WO2021131421A1 - Glass plate manufacturing method and glass plate - Google Patents

Glass plate manufacturing method and glass plate Download PDF

Info

Publication number
WO2021131421A1
WO2021131421A1 PCT/JP2020/043041 JP2020043041W WO2021131421A1 WO 2021131421 A1 WO2021131421 A1 WO 2021131421A1 JP 2020043041 W JP2020043041 W JP 2020043041W WO 2021131421 A1 WO2021131421 A1 WO 2021131421A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
grindstone
processing step
face
groove portion
Prior art date
Application number
PCT/JP2020/043041
Other languages
French (fr)
Japanese (ja)
Inventor
佑 太和田
愛信 星野
松本 直之
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to KR1020227011900A priority Critical patent/KR20220113352A/en
Priority to CN202080073551.4A priority patent/CN114585475A/en
Publication of WO2021131421A1 publication Critical patent/WO2021131421A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/10Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass
    • B24B9/102Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of plate glass for travelling sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/002Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor for travelling workpieces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means

Definitions

  • the present invention relates to a glass plate and a method for manufacturing the same.
  • a glass plate is used for displays such as liquid crystal displays and organic EL displays. If there is a scratch on the edge of the glass plate, cracks or the like are generated from the scratch, and in order to prevent this, the edge of the glass plate is ground and polished.
  • Patent Document 1 describes a grinding process in which a glass plate is chamfered with a grinding wheel while being conveyed in a predetermined direction, and the edge of the chamfered glass plate is polished.
  • a method for processing a glass plate including a polishing process for performing a polishing process with a grindstone is disclosed.
  • the end of the glass plate may be pressed against a pin or a roller for positioning in the process of manufacturing an electronic device on the substrate. At that time, if scratches remain on the edge of the glass plate, glass powder is likely to be generated. If this glass powder adheres to the surface of the glass plate, it causes disconnection failure of the electronic device. Therefore, it is desired to further improve the surface texture of the end portion of the glass plate.
  • the entire edge of the glass plate becomes mirror-like, and it becomes difficult to detect the edge when the edge of the glass plate is imaged with a camera.
  • the present invention has been made in view of the above circumstances, and it is a technical subject to enable detection by a camera while reducing the generation of glass powder at the edge of a glass plate.
  • the present invention is for solving the above-mentioned problems, and is a method for manufacturing a glass plate having a surface and an end portion, wherein the end portion of the glass plate has an end face, the end face and the surface.
  • the second grindstone is moved relative to the length direction of the end portion of the glass plate, and the second grindstone is moved to the glass. It is characterized in that it is moved relative to the thickness direction of the plate.
  • the second grindstone is mainly moved in the thickness direction of the glass plate while being relatively moved in the length direction of the end portion of the glass plate.
  • the end face is processed, and the surface roughness of the end face becomes smaller than the surface roughness of the connecting surface. Since the positioning pins and rollers come into contact with the end faces having a small surface roughness, the generation of glass powder can be reduced. Further, when the end portion of the glass plate is imaged with a camera, the end surface has a mirror surface shape, but the connection surface has a non-mirror surface shape, so that the end portion can be detected based on the connection surface.
  • the abrasive grains are likely to be melted due to the processing heat, the grindstone is heavily consumed, and the surface texture is rather deteriorated.
  • the processing heat can be reduced and the melting damage of the abrasive grains can be suppressed. Therefore, the consumption of the grindstone can be reduced, and the surface texture of the end face can be further improved.
  • the second grindstone has a groove for polishing the end face of the glass plate, and the groove is formed on a bottom portion of the glass plate in contact with the end face and a bottom portion thereof.
  • the bottom portion of the groove portion has a width larger than the thickness of the end surface of the glass plate, and has a regulating surface that is connected and can be contacted with the connection surface.
  • the width of the bottom portion may be smaller than the sum of the thickness of the end face and the relative moving distance of the second grindstone in the thickness direction.
  • the width of the bottom portion of the second grindstone to the groove portion in the above range by setting the width of the bottom portion of the second grindstone to the groove portion in the above range, the bottom portion of the groove portion of the glass plate while the second grindstone is moved relative to the glass plate.
  • the end face can be suitably polished and the connecting surface of the glass plate can be brought into contact with the regulating surface of the groove. This makes it possible to stably process the end portions of a plurality of glass plates when they are manufactured.
  • the second grindstone has an outer peripheral surface on which no groove is formed before the second processing step is executed, and in the second processing step, the second processing step is performed.
  • the end portion of the glass plate may be polished by the outer peripheral surface of the grindstone.
  • a groove is formed on the outer peripheral surface of the second grindstone, only the groove can be used for machining on the outer peripheral surface, and the number of glass plates that can be machined with a single second grindstone is reduced. If a second grindstone having an outer peripheral surface without a groove is used, most of the outer peripheral surface can be used for machining, and the number of glass plates that can be machined with a single second grindstone can be significantly increased. it can.
  • the present invention is for solving the above-mentioned problems, and is a glass plate having a surface and an end portion, wherein the end portion is an end face and a connecting surface formed between the end face and the surface.
  • the surface roughness Ra1 of the end surface is smaller than the surface roughness Ra2 of the connection surface.
  • the strength of the end face of the glass plate can be increased and the product quality can be improved. Further, since the positioning pins and rollers come into contact with the end faces having a small surface roughness, the generation of glass powder can be reduced. Furthermore, when the end of the glass plate is imaged with a camera, the end surface is mirror-like, but the connection surface is non-mirror surface, so it is possible to detect the end based on the connection surface. Become.
  • the ratio Ra1 / Ra2 of the surface roughness Ra1 of the end surface to the surface roughness Ra2 of the connection surface may be 0.15 to 0.6. According to such a configuration, since the difference in reflectance between the end surface and the connection surface becomes large, it becomes easy to detect the end portion based on the connection surface when the end portion of the glass plate is imaged by the camera.
  • the surface roughness Ra1 of the end face may be 0.06 ⁇ m or less. According to such a configuration, it is possible to surely reduce the generation of glass powder due to the contact between the positioning pin and the roller.
  • the present invention it is possible to detect the edge of the glass plate with a camera while reducing the generation of glass powder.
  • 1 to 12 show the first embodiment of the method for manufacturing a glass plate according to the present invention.
  • the glass plate G is molded by a known molding method such as a float method, an overflow down draw method, or a slot down draw method, and is cut into a predetermined size.
  • the thickness T of the glass plate G is 0.2 to 10 mm, and the size of the glass plate G is 200 mm ⁇ 300 mm to 3100 mm ⁇ 3500 mm, but the size is not limited to this range.
  • the composition of the glass plate G is preferably non-alkali glass or aluminosilicate glass.
  • non-alkali glass is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 1000 ppm or less.
  • the weight ratio of the alkaline component is preferably 500 ppm or less, more preferably 300 ppm or less.
  • the glass plate G has a first surface GS1, a second surface GS2, and end portions GE corresponding to each side.
  • a case where the end GE related to two parallel sides of the four sides of the glass plate G is processed is illustrated.
  • Each end GE of the glass plate G includes a machining start end GEa and a machining end end GEb.
  • the first processing step S1 in which the end portion GE of the glass plate G is processed by the first grindstone 1 and the end portion GE of the glass plate G are secondly processed after the first processing step S1.
  • a second processing step S2 for processing with the grindstone 2 is provided.
  • XYZ in the figure is a Cartesian coordinate system.
  • the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction (vertical direction).
  • each end GE of the glass plate G is moved in the length direction (X-axis direction). Machining is performed from the machining start end GEa to the machining end end GEb along the above.
  • the end portion GE of the glass plate G can be processed by the grindstones 1 and 2.
  • the end portion GE of the glass plate G may be processed by moving the grindstones 1 and 2 in a predetermined direction GX2.
  • the first grindstone 1 used in the first processing step S1 is composed of, for example, a pair of rotary grindstones.
  • the first grindstone 1 is, for example, a grinding grindstone that chamfers the end GE of the glass plate G.
  • an electrodeposition grindstone in which diamond abrasive grains are hardened with a metal electrodeposition bond and a metal bond grindstone in which the abrasive grains are hardened with a metallic binder are preferably used.
  • the first grindstone 1 is configured to be movable in the horizontal direction (X-axis direction and Y-axis direction) and the vertical direction (Z-axis direction) by a moving mechanism. Further, the first grindstone 1 is rotated around its axis RC1 by a driving means such as an electric motor.
  • the first grindstone 1 has a first groove portion 3 for processing the end portion GE of the glass plate G.
  • the first groove portion 3 has a bottom portion 3a and inclined surfaces 3b formed on both sides of the bottom portion 3a.
  • the first grindstone 1 in which the first groove portion 3 of one stage is formed is illustrated, but the present invention is not limited to this configuration, and the first groove portion 3 of a plurality of stages may be formed in the first grindstone 1.
  • the first processing step S1 may be performed on each end GE of the glass plate G by a plurality of first grindstones 1.
  • the end portion GE of the glass plate G supplied to the first processing step S1 is composed of an end face including the corner portion GC.
  • the corner GC of each end GE is removed by chamfering the first grindstone 1.
  • the first grindstone 1 grinds the end portion GE of the glass plate G by the bottom portion 3a and the inclined surface 3b.
  • the inclined surface 3b removes the corner portion GC of the end portion GE of the glass plate G.
  • the end face ES1 is formed in a flat surface shape or a curved surface shape following the shape of the bottom portion 3a of the first grindstone 1.
  • the connecting surface ES2 is a boundary portion formed between the end surface ES1 and the respective surfaces GS1 and GS2 of the glass plate G.
  • the connecting surface ES2 is formed in a curved surface so as to connect the respective surfaces GS1 and GS2 of the glass plate G and the end surface ES1.
  • the second grindstone 2 used in the second processing step S2 is composed of, for example, a pair of rotary grindstones for polishing the end face ES1 of the glass plate G.
  • a resin bond grindstone in which a resin binder (resin bond) is used as the binder for the abrasive grains is preferably used.
  • thermosetting resin As the resin binder, a thermosetting resin, a phenol resin, an epoxy resin, a polyimide resin, a polyurethane resin or the like can be adopted as the resin binder.
  • the abrasive grains bonded to the second grindstone 2 one selected from diamond particles, aluminum oxide particles, silicon carbide particles, cubic boron nitride particles, metal oxide particles, metal carbide particles, metal nitride particles and the like is selected. Alternatively, two or more types can be selected and mixed.
  • the particle size of the abrasive grains is, for example, # 1000 to 3000, but is not limited to this range.
  • the second grindstone 2 is configured to be movable in the horizontal direction (X-axis direction, Y-axis direction) and the vertical direction (Z-axis direction) by a moving mechanism. Further, the second grindstone 2 is rotated around its axis RC2 by a driving means such as an electric motor.
  • the second grindstone 2 has a second groove portion 4 on the outer peripheral surface 2a thereof for polishing the end portion GE of the glass plate G.
  • the second groove portion 4 can receive substantially all of the end portion GE of the glass plate G, and the width dimension W1 of the second groove portion 4 is larger than the thickness dimension T of the glass plate G.
  • the second groove portion 4 has a bottom portion 4a that contacts the end surface ES1 of the glass plate G and a pair of regulation surfaces 4b that are connected to both sides of the bottom portion 4a.
  • the second groove portion 4 may be configured to receive a part of the end portion GE of the glass plate G (for example, the connecting surface ES2 on the end surface ES1 and the end surface ES1 side). In this case, the width dimension W1 of the second groove portion 4 is larger than the maximum thickness of the portion of the end portion GE that is accepted by the second groove portion 4.
  • the bottom portion 4a is formed on the end surface of the glass plate G in a curved surface shape or a flat surface shape so as to correspond to ES1.
  • the regulation surface 4b is configured to have a curved surface shape so as to correspond to the connection surface ES2 of the glass plate G.
  • the width dimension W2 of the bottom portion 4a is larger than the thickness T1 of the end face ES1 of the glass plate G.
  • the width dimension W2 of the bottom portion 4a is preferably 1 to 2.5 times (T1 ⁇ W2 ⁇ 2.5 T1) of the thickness dimension T1 of the end face ES1 related to the glass plate G.
  • the second grindstone 2 in which the second groove portion 4 of one stage is formed is illustrated, but the present invention is not limited to this configuration, and the second groove portion 4 of a plurality of stages may be formed in the second grindstone 2. Further, the second processing step S2 may be performed on each end GE of the glass plate G by a plurality of second grindstones 2.
  • the second grindstone 2 is relatively moved from the processing start end GEa of the glass plate G toward the processing end end GEb in the length direction (X-axis direction) of the end GE.
  • the second grindstone 2 is moved relative to the thickness direction (Z-axis direction) of the glass plate G.
  • FIG. 5 shows the movement locus of the second grindstone 2 in the second processing step S2.
  • the second grindstone 2 moves relative to the glass plate G from the machining start position XS to the machining end position XE via the first intermediate position XM1 and the second intermediate position XM2 in the X-axis direction.
  • the machining start end portion GEa of the glass plate G comes into contact with the second groove portion 4 of the second grindstone 2 at the machining start position XS.
  • the second grindstone 2 reaches the processing end end GEb of the glass plate G.
