WO2021131348A1 - Bonding-type optical element and method for manufacturing bonding-type optical element - Google Patents

Bonding-type optical element and method for manufacturing bonding-type optical element Download PDF

Info

Publication number
WO2021131348A1
WO2021131348A1 PCT/JP2020/041510 JP2020041510W WO2021131348A1 WO 2021131348 A1 WO2021131348 A1 WO 2021131348A1 JP 2020041510 W JP2020041510 W JP 2020041510W WO 2021131348 A1 WO2021131348 A1 WO 2021131348A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
adhesive
curing
bonded
manufacturing
Prior art date
Application number
PCT/JP2020/041510
Other languages
French (fr)
Japanese (ja)
Inventor
中林 耕基
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021566887A priority Critical patent/JPWO2021131348A1/ja
Publication of WO2021131348A1 publication Critical patent/WO2021131348A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/52Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive
    • B29C65/54Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the way of applying the adhesive between pre-assembled parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces

Definitions

  • the technique of the present disclosure relates to a junction type optical element and a method for manufacturing the junction type optical element.
  • Japanese Patent Application Laid-Open No. 2009-530689 is a wave surface aberator having two transparent plates and having a layer of a polymer material between the transparent plates, and can change the refractive index of the layer of the polymer material. , Thereby creating a refractive index profile and the refractive index profile of the layer of polymeric material is stable when the aberator is exposed to heat or light.
  • the wave surface abrator described in Japanese Patent Application Laid-Open No. 2009-530689 is manufactured by the following steps a to d. a. A step in which a layer of a polymerizable material comprising at least one polymer and one or more monomers is formed between two transparent plates, and the polymerizable material has an initial index of refraction. b. The polymerizable material is subjected to simultaneous thermal stimulation and variable photostimulation, and the polymerizable material is subjected to (i) variable pattern polymerization without completely consuming one or more monomers. (Ii) A step of achieving a first intermediate variable index profile, c.
  • the diffusion step is accelerated by heating the partially cured polymerizable material of (b), and the uncured monomer is diffused from the less cured region to the more cured region, and the second intermediate. Steps to achieve a variable index profile, d.
  • the partially cured polymerizable material of (c) is subjected to simultaneous thermal stimulation and uniform photostimulation to cure substantially all of the remaining one or more monomers, resulting in variable refraction. Steps to achieve rate profile.
  • One embodiment according to the technique of the present disclosure is a bonded optical element and a bonded optical element capable of increasing the optical path difference with respect to the thickness of the bonded layer as compared with the wave surface avelator described in Japanese Patent Application Laid-Open No. 2009-530689. Providing a manufacturing method for.
  • the bonding type optical element of the present disclosure is a bonding layer formed by a first optical element, a second optical element, and a resin adhesive to bond the first optical element and the second optical element.
  • a bonding layer having a strain that deforms at least one of an optical element and a second optical element is provided.
  • At least one of the first optical element and the second optical element has an aspherical shape in a state of being joined by a joining layer.
  • the optical element having an aspherical shape when joined by the joining layer preferably has a spherical shape before being joined by the joining layer.
  • the aspherical shape is preferably a non-rotationally symmetric shape.
  • the adhesive preferably contains a photocurable resin.
  • At least one of the first optical element and the second optical element transmits light for curing the photocurable resin.
  • the distortion is preferably a distortion that deforms at least one of the first optical element and the second optical element into a shape according to the set optical characteristics.
  • the method for manufacturing a bonded optical element of the present disclosure is a resin adhesive that serves as a bonding layer for bonding the first optical element and the second optical element, and a liquid adhesive is used as the first optical element and the first optical element.
  • first hardening stimulus and the second hardening stimulus are of the same type.
  • the main curing step is performed without interposing another step between the gelation step and the gelation step.
  • the other process is preferably a heating process.
  • the adhesive in the region having a slow curing speed among the plurality of regions is shrunk more than the adhesive in the region having a high curing speed.
  • At least one of the first optical element and the second optical element has an aspherical shape in a state of being joined by a joining layer.
  • the optical element having an aspherical shape when joined by the joining layer preferably has a spherical shape before being joined by the joining layer.
  • the aspherical shape is preferably a non-rotationally symmetric shape.
  • the distortion is preferably a distortion that deforms at least one of the first optical element and the second optical element into a shape according to the set optical characteristics.
  • the adhesive preferably contains a photocurable resin.
  • FIG. 5A shows a state before curing
  • FIG. 5B shows a gelled state
  • FIG. 5C shows a completely cured state.
  • FIG. 5A shows a state before curing
  • FIG. 5B shows a gelled state
  • FIG. 5C shows a completely cured state.
  • FIG. 5A shows a state before curing
  • FIG. 5B shows a gelled state
  • FIG. 5C shows a completely cured state.
  • It is mainly a block diagram of a CPU of a control device.
  • It is a figure which shows the setting screen.
  • It is a figure which shows an example of a junction type optical element and design shape information.
  • FIG. 12A is at the end of a filling process
  • FIG. 12B is in the middle of a gelling process
  • FIG. The state of the adhesive at the end is shown.
  • FIG. 13A shows the state of the adhesive in the middle of the main curing step
  • the manufacturing apparatus 2 is an apparatus for manufacturing a junction type optical element 10, and includes a manufacturing apparatus main body (hereinafter, abbreviated as the main body) 11 and a control device 12.
  • the junctional optical element 10 is used, for example, as a lens of an optical device such as a digital camera, a surveillance camera, or a projector, or a lens of a vision correction tool such as eyeglasses or a contact lens.
  • the junction type optical element 10 is composed of a first optical element 13 and a second optical element 14.
  • the first optical element 13 is a plano-concave lens (see FIG. 2)
  • the second optical element 14 is a plano-convex lens (see FIG. 3).
  • the bonding type optical element 10 is formed by bonding a concave surface 13A of the first optical element 13 and a convex surface 14A of the second optical element 14 with a bonding layer 15.
  • the thickness direction of the first optical element 13 and the second optical element 14 is the Z direction
  • the width direction of the first optical element 13 and the second optical element 14 orthogonal to the Z direction is the X direction
  • the depth direction is the depth direction.
  • the Y direction is the thickness direction of the first optical element 13 and the second optical element 14 orthogonal to the Z direction.
  • the control device 12 is, for example, a desktop personal computer, and controls the operation of the main body 11.
  • the control device 12 is communicably connected to the main body 11.
  • the concave surface 13A of the first optical element 13 has a spherical shape before being joined by the joining layer 15.
  • the convex surface 14A of the second optical element 14 has a spherical shape before being joined by the joining layer 15.
  • the first optical element 13 and the second optical element 14 transmit ultraviolet UV (see FIG. 5). Ultraviolet UV is an example of "light" according to the technique of the present disclosure.
  • Step ST100 is an example of a "filling step" according to the technique of the present disclosure.
  • step ST110 the concave surface 13A of the first optical element 13 and the convex surface 14A of the second optical element 14 are cleaned up.
  • step ST120 the liquid adhesive 20 is applied to the concave surface 13A.
  • step ST130 the concave surface 13A and the convex surface 14A are bonded together.
  • step ST140 the concave surface 13A and the convex surface 14A are rubbed against each other to remove air bubbles from the adhesive 20, and the adhesive 20 is thinly spread over the entire surface of the concave surface 13A and the convex surface 14A.
  • step ST150 the adhesive 20 protruding from the end face is removed.
  • the combination of the first optical element 13 and the second optical element 14 in a state where the adhesive 20 is filled between the concave surface 13A and the convex surface 14A may be referred to as a pre-bonding optical element 10X.
  • the filling step shown in step ST100 may be performed in the main body 11.
  • the adhesive 20 contains an ultraviolet curable resin 21.
  • the UV curable resin 21 has a monomer 23 and a polymerization initiator 24.
  • the ultraviolet curable resin 21 is an example of a "photocurable resin" according to the technique of the present disclosure.
  • an ultraviolet curable resin 21 containing an oligomer may be used.
  • FIG. 5A shows immediately after the completion of the filling step shown in FIG. 4 and before curing of the adhesive 20.
  • the adhesive 20 is in a liquid state.
  • FIG. 5B for example, when ultraviolet UV is irradiated from the first optical element 13 side, the polymerization initiator 24 generates radicals by the ultraviolet UV transmitted through the first optical element 13.
  • the radical polymerization reaction of the monomer 23 centering on the polymerization initiator 24 is started, and the ultraviolet curable resin 21 is gradually polymerized by repeating the chained addition reaction of the monomer 23.
  • the UV curable resin 21 is still in a liquid state, and the UV curable resin 21 is formed with a system having a large number of isolated small molecular weight molecular chains.
  • the fluidity of the ultraviolet curable resin 21 causes it.
  • the first optical element 13 and the second optical element 14 are not deformed, and the bonding layer 15 is not distorted.
  • the UV curable resin 21 becomes a gel.
  • the molecular chain shows a three-dimensional network structure coupled to the first optical element 13 and the second optical element 14.
  • the ultraviolet curable resin 21 is formed with a system in which the monomer 23 and the polymerization initiator 24 are dispersed in the gaps of the three-dimensional network structure. Even if the UV curable resin 21 shrinks until just before reaching the gel state, the bonding layer 15 is not distorted due to the fluidity of the UV curable resin 21.
  • FIG. 5 shows a two-dimensional network structure in the XZ two-dimensional plane, in reality, as described above, the ultraviolet curable resin 21 has a three-dimensional network in which molecular chains are continuous in the Y direction as well. It exhibits a structure.
  • the ultraviolet curable resin 21 becomes a solid state as shown in FIG. 5C.
  • the elastic modulus of the ultraviolet curable resin 21 increases. Then, the ultraviolet curable resin 21 contracts in the direction of the arrow that shortens the distance between the concave surface 13A of the first optical element 13 and the convex surface 14A of the second optical element 14, and distortion occurs.
  • the main body 11 has a light source 30, an irradiation optical system 31, an intensity modulation element 32, and a stage 33.
  • the light source 30 emits ultraviolet UV under the control of the light source driver 35.
  • the light source 30 is, for example, an LED (Light Emitting Diode) and / or a black light.
  • the irradiation optical system 31 irradiates the ultraviolet UV emitted from the light source 30 toward the pre-bonding optical element 10X.
  • the intensity modulation element 32 modulates the intensity of ultraviolet UV rays that have passed through the irradiation optical system 31 under the control of the intensity modulation element driver 36.
  • the intensity modulation element 32 is, for example, an element using a liquid crystal, and can increase or decrease the intensity of ultraviolet UV rays in a specific region of the pre-junction optical element 10X as compared with other regions.
  • the stage 33 holds the pre-junction optical element 10X.
  • the intensity modulation element 32 may be an element using a DMD (Digital Micromirror Device).
  • the main body 11 further includes a receiving unit 37, a read / write (hereinafter abbreviated as RW (Read Write)) control unit 38, a storage unit 39, and a main control unit 40.
  • the receiving unit 37 receives the ultraviolet UV irradiation profile 41 from the control device 12.
  • the receiving unit 37 outputs the irradiation profile 41 to the RW control unit 38.
  • the RW control unit 38 stores the irradiation profile 41 in the storage unit 39. Further, the RW control unit 38 reads the irradiation profile 41 from the storage unit 39 and outputs the irradiation profile 41 to the main control unit 40. The RW control unit 38 rewrites the irradiation profile 41 of the storage unit 39 each time a new irradiation profile 41 is received by the receiving unit 37.
  • the storage unit 39 can be paraphrased as a memory or a storage device, for example, a flash memory.
  • the main control unit 40 controls the overall operation of the main body 11. Specifically, the main control unit 40 operates the light source driver 35 and the intensity modulation element driver 36 according to the irradiation profile 41.
  • the main control unit 40 is a computer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the computer constituting the control device 12 includes a storage device 50, a memory 51, a CPU 52, a communication unit 53, a display 54, and an input device 55. These are interconnected via a bus line 56.
  • the storage device 50 is a hard disk drive built in the computer constituting the control device 12 or connected via a cable or a network.
  • the storage device 50 stores control programs such as an operating system, various application programs, and various data associated with these programs.
  • a solid state drive may be used instead of the hard disk drive.
  • the memory 51 is a work memory for the CPU 52 to execute a process.
  • the CPU 52 comprehensively controls each part of the computer by loading the program stored in the storage device 50 into the memory 51 and executing processing according to the program.
  • the communication unit 53 is a network interface that controls transmission of various information via a network such as a LAN (Local Area Network).
  • the communication unit 53 is responsible for communication with the main body 11.
  • the display 54 displays various screens.
  • the computer constituting the control device 12 receives input of an operation instruction from the input device 55 through various screens.
  • the input device 55 is a keyboard, a mouse, a touch panel, or the like.
  • the operation program 60 is stored in the storage device 50 of the control device 12.
  • the operation program 60 is an application program for operating the computer as the control device 12.
  • the storage device 50 also stores the irradiation profile 41 and the generation reference information 61.
  • the CPU 52 of the computer constituting the control device 12 cooperates with the memory 51 and the like to display the display control unit 65, the reception unit 66, the generation unit 67, the RW control unit 68, and the transmission unit. Functions as 69.
  • the display control unit 65 controls the display of various screens on the display 54.
  • the various screens include a setting screen 80 (see FIG. 9) for setting the design shape information 75 and the like.
  • the reception unit 66 receives the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 set by the input device 55 through the setting screen 80.
  • the reception unit 66 outputs the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 to the generation unit 67.
  • the design shape information 75 is an example of "set optical characteristics" according to the technique of the present disclosure.
  • the generation unit 67 generates the irradiation profile 41 from the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 with reference to the generation reference information 61.
  • the generation reference information 61 is a data table, function, and machine learning in which the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 are input data, and the irradiation profile 41 is output data. It is a model etc.
