 次に、本発明を含む一連の流れについて、図26に示すフローチャートに沿って説明する。マルチ発光モードにおいては、第1照明光と第2照明光とが、特定の発光パターン(本実施形態では2フレーム間隔)に従って、切り替えて発光される。そして、第1照明光により照明された観察対象を撮像して得られる第1観察画像と、第2照明光により照明された観察対象を撮像して得られる第2観察画像とを、特定の表示パターン(本実施形態では2フレーム間隔)に従って、切り替えてディスプレイ18に表示される。
 そして、予め定めたモノ発光切替条件を満たした場合に、マルチ発光モードからモノ発光モードに自動的に切り替える。モノ発光切替条件としては、マルチ発光モードの使用時間が時間用閾値を超えた場合や、静止画の保存回数が回数用閾値を超えた場合などがある。その他、モノ発光切替条件として、観察対象に関する撮影条件が変化した場合がある。モノ発光モードに自動的に切り替えられると、第1照明光と第2照明光の切替発光は停止される。これに合わせて、第1観察画像と第2観察画像の切替表示も停止される。そして、通常光が発光され、通常光により照明された観察対象を撮像して得られる通常画像がディスプレイ18に表示される。
 モノ発光モードに自動的に切り替えられた後は、プロセッサ装置16において、マルチ発光再開条件を満たすか否かが監視される。マルチ発光再開条件を満たし、且つ、再開許容条件を満たす場合には、モノ発光モードからマルチ発光モードに自動的に切り替える。一方、マルチ発光再開条件を満たしても、再開許容条件を満たさない場合には、マルチ発光モードに自動的に切り替えることを禁止する。また、マルチ発光再開条件を満たさない場合にも、マルチ発光モードに自動的に切り替えることを禁止する。マルチ発光モードへの自動的な切替が禁止された場合には、モノ発光モードを継続する。
 なお、上記実施形態においては、第1照明光と第2照明光とを、特定の発光パターンに従って、切り替えながら発光し、且つ、第1照明光に対応する第1観察画像と第2照明光に対応する第2観察画像とを、特定の表示パターンに従って、切り替えてディスプレイ18に表示するようにしているが、互いに波長帯域が異なる3種類以上の照明光を、特定の発光パターンに従って、切り替えながら発光し、且つ、各照明光に対応する3種類以上の観察画像を、特定の表示パターンに従って、切り替えてディスプレイ18に表示するようにしてもよい。
 上記実施形態において、画像取得部53、DSP56、ノイズ除去部58、画像処理部60、パラメータ切替部62、中央制御部68、モード自動切替部69など、プロセッサ装置16に含まれる処理部(processing unit)のハードウェア的な構造は、次に示すような各種のプロセッサ(processor)である。各種のプロセッサには、ソフトウエア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA (Field Programmable Gate Array) などの製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、各種の処理を実行するために専用に設計された回路構成を有するプロセッサである専用電気回路などが含まれる。
 1つの処理部は、これら各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合せ(例えば、複数のFPGAや、CPUとFPGAの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントやサーバなどのコンピュータに代表されるように、1つ以上のCPUとソフトウエアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)などに代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサを1つ以上用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造は、より具体的には、半導体素子などの回路素子を組み合わせた形態の電気回路(circuitry)である。
10 内視鏡システム
12 内視鏡
12a 挿入部
12b 操作部
12c 湾曲部
12d 先端部
12e アングルノブ
13a モード切替SW
13b 静止画取得指示部
13c ズーム操作部
14 光源装置
16 プロセッサ装置
18 ディスプレイ
19 ユーザーインターフェース
20 光源部
20a V-LED(Violet Light Emitting Diode)
20b B-LED(Blue Light Emitting Diode)
20c G-LED(Green Light Emitting Diode)
20d R-LED(Red Light Emitting Diode)
21 光源用プロセッサ
23 光路結合部
30a 照明光学系
30b 撮像光学系
41 ライトガイド
45 照明レンズ
46 対物レンズ
47 ズームレンズ
47a ズーム駆動部
48 撮像センサ
50 CDS/AGC回路回路
52 A/D変換器
53 画像取得部
56 DSP(Digital Signal Processor)
58 ノイズ除去部
60 画像処理部
62 パラメータ切替部
63 静止画保存部
66 表示制御部
68 中央制御部
69 モード自動切替部
70 撮影条件取得部
72 観察部位取得部
74 明るさ算出部
76 倍率取得部
78 観察距離取得部
80 ブレ量算出部
82 モノ発光切替条件設定メニュー
 

Claims (11)