  • the second grindstone 2 reciprocates in the Z-axis direction while moving from the machining start position XS to the machining end position XE in the X-axis direction. That is, the second grindstone 2 moves (rises) a distance L1 from the reference position R0 in the Z-axis direction to reach the first position Z1. After that, the same distance L1 is moved (descended) to return to the reference position Z0, and then the distance L2 is moved (descended) from the reference position Z0 to reach the second position Z2.
  • the moving distance L1 from the reference position Z0 to the first position Z1 and the distance L2 from the reference position Z0 to the second position Z2 are equal to each other, but the relationship is not limited to this.
  • the sum (L1 + L2) of the moving distances L1 and L2 from the reference position Z0 is the moving range of the second grindstone 2 in the Z-axis direction.
  • the width dimension W1 of the second groove portion 4 of the second grindstone 2 before (initially) the second processing step S2 is executed may be smaller than the sum of this movement range (L1 + L2) and the thickness dimension T of the glass plate G. Preferred (W1 ⁇ (L1 + L2 + T)).
  • the width dimension W2 of the bottom portion 4a of the second groove portion 4 before (initially) the second processing step S2 is executed is larger than the sum of this movement range (L1 + L2) and the thickness dimension T1 of the end face ES1 of the glass plate G. It is preferably small (W2 ⁇ (L1 + L2 + T1)).
  • the second grindstone 2 is arranged at the reference position Z0 in the Z-axis direction at the machining start position XS.
  • the second groove portion 4 of the second grindstone 2 at the reference position Z0 is in the groove width direction (Z axis) at the bottom portion 4a.
  • the central portion of the direction) comes into contact with the end face ES1 of the glass plate G.
  • the connection surface ES2 of the glass plate G is not in contact with the regulation surface 4b of the second groove portion 4. That is, a gap is formed between the connection surface ES2 and the regulation surface 4b of the second groove portion 4.
  • the second grindstone 2 rises from the reference position Z0 at a constant velocity in the Z-axis direction while moving from the machining start position XS to the first intermediate position XM1, and reaches the first position Z1. To reach. During this movement, the glass plate G is in a state where only the end surface ES1 is in contact with the bottom portion 4a of the second groove portion 4 of the second grindstone 2.
  • connection surface ES2 on the second surface GS2 side of the glass plate G becomes the lower side of the second groove portion 4 at the first position Z1 as shown in FIG. Contact the regulatory surface 4b.
  • the connection surface ES2 is pressed against the regulation surface 4b, the glass plate G is elastically deformed in the Z-axis direction.
  • the connection surface ES2 on the second surface GS2 side of the glass plate G is polished by the regulation surface 4b of the second groove portion 4.
  • the second grindstone 2 moves at a constant speed from the first position Z1 to the reference position Z0 in the Z-axis direction while moving from the first intermediate position XM1 to the second intermediate position XM2. Further, as shown in FIG. 5, the second grindstone 2 moves at a constant speed from the reference position Z0 to the second position Z2 in the Z-axis direction while moving from the second intermediate position XM2 to the machining end position XE. ..
  • connection surface ES2 on the first surface GS1 side of the glass plate G is restricted to the upper side of the second groove portion 4 at the second position Z2 as shown in FIG. Contact surface 4b.
  • the connection surface ES2 is pressed against the regulation surface 4b, the glass plate G is elastically deformed in the Z-axis direction.
  • the connection surface ES2 on the first surface GS1 side of the glass plate G is polished by the regulation surface 4b of the second groove portion 4.
  • the surface roughness Ra1 (arithmetic mean roughness) of the end face ES1 is the surface roughness of the connecting surface ES2 in the glass plate G after the completion of the second processing step S2. It is smaller than Ra2 (arithmetic mean roughness).
  • the ratio Ra1 / Ra2 of the surface roughness Ra1 of the end surface ES1 to the surface roughness Ra2 of the connection surface ES2 is preferably 0.15 to 0.6.
  • the surface roughness Ra1 of the end face ES1 is preferably 0.03 to 0.06 ⁇ m.
  • the surface roughness Ra2 of the connecting surface ES2 is preferably 0.1 to 0.2 ⁇ m.
  • the surface roughness Ra1 of the end face ES1 is measured at a plurality of locations (for example, around the machining start position XS, around the machining end position XE, and around their intermediate positions) where the positions of the end face ES1 in the length direction are different. And let it be the average value of them. Further, the surface roughness Ra2 of the connecting surface ES2 is measured at a plurality of locations where the positions of the end surface ES1 in the length direction are different, and is set as the maximum value thereof.
  • the second grindstone 2 passes through the first intermediate position XM1 to the fifth intermediate position XM5 before moving from the machining start position XS to the machining end position XE.
  • the second grindstone 2 While moving from the machining start position XS to the first intermediate position XM1, the second grindstone 2 does not move in the Z-axis direction (while maintaining the reference position Z0) and is relatively relative along the X-axis direction. Moving. The second grindstone 2 moves (rises) from the reference position Z0 to the first position Z1 in the Z-axis direction while moving from the first intermediate position XM1 to the second intermediate position XM2. While the second grindstone 2 moves from the machining start position XS to the second intermediate position XM2 via the first intermediate position XM1, only the end face ES1 of the glass plate G is polished by the bottom portion 4a of the second groove portion 4.
  • the second grindstone 2 moves relatively along the X-axis direction while maintaining the first position Z1 in the Z-axis direction.
  • the end surface ES1 of the glass plate G is polished by the bottom portion 4a of the second groove portion 4, and the connection surface ES2 on the second surface GS2 side is polished to the lower regulation surface 4b of the second groove portion 4.
  • the second grindstone 2 moves from the first position Z1 to the reference position Z0 in the Z-axis direction while moving from the third intermediate position XM3 to the fourth intermediate position XM4.
  • the connection surface ES2 on the second surface GS2 side of the glass plate G is separated from the regulation surface 4b of the second groove portion 4.
  • the second grindstone 2 moves from the reference position Z0 to the second position Z2 in the Z-axis direction while moving from the fourth intermediate position XM4 to the fifth intermediate position XM5. While the second grindstone 2 moves from the third intermediate position XM3 to the fifth intermediate position XM5 via the fourth intermediate position XM4, only the end face ES1 of the end surface GE of the glass plate G is polished by the bottom 4a of the second groove portion 4. Will be done.
  • the second grindstone 2 moves relatively along the X-axis direction while maintaining the second position Z2 in the Z-axis direction.
  • the end surface ES1 of the glass plate G is polished by the bottom portion 4a of the second groove portion 4, and the connection surface ES2 on the first surface GS1 side is polished to the upper regulation surface 4b of the second groove portion 4.
  • the second grindstone 2 passes from the first intermediate position XM1 to the eighth intermediate position XM8 while moving from the machining start position XS to the machining end position XE.
  • the second grindstone 2 moves from the reference position Z0 to the second position Z2 in the Z-axis direction while moving from the machining start position XS to the first intermediate position XM1.
  • the second grindstone 2 moves from the second position Z2 to the reference position Z0 in the Z-axis direction while moving from the first intermediate position XM1 to the second intermediate position XM2.
  • the second grindstone 2 moves from the reference position Z0 to the first position Z1 in the Z-axis direction while moving from the second intermediate position XM2 to the third intermediate position XM3.
  • the second grindstone 2 moves from the first position Z1 to the reference position Z0 in the Z-axis direction while moving from the third intermediate position XM3 to the fourth intermediate position XM4.
  • the second grindstone 2 cycles the same movement as above while moving from the fourth intermediate position XM4 to the fifth intermediate position XM5, the sixth intermediate position XM6, the seventh intermediate position XM7, and the eighth intermediate position XM8. Repeat.
  • FIG. 11 is a cross-sectional view of the second grindstone 2 when the second processing step S2 is executed a plurality of times.
  • the depth dimension D1 of the second groove portion 4 is deeper than the initial depth dimension D0.
  • FIG. 12 is a cross-sectional view of the second grindstone 2 when the second processing step S2 is further executed a plurality of times by the second groove portion 4 shown in FIG.
  • the depth dimension D2 of the second groove portion 4 is further deeper than the depth dimension D1 in FIG.
  • the bottom portion 4a of the second groove portion 4 is formed so that its radius of curvature increases from the initial curved surface shape, that is, approaches a flat surface shape by repeating the second processing step S2. It will be gradually deformed.
  • the second grindstone 2 is relatively moved in the Z-axis direction so that the regulation surface 4b of the second groove portion 4 always contacts the connection surface ES2 of the glass plate G. ing.
  • the reduction of the width dimension W2 of the bottom portion 4a can be suppressed, and the processing accuracy of the end face ES1 of the end portion GE can be improved in each glass plate G. Can be kept constant.
  • the glass plate manufactured in this way is supplied to, for example, a display panel manufacturing process.
  • the position of the end GE may be detected by photographing the end GE with a camera.
  • the image of the end portion GE captured shows the end face ES1 and the connection surface ES2 having different surface roughness Ra1 and Ra2.
  • the surface roughness Ra1 of the end surface ES1 at the end portion GE of the glass plate becomes smaller than the surface roughness Ra2 of the connection surface ES2.
  • the end surface ES1 and the connection surface ES2 can be easily distinguished.
  • the connection surface ES2 which is the boundary between each surface GS1 and GS2 of the glass plate G and the end portion GE can be easily specified, the end portion GE can be easily detected in the image.
  • a positioning pin or a roller may come into contact with the end surface ES1 of the glass plate G. Since the surface roughness Ra of the end face ES1 is small, it is possible to reduce the generation of glass powder due to this contact.
  • width dimension W2 of the bottom portion 4a related to the second groove portion 4 of the second grindstone 2 is made larger than the thickness dimension T1 of the end face ES1 on the glass plate G, a new second grindstone at the time of replacement work of the second grindstone 2.
  • the alignment work of 2 can be performed efficiently.
  • FIG. 13 to 17 show a second embodiment of the method for manufacturing a glass plate according to the present invention.
  • the embodiment of the second processing step is different from that of the first embodiment.
  • the second groove portion 4 illustrated in the first embodiment is not formed on the outer peripheral surface 2a of the second grindstone 2 before (unused) the second processing step S2 is executed.
  • the second grindstone 2 is changed to the glass plate as in the first embodiment.
  • G1 moves relative to the length direction (X-axis direction) of the end GE from the machining start end GEa to the machining end end GEb, and also in the Z-axis direction (thickness direction of the first glass plate G1). Move relative to.
  • the second groove portion 4 having the width dimension W3 and the depth dimension D3 is formed on the second grindstone 2 by the first second processing step S2.
  • the depth dimension D3 of the second groove portion 4 is smaller than the initial depth dimension D0 of the second groove portion 4 in the first embodiment. That is, the second groove portion 4 according to the first embodiment has a function that the regulation surface 4b regulates the end portion GE of the glass plate G when the glass plate G is processed. The second groove portion 4 does not have this function.
  • one end portion (upper end portion) of the second groove portion 4 in the groove width direction (Z-axis direction) of the second grindstone 2 is the second. It is arranged so as to overlap the end face ES1 of the second glass plate G2. In this case, the end surface ES1 of the second glass plate G2 comes into contact with the outer peripheral surface 2a of the second grindstone 2 in which the second groove portion 4 is not formed.
  • the second grindstone 2 is in the length direction of the end portion GE from the processing start end portion GEa of the second glass plate G2 toward the processing end portion GEb, as in the case of processing the first glass plate G1. While moving relative to (X-axis direction), it moves relative to the Z-axis direction as shown in FIG.
  • the width of the second groove portion 4 formed by processing the first glass plate G1 is expanded by processing the second glass plate G2. As shown in FIG. 17, the width dimension W4 of the second groove portion 4 after processing the second glass plate G2 is larger than the width dimension W3 of the second groove portion 4 immediately after processing the first glass plate G1. Become.
  • the depth dimension D3 of the second groove portion 4 is substantially the same as that after the completion of the first second processing step S2.
  • the second grindstone 2 is arranged so as to overlap one end in the groove width direction (Z-axis direction) in the second groove portion 4 after processing the second glass plate G2. (See FIG. 17).
  • the end surface ES1 of the third glass plate G3 comes into contact with the outer peripheral surface 2a of the second grindstone 2 in which the second groove portion 4 is not formed.
  • the second grindstone 2 is moved relative to the thickness direction (Z-axis direction) of the glass plate G3 to polish the end face ES1 in the same manner as when the second glass plate G2 is processed.
  • the width of the second groove portion 4 of the second grindstone 2 in the present embodiment is first increased as the second processing step S2 is repeated.
  • the second grindstone 2 is arranged at the same position as the first second processing step S2, and a part of the second groove portion 4 increases the depth. Let me. Subsequently, by repeating the second processing step S2 while changing the position of the second grindstone 2, the entire second groove portion 4 is made to have the same depth.
  • the methods for producing the glass plates G1 to G3 according to the present embodiment have the following advantages as compared with the first embodiment.
  • the second groove portion 4 is formed on the outer peripheral surface 2a of the second grindstone 2 as in the first embodiment, only the second groove portion 4 of the outer peripheral surface 2a can be used for processing, and a single second grindstone 2
  • the number of glass plates G that can be processed in is reduced.
  • the second grindstone 2 having the outer peripheral surface 2a on which the second groove portion 4 is not formed is used as in the present embodiment, most of the outer peripheral surface 2a can be used for processing, and a single grindstone can be used.
  • the number of glass plates G that can be processed by the second grindstone 2 can be significantly increased.
  • the present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect.
  • the present invention can be modified in various ways without departing from the gist of the present invention.
  • the relative movement of the second grindstone 2 in the Z-axis direction in the second processing step S2 may be executed by moving the glass plate G with respect to the Z-axis direction (thickness direction).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