  • the generation unit 67 outputs the irradiation profile 41 to the RW control unit 68.
  • the RW control unit 68 controls the storage of various data in the storage device 50 and the reading of various data in the storage device 50. For example, the RW control unit 68 reads the generation reference information 61 from the storage device 50 and outputs it to the generation unit 67.
  • the RW control unit 68 stores the irradiation profile 41 from the generation unit 67 in the storage device 50. Further, the RW control unit 68 reads the irradiation profile 41 from the storage device 50 and outputs the irradiation profile 41 to the transmission unit 69. The transmission unit 69 transmits the irradiation profile 41 to the main body 11.
  • the setting screen 80 has a design shape information input area 81, a first optical element information input area 82, a second optical element information input area 83, and an adhesive information input area 84.
  • the design shape information input area 81 is provided with an input box 85 for a file path representing the design shape information 75, and a reference button 86 for searching the file directory for the file representing the design shape information 75.
  • a pull-down menu 87 for selectively selecting the lens type of the first optical element 13 and a pull-down menu 87 for selectively selecting the material of the first optical element 13 are provided in the first optical element information input area 82.
  • a menu 88 is provided in the first optical element information input area 82.
  • an input box 89 having an outer diameter of the first optical element 13 an input box 90 having a center thickness (denoted as “center thickness” in FIG. 9), and an input of the radius of curvature are input.
  • a box 91 is provided.
  • a pull-down menu 92 for selectively selecting the lens type of the second optical element 14 and a pull-down menu 92 for selectively selecting the material of the second optical element 14 are used.
  • a pull-down menu 93, an input box 94 having an outer diameter of the second optical element 14, an input box 95 having a central thickness, and an input box 96 having a radius of curvature are provided.
  • the unit of outer diameter, center thickness, and radius of curvature is mm.
  • the adhesive information input area 84 is provided with a pull-down menu 97 for selectively selecting the type of the ultraviolet curable resin 21 (denoted as “main component” in FIG. 9) contained in the adhesive 20. .. Further, the adhesive information input area 84 is provided with an input box 98 for the curing shrinkage rate of the adhesive 20 and an input box 99 for the longitudinal elastic modulus of the adhesive 20.
  • the unit of curing shrinkage is%, and the unit of longitudinal elastic modulus is MPa.
  • the thickness of the adhesive 20 may be input as the adhesive information 78.
  • the user After completing the selection input in each input area 81 to 84, the user selects the setting button 100. As a result, the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 are received by the reception unit 66.
  • FIG. 10 shows an example of the junction type optical element 10 and the design shape information 75.
  • the concave surface 13A of the first optical element 13 and the surface facing the concave surface 13A (hereinafter, abbreviated as the facing surface) 13B are rotationally symmetric. It has an aspherical shape. More specifically, the concave surface 13A is deformed so that the end portion is attracted to the second optical element 14 side. With the deformation of the end portion of the concave surface 13A, the facing surface 13B has a shape in which the center has the highest height in the Z direction and the height gradually decreases toward the end portion.
  • the aspherical shape of the first optical element 13 is brought about by the distortion of the bonding layer 15 due to the shrinkage of the adhesive 20.
  • the second optical element 14 since the second optical element 14 is relatively thick and has a large moment of inertia of area, it retains its shape before being joined by the joining layer 15.
  • the junctional optical element 10 having such an aspherical shape is used, for example, as an aberration correction lens.
  • the design shape information 75 is numerical data representing the aspherical shape of the first optical element 13, such as the height of the facing surface 13B in the Z direction for each XY plane coordinate.
  • the first optical element 13 corresponds to "at least one of the first optical element and the second optical element" according to the technique of the present disclosure.
  • the irradiation profile 41 has an irradiation profile 41A for the gelation step and an irradiation profile 41B for the main curing step.
  • the irradiation profile 41A for the gelling step is used in the gelling step
  • the irradiation profile 41B for the main curing step is used in the main curing step.
  • the gelling step is shown in FIG. 5B by irradiating the liquid adhesive 20 filled between the first optical element 13 and the second optical element 14 with ultraviolet UV by the filling step shown in FIG.
  • This is a step of gelling the adhesive 20 as described above.
  • the gelling step may be called a temporary curing step in the sense of contrasting with the main curing step.
  • the curing rate of the adhesive 20 is made different in a plurality of regions by changing the intensity of ultraviolet UV rays by the intensity modulation element 32.
  • ultraviolet UV having a central wavelength of 365 nm is irradiated.
  • This curing step is a step of curing the adhesive 20 by irradiating the gelled adhesive 20 through the gelling step with ultraviolet UV.
  • ultraviolet UV having a wavelength of 310 nm to 400 nm is irradiated.
  • the ultraviolet UV is an example of the "first curing stimulus” and the "second curing stimulus of the same type as the first curing stimulus” according to the technique of the present disclosure.
  • the main curing step is performed without interposing another step between the gelation step and the gelation step.
  • the other step is specifically a heating step.
  • FIG. 11 illustrates an irradiation profile 41A for the gelling step for two regions, a region R_A having a radius of 48 mm and a region R_B other than the region R_A, of the pre-bonding optical element 10X. That is, for the area R_A, ultraviolet UV illumination to (in FIG. 11 labeled "UV irradiance") and 3 mW / cm 2, for the area R_B, is set to 0.3 mW / cm 2 1/10 regions R_A.
  • the irradiation time of ultraviolet UV is 90 seconds, which is common to the regions R_A and R_B. That is, the intensity of the first curing stimulus is changed by changing the intensity of the ultraviolet UV.
  • the irradiation profile 41B for this curing step has an illuminance of ultraviolet UV of 5 mW / cm 2 and an irradiation time of 30 minutes.
  • FIGS. 12 and 13 are diagrams showing the state transition of the adhesive 20 at the boundary portion between the region R_A and the region R_B. Further, FIG. 14 is a flowchart showing a procedure of a method for manufacturing the junction type optical element 10. Hereinafter, the operation of the above configuration will be described with reference to FIGS. 12 to 14.
  • the setting screen 80 shown in FIG. 9 is displayed on the display 54 under the control of the display control unit 65 in the control device 12. Then, the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 set by the input device 55 through the setting screen 80 are received by the reception unit 66. These information 75 to 78 are output from the reception unit 66 to the generation unit 67.
  • the irradiation profile as shown in FIG. 11 is referred to from the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 while referring to the generation reference information 61. 41 is generated.
  • the irradiation profile 41 is transmitted to the main body 11 by the transmission unit 69.
  • the irradiation profile 41 from the control device 12 is received by the receiving unit 37.
  • the irradiation profile 41 is stored in the storage unit 39 by the RW control unit 38.
  • step ST100 the filling step shown in FIG. 4 is performed, and as shown in FIG. 12A, the liquid adhesive 20 is filled between the first optical element 13 and the second optical element 14. ..
  • the pre-bonding optical element 10X that has completed the filling step is set on the stage 33 of the main body 11.
  • the irradiation profile 41 is read from the storage unit 39 by the RW control unit 38.
  • the irradiation profile 41 is output from the RW control unit 38 to the main control unit 40.
  • the main control unit 40 operates the light source 30 via the light source driver 35 according to the irradiation profile 41A for the gelling step in the irradiation profile 41.
  • the main control unit 40 operates the intensity modulation element 32 via the intensity modulation element driver 36 according to the irradiation profile 41A for the gelation step.
  • the adhesive 20 in the liquid state is irradiated with ultraviolet UV rays corresponding to the irradiation profile 41A for the gelling step, and the gelling step shown in step ST200 is started.
  • the illuminance of ultraviolet UV is lower in the region R_B than in the region R_A. Therefore, as shown in FIG. 12B, the curing rate of the adhesive 20 in the region R_B is slower than the curing rate of the adhesive 20 in the region R_A. Specifically, the polymerization rate of the adhesive 20 in the region R_A is 30%, and the adhesive 20 in the region R_A is gelled, whereas the polymerization rate of the adhesive 20 in the region R_B remains at 10%. .. Region R_A is an example of a "region with a high curing rate” according to the technique of the present disclosure. Further, the region R_B is an example of the “region where the curing rate is slow” according to the technique of the present disclosure. The polymerization rate of the adhesive 20 is exactly the polymerization rate of the monomer 23. Further, here, the time when the polymerization rate is 30% will be described as the gel point of the adhesive 20.
  • the adhesive 20 in the region R_A When the ultraviolet UV rays are continuously irradiated, not only the adhesive 20 in the region R_A but also the adhesive 20 in the region R_B gels as shown in FIG. 12C. At this time, the polymerization rate of the adhesive 20 in the region R_A is 50%, and the polymerization rate of the adhesive 20 in the region R_B is 30%. However, the curing rate of the adhesive 20 in the region R_B still remains slower than the curing rate of the adhesive 20 in the region R_A.
  • the ultraviolet UV is irradiated for a time corresponding to the irradiation profile 41A for the gelling step and the adhesive 20 in the entire region gels, the gelling step shown in step ST200 is completed.
  • the main control unit 40 operates the light source 30 via the light source driver 35 according to the irradiation profile 41B for the main curing step of the irradiation profile 41.
  • the gelled adhesive 20 is irradiated with ultraviolet UV rays corresponding to the irradiation profile 41B for the main curing step, and the main curing step shown in step ST300 is started.
  • the polymerization rate of the adhesive 20 in the region R_A was 50%, so that the polymerization rate of the adhesive 20 until the end of the main curing step was 50%.
  • the polymerization rate of the adhesive 20 in the region R_B was 30%, the polymerization rate of the adhesive 20 until the end of the main curing step was 70%.
  • the adhesive 20 in the region R_B shrinks 20% more than the adhesive 20 in the region R_A.
  • the bonding layer 15 is distorted, and the stress caused by this distortion deforms the first optical element 13.
  • the region R_B has a concave shape with respect to the region R_A.
  • Such distortion of the bonding layer 15 also affects the refractive index. That is, the refractive index of the bonding layer 15 is lower in the region R_A than in the region R_B.
  • the balance between the strain of the bonding layer 15 and the deformation of the optical element depends on the response to the stress of the adhesive 20 such as the curing shrinkage rate and the longitudinal elastic modulus, and the size such as the thickness of the first optical element 13 and the second optical element 14. It depends on the relationship with the moment of inertia of area. For example, the thickness of the first optical element 13 is very thin, and conversely, the thickness of the second optical element 14 is sufficiently thick, and the second optical element 14 has a cross section sufficient to withstand the stress caused by the distortion of the bonding layer 15. It is assumed that it has the next moment.
  • the distortion of the bonding layer 15 causes the first optical element 13 to be greatly deformed, but the second optical element 14 is not deformed at all or is only slightly deformed.
  • the first optical element information 76, the second optical element information 77, and the adhesive information 78 are set because it is desired to know the balance between the distortion of the bonding layer 15 and the deformation of the optical element.
  • the bonding type optical element 10 includes a first optical element 13, a second optical element 14, and a bonding layer 15.
  • the bonding layer 15 has a strain that deforms the first optical element 13.
  • the strain due to the shrinkage deformation of the adhesive 20 is utilized, the optical path difference with respect to the thickness of the bonding layer 15 can be increased as compared with the wave surface avelator described in Japanese Patent Application Laid-Open No. 2009-530689.
  • the first optical element 13 has an aspherical shape in a state of being joined by the joining layer 15. Therefore, an aspherical lens having high-precision optical characteristics can be obtained. Further, the first optical element 13 has a spherical shape before being joined by the joining layer 15. Therefore, an aspherical lens having high-precision optical characteristics can be obtained from the spherical lens. In the present embodiment, the first optical element 13 has a spherical shape before being joined by the joining layer 15, and has an aspherical shape when joined by the joining layer 15, although it is said that the first optical element 13 has an aspherical shape.
  • the shape of the first optical element in the state of being joined by 15 is not limited to the aspherical shape.
  • the first optical element 13 may have an aspherical shape before being joined by the joining layer 15, and may have a spherical shape when joined by the joining layer 15. Further, in the present embodiment, the first optical element 13 is deformed, but the second optical element 14 may be deformed. Further, both the first optical element 13 and the second optical element 14 may be deformed.
  • the adhesive 20 contains an ultraviolet curable resin 21 which is a photocurable resin. Therefore, the curing speed of the adhesive 20 in the gelation step can be easily controlled as compared with the thermosetting resin in which it is difficult to change the degree of heating for each region.
  • the first optical element 13 and the second optical element 14 transmit ultraviolet UV for curing the ultraviolet curable resin 21. Therefore, the ultraviolet curable resin 21 can be reliably cured.
  • the distortion of the bonding layer 15 is a distortion that deforms the first optical element 13 into a shape according to the set optical characteristics. Therefore, the junction type optical element 10 having the desired optical characteristics can be easily manufactured.
  • the manufacturing method of the bonded optical element 10 includes a filling step, a gelling step, and a main curing step.
  • the filling step the liquid adhesive 20 is filled between the first optical element 13 and the second optical element 14.
  • the gelling step the adhesive 20 is gelled by irradiating the liquid adhesive 20 with ultraviolet UV rays.
  • the curing speed of the adhesive 20 differs in the regions R_A and R_B due to the change in the intensity of the ultraviolet UV.
  • the adhesive 20 is cured by irradiating the adhesive 20 with ultraviolet UV rays. Therefore, it is possible to obtain a junction optical element 10 having high-precision optical characteristics.
  • the main curing step is performed without interposing another step between the gelation step and the gelation step. Therefore, the manufacturing cost of the junction type optical element 10 can be suppressed. Moreover, the manufacturing time of the junction type optical element 10 can be shortened.
  • the other process is a heating process.