  1.  互いに異なる波長帯域の光を発光する複数の半導体光源と、
     前記複数の半導体光源を制御する光源用プロセッサであり、特定の発光比率を有する特定の照明光のみを発光するモノ発光モードと、第1の発光比率を有する第1の照明光と前記第1の発光比率と異なる第2の発光比率を有する第2の照明光とを含む複数の照明光を、特定の発光パターンに従って、切り替えながら発光するマルチ発光モードとに関する制御を行う光源用プロセッサと、
     画像制御用プロセッサとを備え、
     前記画像制御用プロセッサは、
     予め定めたモノ発光切替条件を満たすことにより、前記マルチ発光モードから前記モノ発光モードに自動的に切り替えた場合において、
     予め設定されたマルチ発光再開条件を満たした場合に、前記モノ発光モードから前記マルチ発光モードに自動的に切り替える内視鏡システム。
  2.  前記画像制御用プロセッサは、
     前記マルチ発光再開条件を満たし、且つ、再開許容条件を満たす場合に、前記モノ発光モードから前記マルチ発光モードに自動的に切り替え、
     前記マルチ発光再開条件を満たし、且つ、前記再開許容条件を満たさない場合に、前記マルチ発光モードに自動的に切り替えることを禁止する請求項1記載の内視鏡システム。
  3.  前記再開許容条件は、ユーザーが前記モノ発光モードを選択していない場合である請求項2記載の内視鏡システム。
  4.  前記再開許容条件は、前記モノ発光モードに切り替えてから再開許容時間を経過していない場合である請求項2または3記載の内視鏡システム。
  5.  前記再開許容条件は、前記マルチ発光モードの実施が可能である場合である請求項2ないし4いずれか1項記載の内視鏡システム。
  6.  観察対象の倍率を変化させるための倍率変更部を有し、
     前記再開許容条件は、前記倍率変更部の使用又は不使用の切替えが行われていない場合である請求項2ないし5いずれか1項記載の内視鏡システム。
  7.  前記再開許容条件はユーザーにより設定が可能である請求項2ないし6いずれか1項記載の内視鏡システム。
  8.  前記マルチ発光再開条件は、観察対象に関する撮影条件の変化が許容範囲内である請求項1ないし7いずれか1項記載の内視鏡システム。
  9.  前記マルチ発光再開条件は、観察対象が、第1の部位から第2の部位に変わってから一定時間内に、前記第1の部位に戻った場合、または前記第2の部位から前記第1の部位に変わってから一定時間内に、前記第2の部位に戻った場合であること、
     前記観察対象の明るさが、第1明るさ閾値以上、または前記第1明るさ閾値より大きい第2明るさ閾値以下となった場合であること、
     前記観察対象の倍率を変化させる場合において、前記観察対象の倍率変化量が倍率用閾値未満となった場合であること、
     観察距離の変化量が距離用閾値以下となった場合であること、及び、
     前記観察対象を画像化した観察画像のブレ量がブレ量用閾値以下となった場合であることのうち少なくとも1以上を組み合せた条件である請求項8記載の内視鏡システム。
  10.  前記画像制御用プロセッサは、
     前記モノ発光モードの場合には、前記特定の照明光により照明された観察対象を撮像して得られる特定の観察画像をディスプレイに表示する制御を行い、前記マルチ発光モードの場合には、前記第1の照明光により照明された観察対象を撮像して得られる第1の観察画像と前記第2の照明光により照明された観察対象を撮像して得られる第2の観察画像とを含む複数の観察画像を、特定の表示パターンに従って、切り替えて前記ディスプレイに表示する制御を行う請求項1ないし9いずれか1項記載の内視鏡システム。
  11.  互いに異なる波長帯域の光を発光する複数の半導体光源と、
     前記複数の半導体光源を制御する光源用プロセッサであり、特定の発光比率を有する特定の照明光のみを発光するモノ発光モードと、第1の発光比率を有する第1の照明光と前記第1の発光比率と異なる第2の発光比率を有する第2の照明光とを含む複数の照明光を、特定の発光パターンに従って、切り替えながら発光するマルチ発光モードとに関する制御を行う光源用プロセッサと、
     画像制御用プロセッサとを備える内視鏡システムの作動方法において、
     前記画像制御用プロセッサは、
     予め定めたモノ発光切替条件を満たして、前記マルチ発光モードから前記モノ発光モードに自動的に切り替えた場合において、
     予め設定されたマルチ発光再開条件を満たした場合に、前記モノ発光モードから前記マルチ発光モードに自動的に切り替える内視鏡システムの作動方法。
     
     
     