This glass plate manufacturing method includes: a first processing step S1 for processing an end section GE of a glass plate G with a first grindstone 1; and a second processing step S2 for polishing, with a second grindstone 2, the end section GE of the glass plate G that has undergone the first processing step S1. In the second processing step S2, while the second grindstone 2 is relatively moved in the longitudinal direction of the end section GE of the glass plate G, the second grindstone 2 is relatively moved in the thickness direction of the glass plate G.

Description

ガラス板の製造方法及びガラス板Glass plate manufacturing method and glass plate
 本発明は、ガラス板及びその製造方法に関する。 The present invention relates to a glass plate and a method for manufacturing the same.
 液晶ディスプレイや有機ELディスプレイ等のディスプレイには、ガラス板が使用される。ガラス板の端部に傷が存在すると、その傷から割れ等が発生するため、これを防止するためにガラス板の端部に対して研削・研磨加工が施される。 A glass plate is used for displays such as liquid crystal displays and organic EL displays. If there is a scratch on the edge of the glass plate, cracks or the like are generated from the scratch, and in order to prevent this, the edge of the glass plate is ground and polished.
 例えば特許文献1には、ガラス板を所定の方向に搬送しながら、ガラス板の端部に対して研削砥石により面取り加工を施す研削加工工程と、面取りされたガラス板の端部に対して研磨砥石による研磨加工を施す研磨加工工程とを備えるガラス板の加工方法が開示されている。 For example, Patent Document 1 describes a grinding process in which a glass plate is chamfered with a grinding wheel while being conveyed in a predetermined direction, and the edge of the chamfered glass plate is polished. A method for processing a glass plate including a polishing process for performing a polishing process with a grindstone is disclosed.
特開2018-103320号公報JP-A-2018-103320
 例えばガラス板をディスプレイ用基板として使用する場合、基板上に電子デバイスを製造する工程において、位置決めするためにガラス板の端部をピンやローラに押し当てることがある。その際、ガラス板の端部に傷が残存していると、ガラス粉が発生しやすい。このガラス粉がガラス板の表面に付着すると、電子デバイスの断線不良を引き起こすこととなる。このため、ガラス板の端部の表面性状をさらに改善することが望まれている。 For example, when a glass plate is used as a display substrate, the end of the glass plate may be pressed against a pin or a roller for positioning in the process of manufacturing an electronic device on the substrate. At that time, if scratches remain on the edge of the glass plate, glass powder is likely to be generated. If this glass powder adheres to the surface of the glass plate, it causes disconnection failure of the electronic device. Therefore, it is desired to further improve the surface texture of the end portion of the glass plate.
 しかしながら、ガラス板の端部全体の表面性状を改善すると、端部全体が鏡面状となってしまい、カメラでガラス板の端部を撮像した場合に、端部を検出することが困難になる。 However, if the surface texture of the entire edge of the glass plate is improved, the entire edge becomes mirror-like, and it becomes difficult to detect the edge when the edge of the glass plate is imaged with a camera.
 本発明は上記の事情に鑑みて為されたものであり、ガラス板の端部について、ガラス粉の発生を低減しながら、カメラでの検出を可能とすることを技術的課題とする。 The present invention has been made in view of the above circumstances, and it is a technical subject to enable detection by a camera while reducing the generation of glass powder at the edge of a glass plate.
 本発明は上記の課題を解決するためのものであり、表面及び端部を有するガラス板を製造する方法であって、前記ガラス板の前記端部は、端面と、前記端面と前記表面との間に形成される接続面と、を有し、前記ガラス板の前記端部を第一砥石で加工する第一加工工程と、前記第一加工工程を経たガラス板の前記端部を第二砥石で研磨する第二加工工程と、を備え、前記第二加工工程では、前記第二砥石を前記ガラス板の前記端部の長さ方向に相対的に移動させながら、前記第二砥石を前記ガラス板の厚み方向に対して相対的に移動させることを特徴とする。 The present invention is for solving the above-mentioned problems, and is a method for manufacturing a glass plate having a surface and an end portion, wherein the end portion of the glass plate has an end face, the end face and the surface. A first processing step of processing the end portion of the glass plate with a first grindstone having a connecting surface formed between the glass plates, and a second grindstone of the end portion of the glass plate that has undergone the first processing step. In the second processing step, the second grindstone is moved relative to the length direction of the end portion of the glass plate, and the second grindstone is moved to the glass. It is characterized in that it is moved relative to the thickness direction of the plate.
 かかる構成によれば、第二加工工程において、第二砥石を、ガラス板の端部の長さ方向に相対的に移動させながら、ガラス板の厚み方向において相対的に移動させることで、主に端面が加工され、端面の表面粗さは、接続面の表面粗さよりも小さくなる。位置決め用のピンやローラは、表面粗さが小さい端面に接触するので、ガラス粉の発生を低減できる。また、カメラでガラス板の端部を撮像した場合、端面は鏡面状となるが、接続面は非鏡面状となるので、接続面に基づいて端部を検出することが可能となる。 According to this configuration, in the second processing step, the second grindstone is mainly moved in the thickness direction of the glass plate while being relatively moved in the length direction of the end portion of the glass plate. The end face is processed, and the surface roughness of the end face becomes smaller than the surface roughness of the connecting surface. Since the positioning pins and rollers come into contact with the end faces having a small surface roughness, the generation of glass powder can be reduced. Further, when the end portion of the glass plate is imaged with a camera, the end surface has a mirror surface shape, but the connection surface has a non-mirror surface shape, so that the end portion can be detected based on the connection surface.
 ここで、ガラス板の端部全体を研磨すると、加工熱によって砥粒が溶損しやすく、砥石の消耗が激しくなったり、表面性状をかえって悪化させたりする。上述の第二加工工程では、主に端面が加工されるので、加工熱を低減して砥粒の溶損を抑制できる。このため、砥石の消耗を低減できると共に、端面の表面性状をさらに改善できる。 Here, if the entire edge of the glass plate is polished, the abrasive grains are likely to be melted due to the processing heat, the grindstone is heavily consumed, and the surface texture is rather deteriorated. In the second processing step described above, since the end face is mainly processed, the processing heat can be reduced and the melting damage of the abrasive grains can be suppressed. Therefore, the consumption of the grindstone can be reduced, and the surface texture of the end face can be further improved.
 本発明に係るガラス板の製造方法において、前記第二砥石は、前記ガラス板の前記端面を研磨する溝部を有し、前記溝部は、前記ガラス板の前記端面に接触する底部と、前記底部に繋がるとともに前記接続面に接触可能な規制面とを有し、前記溝部の前記底部は、前記ガラス板の前記端面の厚みよりも大きな幅を有し、前記第二加工工程を実行する前における前記底部の前記幅は、前記端面の厚みと、前記厚み方向における前記第二砥石の相対的な移動距離との和よりも小さくてもよい。 In the method for manufacturing a glass plate according to the present invention, the second grindstone has a groove for polishing the end face of the glass plate, and the groove is formed on a bottom portion of the glass plate in contact with the end face and a bottom portion thereof. The bottom portion of the groove portion has a width larger than the thickness of the end surface of the glass plate, and has a regulating surface that is connected and can be contacted with the connection surface. The width of the bottom portion may be smaller than the sum of the thickness of the end face and the relative moving distance of the second grindstone in the thickness direction.
 かかる構成によれば、第二砥石の溝部に係る底部の幅を上記の範囲に設定することで、第二砥石をガラス板に対して相対的に移動させる間に、溝部の底部によってガラス板の端面を好適に研磨するとともに、ガラス板の接続面を溝部の規制面に接触させることができる。これにより、複数のガラス板を製造する場合に、その端部を安定的に加工することが可能になる。 According to such a configuration, by setting the width of the bottom portion of the second grindstone to the groove portion in the above range, the bottom portion of the groove portion of the glass plate while the second grindstone is moved relative to the glass plate. The end face can be suitably polished and the connecting surface of the glass plate can be brought into contact with the regulating surface of the groove. This makes it possible to stably process the end portions of a plurality of glass plates when they are manufactured.
 本発明に係るガラス板の製造方法では、前記第二加工工程を実行する前において、前記第二砥石は、溝部が形成されていない外周面を有し、前記第二加工工程では、前記第二砥石の前記外周面によって前記ガラス板の前記端部を研磨してもよい。 In the method for manufacturing a glass plate according to the present invention, the second grindstone has an outer peripheral surface on which no groove is formed before the second processing step is executed, and in the second processing step, the second processing step is performed. The end portion of the glass plate may be polished by the outer peripheral surface of the grindstone.
 第二砥石の外周面に溝部を形成すると、外周面のうちで溝部しか加工に用いることができず、単一の第二砥石で加工できるガラス板の枚数が減少する。溝部が形成されていない外周面を有する第二砥石を用いれば、外周面の大部分を加工に用いることができ、単一の第二砥石で加工できるガラス板の枚数を大幅に増加させることができる。 If a groove is formed on the outer peripheral surface of the second grindstone, only the groove can be used for machining on the outer peripheral surface, and the number of glass plates that can be machined with a single second grindstone is reduced. If a second grindstone having an outer peripheral surface without a groove is used, most of the outer peripheral surface can be used for machining, and the number of glass plates that can be machined with a single second grindstone can be significantly increased. it can.
 本発明は上記の課題を解決するためのものであり、表面及び端部を有するガラス板であって、前記端部は、端面と、前記端面と前記表面との間に形成される接続面と、を有し、前記端面の表面粗さRa1は、前記接続面の表面粗さRa2よりも小さいことを特徴とする。 The present invention is for solving the above-mentioned problems, and is a glass plate having a surface and an end portion, wherein the end portion is an end face and a connecting surface formed between the end face and the surface. The surface roughness Ra1 of the end surface is smaller than the surface roughness Ra2 of the connection surface.
 かかる構成によれば、ガラス板の端面の強度を高めるとともに、製品品位を向上させることができる。また、位置決め用のピンやローラは、表面粗さが小さい端面に接触するので、ガラス粉の発生を低減できる。さらに、カメラでガラス板の端部を撮像した場合、端面は鏡面状となっているが、接続面は非鏡面状となっているので、接続面に基づいて端部を検出することが可能となる。 According to this configuration, the strength of the end face of the glass plate can be increased and the product quality can be improved. Further, since the positioning pins and rollers come into contact with the end faces having a small surface roughness, the generation of glass powder can be reduced. Furthermore, when the end of the glass plate is imaged with a camera, the end surface is mirror-like, but the connection surface is non-mirror surface, so it is possible to detect the end based on the connection surface. Become.
 上記のガラス板において、前記端面の前記表面粗さRa1と、前記接続面の前記表面粗さRa2との比Ra1/Ra2は、0.15~0.6であってもよい。かかる構成によれば、端面と接続面で反射率の差が大きくなるので、カメラでガラス板の端部を撮像した場合に接続面に基づいて端部を検出することが容易となる。 In the above glass plate, the ratio Ra1 / Ra2 of the surface roughness Ra1 of the end surface to the surface roughness Ra2 of the connection surface may be 0.15 to 0.6. According to such a configuration, since the difference in reflectance between the end surface and the connection surface becomes large, it becomes easy to detect the end portion based on the connection surface when the end portion of the glass plate is imaged by the camera.
 また、前記端面の前記表面粗さRa1は、0.06μm以下であってもよい。かかる構成によれば、位置決め用のピンやローラの接触に伴うガラス粉の発生を確実に低減できる。 Further, the surface roughness Ra1 of the end face may be 0.06 μm or less. According to such a configuration, it is possible to surely reduce the generation of glass powder due to the contact between the positioning pin and the roller.
 本発明によれば、ガラス板の端部について、ガラス粉の発生を低減しながら、カメラでの検出が可能となる。 According to the present invention, it is possible to detect the edge of the glass plate with a camera while reducing the generation of glass powder.
第一実施形態に係るガラス板の製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the glass plate which concerns on 1st Embodiment. 第一砥石及びガラス板を示す断面図である。It is sectional drawing which shows the 1st grindstone and the glass plate. 第一加工工程を示す断面図である。It is sectional drawing which shows the 1st processing process. 第二砥石及びガラス板を示す断面図である。It is sectional drawing which shows the 2nd grindstone and the glass plate. 第二砥石の移動の軌跡を示す図である。It is a figure which shows the locus of movement of the 2nd grindstone. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二砥石の移動の軌跡に係る他の例を示す図である。It is a figure which shows another example which concerns on the locus of movement of the 2nd grindstone. 第二砥石の移動の軌跡に係る他の例を示す図である。It is a figure which shows another example concerning the locus of movement of the 2nd grindstone. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二実施形態に係るガラス板の製造方法を示す断面図である。It is sectional drawing which shows the manufacturing method of the glass plate which concerns on 2nd Embodiment. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process. 第二加工工程を示す断面図である。It is sectional drawing which shows the 2nd processing process.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図12は、本発明に係るガラス板の製造方法の第一実施形態を示す。 Hereinafter, a mode for carrying out the present invention will be described with reference to the drawings. 1 to 12 show the first embodiment of the method for manufacturing a glass plate according to the present invention.