  • the heating process the junction type optical element 10 is set in the heating furnace, the inside of the heating furnace is raised to a set temperature, the junction type optical element 10 is heated at the set temperature for several hours, and the like. Is hung. Therefore, by eliminating the heating step, the manufacturing cost of the bonded optical element 10 can be further suppressed. In addition, the manufacturing time of the junction type optical element 10 can be significantly shortened.
  • the other step may be a step other than the heating step, for example, a cooling step or the like.
  • the adhesive 20 in the region R_B where the curing speed of the ultraviolet curable resin 21 is slow shrinks more than the adhesive 20 in the region R_A where the curing speed is fast, causing distortion that deforms the first optical element 13. .. Therefore, it is possible to obtain highly accurate optical characteristics as compared with the case where the bonding layer 15 has no distortion.
  • the concave surface 13A and the facing surface 13B of the first optical element 13 are deformed, but the present invention is not limited to this.
  • the facing surface 13B of the first optical element 13 may be left as it is, and only the concave surface 13A may be deformed.
  • the convex surface 14A and / or the surface of the second optical element 14 facing the convex surface 14A may be deformed.
  • the junction type optical element 10 having a rotationally symmetric aspherical shape has been exemplified, but the present invention is not limited to this.
  • the deformation of the bonding layer 15 due to distortion is biased, and the concave surface 13A and the facing surface 13B (the concave surface 13A is not shown) of the first optical element 13 are non-rotationally symmetric. It may have an aspherical shape.
  • the bonded optical element 120 having such a non-rotational symmetric aspherical shape can be easily manufactured only by controlling the curing speed of the adhesive 20 for each region.
  • FIG. 17 shows the first optical element information 76
  • FIG. 18 shows the second optical element information 77
  • FIG. 19 shows the adhesive information 78.
  • the first optical element 13 had a lens type of a plano-concave lens, a material of BK7 (registered trademark), an outer diameter of 54 mm, a center thickness of 0.8 mm, and a radius of curvature of ⁇ 83 mm.
  • the second optical element 14 had a plano-convex lens, a material of BK7 (registered trademark), an outer diameter of 54 mm, a center thickness of 6.5 mm, and a radius of curvature of 83 mm.
  • the main component of the adhesive 20 was polyene / polythiol, the curing shrinkage rate was 6.8%, and the longitudinal elastic modulus was 8.9 MPa. More specifically, the adhesive 20 was manufactured by Denka Co., Ltd. and had a trade name of "Hard Rock OP-1030K". The thickness of the bonding layer 15 was 100 ⁇ m.
  • FIG. 20 shows the irradiation profile 41.
  • the illuminance of the ultraviolet UV in the region R_A having a radius of 34 mm of the pre-bonding optical element 10X is 2 mW / cm 2
  • the illuminance of the ultraviolet UV in the region R_B other than the region R_A is 0.2 mW / cm 2 .
  • the irradiation time of ultraviolet UV was 60 seconds, which was common to the regions R_A and R_B.
  • the irradiation profile 41B for this curing step had an illuminance of ultraviolet rays of 3 mW / cm 2 and an irradiation time of 20 minutes.
  • FIG. 21 shows the amount of deformation of the facing surface 13B of the first optical element 13. It can be seen that the facing surface 13B of the first optical element 13 is certainly deformed due to the shrinkage of the adhesive 20.
  • the peak value of the amount of deformation was 0.907 ⁇ m.
  • FIG. 22 shows the amount of change in the optical path length of the bonding layer 15. It can be seen that the optical path length is certainly changed by the shrinkage of the adhesive 20.
  • the peak value of the amount of change in the optical path length was 0.151 ⁇ m. Since the thickness of the bonding layer 15 was 100 ⁇ m as described above, the optical path length can be changed by a maximum of 0.151% with respect to the thickness of the bonding layer 15. That is, the optical path difference with respect to the thickness of the bonding layer 15 can be increased.
  • a bonded optical element having a desired shape can be manufactured by making the curing speed of the adhesive 20 different in a plurality of regions.
  • control device 12 may be made to input the optical characteristics of the junction type optical element 10, and the control device 12 may generate the design shape information 75 according to the input optical characteristics.
  • the following two methods can be considered as a method for increasing the amount of deformation of the optical element due to the shrinkage of the adhesive 20.
  • the monofunctional isobornyl acrylate has an acrylic equivalent of 208 g / eq and a curing shrinkage rate of 6.8%.
  • the trifunctional trimethylolpropane triacrylate has an acrylic equivalent of 98.7 g / eq and a curing shrinkage rate of 13%. Therefore, in order to increase the amount of deformation of the optical element due to the shrinkage of the adhesive 20, the adhesive 20 containing trimethylolpropane triacrylate as a main component may be used.
  • the method of making the curing speed of the adhesive 20 in each region different is not limited to the method of changing the illuminance of the ultraviolet rays UV illustrated.
  • the illuminance of the ultraviolet UV may be the same in each region, and the curing speed of the adhesive 20 in each region may be different by changing the irradiation time of the ultraviolet UV in each region.
  • the intensity modulation element 32 is not limited to the element using the illustrated liquid crystal.
  • a filter having a different ultraviolet UV transmittance depending on each region may be used as the intensity modulation element 32.
  • a filter only one type of junctional optical element can be manufactured with one filter, but in the case of the intensity modulation element 32 using a liquid crystal, it is possible to manufacture many types of junctional optical elements. can do.
  • the first optical element 13 and the second optical element 14 are not limited to the combination of the exemplary plano-concave lens and plano-convex lens.
  • a biconvex lens, a biconcave lens, a concave meniscus lens, a convex meniscus lens, a parallel flat plate, a prism, or the like may be used.
  • the photocurable resin is not limited to the example UV curable resin 21.
  • a visible light curable resin that is cured by irradiation with visible light may be used.
  • the resin is not limited to the photocurable resin. It may be a thermosetting resin. In the case of a thermosetting resin, the first curing stimulus and the second curing stimulus are thermal stimuli.
  • the regions where the curing speed of the adhesive 20 is different are not limited to the two illustrated regions R_A and R_B.
  • the curing rates of the adhesives 20 of the five concentrically divided regions R_A, R_B, R_C, R_D, and R_E may be different.
  • At least one of the first optical element 13 and the second optical element 14 may have a spherical shape in a state of being bonded by the bonding layer 15.
  • junction type optical element 10 handled by the main body 11 has been described as one in the present embodiment, a plurality of junction type optical elements 10 may be processed at once. In this way, a plurality of bonded optical elements 10 can be manufactured in the time required to manufacture one bonded optical element 10, and the manufacturing efficiency of the bonded optical element 10 can be improved. Further, the apparatus for performing the gelation step and the apparatus for performing the main curing step may be separated. In this case, a plurality of bonded optical elements 10 that have completed the gelation step in the apparatus that performs the gelation step may be collectively introduced into the apparatus that performs the main curing step, and the main curing step may be performed.
  • a and / or B is synonymous with "at least one of A and B". That is, “A and / or B” means that it may be A alone, B alone, or a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as “A and / or B" is applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This bonding-type optical element is provided with: a first optical element; a second optical element; and a bonding layer that is formed of a resin-made adhesive agent, that is for bonding the first optical element and the second optical element, and that has distortion for deforming the first optical element and/or the second optical element.

Description

接合型光学素子、および接合型光学素子の製造方法Bonded optical element and manufacturing method of bonded optical element
 本開示の技術は、接合型光学素子、および接合型光学素子の製造方法に関する。 The technique of the present disclosure relates to a junction type optical element and a method for manufacturing the junction type optical element.
 特表2009-530689号公報には、2つの透明板を備えており、透明板の間の中にポリマー材料の層を有する、波面アベレータであって、ポリマー材料の層の屈折率を変化させることができ、それにより、屈折率プロファイルを作り出し、ポリマー材料の層の屈折率プロファイルが、アベレータを熱又は光に曝すときに安定である、波面アベレータが記載されている。 Japanese Patent Application Laid-Open No. 2009-530689 is a wave surface aberator having two transparent plates and having a layer of a polymer material between the transparent plates, and can change the refractive index of the layer of the polymer material. , Thereby creating a refractive index profile and the refractive index profile of the layer of polymeric material is stable when the aberator is exposed to heat or light.
 特表2009-530689号公報に記載の波面アベレータは、以下のステップa~dによって製造される。
 a.2つの透明板の間に、少なくとも1種のポリマー、および1種又は複数のモノマーを備えた重合性材料の層を生成し、重合性材料が初期屈折率を有するステップ、
 b.重合性材料に、同時の熱刺激、および可変的な光刺激を与え、重合性材料に、(i)1種又は複数のモノマーを完全に消費することなく、可変的パターンの重合を受けさせ、(ii)第1の中間的な可変的屈折率プロファイルを達成させるステップ、
 c.(b)の部分的に硬化した重合性材料を加熱することによって拡散工程を促進し、硬化がより少ない領域から、硬化がより進んだ領域へ、未硬化のモノマーを拡散させ、第2の中間的な可変的屈折率プロファイルを達成するステップ、
 d.(c)の部分的に硬化した重合性材料に、同時の熱刺激、および均一な光刺激を与え、残存する1種又は複数のモノマーの実質的にすべてを硬化し、最終的な可変的屈折率プロファイルを達成するステップ。
The wave surface abrator described in Japanese Patent Application Laid-Open No. 2009-530689 is manufactured by the following steps a to d.
a. A step in which a layer of a polymerizable material comprising at least one polymer and one or more monomers is formed between two transparent plates, and the polymerizable material has an initial index of refraction.
b. The polymerizable material is subjected to simultaneous thermal stimulation and variable photostimulation, and the polymerizable material is subjected to (i) variable pattern polymerization without completely consuming one or more monomers. (Ii) A step of achieving a first intermediate variable index profile,
c. The diffusion step is accelerated by heating the partially cured polymerizable material of (b), and the uncured monomer is diffused from the less cured region to the more cured region, and the second intermediate. Steps to achieve a variable index profile,
d. The partially cured polymerizable material of (c) is subjected to simultaneous thermal stimulation and uniform photostimulation to cure substantially all of the remaining one or more monomers, resulting in variable refraction. Steps to achieve rate profile.
 本開示の技術に係る一つの実施形態は、特表2009-530689号公報に記載の波面アベレータに比べ、接合層の厚みに対する光路差を大きくすることができる接合型光学素子、および接合型光学素子の製造方法を提供する。 One embodiment according to the technique of the present disclosure is a bonded optical element and a bonded optical element capable of increasing the optical path difference with respect to the thickness of the bonded layer as compared with the wave surface avelator described in Japanese Patent Application Laid-Open No. 2009-530689. Providing a manufacturing method for.
 本開示の接合型光学素子は、第1光学素子と、第2光学素子と、樹脂製の接着剤により形成され、第1光学素子と第2光学素子とを接合する接合層であって、第1光学素子および第2光学素子のうちの少なくとも一方を変形させる歪みを有する接合層と、を備える。 The bonding type optical element of the present disclosure is a bonding layer formed by a first optical element, a second optical element, and a resin adhesive to bond the first optical element and the second optical element. A bonding layer having a strain that deforms at least one of an optical element and a second optical element is provided.
 第1光学素子および第2光学素子のうちの少なくとも一方は、接合層により接合された状態において非球面形状を有することが好ましい。 It is preferable that at least one of the first optical element and the second optical element has an aspherical shape in a state of being joined by a joining layer.
 第1光学素子および第2光学素子のうち、接合層により接合された状態において非球面形状を有する光学素子は、接合層により接合される前は球面形状を有することが好ましい。 Of the first optical element and the second optical element, the optical element having an aspherical shape when joined by the joining layer preferably has a spherical shape before being joined by the joining layer.
 非球面形状は、非回転対称な形状であることが好ましい。 The aspherical shape is preferably a non-rotationally symmetric shape.
 接着剤は、光硬化性樹脂を含むことが好ましい。 The adhesive preferably contains a photocurable resin.
 第1光学素子および第2光学素子のうちの少なくとも一方は、光硬化性樹脂を硬化させるための光を透過することが好ましい。 It is preferable that at least one of the first optical element and the second optical element transmits light for curing the photocurable resin.
 歪みは、第1光学素子および第2光学素子のうちの少なくとも一方を、設定された光学特性に応じた形状に変形させる歪みであることが好ましい。 The distortion is preferably a distortion that deforms at least one of the first optical element and the second optical element into a shape according to the set optical characteristics.
 本開示の接合型光学素子の製造方法は、第1光学素子と第2光学素子とを接合する接合層となる樹脂製の接着剤であって、液体状態の接着剤を第1光学素子と第2光学素子との間に充填する充填工程と、液体状態の接着剤に第1硬化刺激を与えることで、接着剤をゲル化させるゲル化工程であって、第1硬化刺激の強度を変更することで、接着剤の硬化速度を複数の領域において異ならせるゲル化工程と、接着剤に第2硬化刺激を与えることで、接着剤を硬化させる本硬化工程と、を備える。 The method for manufacturing a bonded optical element of the present disclosure is a resin adhesive that serves as a bonding layer for bonding the first optical element and the second optical element, and a liquid adhesive is used as the first optical element and the first optical element. 2 A filling step of filling between the optical element and a gelling step of gelling the adhesive by giving a first curing stimulus to the adhesive in a liquid state, and changing the intensity of the first curing stimulus. This includes a gelling step in which the curing speed of the adhesive is made different in a plurality of regions, and a main curing step in which the adhesive is cured by giving a second curing stimulus to the adhesive.
 第1硬化刺激と第2硬化刺激は同種であることが好ましい。 It is preferable that the first hardening stimulus and the second hardening stimulus are of the same type.
 本硬化工程は、ゲル化工程との間に他の工程を挟むことなく行われることが好ましい。 It is preferable that the main curing step is performed without interposing another step between the gelation step and the gelation step.
 他の工程は、加熱工程であることが好ましい。 The other process is preferably a heating process.