     
PCT/JP2020/043833 2019-12-26 2020-11-25 内視鏡システム及びその作動方法 WO2021131468A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021567083A JP7362778B2 (ja) 2019-12-26 2020-11-25 内視鏡システム及びその作動方法
CN202080090342.0A CN114845625A (zh) 2019-12-26 2020-11-25 内窥镜系统及其工作方法
EP20907448.3A EP4082419A4 (en) 2019-12-26 2020-11-25 ENDOSCOPIC SYSTEM AND METHODS OF OPERATION THEREOF
US17/808,737 US20220354351A1 (en) 2019-12-26 2022-06-24 Endoscope system and method of operating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019236714 2019-12-26
JP2019-236714 2019-12-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/808,737 Continuation US20220354351A1 (en) 2019-12-26 2022-06-24 Endoscope system and method of operating the same

Publications (1)

Publication Number Publication Date
WO2021131468A1 true WO2021131468A1 (ja) 2021-07-01

Family

ID=76574345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043833 WO2021131468A1 (ja) 2019-12-26 2020-11-25 内視鏡システム及びその作動方法

Country Status (5)

Country Link
US (1) US20220354351A1 (ja)
EP (1) EP4082419A4 (ja)
JP (1) JP7362778B2 (ja)
CN (1) CN114845625A (ja)
WO (1) WO2021131468A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020728A (ja) * 2005-07-13 2007-02-01 Olympus Medical Systems Corp 画像処理装置
JP2010063589A (ja) * 2008-09-10 2010-03-25 Fujifilm Corp 内視鏡システム、およびその駆動制御方法
WO2010116902A1 (ja) * 2009-04-09 2010-10-14 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2012000160A (ja) * 2010-06-14 2012-01-05 Fujifilm Corp 内視鏡装置
JP2012010981A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp 内視鏡装置
JP2012152333A (ja) * 2011-01-25 2012-08-16 Fujifilm Corp 内視鏡システム及びその光源制御方法
WO2017199509A1 (ja) * 2016-05-19 2017-11-23 オリンパス株式会社 生体観察システム
WO2019093356A1 (ja) 2017-11-13 2019-05-16 富士フイルム株式会社 内視鏡システム及びその作動方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007020728A (ja) * 2005-07-13 2007-02-01 Olympus Medical Systems Corp 画像処理装置
JP2010063589A (ja) * 2008-09-10 2010-03-25 Fujifilm Corp 内視鏡システム、およびその駆動制御方法
WO2010116902A1 (ja) * 2009-04-09 2010-10-14 オリンパスメディカルシステムズ株式会社 内視鏡装置
JP2012000160A (ja) * 2010-06-14 2012-01-05 Fujifilm Corp 内視鏡装置
JP2012010981A (ja) * 2010-06-30 2012-01-19 Fujifilm Corp 内視鏡装置
JP2012152333A (ja) * 2011-01-25 2012-08-16 Fujifilm Corp 内視鏡システム及びその光源制御方法
WO2017199509A1 (ja) * 2016-05-19 2017-11-23 オリンパス株式会社 生体観察システム
WO2019093356A1 (ja) 2017-11-13 2019-05-16 富士フイルム株式会社 内視鏡システム及びその作動方法

Also Published As

Publication number Publication date
JPWO2021131468A1 (ja) 2021-07-01
EP4082419A4 (en) 2023-06-07
EP4082419A1 (en) 2022-11-02
US20220354351A1 (en) 2022-11-10
CN114845625A (zh) 2022-08-02
JP7362778B2 (ja) 2023-10-17

Similar Documents

Publication Publication Date Title
CN111343898B (zh) 内窥镜系统及其工作方法
WO2016121556A1 (ja) 内視鏡用のプロセッサ装置、及びその作動方法、並びに制御プログラム
CN111466859B (zh) 内窥镜系统
US11089943B2 (en) Endoscope system and method of operating the same
JP6285370B2 (ja) 内視鏡用のプロセッサ装置、内視鏡用のプロセッサ装置の作動方法、内視鏡用の制御プログラム、及び内視鏡システム
JP6987980B2 (ja) 医療画像処理システム
WO2020039932A1 (ja) 内視鏡システム
WO2021131468A1 (ja) 内視鏡システム及びその作動方法
CN111712178A (zh) 内窥镜系统及其工作方法
WO2021140766A1 (ja) 内視鏡システム及びその作動方法
CN111683583B (zh) 内窥镜系统及其工作方法
JP7171885B2 (ja) 内視鏡システム
US11969152B2 (en) Medical image processing system
JP7390482B2 (ja) 内視鏡システム及びその作動方法
JP7112970B2 (ja) 内視鏡システム
WO2021182048A1 (ja) 内視鏡システム、及び内視鏡システムの作動方法
CN112472011A (zh) 内窥镜系统及其工作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907448

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567083

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020907448

Country of ref document: EP

Effective date: 20220726