 以下の例では、四辺を有する矩形状のガラス板Gを製造する場合について説明するが、ガラス板Gの形状は、本実施形態に限定されるものではない。ガラス板Gは、フロート法、オーバーフローダウンドロー法、スロットダウンドロー法等の公知の成形方法で成形され、所定の大きさに切断されている。ガラス板Gの厚みTは、0.2~10mmとされ、ガラス板Gのサイズは、200mm×300mm~3100mm×3500mmとされるが、この範囲に限定されない。また、ガラス板Gの組成としては、無アルカリガラス又はアルミノシリケートガラスであることが好ましい。ここで、「無アルカリガラス」とは、アルカリ成分(アルカリ金属酸化物)を実質的に含まないガラスであり、具体的には、アルカリ成分の重量比が1000ppm以下のガラスである。アルカリ成分の重量比は、好ましくは500ppm以下であり、より好ましくは300ppm以下である。 In the following example, a case where a rectangular glass plate G having four sides is manufactured will be described, but the shape of the glass plate G is not limited to the present embodiment. The glass plate G is molded by a known molding method such as a float method, an overflow down draw method, or a slot down draw method, and is cut into a predetermined size. The thickness T of the glass plate G is 0.2 to 10 mm, and the size of the glass plate G is 200 mm × 300 mm to 3100 mm × 3500 mm, but the size is not limited to this range. The composition of the glass plate G is preferably non-alkali glass or aluminosilicate glass. Here, the "non-alkali glass" is a glass that does not substantially contain an alkaline component (alkali metal oxide), and specifically, a glass having a weight ratio of an alkaline component of 1000 ppm or less. The weight ratio of the alkaline component is preferably 500 ppm or less, more preferably 300 ppm or less.
 図1に示すように、ガラス板Gは、第一表面GS1と、第二表面GS2と、各辺に対応する端部GEとを有する。本実施形態では、ガラス板Gの四辺のうち、平行な二辺に係る端部GEを加工する場合を例示する。ガラス板Gの各端部GEは、加工開始端部GEa及び加工終了端部GEbを含む。 As shown in FIG. 1, the glass plate G has a first surface GS1, a second surface GS2, and end portions GE corresponding to each side. In this embodiment, a case where the end GE related to two parallel sides of the four sides of the glass plate G is processed is illustrated. Each end GE of the glass plate G includes a machining start end GEa and a machining end end GEb.
 図1に示すように、本方法は、ガラス板Gの端部GEを第一砥石1により加工する第一加工工程S1と、当該第一加工工程S1後にガラス板Gの端部GEを第二砥石2により加工する第二加工工程S2とを備える。なお、図中のXYZは直交座標系である。X軸方向及びY軸方向は水平方向であり、Z軸方向は鉛直方向(上下方向)である。 As shown in FIG. 1, in this method, the first processing step S1 in which the end portion GE of the glass plate G is processed by the first grindstone 1 and the end portion GE of the glass plate G are secondly processed after the first processing step S1. A second processing step S2 for processing with the grindstone 2 is provided. Note that XYZ in the figure is a Cartesian coordinate system. The X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction (vertical direction).
 第一加工工程S1及び第二加工工程S2では、各砥石1,2とガラス板Gとを相対的に移動させることで、ガラス板Gの各端部GEをその長さ方向(X軸方向)に沿って加工開始端部GEaから加工終了端部GEbまで加工する。例えば、ガラス板Gを搬送方向GX1に沿って移動させることで、各砥石1,2によるガラス板Gの端部GEの加工を行うことができる。或いは、各砥石1,2を所定の方向GX2に移動させることで、ガラス板Gの端部GEの加工を行ってもよい。 In the first processing step S1 and the second processing step S2, by relatively moving the grindstones 1 and 2 and the glass plate G, each end GE of the glass plate G is moved in the length direction (X-axis direction). Machining is performed from the machining start end GEa to the machining end end GEb along the above. For example, by moving the glass plate G along the transport direction GX1, the end portion GE of the glass plate G can be processed by the grindstones 1 and 2. Alternatively, the end portion GE of the glass plate G may be processed by moving the grindstones 1 and 2 in a predetermined direction GX2.
 第一加工工程S1に使用される第一砥石1は、例えば一対の回転砥石により構成される。第一砥石1は、例えばガラス板Gの端部GEに対して面取り加工を行う研削砥石である。第一砥石1としては、例えばダイヤモンド砥粒を金属の電着ボンドで固めてなる電着砥石や、砥粒を金属質結合剤で固めてなるメタルボンド砥石が好適に使用される。 The first grindstone 1 used in the first processing step S1 is composed of, for example, a pair of rotary grindstones. The first grindstone 1 is, for example, a grinding grindstone that chamfers the end GE of the glass plate G. As the first grindstone 1, for example, an electrodeposition grindstone in which diamond abrasive grains are hardened with a metal electrodeposition bond and a metal bond grindstone in which the abrasive grains are hardened with a metallic binder are preferably used.
 第一砥石1は、移動機構によって水平方向(X軸方向及びY軸方向)及び上下方向(Z軸方向)に移動可能に構成される。また、第一砥石1は、電動モータ等の駆動手段によって、その軸心RC1まわりに回転する。 The first grindstone 1 is configured to be movable in the horizontal direction (X-axis direction and Y-axis direction) and the vertical direction (Z-axis direction) by a moving mechanism. Further, the first grindstone 1 is rotated around its axis RC1 by a driving means such as an electric motor.
 図1及び図2に示すように、第一砥石1は、ガラス板Gの端部GEを加工する第一溝部3を有する。第一溝部3は、底部3aと、当該底部3aの両側に形成される傾斜面3bとを有する。本実施形態では、一段の第一溝部3が形成された第一砥石1を例示するが、この構成に限定されず、複数段の第一溝部3が第一砥石1に形成されてもよい。また、ガラス板Gの各端部GEに対し、複数の第一砥石1により第一加工工程S1を行ってもよい。 As shown in FIGS. 1 and 2, the first grindstone 1 has a first groove portion 3 for processing the end portion GE of the glass plate G. The first groove portion 3 has a bottom portion 3a and inclined surfaces 3b formed on both sides of the bottom portion 3a. In the present embodiment, the first grindstone 1 in which the first groove portion 3 of one stage is formed is illustrated, but the present invention is not limited to this configuration, and the first groove portion 3 of a plurality of stages may be formed in the first grindstone 1. Further, the first processing step S1 may be performed on each end GE of the glass plate G by a plurality of first grindstones 1.
 図2に示すように、第一加工工程S1に供給されるガラス板Gの端部GEは、角部GCを含む端面により構成される。第一加工工程S1では、第一砥石1の面取り加工によって各端部GEの角部GCを除去する。 As shown in FIG. 2, the end portion GE of the glass plate G supplied to the first processing step S1 is composed of an end face including the corner portion GC. In the first processing step S1, the corner GC of each end GE is removed by chamfering the first grindstone 1.
 具体的には、図3に示すように、第一砥石1は、底部3a及び傾斜面3bによってガラス板Gの端部GEを研削する。この場合において、傾斜面3bにより、ガラス板Gの端部GEの角部GCが除去される。この第一加工工程S1が実行されることで、ガラス板Gの端部GEは、第一砥石1の底部3aによって研削された端面ES1(頂部)と、第一砥石1の傾斜面3bによって研削された接続面ES2とを備えたものとなる。 Specifically, as shown in FIG. 3, the first grindstone 1 grinds the end portion GE of the glass plate G by the bottom portion 3a and the inclined surface 3b. In this case, the inclined surface 3b removes the corner portion GC of the end portion GE of the glass plate G. By executing this first processing step S1, the end GE of the glass plate G is ground by the end face ES1 (top) ground by the bottom 3a of the first grindstone 1 and the inclined surface 3b of the first grindstone 1. It is provided with the connection surface ES2.
 端面ES1は、第一砥石1の底部3aの形状に倣って平坦面状又は曲面状に構成される。接続面ES2は、端面ES1とガラス板Gの各表面GS1,GS2との間に形成される境界部である。接続面ES2は、ガラス板Gの各表面GS1,GS2と端面ES1とを繋ぐように曲面状に構成される。 The end face ES1 is formed in a flat surface shape or a curved surface shape following the shape of the bottom portion 3a of the first grindstone 1. The connecting surface ES2 is a boundary portion formed between the end surface ES1 and the respective surfaces GS1 and GS2 of the glass plate G. The connecting surface ES2 is formed in a curved surface so as to connect the respective surfaces GS1 and GS2 of the glass plate G and the end surface ES1.
 第二加工工程S2に使用される第二砥石2は、例えばガラス板Gの端面ES1を研磨加工する一対の回転砥石により構成される。第二砥石2としては、砥粒の結合材として樹脂結合材(レジンボンド)が採用されたレジンボンド砥石が好適に使用される。 The second grindstone 2 used in the second processing step S2 is composed of, for example, a pair of rotary grindstones for polishing the end face ES1 of the glass plate G. As the second grindstone 2, a resin bond grindstone in which a resin binder (resin bond) is used as the binder for the abrasive grains is preferably used.
 樹脂結合材としては、熱硬化性樹脂を採用することが好ましい。具体例としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ポリウレタン樹脂等を樹脂結合剤として採用することができる。 It is preferable to use a thermosetting resin as the resin binder. As a specific example, a phenol resin, an epoxy resin, a polyimide resin, a polyurethane resin or the like can be adopted as the resin binder.
 第二砥石2に結合される砥粒としては、ダイヤモンド粒子、酸化アルミニウム粒子、炭化珪素粒子、立方晶窒化硼素粒子、金属酸化物粒子、金属炭化物粒子、金属窒化物粒子等から一種を選択したものまたは二種以上を選択して混合したものを使用できる。砥粒の粒度は、例えば#1000~3000とされるが、この範囲に限定されるものではない。 As the abrasive grains bonded to the second grindstone 2, one selected from diamond particles, aluminum oxide particles, silicon carbide particles, cubic boron nitride particles, metal oxide particles, metal carbide particles, metal nitride particles and the like is selected. Alternatively, two or more types can be selected and mixed. The particle size of the abrasive grains is, for example, # 1000 to 3000, but is not limited to this range.
 第二砥石2は、移動機構によって水平方向(X軸方向、Y軸方向)及び上下方向(Z軸方向)に移動可能に構成される。また、第二砥石2は、電動モータ等の駆動手段によって、その軸心RC2まわりに回転する。 The second grindstone 2 is configured to be movable in the horizontal direction (X-axis direction, Y-axis direction) and the vertical direction (Z-axis direction) by a moving mechanism. Further, the second grindstone 2 is rotated around its axis RC2 by a driving means such as an electric motor.
 図4に示すように、第二砥石2は、その外周面2aに、ガラス板Gの端部GEを研磨加工する第二溝部4を有する。第二溝部4は、ガラス板Gの端部GEの略全部を受け入れることができ、第二溝部4の幅寸法W1は、ガラス板Gの厚み寸法Tよりも大きい。第二溝部4は、ガラス板Gの端面ES1に接触する底部4aと、当該底部4aの両側に繋がって形成される一対の規制面4bとを有する。なお、第二溝部4は、ガラス板Gの端部GEの一部(例えば端面ES1と端面ES1側の接続面ES2)を受け入れるように構成してもよい。この場合、第二溝部4の幅寸法W1は、端部GEのうちで第二溝部4に受け入れられる部分の最大厚みよりも大きい。 As shown in FIG. 4, the second grindstone 2 has a second groove portion 4 on the outer peripheral surface 2a thereof for polishing the end portion GE of the glass plate G. The second groove portion 4 can receive substantially all of the end portion GE of the glass plate G, and the width dimension W1 of the second groove portion 4 is larger than the thickness dimension T of the glass plate G. The second groove portion 4 has a bottom portion 4a that contacts the end surface ES1 of the glass plate G and a pair of regulation surfaces 4b that are connected to both sides of the bottom portion 4a. The second groove portion 4 may be configured to receive a part of the end portion GE of the glass plate G (for example, the connecting surface ES2 on the end surface ES1 and the end surface ES1 side). In this case, the width dimension W1 of the second groove portion 4 is larger than the maximum thickness of the portion of the end portion GE that is accepted by the second groove portion 4.
 底部4aは、ガラス板Gの端面にES1に対応するように曲面形状又は平坦面形状に構成される。規制面4bは、ガラス板Gの接続面ES2に対応するように、曲面形状に構成される。 The bottom portion 4a is formed on the end surface of the glass plate G in a curved surface shape or a flat surface shape so as to correspond to ES1. The regulation surface 4b is configured to have a curved surface shape so as to correspond to the connection surface ES2 of the glass plate G.
 底部4aの幅寸法W2は、ガラス板Gの端面ES1の厚みT1よりも大きい。底部4aの幅寸法W2は、ガラス板Gに係る端面ES1の厚み寸法T1の1倍~2.5倍(T1≦W2≦2.5T1)とされることが好ましい。 The width dimension W2 of the bottom portion 4a is larger than the thickness T1 of the end face ES1 of the glass plate G. The width dimension W2 of the bottom portion 4a is preferably 1 to 2.5 times (T1 ≦ W2 ≦ 2.5 T1) of the thickness dimension T1 of the end face ES1 related to the glass plate G.
 本実施形態では、一段の第二溝部4が形成された第二砥石2を例示するが、この構成に限定されず、複数段の第二溝部4が第二砥石2に形成されてもよい。また、ガラス板Gの各端部GEに対し、複数の第二砥石2により第二加工工程S2を行ってもよい。 In the present embodiment, the second grindstone 2 in which the second groove portion 4 of one stage is formed is illustrated, but the present invention is not limited to this configuration, and the second groove portion 4 of a plurality of stages may be formed in the second grindstone 2. Further, the second processing step S2 may be performed on each end GE of the glass plate G by a plurality of second grindstones 2.
 第二加工工程S2では、第二砥石2をガラス板Gの加工開始端部GEaから加工終了端部GEbに向かって端部GEの長さ方向(X軸方向)に相対的に移動させながら、第二砥石2をガラス板Gの厚み方向(Z軸方向)に対して相対的に移動させる。 In the second processing step S2, the second grindstone 2 is relatively moved from the processing start end GEa of the glass plate G toward the processing end end GEb in the length direction (X-axis direction) of the end GE. The second grindstone 2 is moved relative to the thickness direction (Z-axis direction) of the glass plate G.
 図5は、第二加工工程S2における第二砥石2の移動軌跡を示す。第二砥石2は、X軸方向において、加工開始位置XSから第一中間位置XM1及び第二中間位置XM2を経て加工終了位置XEまで、ガラス板Gに対して相対的に移動する。ガラス板Gの加工開始端部GEaは、加工開始位置XSにおいて第二砥石2の第二溝部4に接触する。加工終了位置XEにおいて、第二砥石2は、ガラス板Gの加工終了端部GEbに到達する。 FIG. 5 shows the movement locus of the second grindstone 2 in the second processing step S2. The second grindstone 2 moves relative to the glass plate G from the machining start position XS to the machining end position XE via the first intermediate position XM1 and the second intermediate position XM2 in the X-axis direction. The machining start end portion GEa of the glass plate G comes into contact with the second groove portion 4 of the second grindstone 2 at the machining start position XS. At the processing end position XE, the second grindstone 2 reaches the processing end end GEb of the glass plate G.
 第二砥石2は、X軸方向において加工開始位置XSから加工終了位置XEまで移動する間に、Z軸方向において往復移動する。すなわち、第二砥石2は、Z軸方向において、基準位置R0から距離L1を移動(上昇)して第一の位置Z1に到達する。その後、同じ距離L1を移動(下降)して基準位置Z0に戻り、続けて当該基準位置Z0から距離L2を移動(下降)して第二の位置Z2に到達する。 The second grindstone 2 reciprocates in the Z-axis direction while moving from the machining start position XS to the machining end position XE in the X-axis direction. That is, the second grindstone 2 moves (rises) a distance L1 from the reference position R0 in the Z-axis direction to reach the first position Z1. After that, the same distance L1 is moved (descended) to return to the reference position Z0, and then the distance L2 is moved (descended) from the reference position Z0 to reach the second position Z2.
 本実施形態において、基準位置Z0から第一の位置Z1までの移動距離L1と、基準位置Z0から第二の位置Z2までの距離L2とは等しくされているが、この関係に限定されない。 In the present embodiment, the moving distance L1 from the reference position Z0 to the first position Z1 and the distance L2 from the reference position Z0 to the second position Z2 are equal to each other, but the relationship is not limited to this.