 本硬化工程においては、複数の領域のうちの硬化速度が遅い領域の接着剤を、硬化速度が速い領域の接着剤よりも収縮させる。 In this curing step, the adhesive in the region having a slow curing speed among the plurality of regions is shrunk more than the adhesive in the region having a high curing speed.
 本硬化工程においては、第1光学素子および第2光学素子のうちの少なくとも一方を変形させる歪みを生じさせることが好ましい。 In this curing step, it is preferable to generate distortion that deforms at least one of the first optical element and the second optical element.
 第1光学素子および第2光学素子のうちの少なくとも一方は、接合層により接合された状態において非球面形状を有することが好ましい。 It is preferable that at least one of the first optical element and the second optical element has an aspherical shape in a state of being joined by a joining layer.
 第1光学素子および第2光学素子のうち、接合層により接合された状態において非球面形状を有する光学素子は、接合層により接合される前は球面形状を有することが好ましい。 Of the first optical element and the second optical element, the optical element having an aspherical shape when joined by the joining layer preferably has a spherical shape before being joined by the joining layer.
 非球面形状は、非回転対称な形状であることが好ましい。 The aspherical shape is preferably a non-rotationally symmetric shape.
 歪みは、第1光学素子および第2光学素子のうちの少なくとも一方を、設定された光学特性に応じた形状に変形させる歪みであることが好ましい。 The distortion is preferably a distortion that deforms at least one of the first optical element and the second optical element into a shape according to the set optical characteristics.
 接着剤は、光硬化性樹脂を含むことが好ましい。 The adhesive preferably contains a photocurable resin.
製造装置を示す図である。It is a figure which shows the manufacturing apparatus. 第1光学素子を示す斜視図である。It is a perspective view which shows the 1st optical element. 第2光学素子を示す斜視図である。It is a perspective view which shows the 2nd optical element. 充填工程を示すフローチャートである。It is a flowchart which shows the filling process. 接着剤の状態遷移を示す図であり、図5Aは硬化前の状態、図5Bはゲル化した状態、図5Cは完全硬化した状態をそれぞれ示す。It is a figure which shows the state transition of an adhesive, FIG. 5A shows a state before curing, FIG. 5B shows a gelled state, and FIG. 5C shows a completely cured state. 製造装置本体のブロック図である。It is a block diagram of a manufacturing apparatus main body. 制御装置を構成するコンピュータを示すブロック図である。It is a block diagram which shows the computer which comprises the control device. 主として制御装置のCPUのブロック図である。It is mainly a block diagram of a CPU of a control device. 設定画面を示す図である。It is a figure which shows the setting screen. 接合型光学素子および設計形状情報の一例を示す図である。It is a figure which shows an example of a junction type optical element and design shape information. 照射プロファイルの一例を示す図である。It is a figure which shows an example of an irradiation profile. 接着剤の硬化速度が異なる2つの領域の境界部分における接着剤の状態遷移を示す図であり、図12Aは充填工程の終了時、図12Bはゲル化工程の途中、図12Cはゲル化工程の終了時における接着剤の状態をそれぞれ示す。It is a figure which shows the state transition of the adhesive at the boundary part of two regions where the curing rate of the adhesive is different, FIG. 12A is at the end of a filling process, FIG. 12B is in the middle of a gelling process, and FIG. The state of the adhesive at the end is shown. 接着剤の硬化速度が異なる2つの領域の境界部分における接着剤の状態遷移を示す図であり、図13Aは本硬化工程の途中、図13Bは本硬化工程の終了時における接着剤の状態をそれぞれ示す。It is a figure which shows the state transition of the adhesive at the boundary part of two regions where the curing rate of the adhesive is different, FIG. 13A shows the state of the adhesive in the middle of the main curing step, and FIG. Shown. 接合型光学素子の製造方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the manufacturing method of a junction type optical element. 第1光学素子の凹面のみが非球面形状を有する接合型光学素子を示す図である。It is a figure which shows the junction type optical element which only the concave surface of the 1st optical element has an aspherical shape. 非回転対称な非球面形状を有する接合型光学素子を示す図である。It is a figure which shows the junction type optical element which has a non-rotational symmetric aspherical shape. 実施例の第1光学素子情報を示す図である。It is a figure which shows the 1st optical element information of an Example. 実施例の第2光学素子情報を示す図である。It is a figure which shows the 2nd optical element information of an Example. 実施例の接着剤情報を示す図である。It is a figure which shows the adhesive information of an Example. 実施例の照射プロファイルを示す図である。It is a figure which shows the irradiation profile of an Example. 実施例の第1光学素子の対向面の変形量を示す図である。It is a figure which shows the deformation amount of the facing surface of the 1st optical element of an Example. 実施例の接合層の光路長変化量を示す図である。It is a figure which shows the amount of change of the optical path length of the junction layer of an Example. 接着剤の硬化速度を異ならせる領域の別の例を示す図である。It is a figure which shows another example of the region which makes the curing rate of an adhesive different.
 図1において、製造装置2は、接合型光学素子10を製造する装置であり、製造装置本体(以下、本体と略す)11と制御装置12とを備える。接合型光学素子10は、例えば、デジタルカメラ、監視カメラ、プロジェクタといった光学装置のレンズ、眼鏡、コンタクトレンズといった視力矯正具のレンズとして利用される。 In FIG. 1, the manufacturing apparatus 2 is an apparatus for manufacturing a junction type optical element 10, and includes a manufacturing apparatus main body (hereinafter, abbreviated as the main body) 11 and a control device 12. The junctional optical element 10 is used, for example, as a lens of an optical device such as a digital camera, a surveillance camera, or a projector, or a lens of a vision correction tool such as eyeglasses or a contact lens.
 接合型光学素子10は、第1光学素子13と第2光学素子14とで構成される。第1光学素子13は平凹レンズであり(図2参照)、第2光学素子14は平凸レンズである(図3参照)。接合型光学素子10は、第1光学素子13の凹面13Aと第2光学素子14の凸面14Aとを、接合層15で接合してなる。なお、図1において、第1光学素子13および第2光学素子14の厚み方向をZ方向、Z方向と直交する第1光学素子13および第2光学素子14の幅方向をX方向、奥行方向をY方向とする。 The junction type optical element 10 is composed of a first optical element 13 and a second optical element 14. The first optical element 13 is a plano-concave lens (see FIG. 2), and the second optical element 14 is a plano-convex lens (see FIG. 3). The bonding type optical element 10 is formed by bonding a concave surface 13A of the first optical element 13 and a convex surface 14A of the second optical element 14 with a bonding layer 15. In FIG. 1, the thickness direction of the first optical element 13 and the second optical element 14 is the Z direction, the width direction of the first optical element 13 and the second optical element 14 orthogonal to the Z direction is the X direction, and the depth direction is the depth direction. The Y direction.
 制御装置12は、例えばデスクトップ型のパーソナルコンピュータであり、本体11の動作を制御する。制御装置12は、本体11と通信可能に接続されている。 The control device 12 is, for example, a desktop personal computer, and controls the operation of the main body 11. The control device 12 is communicably connected to the main body 11.
 図2に示すように、第1光学素子13の凹面13Aは、接合層15により接合される前は球面形状を有している。同様に図3に示すように、第2光学素子14の凸面14Aは、接合層15により接合される前は球面形状を有している。また、第1光学素子13および第2光学素子14は、紫外線UV(図5参照)を透過する。紫外線UVは、本開示の技術に係る「光」の一例である。 As shown in FIG. 2, the concave surface 13A of the first optical element 13 has a spherical shape before being joined by the joining layer 15. Similarly, as shown in FIG. 3, the convex surface 14A of the second optical element 14 has a spherical shape before being joined by the joining layer 15. Further, the first optical element 13 and the second optical element 14 transmit ultraviolet UV (see FIG. 5). Ultraviolet UV is an example of "light" according to the technique of the present disclosure.
 第1光学素子13の凹面13Aと、第2光学素子14の凸面14Aとの間には、硬化して接合層15となる接着剤20(図5参照)が、本体11に導入される前に充填される。具体的には図4にステップST100として示す手順で、接着剤20が充填される。ステップST100は、本開示の技術に係る「充填工程」の一例である。 Before the adhesive 20 (see FIG. 5), which is cured to form the bonding layer 15, is introduced into the main body 11 between the concave surface 13A of the first optical element 13 and the convex surface 14A of the second optical element 14. It is filled. Specifically, the adhesive 20 is filled in the procedure shown as step ST100 in FIG. Step ST100 is an example of a "filling step" according to the technique of the present disclosure.
 図4において、まず、ステップST110に示すように、第1光学素子13の凹面13Aおよび第2光学素子14の凸面14Aをクリーンアップする。次いでステップST120に示すように、凹面13Aに液体状態の接着剤20を塗布する。続いてステップST130に示すように、凹面13Aおよび凸面14Aを貼り合わせる。そして、ステップST140に示すように、凹面13Aおよび凸面14Aを擦り合わせて接着剤20の気泡を抜き、凹面13Aおよび凸面14Aの全面に接着剤20を薄く広げる。最後にステップST150に示すように、端面からはみ出した接着剤20を除去する。以下、こうして凹面13Aと凸面14Aとの間に接着剤20が充填された状態の第1光学素子13と第2光学素子14との組み合わせを、接合前光学素子10Xと表現する場合がある。なお、ステップST100で示す充填工程を、本体11内において行ってもよい。 In FIG. 4, first, as shown in step ST110, the concave surface 13A of the first optical element 13 and the convex surface 14A of the second optical element 14 are cleaned up. Next, as shown in step ST120, the liquid adhesive 20 is applied to the concave surface 13A. Subsequently, as shown in step ST130, the concave surface 13A and the convex surface 14A are bonded together. Then, as shown in step ST140, the concave surface 13A and the convex surface 14A are rubbed against each other to remove air bubbles from the adhesive 20, and the adhesive 20 is thinly spread over the entire surface of the concave surface 13A and the convex surface 14A. Finally, as shown in step ST150, the adhesive 20 protruding from the end face is removed. Hereinafter, the combination of the first optical element 13 and the second optical element 14 in a state where the adhesive 20 is filled between the concave surface 13A and the convex surface 14A may be referred to as a pre-bonding optical element 10X. The filling step shown in step ST100 may be performed in the main body 11.
 図5において、接着剤20は、紫外線硬化性樹脂21を含む。紫外線硬化性樹脂21は、モノマー23および重合開始剤24を有する。紫外線硬化性樹脂21は、本開示の技術に係る「光硬化性樹脂」の一例である。なお、モノマー23に加えて、オリゴマーを含んだ紫外線硬化性樹脂21を用いてもよい。 In FIG. 5, the adhesive 20 contains an ultraviolet curable resin 21. The UV curable resin 21 has a monomer 23 and a polymerization initiator 24. The ultraviolet curable resin 21 is an example of a "photocurable resin" according to the technique of the present disclosure. In addition to the monomer 23, an ultraviolet curable resin 21 containing an oligomer may be used.
 図5Aは、図4で示した充填工程の終了直後で、接着剤20の硬化前を示す。この場合、接着剤20は液体の状態である。この状態から、図5Bに示すように、例えば第1光学素子13側から紫外線UVが照射された場合、第1光学素子13を透過した紫外線UVによって、重合開始剤24がラジカルを発生させる。これにより、重合開始剤24を中心としたモノマー23のラジカル重合反応が開始され、モノマー23の連鎖的な付加反応の繰り返しによって、紫外線硬化性樹脂21は徐々にポリマー化していく。 FIG. 5A shows immediately after the completion of the filling step shown in FIG. 4 and before curing of the adhesive 20. In this case, the adhesive 20 is in a liquid state. From this state, as shown in FIG. 5B, for example, when ultraviolet UV is irradiated from the first optical element 13 side, the polymerization initiator 24 generates radicals by the ultraviolet UV transmitted through the first optical element 13. As a result, the radical polymerization reaction of the monomer 23 centering on the polymerization initiator 24 is started, and the ultraviolet curable resin 21 is gradually polymerized by repeating the chained addition reaction of the monomer 23.
 紫外線UVの照射初期は、紫外線硬化性樹脂21は未だ液体状態にあり、紫外線硬化性樹脂21には、多数の孤立した小分子量の分子鎖を有する系が形成されている。このとき、分子量の大小に応じた差はあるものの、各分子鎖には流動性があるため、ラジカル重合反応による紫外線硬化性樹脂21の収縮が起こっても、紫外線硬化性樹脂21の流動性により第1光学素子13および第2光学素子14は変形せず、接合層15に歪みは発生しない。 At the initial stage of UV UV irradiation, the UV curable resin 21 is still in a liquid state, and the UV curable resin 21 is formed with a system having a large number of isolated small molecular weight molecular chains. At this time, although there is a difference depending on the magnitude of the molecular weight, since each molecular chain has fluidity, even if the ultraviolet curable resin 21 shrinks due to the radical polymerization reaction, the fluidity of the ultraviolet curable resin 21 causes it. The first optical element 13 and the second optical element 14 are not deformed, and the bonding layer 15 is not distorted.
 時間経過によりラジカル重合反応が進むと、紫外線硬化性樹脂21はゲルの状態になる。この状態においては、分子鎖は、第1光学素子13および第2光学素子14に結合した三次元網目構造を示す。そして、紫外線硬化性樹脂21には、三次元網目構造の隙間にモノマー23および重合開始剤24が分散した系が形成されている。ゲルの状態に至る直前まで、紫外線硬化性樹脂21の収縮が起こっても、やはり紫外線硬化性樹脂21の流動性により接合層15に歪みは発生しない。なお、図5では、XZ二次元平面における二次元網目構造を示しているが、実際には、上記説明でも述べた通り、紫外線硬化性樹脂21は、Y方向にも分子鎖が連なる三次元網目構造を呈する。 As the radical polymerization reaction progresses over time, the UV curable resin 21 becomes a gel. In this state, the molecular chain shows a three-dimensional network structure coupled to the first optical element 13 and the second optical element 14. The ultraviolet curable resin 21 is formed with a system in which the monomer 23 and the polymerization initiator 24 are dispersed in the gaps of the three-dimensional network structure. Even if the UV curable resin 21 shrinks until just before reaching the gel state, the bonding layer 15 is not distorted due to the fluidity of the UV curable resin 21. Although FIG. 5 shows a two-dimensional network structure in the XZ two-dimensional plane, in reality, as described above, the ultraviolet curable resin 21 has a three-dimensional network in which molecular chains are continuous in the Y direction as well. It exhibits a structure.