 この場合において、基準位置Z0からの移動距離L1,L2の和(L1+L2)が第二砥石2のZ軸方向における移動範囲となる。第二加工工程S2を実行する前(初期)における第二砥石2の第二溝部4の幅寸法W1は、この移動範囲(L1+L2)とガラス板Gの厚み寸法Tとの和よりも小さいことが好ましい(W1<(L1+L2+T))。また、第二加工工程S2を実行する前(初期)における第二溝部4の底部4aの幅寸法W2は、この移動範囲(L1+L2)とガラス板Gの端面ES1の厚み寸法T1との和よりも小さいことが好ましい(W2<(L1+L2+T1))。 In this case, the sum (L1 + L2) of the moving distances L1 and L2 from the reference position Z0 is the moving range of the second grindstone 2 in the Z-axis direction. The width dimension W1 of the second groove portion 4 of the second grindstone 2 before (initially) the second processing step S2 is executed may be smaller than the sum of this movement range (L1 + L2) and the thickness dimension T of the glass plate G. Preferred (W1 <(L1 + L2 + T)). Further, the width dimension W2 of the bottom portion 4a of the second groove portion 4 before (initially) the second processing step S2 is executed is larger than the sum of this movement range (L1 + L2) and the thickness dimension T1 of the end face ES1 of the glass plate G. It is preferably small (W2 <(L1 + L2 + T1)).
 以下、第二加工工程S2における第二砥石2の具体的な動作態様について、図5乃至図8を参照しながら説明する。 Hereinafter, a specific operation mode of the second grindstone 2 in the second processing step S2 will be described with reference to FIGS. 5 to 8.
 図5に示すように、第二砥石2は、加工開始位置XSにおいて、Z軸方向において基準位置Z0に配置されている。 As shown in FIG. 5, the second grindstone 2 is arranged at the reference position Z0 in the Z-axis direction at the machining start position XS.
 図6に示すように、ガラス板Gの加工開始端部GEaが第二砥石2に到達すると、基準位置Z0にある第二砥石2の第二溝部4は、底部4aにおける溝幅方向(Z軸方向)の中央部がガラス板Gの端面ES1に接触する。この場合において、ガラス板Gの接続面ES2は、第二溝部4の規制面4bに接触していない。すなわち、接続面ES2と第二溝部4の規制面4bとの間には隙間が形成されている。 As shown in FIG. 6, when the processing start end portion GEa of the glass plate G reaches the second grindstone 2, the second groove portion 4 of the second grindstone 2 at the reference position Z0 is in the groove width direction (Z axis) at the bottom portion 4a. The central portion of the direction) comes into contact with the end face ES1 of the glass plate G. In this case, the connection surface ES2 of the glass plate G is not in contact with the regulation surface 4b of the second groove portion 4. That is, a gap is formed between the connection surface ES2 and the regulation surface 4b of the second groove portion 4.
 第二砥石2は、図5に示すように、加工開始位置XSから第一中間位置XM1まで移動する間に、Z軸方向において、基準位置Z0から等速で上昇し、第一の位置Z1まで到達する。この移動の間、ガラス板Gは、端面ES1のみが第二砥石2における第二溝部4の底部4aに接触した状態となる。 As shown in FIG. 5, the second grindstone 2 rises from the reference position Z0 at a constant velocity in the Z-axis direction while moving from the machining start position XS to the first intermediate position XM1, and reaches the first position Z1. To reach. During this movement, the glass plate G is in a state where only the end surface ES1 is in contact with the bottom portion 4a of the second groove portion 4 of the second grindstone 2.
 第二砥石2が第一の位置Z1に到達すると、ガラス板Gにおける第二表面GS2側の接続面ES2は、図7に示すように第一の位置Z1にある第二溝部4の下側の規制面4bに接触する。この場合において、接続面ES2が規制面4bに押圧されることによって、ガラス板GはZ軸方向に弾性変形する。これにより、ガラス板Gにおける第二表面GS2側の接続面ES2は、第二溝部4の規制面4bによって研磨される。 When the second grindstone 2 reaches the first position Z1, the connection surface ES2 on the second surface GS2 side of the glass plate G becomes the lower side of the second groove portion 4 at the first position Z1 as shown in FIG. Contact the regulatory surface 4b. In this case, when the connection surface ES2 is pressed against the regulation surface 4b, the glass plate G is elastically deformed in the Z-axis direction. As a result, the connection surface ES2 on the second surface GS2 side of the glass plate G is polished by the regulation surface 4b of the second groove portion 4.
 その後、第二砥石2は、第一中間位置XM1から第二中間位置XM2まで移動する間に、Z軸方向において、第一の位置Z1から基準位置Z0まで等速で移動する。さらに第二砥石2は、図5に示すように、第二中間位置XM2から加工終了位置XEまで移動する間に、Z軸方向において、基準位置Z0から第二の位置Z2まで等速で移動する。 After that, the second grindstone 2 moves at a constant speed from the first position Z1 to the reference position Z0 in the Z-axis direction while moving from the first intermediate position XM1 to the second intermediate position XM2. Further, as shown in FIG. 5, the second grindstone 2 moves at a constant speed from the reference position Z0 to the second position Z2 in the Z-axis direction while moving from the second intermediate position XM2 to the machining end position XE. ..
 第二砥石2が第一の位置Z1(第一中間位置XM1)から第二の位置Z2(加工終了位置XE)まで移動する間、ガラス板Gは、端面ES1のみが第二砥石2における第二溝部4の底部4aに接触した状態となる。 While the second grindstone 2 moves from the first position Z1 (first intermediate position XM1) to the second position Z2 (machining end position XE), only the end face ES1 of the glass plate G is the second in the second grindstone 2. It is in contact with the bottom portion 4a of the groove portion 4.
 第二砥石2が第二の位置Z2に到達すると、ガラス板Gにおける第一表面GS1側の接続面ES2は、図8に示すように第二の位置Z2にある第二溝部4の上側の規制面4bに接触する。この場合において、接続面ES2が規制面4bに押圧されることによって、ガラス板GはZ軸方向に弾性変形する。これにより、ガラス板Gにおける第一表面GS1側の接続面ES2は、第二溝部4の規制面4bによって研磨される。 When the second grindstone 2 reaches the second position Z2, the connection surface ES2 on the first surface GS1 side of the glass plate G is restricted to the upper side of the second groove portion 4 at the second position Z2 as shown in FIG. Contact surface 4b. In this case, when the connection surface ES2 is pressed against the regulation surface 4b, the glass plate G is elastically deformed in the Z-axis direction. As a result, the connection surface ES2 on the first surface GS1 side of the glass plate G is polished by the regulation surface 4b of the second groove portion 4.
 第二加工工程S2で主に端面ES1が加工されるので、第二加工工程S2終了後のガラス板Gでは、端面ES1の表面粗さRa1(算術平均粗さ)は、接続面ES2の表面粗さRa2(算術平均粗さ)よりも小さくなる。端面ES1の表面粗さRa1と、接続面ES2の表面粗さRa2との比Ra1/Ra2は、0.15~0.6であることが好ましい。端面ES1の表面粗さRa1は、0.03~0.06μmとされることが好ましい。接続面ES2の表面粗さRa2は、0.1~0.2μmとされることが好ましい。 Since the end face ES1 is mainly machined in the second processing step S2, the surface roughness Ra1 (arithmetic mean roughness) of the end face ES1 is the surface roughness of the connecting surface ES2 in the glass plate G after the completion of the second processing step S2. It is smaller than Ra2 (arithmetic mean roughness). The ratio Ra1 / Ra2 of the surface roughness Ra1 of the end surface ES1 to the surface roughness Ra2 of the connection surface ES2 is preferably 0.15 to 0.6. The surface roughness Ra1 of the end face ES1 is preferably 0.03 to 0.06 μm. The surface roughness Ra2 of the connecting surface ES2 is preferably 0.1 to 0.2 μm.
 本発明において、端面ES1の表面粗さRa1は、端面ES1の長さ方向の位置が異なる複数箇所(例えば加工開始位置XSの周辺、加工終了位置XEの周辺、それらの中間位置の周辺)で測定し、それらの平均値とする。また、接続面ES2の表面粗さRa2は、端面ES1の長さ方向の位置が異なる複数箇所で測定し、それらの最大値とする。 In the present invention, the surface roughness Ra1 of the end face ES1 is measured at a plurality of locations (for example, around the machining start position XS, around the machining end position XE, and around their intermediate positions) where the positions of the end face ES1 in the length direction are different. And let it be the average value of them. Further, the surface roughness Ra2 of the connecting surface ES2 is measured at a plurality of locations where the positions of the end surface ES1 in the length direction are different, and is set as the maximum value thereof.
 図9及び図10は、第二加工工程S2の第二砥石2に係る移動軌跡の他の例を示す。 9 and 10 show other examples of the movement locus of the second grindstone 2 in the second processing step S2.
 図9に示す例において、第二砥石2は、加工開始位置XSから加工終了位置XEまで移動するまでの間に、第一中間位置XM1から第五中間位置XM5を通過する。 In the example shown in FIG. 9, the second grindstone 2 passes through the first intermediate position XM1 to the fifth intermediate position XM5 before moving from the machining start position XS to the machining end position XE.
 第二砥石2は、加工開始位置XSから第一中間位置XM1まで移動する間に、Z軸方向に移動することなく(基準位置Z0を維持した状態で)、X軸方向に沿って相対的に移動する。第二砥石2は、第一中間位置XM1から第二中間位置XM2まで移動する間に、Z軸方向において、基準位置Z0から第一の位置Z1まで移動(上昇)する。第二砥石2が加工開始位置XSから第一中間位置XM1を経て第二中間位置XM2へと移動する間、ガラス板Gは、端面ES1のみが第二溝部4の底部4aによって研磨される。 While moving from the machining start position XS to the first intermediate position XM1, the second grindstone 2 does not move in the Z-axis direction (while maintaining the reference position Z0) and is relatively relative along the X-axis direction. Moving. The second grindstone 2 moves (rises) from the reference position Z0 to the first position Z1 in the Z-axis direction while moving from the first intermediate position XM1 to the second intermediate position XM2. While the second grindstone 2 moves from the machining start position XS to the second intermediate position XM2 via the first intermediate position XM1, only the end face ES1 of the glass plate G is polished by the bottom portion 4a of the second groove portion 4.
 第二砥石2は、第二中間位置XM2から第三中間位置XM3まで移動する間に、Z軸方向において、第一の位置Z1を維持したままX軸方向に沿って相対的に移動する。この移動の間、ガラス板Gは、端面ES1が第二溝部4の底部4aによって研磨され、第二表面GS2側の接続面ES2が第二溝部4の下側の規制面4bに研磨される。 While moving from the second intermediate position XM2 to the third intermediate position XM3, the second grindstone 2 moves relatively along the X-axis direction while maintaining the first position Z1 in the Z-axis direction. During this movement, the end surface ES1 of the glass plate G is polished by the bottom portion 4a of the second groove portion 4, and the connection surface ES2 on the second surface GS2 side is polished to the lower regulation surface 4b of the second groove portion 4.
 第二砥石2は、第三中間位置XM3から第四中間位置XM4まで移動する間に、Z軸方向において第一の位置Z1から基準位置Z0へと移動する。この移動の際、ガラス板Gの第二表面GS2側の接続面ES2は、第二溝部4の規制面4bから離れる。 The second grindstone 2 moves from the first position Z1 to the reference position Z0 in the Z-axis direction while moving from the third intermediate position XM3 to the fourth intermediate position XM4. At the time of this movement, the connection surface ES2 on the second surface GS2 side of the glass plate G is separated from the regulation surface 4b of the second groove portion 4.
 第二砥石2は、第四中間位置XM4から第五中間位置XM5へと移動する間に、Z軸方向において、基準位置Z0から第二の位置Z2へと移動する。第二砥石2が第三中間位置XM3から第四中間位置XM4を経て第五中間位置XM5まで移動する間、ガラス板Gの端部GEは、端面ES1のみが第二溝部4の底部4aによって研磨される。 The second grindstone 2 moves from the reference position Z0 to the second position Z2 in the Z-axis direction while moving from the fourth intermediate position XM4 to the fifth intermediate position XM5. While the second grindstone 2 moves from the third intermediate position XM3 to the fifth intermediate position XM5 via the fourth intermediate position XM4, only the end face ES1 of the end surface GE of the glass plate G is polished by the bottom 4a of the second groove portion 4. Will be done.
 第二砥石2は、第五中間位置XM5から加工終了位置XEへと移動する間に、Z軸方向において、第二の位置Z2を維持したままX軸方向に沿って相対的に移動する。この移動の間、ガラス板Gは、端面ES1が第二溝部4の底部4aによって研磨され、第一表面GS1側の接続面ES2が第二溝部4の上側の規制面4bに研磨される。 While moving from the fifth intermediate position XM5 to the machining end position XE, the second grindstone 2 moves relatively along the X-axis direction while maintaining the second position Z2 in the Z-axis direction. During this movement, the end surface ES1 of the glass plate G is polished by the bottom portion 4a of the second groove portion 4, and the connection surface ES2 on the first surface GS1 side is polished to the upper regulation surface 4b of the second groove portion 4.
 図10に示す例において、第二砥石2は、加工開始位置XSから加工終了位置XEまで移動する間に、第一中間位置XM1から第八中間位置XM8を通過する。 In the example shown in FIG. 10, the second grindstone 2 passes from the first intermediate position XM1 to the eighth intermediate position XM8 while moving from the machining start position XS to the machining end position XE.
 第二砥石2は、加工開始位置XSから第一中間位置XM1まで移動する間に、Z軸方向において、基準位置Z0から第二の位置Z2へと移動する。第二砥石2は、第一中間位置XM1から第二中間位置XM2まで移動する間に、Z軸方向において、第二の位置Z2から基準位置Z0へと移動する。 The second grindstone 2 moves from the reference position Z0 to the second position Z2 in the Z-axis direction while moving from the machining start position XS to the first intermediate position XM1. The second grindstone 2 moves from the second position Z2 to the reference position Z0 in the Z-axis direction while moving from the first intermediate position XM1 to the second intermediate position XM2.
 第二砥石2は、第二中間位置XM2から第三中間位置XM3まで移動する間に、Z軸方向において、基準位置Z0から第一の位置Z1に移動する。第二砥石2は、第三中間位置XM3から第四中間位置XM4まで移動する間に、Z軸方向において、第一の位置Z1から基準位置Z0へと移動する。第二砥石2は、第四中間位置XM4から第五中間位置XM5、第六中間位置XM6、第七中間位置XM7、及び第八中間位置XM8へと移動する間に、上記と同様な移動を周期的に繰り返す。 The second grindstone 2 moves from the reference position Z0 to the first position Z1 in the Z-axis direction while moving from the second intermediate position XM2 to the third intermediate position XM3. The second grindstone 2 moves from the first position Z1 to the reference position Z0 in the Z-axis direction while moving from the third intermediate position XM3 to the fourth intermediate position XM4. The second grindstone 2 cycles the same movement as above while moving from the fourth intermediate position XM4 to the fifth intermediate position XM5, the sixth intermediate position XM6, the seventh intermediate position XM7, and the eighth intermediate position XM8. Repeat.
 上記の第二加工工程S2を複数のガラス板Gに対して繰り返し実行すると、第二砥石2の第二溝部4は、砥粒の脱落によってその深さを増す。図11は、第二加工工程S2を複数回実行した場合における第二砥石2の断面図である。この場合、第二溝部4の深さ寸法D1は、初期の深さ寸法D0よりも深くなっている。 When the above-mentioned second processing step S2 is repeatedly executed on a plurality of glass plates G, the depth of the second groove portion 4 of the second grindstone 2 increases due to the falling of abrasive grains. FIG. 11 is a cross-sectional view of the second grindstone 2 when the second processing step S2 is executed a plurality of times. In this case, the depth dimension D1 of the second groove portion 4 is deeper than the initial depth dimension D0.
 図12は、図11に示す第二溝部4によって、さらに複数回の第二加工工程S2を実行した場合における第二砥石2の断面図である。この場合、第二溝部4の深さ寸法D2は、図11における深さ寸法D1よりもさらに深くなっている。図12に示すように、第二溝部4の底部4aは、第二加工工程S2を繰り返し行うことで、当初の曲面形状からその曲率半径が大きくなるように、すなわち、平坦面形状に近づくように徐々に変形することとなる。 FIG. 12 is a cross-sectional view of the second grindstone 2 when the second processing step S2 is further executed a plurality of times by the second groove portion 4 shown in FIG. In this case, the depth dimension D2 of the second groove portion 4 is further deeper than the depth dimension D1 in FIG. As shown in FIG. 12, the bottom portion 4a of the second groove portion 4 is formed so that its radius of curvature increases from the initial curved surface shape, that is, approaches a flat surface shape by repeating the second processing step S2. It will be gradually deformed.
 既述のように、第二加工工程S2では、第二溝部4の規制面4bがガラス板Gの接続面ES2に必ず接触するように、Z軸方向において第二砥石2を相対的に移動させている。これにより、上記のように、第二加工工程S2を繰り返し実行する場合であっても、底部4aの幅寸法W2の縮小を抑制でき、各ガラス板Gで端部GEの端面ES1の加工精度を一定に維持することができる。 As described above, in the second processing step S2, the second grindstone 2 is relatively moved in the Z-axis direction so that the regulation surface 4b of the second groove portion 4 always contacts the connection surface ES2 of the glass plate G. ing. As a result, even when the second processing step S2 is repeatedly executed as described above, the reduction of the width dimension W2 of the bottom portion 4a can be suppressed, and the processing accuracy of the end face ES1 of the end portion GE can be improved in each glass plate G. Can be kept constant.
 このようにして製造されたガラス板は、例えばディスプレイパネルの製造工程に供給される。第一表面GS1に電子デバイスを製造する工程において、例えば、カメラによって端部GEを撮像することで端部GEの位置を検出する場合がある。この場合、撮像された端部GEの画像には、表面粗さRa1,Ra2の異なる端面ES1と接続面ES2とが表示される。上記のように、第二加工工程S2を実施することで、ガラス板の端部GEにおける端面ES1の表面粗さRa1は、接続面ES2の表面粗さRa2よりも小さくなる。これにより、撮像された画像において、端面ES1と接続面ES2とを容易に判別できる。また、ガラス板Gの各表面GS1,GS2と端部GEとの境界部である接続面ES2を容易に特定できるため、画像中における端部GEの検出が容易になる。 The glass plate manufactured in this way is supplied to, for example, a display panel manufacturing process. In the process of manufacturing an electronic device on the first surface GS1, for example, the position of the end GE may be detected by photographing the end GE with a camera. In this case, the image of the end portion GE captured shows the end face ES1 and the connection surface ES2 having different surface roughness Ra1 and Ra2. As described above, by carrying out the second processing step S2, the surface roughness Ra1 of the end surface ES1 at the end portion GE of the glass plate becomes smaller than the surface roughness Ra2 of the connection surface ES2. Thereby, in the captured image, the end surface ES1 and the connection surface ES2 can be easily distinguished. Further, since the connection surface ES2 which is the boundary between each surface GS1 and GS2 of the glass plate G and the end portion GE can be easily specified, the end portion GE can be easily detected in the image.
 また、第一表面GS1に電子デバイスを製造する工程において、ガラス板Gの端面ES1には、位置決め用のピンやローラが接触し得る。端面ES1は、その表面粗さRaが小さいため、この接触によるガラス粉の発生を低減できる。 Further, in the process of manufacturing an electronic device on the first surface GS1, a positioning pin or a roller may come into contact with the end surface ES1 of the glass plate G. Since the surface roughness Ra of the end face ES1 is small, it is possible to reduce the generation of glass powder due to this contact.
 以上説明した本実施形態に係るガラス板Gの製造方法によれば、第二加工工程S2によってガラス板Gの端部GEを研磨することで、ガラス板Gの端部GEについて、ガラス粉の発生を低減しながら、カメラでの検出を容易に行うことが可能となる。 According to the method for manufacturing the glass plate G according to the present embodiment described above, by polishing the end GE of the glass plate G in the second processing step S2, glass powder is generated on the end GE of the glass plate G. It becomes possible to easily perform detection with a camera while reducing the number of cases.
 第二砥石2の第二溝部4に係る底部4aの幅寸法W2をガラス板Gに端面ES1の厚み寸法T1よりも大きくすれば、当該第二砥石2の交換作業時における、新たな第二砥石2の位置合わせ作業を効率良く行うことができる。 If the width dimension W2 of the bottom portion 4a related to the second groove portion 4 of the second grindstone 2 is made larger than the thickness dimension T1 of the end face ES1 on the glass plate G, a new second grindstone at the time of replacement work of the second grindstone 2. The alignment work of 2 can be performed efficiently.
 図13乃至図17は、本発明に係るガラス板の製造方法の第二実施形態を示す。本実施形態では、第二加工工程の実施態様が第一実施形態と異なる。 13 to 17 show a second embodiment of the method for manufacturing a glass plate according to the present invention. In this embodiment, the embodiment of the second processing step is different from that of the first embodiment.
 図13に示すように、第二加工工程S2を実行する前(未使用)の第二砥石2の外周面2aには、第一実施形態で例示した第二溝部4が形成されていない。 As shown in FIG. 13, the second groove portion 4 illustrated in the first embodiment is not formed on the outer peripheral surface 2a of the second grindstone 2 before (unused) the second processing step S2 is executed.
 図14に示すように、本実施形態における初回の第二加工工程S2において、第一のガラス板G1が外周面2aに接触すると、第二砥石2は、第一実施形態と同様に、ガラス板G1に対し、加工開始端部GEaから加工終了端部GEbまで端部GEの長さ方向(X軸方向)に相対的に移動するとともに、Z軸方向(第一のガラス板G1の厚み方向)に対して相対的に移動する。図15に示すように、初回の第二加工工程S2により、第二砥石2には、幅寸法W3及び深さ寸法D3を有する第二溝部4が形成される。 As shown in FIG. 14, when the first glass plate G1 comes into contact with the outer peripheral surface 2a in the first second processing step S2 in the present embodiment, the second grindstone 2 is changed to the glass plate as in the first embodiment. With respect to G1, it moves relative to the length direction (X-axis direction) of the end GE from the machining start end GEa to the machining end end GEb, and also in the Z-axis direction (thickness direction of the first glass plate G1). Move relative to. As shown in FIG. 15, the second groove portion 4 having the width dimension W3 and the depth dimension D3 is formed on the second grindstone 2 by the first second processing step S2.
 この第二溝部4の深さ寸法D3は、第一実施形態における第二溝部4の初期の深さ寸法D0よりも小さい。すなわち、第一実施形態に係る第二溝部4は、ガラス板Gを加工する際に、その規制面4bがガラス板Gの端部GEを規制する機能を有していたが、本実施形態に係る第二溝部4はこの機能を有していない。 The depth dimension D3 of the second groove portion 4 is smaller than the initial depth dimension D0 of the second groove portion 4 in the first embodiment. That is, the second groove portion 4 according to the first embodiment has a function that the regulation surface 4b regulates the end portion GE of the glass plate G when the glass plate G is processed. The second groove portion 4 does not have this function.
 二回目の第二加工工程S2を行う場合において、第二砥石2は、図15に示すように、第二溝部4の溝幅方向(Z軸方向)の一端部(上側の端部)が第二のガラス板G2の端面ES1に重なるように配置される。この場合において、第二のガラス板G2の端面ES1は、第二溝部4が形成されていない第二砥石2の外周面2aに接触する。 When the second second processing step S2 is performed, as shown in FIG. 15, one end portion (upper end portion) of the second groove portion 4 in the groove width direction (Z-axis direction) of the second grindstone 2 is the second. It is arranged so as to overlap the end face ES1 of the second glass plate G2. In this case, the end surface ES1 of the second glass plate G2 comes into contact with the outer peripheral surface 2a of the second grindstone 2 in which the second groove portion 4 is not formed.
 その後、第二砥石2は、第一のガラス板G1を加工した場合と同様に、第二のガラス板G2の加工開始端部GEaから加工終了端部GEbに向かって端部GEの長さ方向(X軸方向)に相対的に移動しながら、図16に示すようにZ軸方向に対して相対的に移動する。第一のガラス板G1の加工によって形成された第二溝部4は、第二のガラス板G2の加工により、その幅を拡大させる。図17に示すように、第二のガラス板G2を加工した後の第二溝部4の幅寸法W4は、第一のガラス板G1を加工した直後の第二溝部4の幅寸法W3よりも大きくなる。この場合において、第二溝部4の深さ寸法D3は、初回の第二加工工程S2終了後とほぼ同じである。 After that, the second grindstone 2 is in the length direction of the end portion GE from the processing start end portion GEa of the second glass plate G2 toward the processing end portion GEb, as in the case of processing the first glass plate G1. While moving relative to (X-axis direction), it moves relative to the Z-axis direction as shown in FIG. The width of the second groove portion 4 formed by processing the first glass plate G1 is expanded by processing the second glass plate G2. As shown in FIG. 17, the width dimension W4 of the second groove portion 4 after processing the second glass plate G2 is larger than the width dimension W3 of the second groove portion 4 immediately after processing the first glass plate G1. Become. In this case, the depth dimension D3 of the second groove portion 4 is substantially the same as that after the completion of the first second processing step S2.
 三回目の第二加工工程S2において、第二砥石2は、第二のガラス板G2を加工した後の第二溝部4における溝幅方向(Z軸方向)の一端部に重なるように配置される(図17参照)。この場合において、第三のガラス板G3の端面ES1は、第二溝部4が形成されていない第二砥石2の外周面2aに接触する。 In the third second processing step S2, the second grindstone 2 is arranged so as to overlap one end in the groove width direction (Z-axis direction) in the second groove portion 4 after processing the second glass plate G2. (See FIG. 17). In this case, the end surface ES1 of the third glass plate G3 comes into contact with the outer peripheral surface 2a of the second grindstone 2 in which the second groove portion 4 is not formed.
 その後、第二のガラス板G2を加工した場合と同様に、第二砥石2をガラス板G3の厚み方向(Z軸方向)に対して相対的に移動させ、端面ES1を研磨する。これにより、本実施形態における第二砥石2の第二溝部4は、先ず、第二加工工程S2を繰り返すのに伴って、その幅を拡大させる。第二砥石2の外周面2a全体に第二溝部4が広がると、第二砥石2は、初回の第二加工工程S2と同じ位置に配置され、第二溝部4の一部が深さを増加させる。続いて、第二砥石2の位置を変更しながら第二加工工程S2を繰り返すことで、第二溝部4の全部を同じ深さにする。 After that, the second grindstone 2 is moved relative to the thickness direction (Z-axis direction) of the glass plate G3 to polish the end face ES1 in the same manner as when the second glass plate G2 is processed. As a result, the width of the second groove portion 4 of the second grindstone 2 in the present embodiment is first increased as the second processing step S2 is repeated. When the second groove portion 4 spreads over the entire outer peripheral surface 2a of the second grindstone 2, the second grindstone 2 is arranged at the same position as the first second processing step S2, and a part of the second groove portion 4 increases the depth. Let me. Subsequently, by repeating the second processing step S2 while changing the position of the second grindstone 2, the entire second groove portion 4 is made to have the same depth.
 本実施形態に係るガラス板G1~G3の製造方法は、第一実施形態と比較して以下の利点を有する。第一実施形態のように第二砥石2の外周面2aに第二溝部4を形成すると、外周面2aのうちで第二溝部4しか加工に用いることができず、単一の第二砥石2で加工できるガラス板Gの枚数が減少する。これに対し、本実施形態のように、第二溝部4が形成されていない外周面2aを有する第二砥石2を用いれば、外周面2aの大部分を加工に用いることができ、単一の第二砥石2で加工できるガラス板Gの枚数を大幅に増加させることができる。 The methods for producing the glass plates G1 to G3 according to the present embodiment have the following advantages as compared with the first embodiment. When the second groove portion 4 is formed on the outer peripheral surface 2a of the second grindstone 2 as in the first embodiment, only the second groove portion 4 of the outer peripheral surface 2a can be used for processing, and a single second grindstone 2 The number of glass plates G that can be processed in is reduced. On the other hand, if the second grindstone 2 having the outer peripheral surface 2a on which the second groove portion 4 is not formed is used as in the present embodiment, most of the outer peripheral surface 2a can be used for processing, and a single grindstone can be used. The number of glass plates G that can be processed by the second grindstone 2 can be significantly increased.
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 The present invention is not limited to the configuration of the above embodiment, and is not limited to the above-mentioned action and effect. The present invention can be modified in various ways without departing from the gist of the present invention.
 上記の実施形態では、矩形状に構成されるガラス板Gの二辺の端部GEに対して第一加工工程S1及び第二加工工程S2を施す例を示したが、残りの二辺の端部GEに対しても本発明を適用できる。 In the above embodiment, an example in which the first processing step S1 and the second processing step S2 are performed on the two-sided end GE of the rectangular glass plate G is shown, but the remaining two side ends are shown. The present invention can also be applied to the part GE.
 第二加工工程S2における第二砥石2のZ軸方向における相対的な移動は、ガラス板Gを当該Z軸方向(厚み方向)に対して移動させることにより実行してもよい。 The relative movement of the second grindstone 2 in the Z-axis direction in the second processing step S2 may be executed by moving the glass plate G with respect to the Z-axis direction (thickness direction).
 1      第一砥石
 2      第二砥石
 4      第二溝部
 ES1    端面
 ES2    接続面
 G      ガラス板
 GE     ガラス板の端部
 GS1    第一表面
 GS2    第二表面
 S1     第一加工工程
 S2     第二加工工程
1 1st whetstone 2 2nd whetstone 4 2nd groove ES1 end surface ES2 connection surface G glass plate GE glass plate end GS1 1st surface GS2 2nd surface S1 1st processing process S2 2nd processing process