 さらにラジカル重合反応が進み、実質的に全てのモノマー23がポリマー化して、ラジカル重合反応が停止した場合、図5Cに示すように、紫外線硬化性樹脂21は固体の状態になる。この際、各分子鎖の架橋が密になる結果、紫外線硬化性樹脂21の弾性率が上がる。そして、紫外線硬化性樹脂21は、第1光学素子13の凹面13Aと第2光学素子14の凸面14Aの距離を縮める矢印の方向に収縮し、歪みが生じる。 When the radical polymerization reaction further proceeds, substantially all the monomers 23 are polymerized, and the radical polymerization reaction is stopped, the ultraviolet curable resin 21 becomes a solid state as shown in FIG. 5C. At this time, as a result of the cross-linking of each molecular chain becoming dense, the elastic modulus of the ultraviolet curable resin 21 increases. Then, the ultraviolet curable resin 21 contracts in the direction of the arrow that shortens the distance between the concave surface 13A of the first optical element 13 and the convex surface 14A of the second optical element 14, and distortion occurs.
 図6において、本体11は、光源30、照射光学系31、強度変調素子32、およびステージ33を有する。光源30は、光源ドライバ35の制御の下、紫外線UVを発する。光源30は、例えばLED(Light Emitting Diode)、および/または、ブラックライトである。照射光学系31は、光源30から発せられた紫外線UVを、接合前光学素子10Xに向けて照射する。強度変調素子32は、強度変調素子ドライバ36の制御の下、照射光学系31を通過した紫外線UVの強度を変調する。強度変調素子32は、例えば液晶を用いた素子であり、接合前光学素子10Xの特定の領域における紫外線UVの強度を、他の領域よりも強めたり弱めたりすることが可能である。ステージ33は、接合前光学素子10Xを保持する。なお、強度変調素子32は、DMD(Digital Micromirror Device)を用いた素子であってもよい。 In FIG. 6, the main body 11 has a light source 30, an irradiation optical system 31, an intensity modulation element 32, and a stage 33. The light source 30 emits ultraviolet UV under the control of the light source driver 35. The light source 30 is, for example, an LED (Light Emitting Diode) and / or a black light. The irradiation optical system 31 irradiates the ultraviolet UV emitted from the light source 30 toward the pre-bonding optical element 10X. The intensity modulation element 32 modulates the intensity of ultraviolet UV rays that have passed through the irradiation optical system 31 under the control of the intensity modulation element driver 36. The intensity modulation element 32 is, for example, an element using a liquid crystal, and can increase or decrease the intensity of ultraviolet UV rays in a specific region of the pre-junction optical element 10X as compared with other regions. The stage 33 holds the pre-junction optical element 10X. The intensity modulation element 32 may be an element using a DMD (Digital Micromirror Device).
 本体11はさらに、受信部37、リードライト(以下、RW(Read Write)と略す)制御部38、記憶部39、および主制御部40を有する。受信部37は、紫外線UVの照射プロファイル41を制御装置12から受信する。受信部37は、照射プロファイル41をRW制御部38に出力する。 The main body 11 further includes a receiving unit 37, a read / write (hereinafter abbreviated as RW (Read Write)) control unit 38, a storage unit 39, and a main control unit 40. The receiving unit 37 receives the ultraviolet UV irradiation profile 41 from the control device 12. The receiving unit 37 outputs the irradiation profile 41 to the RW control unit 38.
 RW制御部38は、照射プロファイル41を記憶部39に記憶する。また、RW制御部38は、照射プロファイル41を記憶部39から読み出し、主制御部40に出力する。RW制御部38は、受信部37において新たな照射プロファイル41が受信される度に、記憶部39の照射プロファイル41を書き換える。記憶部39は、メモリ、ストレージデバイスとも言い換えられ、例えばフラッシュメモリである。 The RW control unit 38 stores the irradiation profile 41 in the storage unit 39. Further, the RW control unit 38 reads the irradiation profile 41 from the storage unit 39 and outputs the irradiation profile 41 to the main control unit 40. The RW control unit 38 rewrites the irradiation profile 41 of the storage unit 39 each time a new irradiation profile 41 is received by the receiving unit 37. The storage unit 39 can be paraphrased as a memory or a storage device, for example, a flash memory.
 主制御部40は、本体11の全体の動作を制御する。具体的には、主制御部40は、照射プロファイル41にしたがって、光源ドライバ35および強度変調素子ドライバ36を動作させる。なお、主制御部40は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えたコンピュータである。 The main control unit 40 controls the overall operation of the main body 11. Specifically, the main control unit 40 operates the light source driver 35 and the intensity modulation element driver 36 according to the irradiation profile 41. The main control unit 40 is a computer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
 図7において、制御装置12を構成するコンピュータは、ストレージデバイス50、メモリ51、CPU52、通信部53、ディスプレイ54、および入力デバイス55を備えている。これらはバスライン56を介して相互接続されている。 In FIG. 7, the computer constituting the control device 12 includes a storage device 50, a memory 51, a CPU 52, a communication unit 53, a display 54, and an input device 55. These are interconnected via a bus line 56.
 ストレージデバイス50は、制御装置12を構成するコンピュータに内蔵、またはケーブル、ネットワークを通じて接続されたハードディスクドライブである。ストレージデバイス50には、オペレーティングシステム等の制御プログラム、各種アプリケーションプログラム、およびこれらのプログラムに付随する各種データ等が記憶されている。なお、ハードディスクドライブに代えてソリッドステートドライブを用いてもよい。 The storage device 50 is a hard disk drive built in the computer constituting the control device 12 or connected via a cable or a network. The storage device 50 stores control programs such as an operating system, various application programs, and various data associated with these programs. A solid state drive may be used instead of the hard disk drive.
 メモリ51は、CPU52が処理を実行するためのワークメモリである。CPU52は、ストレージデバイス50に記憶されたプログラムをメモリ51へロードして、プログラムにしたがった処理を実行することにより、コンピュータの各部を統括的に制御する。 The memory 51 is a work memory for the CPU 52 to execute a process. The CPU 52 comprehensively controls each part of the computer by loading the program stored in the storage device 50 into the memory 51 and executing processing according to the program.
 通信部53は、LAN(Local Area Network)等のネットワークを介した各種情報の伝送制御を行うネットワークインターフェースである。通信部53は、本体11との通信を担う。ディスプレイ54は各種画面を表示する。制御装置12を構成するコンピュータは、各種画面を通じて、入力デバイス55からの操作指示の入力を受け付ける。入力デバイス55は、キーボード、マウス、タッチパネル等である。 The communication unit 53 is a network interface that controls transmission of various information via a network such as a LAN (Local Area Network). The communication unit 53 is responsible for communication with the main body 11. The display 54 displays various screens. The computer constituting the control device 12 receives input of an operation instruction from the input device 55 through various screens. The input device 55 is a keyboard, a mouse, a touch panel, or the like.
 図8において、制御装置12のストレージデバイス50には、作動プログラム60が記憶されている。作動プログラム60は、コンピュータを制御装置12として機能させるためのアプリケーションプログラムである。ストレージデバイス50には、照射プロファイル41、および生成参照情報61も記憶される。 In FIG. 8, the operation program 60 is stored in the storage device 50 of the control device 12. The operation program 60 is an application program for operating the computer as the control device 12. The storage device 50 also stores the irradiation profile 41 and the generation reference information 61.
 作動プログラム60が起動されると、制御装置12を構成するコンピュータのCPU52は、メモリ51等と協働して、表示制御部65、受付部66、生成部67、RW制御部68、および送信部69として機能する。 When the operation program 60 is activated, the CPU 52 of the computer constituting the control device 12 cooperates with the memory 51 and the like to display the display control unit 65, the reception unit 66, the generation unit 67, the RW control unit 68, and the transmission unit. Functions as 69.
 表示制御部65は、ディスプレイ54への各種画面の表示を制御する。各種画面には、設計形状情報75等を設定するための設定画面80(図9参照)等が含まれる。 The display control unit 65 controls the display of various screens on the display 54. The various screens include a setting screen 80 (see FIG. 9) for setting the design shape information 75 and the like.
 受付部66は、設定画面80を通じて入力デバイス55により設定された設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78を受け付ける。受付部66は、設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78を生成部67に出力する。設計形状情報75は、本開示の技術に係る「設定された光学特性」の一例である。 The reception unit 66 receives the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 set by the input device 55 through the setting screen 80. The reception unit 66 outputs the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 to the generation unit 67. The design shape information 75 is an example of "set optical characteristics" according to the technique of the present disclosure.
 生成部67は、生成参照情報61を参照して、設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78から照射プロファイル41を生成する。生成参照情報61は、設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78を入力データとし、照射プロファイル41を出力データとするデータテーブル、関数、機械学習モデル等である。生成部67は、照射プロファイル41をRW制御部68に出力する。 The generation unit 67 generates the irradiation profile 41 from the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 with reference to the generation reference information 61. The generation reference information 61 is a data table, function, and machine learning in which the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 are input data, and the irradiation profile 41 is output data. It is a model etc. The generation unit 67 outputs the irradiation profile 41 to the RW control unit 68.
 RW制御部68は、ストレージデバイス50への各種データの記憶、およびストレージデバイス50内の各種データの読み出しを制御する。例えば、RW制御部68は、ストレージデバイス50から生成参照情報61を読み出し、生成部67に出力する。 The RW control unit 68 controls the storage of various data in the storage device 50 and the reading of various data in the storage device 50. For example, the RW control unit 68 reads the generation reference information 61 from the storage device 50 and outputs it to the generation unit 67.
 RW制御部68は、生成部67からの照射プロファイル41を、ストレージデバイス50に記憶する。また、RW制御部68は、ストレージデバイス50から照射プロファイル41を読み出し、送信部69に出力する。送信部69は、照射プロファイル41を本体11に送信する。 The RW control unit 68 stores the irradiation profile 41 from the generation unit 67 in the storage device 50. Further, the RW control unit 68 reads the irradiation profile 41 from the storage device 50 and outputs the irradiation profile 41 to the transmission unit 69. The transmission unit 69 transmits the irradiation profile 41 to the main body 11.
 図9に示すように、設定画面80は、設計形状情報入力領域81、第1光学素子情報入力領域82、第2光学素子情報入力領域83、および接着剤情報入力領域84を有する。設計形状情報入力領域81には、設計形状情報75を表すファイルのパスの入力ボックス85、および設計形状情報75を表すファイルをファイルディレクトリから検索するための参照ボタン86が設けられている。 As shown in FIG. 9, the setting screen 80 has a design shape information input area 81, a first optical element information input area 82, a second optical element information input area 83, and an adhesive information input area 84. The design shape information input area 81 is provided with an input box 85 for a file path representing the design shape information 75, and a reference button 86 for searching the file directory for the file representing the design shape information 75.
 第1光学素子情報入力領域82には、第1光学素子13のレンズ種類を択一的に選択するためのプルダウンメニュー87、および第1光学素子13の材質を択一的に選択するためのプルダウンメニュー88が設けられている。また、第1光学素子情報入力領域82には、第1光学素子13の外径の入力ボックス89、中心の厚み(図9では「中心厚」と表記)の入力ボックス90、および曲率半径の入力ボックス91が設けられている。第2光学素子情報入力領域83も同様に、第2光学素子14のレンズ種類を択一的に選択するためのプルダウンメニュー92と、第2光学素子14の材質を択一的に選択するためのプルダウンメニュー93と、第2光学素子14の外径の入力ボックス94と、中心の厚みの入力ボックス95と、曲率半径の入力ボックス96とが設けられている。外径、中心の厚み、および曲率半径の単位はmmである。 In the first optical element information input area 82, a pull-down menu 87 for selectively selecting the lens type of the first optical element 13 and a pull-down menu 87 for selectively selecting the material of the first optical element 13 are provided. A menu 88 is provided. Further, in the first optical element information input area 82, an input box 89 having an outer diameter of the first optical element 13, an input box 90 having a center thickness (denoted as “center thickness” in FIG. 9), and an input of the radius of curvature are input. A box 91 is provided. Similarly, in the second optical element information input area 83, a pull-down menu 92 for selectively selecting the lens type of the second optical element 14 and a pull-down menu 92 for selectively selecting the material of the second optical element 14 are used. A pull-down menu 93, an input box 94 having an outer diameter of the second optical element 14, an input box 95 having a central thickness, and an input box 96 having a radius of curvature are provided. The unit of outer diameter, center thickness, and radius of curvature is mm.
 接着剤情報入力領域84には、接着剤20に含まれる紫外線硬化性樹脂21の種類(図9では「主成分」と表記)を択一的に選択するためのプルダウンメニュー97が設けられている。また、接着剤情報入力領域84には、接着剤20の硬化収縮率の入力ボックス98、および接着剤20の縦弾性率の入力ボックス99が設けられている。硬化収縮率の単位は%であり、縦弾性率の単位はMPaである。なお、接着剤20の厚みを接着剤情報78として入力させてもよい。 The adhesive information input area 84 is provided with a pull-down menu 97 for selectively selecting the type of the ultraviolet curable resin 21 (denoted as “main component” in FIG. 9) contained in the adhesive 20. .. Further, the adhesive information input area 84 is provided with an input box 98 for the curing shrinkage rate of the adhesive 20 and an input box 99 for the longitudinal elastic modulus of the adhesive 20. The unit of curing shrinkage is%, and the unit of longitudinal elastic modulus is MPa. The thickness of the adhesive 20 may be input as the adhesive information 78.