Claims (6)

  1.  表面及び端部を有するガラス板を製造する方法であって、
     前記ガラス板の前記端部は、端面と、前記端面と前記表面との間に形成される接続面と、を有し、
     前記ガラス板の前記端部を第一砥石で加工する第一加工工程と、前記第一加工工程を経たガラス板の前記端部を第二砥石で研磨する第二加工工程と、を備え、
     前記第二加工工程では、前記第二砥石を前記ガラス板の前記端部の長さ方向に相対的に移動させながら、前記第二砥石を前記ガラス板の厚み方向に対して相対的に移動させることを特徴とするガラス板の製造方法。
    A method of manufacturing a glass plate having a surface and an edge.
    The end portion of the glass plate has an end face and a connecting surface formed between the end face and the surface.
    A first processing step of processing the end portion of the glass plate with a first grindstone and a second processing step of polishing the end portion of the glass plate that has undergone the first processing step with a second grindstone are provided.
    In the second processing step, the second grindstone is moved relative to the thickness direction of the glass plate while the second grindstone is relatively moved in the length direction of the end portion of the glass plate. A method for manufacturing a glass plate.
  2.  前記第二砥石は、前記ガラス板の前記端面を研磨する溝部を有し、
     前記溝部は、前記ガラス板の前記端面に接触する底部と、前記底部に繋がるとともに前記接続面に接触可能な規制面とを有し、
     前記溝部の前記底部は、前記ガラス板の前記端面の厚みよりも大きな幅を有し、
     前記第二加工工程を実行する前における前記底部の前記幅は、前記端面の厚みと、前記厚み方向における前記第二砥石の相対的な移動距離との和よりも小さい請求項1に記載のガラス板の製造方法。
    The second grindstone has a groove for polishing the end face of the glass plate.
    The groove portion has a bottom portion that contacts the end surface of the glass plate and a regulation surface that connects to the bottom portion and can contact the connection surface.
    The bottom of the groove has a width larger than the thickness of the end face of the glass plate.
    The glass according to claim 1, wherein the width of the bottom portion before executing the second processing step is smaller than the sum of the thickness of the end face and the relative moving distance of the second grindstone in the thickness direction. How to make a board.
  3.  前記第二加工工程を実行する前において、前記第二砥石は、溝部が形成されていない外周面を有し、
     前記第二加工工程では、前記第二砥石の前記外周面によって前記ガラス板の前記端部を研磨する請求項1に記載のガラス板の製造方法。
    Before executing the second processing step, the second grindstone has an outer peripheral surface on which no groove is formed.
    The method for manufacturing a glass plate according to claim 1, wherein in the second processing step, the end portion of the glass plate is polished by the outer peripheral surface of the second grindstone.
  4.  表面及び端部を有するガラス板であって、
     前記端部は、端面と、前記端面と前記表面との間に形成される接続面と、を有し、
     前記端面の表面粗さRa1は、前記接続面の表面粗さRa2よりも小さいことを特徴とするガラス板。
    A glass plate with a surface and edges
    The end has an end face and a connecting surface formed between the end face and the surface.
    A glass plate characterized in that the surface roughness Ra1 of the end surface is smaller than the surface roughness Ra2 of the connection surface.
  5.  前記端面の前記表面粗さRa1と、前記接続面の前記表面粗さRa2との比Ra1/Ra2は、0.15~0.6である請求項4に記載のガラス板。 The glass plate according to claim 4, wherein the ratio Ra1 / Ra2 of the surface roughness Ra1 of the end face to the surface roughness Ra2 of the connecting surface is 0.15 to 0.6.
  6.  前記端面の前記表面粗さRa1は、0.06μm以下である請求項4又は5に記載のガラス板。 The glass plate according to claim 4 or 5, wherein the surface roughness Ra1 of the end face is 0.06 μm or less.
PCT/JP2020/043041 2019-12-23 2020-11-18 Glass plate manufacturing method and glass plate WO2021131421A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227011900A KR20220113352A (en) 2019-12-23 2020-11-18 Glass plate manufacturing method and glass plate
CN202080073551.4A CN114585475A (en) 2019-12-23 2020-11-18 Method for producing glass plate and glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-231626 2019-12-23
JP2019231626A JP7415267B2 (en) 2019-12-23 2019-12-23 Glass plate manufacturing method

Publications (1)

Publication Number Publication Date
WO2021131421A1 true WO2021131421A1 (en) 2021-07-01

Family

ID=76540571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/043041 WO2021131421A1 (en) 2019-12-23 2020-11-18 Glass plate manufacturing method and glass plate

Country Status (5)

Country Link
JP (1) JP7415267B2 (en)
KR (1) KR20220113352A (en)
CN (1) CN114585475A (en)
TW (1) TW202126427A (en)
WO (1) WO2021131421A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696094A (en) * 2021-09-03 2021-11-26 山西光兴光电科技有限公司 Grinding water cover mechanism, grinding machine and grinding machine control method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131993A (en) * 1974-09-12 1976-03-18 Nippon Sheet Glass Co Ltd Itajohikakobutsu no tanenkenmakakosochi
JPH11165247A (en) * 1997-12-04 1999-06-22 Crystal Kogaku:Kk Chamfering method and its device
US7001249B1 (en) * 2005-01-11 2006-02-21 Guardian Industries, Inc. Methods and systems for finishing edges of glass sheets
JP2006289575A (en) * 2005-04-13 2006-10-26 Shiroki Corp Plate glass machining method
JP2012101327A (en) * 2010-11-11 2012-05-31 Sumco Techxiv株式会社 Method of chamfering wafer
JP2015058507A (en) * 2013-09-19 2015-03-30 旭硝子株式会社 Method for forming groove for grinding in resin bond grindstone and resin bond grindstone, and processing device for plate-like body and processing method for plate-like body
JP2015223669A (en) * 2014-05-28 2015-12-14 株式会社Screenホールディングス Substrate treatment apparatus
WO2017030112A1 (en) * 2015-08-19 2017-02-23 旭硝子株式会社 Glass plate
JP2018012613A (en) * 2016-07-19 2018-01-25 日本電気硝子株式会社 Disk-shaped plate glass and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5831974B2 (en) * 2011-11-08 2015-12-16 Mipox株式会社 Sheet glass having edge polished by polishing tape, and method and apparatus for polishing sheet glass edge
JP2018103320A (en) 2016-12-27 2018-07-05 日本電気硝子株式会社 End surface processing method for glass plate, manufacturing method and glass plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131993A (en) * 1974-09-12 1976-03-18 Nippon Sheet Glass Co Ltd Itajohikakobutsu no tanenkenmakakosochi
JPH11165247A (en) * 1997-12-04 1999-06-22 Crystal Kogaku:Kk Chamfering method and its device
US7001249B1 (en) * 2005-01-11 2006-02-21 Guardian Industries, Inc. Methods and systems for finishing edges of glass sheets
JP2006289575A (en) * 2005-04-13 2006-10-26 Shiroki Corp Plate glass machining method
JP2012101327A (en) * 2010-11-11 2012-05-31 Sumco Techxiv株式会社 Method of chamfering wafer
JP2015058507A (en) * 2013-09-19 2015-03-30 旭硝子株式会社 Method for forming groove for grinding in resin bond grindstone and resin bond grindstone, and processing device for plate-like body and processing method for plate-like body
JP2015223669A (en) * 2014-05-28 2015-12-14 株式会社Screenホールディングス Substrate treatment apparatus
WO2017030112A1 (en) * 2015-08-19 2017-02-23 旭硝子株式会社 Glass plate
JP2018012613A (en) * 2016-07-19 2018-01-25 日本電気硝子株式会社 Disk-shaped plate glass and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113696094A (en) * 2021-09-03 2021-11-26 山西光兴光电科技有限公司 Grinding water cover mechanism, grinding machine and grinding machine control method
CN113696094B (en) * 2021-09-03 2022-07-12 山西光兴光电科技有限公司 Grinding water cover mechanism, grinding machine and grinding machine control method

Also Published As

Publication number Publication date
CN114585475A (en) 2022-06-03
JP7415267B2 (en) 2024-01-17
KR20220113352A (en) 2022-08-12
JP2021098258A (en) 2021-07-01
TW202126427A (en) 2021-07-16

Similar Documents

Publication Publication Date Title
JP4406752B2 (en) Glass substrate end face processing apparatus and end face processing method
TWI480127B (en) Glass substrate and its production method
JP6238117B2 (en) Processing method of plate
WO2011162163A1 (en) Glass substrate and method for manufacturing glass substrate
JP5456942B2 (en) Manufacturing method of glass plate, manufacturing method of glass substrate for display, and glass plate
JP4883352B2 (en) Method and apparatus for chamfering plate-like body
JP2011156627A (en) Method for manufacturing glass substrate for magnetic recording medium
CN110900312B (en) Precise brush grinding and polishing process
WO2021131421A1 (en) Glass plate manufacturing method and glass plate
KR100895830B1 (en) Method for cutting the edge of the flat display glass substrate
JP2023059932A (en) Truing method and chamfer device
TWI735719B (en) Glass plate and manufacturing method of glass plate
CN109590817B (en) Glass substrate
CN111149161B (en) Spacer, laminated body of substrate, method for manufacturing substrate, and method for manufacturing substrate for magnetic disk
EP2236246B1 (en) Method for producing large-size synthetic quartz glass substrate
KR101458663B1 (en) Glass substrate
JP2021094693A (en) Manufacturing method of chamfered baseboard and chamfering device used in the same
JP6608604B2 (en) Chamfered substrate and method for manufacturing liquid crystal display device
WO2015046525A1 (en) Method for producing non-magnetic substrate
WO2014002447A1 (en) Substrate-edge grinding method, and substrate-edge grinding device
JP7022329B2 (en) Sheet glass manufacturing method and manufacturing equipment
JP7022330B2 (en) Sheet glass manufacturing method and manufacturing equipment
KR100895780B1 (en) Flat display glass substrate
CN113695990A (en) Straight edge polishing method for plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906305

Country of ref document: EP

Kind code of ref document: A1