 各入力領域81~84における選択入力が済んだ後、ユーザは設定ボタン100を選択する。これにより、設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78が、受付部66において受け付けられる。 After completing the selection input in each input area 81 to 84, the user selects the setting button 100. As a result, the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 are received by the reception unit 66.
 図10は、接合型光学素子10および設計形状情報75の一例を示す。本例の接合型光学素子10は、接合層15により接合された状態において、第1光学素子13の凹面13A、および凹面13Aと対向する面(以下、対向面と略す)13Bが、回転対称な非球面形状を有する。より詳しくは、凹面13Aは、端部が第2光学素子14側に引き寄せられるように変形している。この凹面13Aの端部の変形に伴い、対向面13Bは、中心が最もZ方向の高さが高く、端部に向かって徐々に高さが低くなる形状を有する。この第1光学素子13の非球面形状は、接着剤20の収縮による接合層15の歪みによってもたらされる。一方、第2光学素子14は、比較的厚みが厚く、断面二次モーメントが大きいので、接合層15により接合される前の形状を保っている。こうした非球面形状を有する接合型光学素子10は、例えば収差補正レンズとして用いられる。設計形状情報75は、XY平面座標毎の対向面13BのZ方向の高さ等、第1光学素子13の非球面形状を表す数値データである。なお、この例では、第1光学素子13が、本開示の技術に係る「第1光学素子および第2光学素子のうちの少なくとも一方」に相当する。 FIG. 10 shows an example of the junction type optical element 10 and the design shape information 75. In the bonded optical element 10 of this example, in a state of being bonded by the bonding layer 15, the concave surface 13A of the first optical element 13 and the surface facing the concave surface 13A (hereinafter, abbreviated as the facing surface) 13B are rotationally symmetric. It has an aspherical shape. More specifically, the concave surface 13A is deformed so that the end portion is attracted to the second optical element 14 side. With the deformation of the end portion of the concave surface 13A, the facing surface 13B has a shape in which the center has the highest height in the Z direction and the height gradually decreases toward the end portion. The aspherical shape of the first optical element 13 is brought about by the distortion of the bonding layer 15 due to the shrinkage of the adhesive 20. On the other hand, since the second optical element 14 is relatively thick and has a large moment of inertia of area, it retains its shape before being joined by the joining layer 15. The junctional optical element 10 having such an aspherical shape is used, for example, as an aberration correction lens. The design shape information 75 is numerical data representing the aspherical shape of the first optical element 13, such as the height of the facing surface 13B in the Z direction for each XY plane coordinate. In this example, the first optical element 13 corresponds to "at least one of the first optical element and the second optical element" according to the technique of the present disclosure.
 図11において、照射プロファイル41は、ゲル化工程用照射プロファイル41Aと本硬化工程用照射プロファイル41Bとを有する。ゲル化工程用照射プロファイル41Aはゲル化工程に用いられ、本硬化工程用照射プロファイル41Bは本硬化工程に用いられる。 In FIG. 11, the irradiation profile 41 has an irradiation profile 41A for the gelation step and an irradiation profile 41B for the main curing step. The irradiation profile 41A for the gelling step is used in the gelling step, and the irradiation profile 41B for the main curing step is used in the main curing step.
 ゲル化工程は、図4で示した充填工程によって第1光学素子13と第2光学素子14との間に充填された液体状態の接着剤20に紫外線UVを照射することで、図5Bで示したように接着剤20をゲル化する工程である。ゲル化工程は、本硬化工程と対比する意味で、仮硬化工程と呼んでもよい。ゲル化工程では、強度変調素子32によって紫外線UVの強度を変更することで、接着剤20の硬化速度を複数の領域において異ならせる。なお、ゲル化工程においては、例えば中心波長365nmの紫外線UVが照射される。 The gelling step is shown in FIG. 5B by irradiating the liquid adhesive 20 filled between the first optical element 13 and the second optical element 14 with ultraviolet UV by the filling step shown in FIG. This is a step of gelling the adhesive 20 as described above. The gelling step may be called a temporary curing step in the sense of contrasting with the main curing step. In the gelling step, the curing rate of the adhesive 20 is made different in a plurality of regions by changing the intensity of ultraviolet UV rays by the intensity modulation element 32. In the gelling step, for example, ultraviolet UV having a central wavelength of 365 nm is irradiated.
 本硬化工程は、ゲル化工程を経てゲル化した接着剤20に紫外線UVを照射することで、接着剤20を硬化させる工程である。本硬化工程においては、例えば波長310nm~400nmの紫外線UVが照射される。なお、紫外線UVは、本開示の技術に係る「第1硬化刺激」、および「第1硬化刺激と同種の第2硬化刺激」の一例である。 This curing step is a step of curing the adhesive 20 by irradiating the gelled adhesive 20 through the gelling step with ultraviolet UV. In this curing step, for example, ultraviolet UV having a wavelength of 310 nm to 400 nm is irradiated. The ultraviolet UV is an example of the "first curing stimulus" and the "second curing stimulus of the same type as the first curing stimulus" according to the technique of the present disclosure.
 本硬化工程は、ゲル化工程との間に他の工程を挟むことなく行われる。他の工程は、具体的には加熱工程である。 The main curing step is performed without interposing another step between the gelation step and the gelation step. The other step is specifically a heating step.
 図11では、接合前光学素子10Xの半径48mmの領域R_Aと、領域R_A以外の領域R_Bの2つの領域についてのゲル化工程用照射プロファイル41Aを例示している。すなわち、領域R_Aについては、紫外線UVの照度(図11では「紫外線照度」と表記)を3mW/cmとし、領域R_Bについては、領域R_Aの1/10の0.3mW/cmとしている。紫外線UVの照射時間は、領域R_A、R_Bで共通の90秒としている。つまり、紫外線UVの強度を変更することで、第1硬化刺激の強度を変更している。本硬化工程用照射プロファイル41Bは、紫外線UVの照度を5mW/cm、照射時間を30分としている。 FIG. 11 illustrates an irradiation profile 41A for the gelling step for two regions, a region R_A having a radius of 48 mm and a region R_B other than the region R_A, of the pre-bonding optical element 10X. That is, for the area R_A, ultraviolet UV illumination to (in FIG. 11 labeled "UV irradiance") and 3 mW / cm 2, for the area R_B, is set to 0.3 mW / cm 2 1/10 regions R_A. The irradiation time of ultraviolet UV is 90 seconds, which is common to the regions R_A and R_B. That is, the intensity of the first curing stimulus is changed by changing the intensity of the ultraviolet UV. The irradiation profile 41B for this curing step has an illuminance of ultraviolet UV of 5 mW / cm 2 and an irradiation time of 30 minutes.
 図12および図13は、領域R_Aと領域R_Bの境界部分における接着剤20の状態遷移を示す図である。また、図14は、接合型光学素子10の製造方法の手順を示すフローチャートである。以下、これら図12~図14を参照して、上記構成による作用を説明する。 12 and 13 are diagrams showing the state transition of the adhesive 20 at the boundary portion between the region R_A and the region R_B. Further, FIG. 14 is a flowchart showing a procedure of a method for manufacturing the junction type optical element 10. Hereinafter, the operation of the above configuration will be described with reference to FIGS. 12 to 14.
 接合型光学素子10の製造に先立ち、制御装置12において、表示制御部65の制御の下、図9で示した設定画面80がディスプレイ54に表示される。そして、設定画面80を通じて入力デバイス55により設定された設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78が受付部66で受け付けられる。これらの情報75~78は、受付部66から生成部67に出力される。 Prior to the manufacture of the junction type optical element 10, the setting screen 80 shown in FIG. 9 is displayed on the display 54 under the control of the display control unit 65 in the control device 12. Then, the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 set by the input device 55 through the setting screen 80 are received by the reception unit 66. These information 75 to 78 are output from the reception unit 66 to the generation unit 67.
 生成部67においては、生成参照情報61が参照されつつ、設計形状情報75、第1光学素子情報76、第2光学素子情報77、および接着剤情報78から、図11で示したような照射プロファイル41が生成される。照射プロファイル41は、送信部69によって本体11に送信される。 In the generation unit 67, the irradiation profile as shown in FIG. 11 is referred to from the design shape information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 while referring to the generation reference information 61. 41 is generated. The irradiation profile 41 is transmitted to the main body 11 by the transmission unit 69.
 本体11では、制御装置12からの照射プロファイル41が受信部37において受信される。照射プロファイル41は、RW制御部38によって記憶部39に記憶される。 In the main body 11, the irradiation profile 41 from the control device 12 is received by the receiving unit 37. The irradiation profile 41 is stored in the storage unit 39 by the RW control unit 38.
 ステップST100に示すように、図4で示した充填工程が行われ、図12Aに示すように、液体状態の接着剤20が第1光学素子13と第2光学素子14との間に充填される。充填工程を終えた接合前光学素子10Xは、本体11のステージ33にセットされる。 As shown in step ST100, the filling step shown in FIG. 4 is performed, and as shown in FIG. 12A, the liquid adhesive 20 is filled between the first optical element 13 and the second optical element 14. .. The pre-bonding optical element 10X that has completed the filling step is set on the stage 33 of the main body 11.
 本体11では、RW制御部38によって照射プロファイル41が記憶部39から読み出される。照射プロファイル41は、RW制御部38から主制御部40に出力される。主制御部40は、照射プロファイル41のうちのゲル化工程用照射プロファイル41Aにしたがって、光源ドライバ35を介して光源30を動作させる。また、主制御部40は、ゲル化工程用照射プロファイル41Aにしたがって、強度変調素子ドライバ36を介して強度変調素子32を動作させる。これにより、ゲル化工程用照射プロファイル41Aに応じた紫外線UVが液体状態の接着剤20に照射され、ステップST200に示すゲル化工程が開始される。 In the main body 11, the irradiation profile 41 is read from the storage unit 39 by the RW control unit 38. The irradiation profile 41 is output from the RW control unit 38 to the main control unit 40. The main control unit 40 operates the light source 30 via the light source driver 35 according to the irradiation profile 41A for the gelling step in the irradiation profile 41. Further, the main control unit 40 operates the intensity modulation element 32 via the intensity modulation element driver 36 according to the irradiation profile 41A for the gelation step. As a result, the adhesive 20 in the liquid state is irradiated with ultraviolet UV rays corresponding to the irradiation profile 41A for the gelling step, and the gelling step shown in step ST200 is started.
 図11で示したように、紫外線UVの照度は、領域R_Aに比べて領域R_Bのほうが低い。このため、図12Bに示すように、領域R_Aにおける接着剤20の硬化速度に比べ、領域R_Bにおける接着剤20の硬化速度のほうが遅くなる。具体的には、領域R_Aにおける接着剤20の重合率は30%で、領域R_Aの接着剤20はゲル化しているのに対し、領域R_Bにおける接着剤20の重合率は10%に留まっている。領域R_Aは、本開示の技術に係る「硬化速度が速い領域」の一例である。また、領域R_Bは、本開示の技術に係る「硬化速度が遅い領域」の一例である。なお、接着剤20の重合率は、正確にはモノマー23の重合率である。また、ここでは、重合率が30%の時点を接着剤20のゲル化点として説明する。 As shown in FIG. 11, the illuminance of ultraviolet UV is lower in the region R_B than in the region R_A. Therefore, as shown in FIG. 12B, the curing rate of the adhesive 20 in the region R_B is slower than the curing rate of the adhesive 20 in the region R_A. Specifically, the polymerization rate of the adhesive 20 in the region R_A is 30%, and the adhesive 20 in the region R_A is gelled, whereas the polymerization rate of the adhesive 20 in the region R_B remains at 10%. .. Region R_A is an example of a "region with a high curing rate" according to the technique of the present disclosure. Further, the region R_B is an example of the “region where the curing rate is slow” according to the technique of the present disclosure. The polymerization rate of the adhesive 20 is exactly the polymerization rate of the monomer 23. Further, here, the time when the polymerization rate is 30% will be described as the gel point of the adhesive 20.
 紫外線UVを続けて照射していくと、図12Cに示すように、領域R_Aの接着剤20だけでなく、領域R_Bの接着剤20もゲル化する。このとき、領域R_Aにおける接着剤20の重合率は50%であり、領域R_Bにおける接着剤20の重合率は30%である。ただし、領域R_Bにおける接着剤20の硬化速度は、依然として領域R_Aにおける接着剤20の硬化速度よりも遅いままである。こうしてゲル化工程用照射プロファイル41Aに応じた時間、紫外線UVが照射され、全領域の接着剤20がゲル化した場合、ステップST200に示すゲル化工程が終了される。 When the ultraviolet UV rays are continuously irradiated, not only the adhesive 20 in the region R_A but also the adhesive 20 in the region R_B gels as shown in FIG. 12C. At this time, the polymerization rate of the adhesive 20 in the region R_A is 50%, and the polymerization rate of the adhesive 20 in the region R_B is 30%. However, the curing rate of the adhesive 20 in the region R_B still remains slower than the curing rate of the adhesive 20 in the region R_A. When the ultraviolet UV is irradiated for a time corresponding to the irradiation profile 41A for the gelling step and the adhesive 20 in the entire region gels, the gelling step shown in step ST200 is completed.
 ゲル化工程の終了後、主制御部40は、照射プロファイル41のうちの本硬化工程用照射プロファイル41Bにしたがって、光源ドライバ35を介して光源30を動作させる。これにより、本硬化工程用照射プロファイル41Bに応じた紫外線UVがゲル化した接着剤20に照射され、ステップST300に示す本硬化工程が開始される。 After the gelation step is completed, the main control unit 40 operates the light source 30 via the light source driver 35 according to the irradiation profile 41B for the main curing step of the irradiation profile 41. As a result, the gelled adhesive 20 is irradiated with ultraviolet UV rays corresponding to the irradiation profile 41B for the main curing step, and the main curing step shown in step ST300 is started.
 図13Aおよび図13Bに示すように、本硬化工程において、実質的に全てのモノマー23がポリマー化して重合率が100%となり、ステップST300に示す本硬化工程が終了するまでの接着剤20の収縮率に差が生じる。具体的には、図12Cにおいて、領域R_Aにおける接着剤20の重合率が50%であったので、本硬化工程が終了するまでの接着剤20の重合率は50%である。一方、図12Cにおいて、領域R_Bにおける接着剤20の重合率が30%であったので、本硬化工程が終了するまでの接着剤20の重合率は70%である。すなわち、領域R_Bの接着剤20が、領域R_Aの接着剤20よりも20%多く収縮する。これにより接合層15に歪みが生じ、この歪みに起因する応力によって第1光学素子13が変形される。具体的には領域R_Bが領域R_Aに対して凹形状となる。 As shown in FIGS. 13A and 13B, in the main curing step, substantially all the monomers 23 are polymerized to a polymerization rate of 100%, and the adhesive 20 shrinks until the main curing step shown in step ST300 is completed. There is a difference in the rate. Specifically, in FIG. 12C, the polymerization rate of the adhesive 20 in the region R_A was 50%, so that the polymerization rate of the adhesive 20 until the end of the main curing step was 50%. On the other hand, in FIG. 12C, since the polymerization rate of the adhesive 20 in the region R_B was 30%, the polymerization rate of the adhesive 20 until the end of the main curing step was 70%. That is, the adhesive 20 in the region R_B shrinks 20% more than the adhesive 20 in the region R_A. As a result, the bonding layer 15 is distorted, and the stress caused by this distortion deforms the first optical element 13. Specifically, the region R_B has a concave shape with respect to the region R_A.
 こうした接合層15の歪みは、屈折率にも影響を与える。すなわち、接合層15の屈折率は、領域R_Bに比べて領域R_Aのほうが低くなる。 Such distortion of the bonding layer 15 also affects the refractive index. That is, the refractive index of the bonding layer 15 is lower in the region R_A than in the region R_B.
 なお、接合層15の歪みと光学素子の変形のバランスは、硬化収縮率、縦弾性率といった接着剤20の応力に対する応答と、第1光学素子13および第2光学素子14の厚みといったサイズに係る断面二次モーメントとの関係に依存する。例えば、第1光学素子13の厚みが非常に薄く、逆に第2光学素子14の厚みが十分に厚く、第2光学素子14が接合層15の歪みに起因する応力に耐えられるだけの断面二次モーメントを有していたとする。この場合、接合層15の歪みによって第1光学素子13は大きく変形するが、第2光学素子14は全く変形しないか、僅かに変形するのみである。第1光学素子情報76、第2光学素子情報77、および接着剤情報78を設定するのは、こうした接合層15の歪みと光学素子の変形のバランスを知りたいがためである。 The balance between the strain of the bonding layer 15 and the deformation of the optical element depends on the response to the stress of the adhesive 20 such as the curing shrinkage rate and the longitudinal elastic modulus, and the size such as the thickness of the first optical element 13 and the second optical element 14. It depends on the relationship with the moment of inertia of area. For example, the thickness of the first optical element 13 is very thin, and conversely, the thickness of the second optical element 14 is sufficiently thick, and the second optical element 14 has a cross section sufficient to withstand the stress caused by the distortion of the bonding layer 15. It is assumed that it has the next moment. In this case, the distortion of the bonding layer 15 causes the first optical element 13 to be greatly deformed, but the second optical element 14 is not deformed at all or is only slightly deformed. The first optical element information 76, the second optical element information 77, and the adhesive information 78 are set because it is desired to know the balance between the distortion of the bonding layer 15 and the deformation of the optical element.
 以上説明したように、接合型光学素子10は、第1光学素子13と、第2光学素子14と、接合層15とを備える。接合層15は、第1光学素子13を変形させる歪みを有する。このように、接着剤20の収縮変形による歪みを利用するため、特表2009-530689号公報に記載の波面アベレータに比べ、接合層15の厚みに対する光路差を大きくすることができる。 As described above, the bonding type optical element 10 includes a first optical element 13, a second optical element 14, and a bonding layer 15. The bonding layer 15 has a strain that deforms the first optical element 13. As described above, since the strain due to the shrinkage deformation of the adhesive 20 is utilized, the optical path difference with respect to the thickness of the bonding layer 15 can be increased as compared with the wave surface avelator described in Japanese Patent Application Laid-Open No. 2009-530689.
 第1光学素子13は、接合層15により接合された状態において非球面形状を有する。このため、高精度な光学特性を有する非球面レンズを得ることができる。また、第1光学素子13は、接合層15により接合される前は球面形状を有する。このため、球面レンズから高精度な光学特性を有する非球面レンズを得ることができる。なお、本実施形態では、第1光学素子13は、接合層15により接合される前は球面形状を有し、接合層15により接合された状態において非球面形状を有する、としたが、接合層15により接合された状態における第1光学素子の形状は、非球面形状に限られない。例えば、第1光学素子13が、接合層15により接合される前は非球面形状を有し、接合層15により接合された状態において球面形状を有する態様としてもよい。また、本実施形態では、第1光学素子13を変形させたが、第2光学素子14を変形させてもよい。また、第1光学素子13および第2光学素子14の双方を変形させてもよい。 The first optical element 13 has an aspherical shape in a state of being joined by the joining layer 15. Therefore, an aspherical lens having high-precision optical characteristics can be obtained. Further, the first optical element 13 has a spherical shape before being joined by the joining layer 15. Therefore, an aspherical lens having high-precision optical characteristics can be obtained from the spherical lens. In the present embodiment, the first optical element 13 has a spherical shape before being joined by the joining layer 15, and has an aspherical shape when joined by the joining layer 15, although it is said that the first optical element 13 has an aspherical shape. The shape of the first optical element in the state of being joined by 15 is not limited to the aspherical shape. For example, the first optical element 13 may have an aspherical shape before being joined by the joining layer 15, and may have a spherical shape when joined by the joining layer 15. Further, in the present embodiment, the first optical element 13 is deformed, but the second optical element 14 may be deformed. Further, both the first optical element 13 and the second optical element 14 may be deformed.
 接着剤20は、光硬化性樹脂である紫外線硬化性樹脂21を含む。このため、領域毎に加熱の度合いを変更することが困難な熱硬化性樹脂に比べて、ゲル化工程における接着剤20の硬化速度を容易にコントロールすることができる。 The adhesive 20 contains an ultraviolet curable resin 21 which is a photocurable resin. Therefore, the curing speed of the adhesive 20 in the gelation step can be easily controlled as compared with the thermosetting resin in which it is difficult to change the degree of heating for each region.
 第1光学素子13および第2光学素子14は、紫外線硬化性樹脂21を硬化させるための紫外線UVを透過する。このため、紫外線硬化性樹脂21を確実に硬化させることができる。 The first optical element 13 and the second optical element 14 transmit ultraviolet UV for curing the ultraviolet curable resin 21. Therefore, the ultraviolet curable resin 21 can be reliably cured.
 接合層15の歪みは、第1光学素子13を、設定された光学特性に応じた形状に変形させる歪みである。このため、得たい光学特性を有する接合型光学素子10を容易に製造することができる。 The distortion of the bonding layer 15 is a distortion that deforms the first optical element 13 into a shape according to the set optical characteristics. Therefore, the junction type optical element 10 having the desired optical characteristics can be easily manufactured.
 接合型光学素子10の製造方法は、充填工程とゲル化工程と本硬化工程とを備える。充填工程においては、液体状態の接着剤20が第1光学素子13と第2光学素子14との間に充填される。ゲル化工程においては、液体状態の接着剤20に紫外線UVが照射されることで、接着剤20がゲル化される。この際、紫外線UVの強度が変更されることで、接着剤20の硬化速度が領域R_A、R_Bにおいて異なる。本硬化工程においては、接着剤20に紫外線UVが照射されることで、接着剤20が硬化される。したがって、高精度な光学特性の接合型光学素子10を得ることができる。 The manufacturing method of the bonded optical element 10 includes a filling step, a gelling step, and a main curing step. In the filling step, the liquid adhesive 20 is filled between the first optical element 13 and the second optical element 14. In the gelling step, the adhesive 20 is gelled by irradiating the liquid adhesive 20 with ultraviolet UV rays. At this time, the curing speed of the adhesive 20 differs in the regions R_A and R_B due to the change in the intensity of the ultraviolet UV. In this curing step, the adhesive 20 is cured by irradiating the adhesive 20 with ultraviolet UV rays. Therefore, it is possible to obtain a junction optical element 10 having high-precision optical characteristics.
 本硬化工程は、ゲル化工程との間に他の工程を挟むことなく行われる。このため、接合型光学素子10の製造コストを抑えることができる。また、接合型光学素子10の製造時間を短縮することができる。 The main curing step is performed without interposing another step between the gelation step and the gelation step. Therefore, the manufacturing cost of the junction type optical element 10 can be suppressed. Moreover, the manufacturing time of the junction type optical element 10 can be shortened.
 他の工程は、加熱工程である。加熱工程は、加熱炉に接合型光学素子10をセットしたり、加熱炉内を設定温度に上げたり、設定温度にて接合型光学素子10を数時間加熱したりする等、相応の手間と時間が掛かる。このため、加熱工程を除くことで、接合型光学素子10の製造コストをさらに抑えることができる。また、接合型光学素子10の製造時間を大幅に短縮することができる。なお、他の工程は、加熱工程以外の工程、例えば冷却工程等でもよい。 The other process is a heating process. In the heating process, the junction type optical element 10 is set in the heating furnace, the inside of the heating furnace is raised to a set temperature, the junction type optical element 10 is heated at the set temperature for several hours, and the like. Is hung. Therefore, by eliminating the heating step, the manufacturing cost of the bonded optical element 10 can be further suppressed. In addition, the manufacturing time of the junction type optical element 10 can be significantly shortened. The other step may be a step other than the heating step, for example, a cooling step or the like.
 本硬化工程においては、紫外線硬化性樹脂21の硬化速度が遅い領域R_Bの接着剤20が、硬化速度が速い領域R_Aの接着剤20よりも収縮し、第1光学素子13を変形させる歪みが生じる。したがって、接合層15が歪みを有しない場合に比べ、高精度な光学特性を得ることができる。 In this curing step, the adhesive 20 in the region R_B where the curing speed of the ultraviolet curable resin 21 is slow shrinks more than the adhesive 20 in the region R_A where the curing speed is fast, causing distortion that deforms the first optical element 13. .. Therefore, it is possible to obtain highly accurate optical characteristics as compared with the case where the bonding layer 15 has no distortion.
 上記実施形態では、第1光学素子13の凹面13Aおよび対向面13Bが変形する例を挙げたが、これに限らない。例えば図15に示す接合型光学素子110のように、第1光学素子13の対向面13Bはそのままで、凹面13Aのみを変形させてもよい。あるいは、図示は省略するが、第2光学素子14の凸面14A、および/または、凸面14Aと対向する面を変形させてもよい。 In the above embodiment, an example in which the concave surface 13A and the facing surface 13B of the first optical element 13 are deformed is given, but the present invention is not limited to this. For example, as in the junction type optical element 110 shown in FIG. 15, the facing surface 13B of the first optical element 13 may be left as it is, and only the concave surface 13A may be deformed. Alternatively, although not shown, the convex surface 14A and / or the surface of the second optical element 14 facing the convex surface 14A may be deformed.
 また、上記実施形態では、回転対称な非球面形状を有する接合型光学素子10を例示したが、これに限らない。図16に示す接合型光学素子120のように、接合層15の歪みによる変形が偏っていて、第1光学素子13の凹面13Aおよび対向面13B(凹面13Aは不図示)が、非回転対称な非球面形状を有していてもよい。本開示の技術によれば、こうした非回転対称な非球面形状を有する接合型光学素子120を、接着剤20の硬化速度を領域毎にコントロールするだけで容易に製造することができる。 Further, in the above embodiment, the junction type optical element 10 having a rotationally symmetric aspherical shape has been exemplified, but the present invention is not limited to this. Like the bonding optical element 120 shown in FIG. 16, the deformation of the bonding layer 15 due to distortion is biased, and the concave surface 13A and the facing surface 13B (the concave surface 13A is not shown) of the first optical element 13 are non-rotationally symmetric. It may have an aspherical shape. According to the technique of the present disclosure, the bonded optical element 120 having such a non-rotational symmetric aspherical shape can be easily manufactured only by controlling the curing speed of the adhesive 20 for each region.
 [実施例]
 以下、接合型光学素子の実施例について説明する。図17に第1光学素子情報76、図18に第2光学素子情報77、図19に接着剤情報78をそれぞれ示す。すなわち、第1光学素子13は、レンズ種類が平凹レンズ、材質がBK7(登録商標)、外径が54mm、中心厚が0.8mm、曲率半径が-83mmであった。第2光学素子14は、レンズ種類が平凸レンズ、材質がBK7(登録商標)、外径が54mm、中心厚が6.5mm、曲率半径が83mmであった。接着剤20は、主成分がポリエン・ポリチオール、硬化収縮率が6.8%、縦弾性率が8.9MPaであった。より具体的には、接着剤20は、デンカ株式会社製、商品名「ハードロック OP-1030K」であった。接合層15の厚みは、100μmとした。
[Example]
Hereinafter, examples of the junction type optical element will be described. FIG. 17 shows the first optical element information 76, FIG. 18 shows the second optical element information 77, and FIG. 19 shows the adhesive information 78. That is, the first optical element 13 had a lens type of a plano-concave lens, a material of BK7 (registered trademark), an outer diameter of 54 mm, a center thickness of 0.8 mm, and a radius of curvature of −83 mm. The second optical element 14 had a plano-convex lens, a material of BK7 (registered trademark), an outer diameter of 54 mm, a center thickness of 6.5 mm, and a radius of curvature of 83 mm. The main component of the adhesive 20 was polyene / polythiol, the curing shrinkage rate was 6.8%, and the longitudinal elastic modulus was 8.9 MPa. More specifically, the adhesive 20 was manufactured by Denka Co., Ltd. and had a trade name of "Hard Rock OP-1030K". The thickness of the bonding layer 15 was 100 μm.
 図20に照射プロファイル41を示す。ゲル化工程用照射プロファイル41Aは、接合前光学素子10Xの半径34mmの領域R_Aの紫外線UVの照度が2mW/cm、領域R_A以外の領域R_Bの紫外線UVの照度が0.2mW/cmであった。紫外線UVの照射時間は、領域R_A、R_Bで共通の60秒であった。本硬化工程用照射プロファイル41Bは、紫外線の照度が3mW/cm、照射時間が20分であった。 FIG. 20 shows the irradiation profile 41. In the irradiation profile 41A for the gelling step, the illuminance of the ultraviolet UV in the region R_A having a radius of 34 mm of the pre-bonding optical element 10X is 2 mW / cm 2, and the illuminance of the ultraviolet UV in the region R_B other than the region R_A is 0.2 mW / cm 2 . there were. The irradiation time of ultraviolet UV was 60 seconds, which was common to the regions R_A and R_B. The irradiation profile 41B for this curing step had an illuminance of ultraviolet rays of 3 mW / cm 2 and an irradiation time of 20 minutes.
 図21は、第1光学素子13の対向面13Bの変形量を示す。接着剤20の収縮によって、確かに第1光学素子13の対向面13Bが変形していることが分かる。なお、変形量のピーク値は0.907μmであった。 FIG. 21 shows the amount of deformation of the facing surface 13B of the first optical element 13. It can be seen that the facing surface 13B of the first optical element 13 is certainly deformed due to the shrinkage of the adhesive 20. The peak value of the amount of deformation was 0.907 μm.
 図22は、接合層15の光路長変化量を示す。接着剤20の収縮によって、確かに光路長が変化していることが分かる。なお、光路長変化量のピーク値は0.151μmであった。接合層15の厚みは前述のように100μmであったので、接合層15の厚みに対して、最大0.151%光路長を変化させることができる。つまり、接合層15の厚みに対する光路差を大きくすることができる。 FIG. 22 shows the amount of change in the optical path length of the bonding layer 15. It can be seen that the optical path length is certainly changed by the shrinkage of the adhesive 20. The peak value of the amount of change in the optical path length was 0.151 μm. Since the thickness of the bonding layer 15 was 100 μm as described above, the optical path length can be changed by a maximum of 0.151% with respect to the thickness of the bonding layer 15. That is, the optical path difference with respect to the thickness of the bonding layer 15 can be increased.
 このように、本開示の技術によれば、接着剤20の硬化速度を複数の領域において異ならせることで、所望の形状を有する接合型光学素子を製造可能であることが確かめられた。 As described above, according to the technique of the present disclosure, it has been confirmed that a bonded optical element having a desired shape can be manufactured by making the curing speed of the adhesive 20 different in a plurality of regions.
 設計形状情報75ではなく、接合型光学素子10の光学特性を制御装置12に入力させ、制御装置12において、入力された光学特性に応じた設計形状情報75を生成する構成としてもよい。 Instead of the design shape information 75, the control device 12 may be made to input the optical characteristics of the junction type optical element 10, and the control device 12 may generate the design shape information 75 according to the input optical characteristics.
 なお、接着剤20の収縮による光学素子の変形量を大きくする方法としては、以下の2つが考えられる。
 a.硬化収縮率が高い接着剤20を用いる、
 b.接着剤20の厚みを厚くする。
The following two methods can be considered as a method for increasing the amount of deformation of the optical element due to the shrinkage of the adhesive 20.
a. An adhesive 20 having a high curing shrinkage rate is used.
b. The thickness of the adhesive 20 is increased.
 a.について以下考察する。ラジカル重合反応において、モノマー23の二重結合にラジカルが付加して単結合に変わる。このとき、モノマー23間のファンデルワールス距離が0.3nm~0.6nm、二重結合が0.13nmであるのに対し、単結合が0.15nmであるので、その差異の分だけ接着剤20が収縮することになる。このため、基本的にはモノマー23の官能基数あたりのアクリル当量が小さいほど、収縮率が高い傾向にある。 A. Will be considered below. In the radical polymerization reaction, a radical is added to the double bond of the monomer 23 to change to a single bond. At this time, the van der Waals distance between the monomers 23 is 0.3 nm to 0.6 nm and the double bond is 0.13 nm, whereas the single bond is 0.15 nm. 20 will shrink. Therefore, basically, the smaller the acrylic equivalent per the number of functional groups of the monomer 23, the higher the shrinkage rate tends to be.
 例えば、単官能であるイソボルニルアクリレートのアクリル当量は208g/eq、硬化収縮率は6.8%である。対して3官能のトリメチロールプロパントリアクリレートのアクリル当量は98.7g/eq、硬化収縮率は13%である。このため、接着剤20の収縮による光学素子の変形量を大きくするためには、トリメチロールプロパントリアクリレートを主成分とする接着剤20を用いればよい。 For example, the monofunctional isobornyl acrylate has an acrylic equivalent of 208 g / eq and a curing shrinkage rate of 6.8%. On the other hand, the trifunctional trimethylolpropane triacrylate has an acrylic equivalent of 98.7 g / eq and a curing shrinkage rate of 13%. Therefore, in order to increase the amount of deformation of the optical element due to the shrinkage of the adhesive 20, the adhesive 20 containing trimethylolpropane triacrylate as a main component may be used.
 各領域の接着剤20の硬化速度を異ならせる方法としては、例示した紫外線UVの照度を変える方法に限らない。紫外線UVの照度は各領域で同じとし、紫外線UVの照射時間を各領域で変えることで、各領域の接着剤20の硬化速度を異ならせてもよい。 The method of making the curing speed of the adhesive 20 in each region different is not limited to the method of changing the illuminance of the ultraviolet rays UV illustrated. The illuminance of the ultraviolet UV may be the same in each region, and the curing speed of the adhesive 20 in each region may be different by changing the irradiation time of the ultraviolet UV in each region.
 強度変調素子32は、例示の液晶を用いた素子に限らない。紫外線UVの透過率が各領域に応じて異なるフィルタを、強度変調素子32として用いてもよい。ただし、フィルタの場合は、1枚のフィルタで1種類の接合型光学素子を製造することしかできないが、液晶を用いた強度変調素子32の場合は、何種類もの接合型光学素子の製造に対応することができる。 The intensity modulation element 32 is not limited to the element using the illustrated liquid crystal. A filter having a different ultraviolet UV transmittance depending on each region may be used as the intensity modulation element 32. However, in the case of a filter, only one type of junctional optical element can be manufactured with one filter, but in the case of the intensity modulation element 32 using a liquid crystal, it is possible to manufacture many types of junctional optical elements. can do.
 第1光学素子13および第2光学素子14は、例示の平凹レンズおよび平凸レンズの組み合わせに限らない。両凸レンズ、両凹レンズ、凹メニスカスレンズ、凸メニスカスレンズ、平行平板、プリズム等でもよい。 The first optical element 13 and the second optical element 14 are not limited to the combination of the exemplary plano-concave lens and plano-convex lens. A biconvex lens, a biconcave lens, a concave meniscus lens, a convex meniscus lens, a parallel flat plate, a prism, or the like may be used.
 光硬化性樹脂は、例示の紫外線硬化性樹脂21に限らない。可視光の照射により硬化する可視光硬化性樹脂を用いてもよい。また、樹脂は光硬化性樹脂に限らない。熱硬化性樹脂であってもよい。熱硬化性樹脂の場合の第1硬化刺激および第2硬化刺激は、熱刺激である。 The photocurable resin is not limited to the example UV curable resin 21. A visible light curable resin that is cured by irradiation with visible light may be used. Further, the resin is not limited to the photocurable resin. It may be a thermosetting resin. In the case of a thermosetting resin, the first curing stimulus and the second curing stimulus are thermal stimuli.
 接着剤20の硬化速度を異ならせる領域は、例示の2つの領域R_A、R_Bに限らない。例えば図23に示すように、同心円状に区切られた5つの領域R_A、R_B、R_C、R_D、およびR_Eの接着剤20の硬化速度を異ならせてもよい。 The regions where the curing speed of the adhesive 20 is different are not limited to the two illustrated regions R_A and R_B. For example, as shown in FIG. 23, the curing rates of the adhesives 20 of the five concentrically divided regions R_A, R_B, R_C, R_D, and R_E may be different.
 第1光学素子13および第2光学素子14のうちの少なくとも一方が、接合層15により接合された状態において球面形状を有していてもよい。 At least one of the first optical element 13 and the second optical element 14 may have a spherical shape in a state of being bonded by the bonding layer 15.
 なお、本実施形態では、本体11にて扱う接合型光学素子10を1個として説明したが、複数個の接合型光学素子10を一括して処理してもよい。こうすれば、1個の接合型光学素子10を製造する時間で、複数個の接合型光学素子10を製造することができ、接合型光学素子10の製造効率を上げることができる。また、ゲル化工程を行う装置と本硬化工程を行う装置とを分けてもよい。この場合、ゲル化工程を行う装置においてゲル化工程が済んだ複数個の接合型光学素子10を、本硬化工程を行う装置に一括して導入し、本硬化工程を行ってもよい。 Although the junction type optical element 10 handled by the main body 11 has been described as one in the present embodiment, a plurality of junction type optical elements 10 may be processed at once. In this way, a plurality of bonded optical elements 10 can be manufactured in the time required to manufacture one bonded optical element 10, and the manufacturing efficiency of the bonded optical element 10 can be improved. Further, the apparatus for performing the gelation step and the apparatus for performing the main curing step may be separated. In this case, a plurality of bonded optical elements 10 that have completed the gelation step in the apparatus that performs the gelation step may be collectively introduced into the apparatus that performs the main curing step, and the main curing step may be performed.
 本開示の技術は、上述の種々の実施形態と種々の変形例を適宜組み合わせることも可能である。また、上記各実施形態に限らず、要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。 The technique of the present disclosure can be appropriately combined with the various embodiments described above and various modifications. In addition, not limited to each of the above embodiments, it goes without saying that various configurations can be adopted as long as they do not deviate from the gist.
 以上に示した記載内容および図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、および効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、および効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容および図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容および図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。 The description and illustration shown above are detailed explanations of the parts related to the technology of the present disclosure, and are merely an example of the technology of the present disclosure. For example, the above description of the configuration, function, action, and effect is an example of the configuration, function, action, and effect of a portion of the art of the present disclosure. Therefore, unnecessary parts may be deleted, new elements may be added, or replacements may be made to the described contents and illustrated contents shown above within a range that does not deviate from the gist of the technique of the present disclosure. Needless to say. In addition, in order to avoid complications and facilitate understanding of the parts relating to the technology of the present disclosure, the above-mentioned description and illustrations require special explanation in order to enable the implementation of the technology of the present disclosure. The explanation about common technical knowledge is omitted.
 本明細書において、「Aおよび/またはB」は、「AおよびBのうちの少なくとも1つ」と同義である。つまり、「Aおよび/またはB」は、Aだけであってもよいし、Bだけであってもよいし、AおよびBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「および/または」で結び付けて表現する場合も、「Aおよび/またはB」と同様の考え方が適用される。 In the present specification, "A and / or B" is synonymous with "at least one of A and B". That is, "A and / or B" means that it may be A alone, B alone, or a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as "A and / or B" is applied.
 本明細書に記載された全ての文献、特許出願および技術規格は、個々の文献、特許出願および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications and technical standards described herein are to the same extent as if the individual documents, patent applications and technical standards were specifically and individually stated to be incorporated by reference. Incorporated by reference in the book.

Claims (18)

  1.  第1光学素子と、
     第2光学素子と、
     樹脂製の接着剤により形成され、前記第1光学素子と前記第2光学素子とを接合する接合層であって、前記第1光学素子および前記第2光学素子のうちの少なくとも一方を変形させる歪みを有する接合層と、
     を備える接合型光学素子。
    With the first optical element
    With the second optical element
    A bonding layer formed of a resin adhesive that joins the first optical element and the second optical element, and is a strain that deforms at least one of the first optical element and the second optical element. With a bonding layer with
    A junction type optical element comprising.
  2.  前記第1光学素子および前記第2光学素子のうちの少なくとも一方は、前記接合層により接合された状態において非球面形状を有する請求項1に記載の接合型光学素子。 The bonded optical element according to claim 1, wherein at least one of the first optical element and the second optical element has an aspherical shape in a state of being bonded by the bonding layer.
  3.  前記第1光学素子および前記第2光学素子のうち、前記接合層により接合された状態において非球面形状を有する光学素子は、前記接合層により接合される前は球面形状を有する請求項2に記載の接合型光学素子。 The second optical element and the second optical element, wherein the optical element having an aspherical shape in a state of being bonded by the bonding layer has a spherical shape before being bonded by the bonding layer. Junction type optical element.
  4.  前記非球面形状は、非回転対称な形状である請求項2または請求項3に記載の接合型光学素子。 The junctional optical element according to claim 2 or 3, wherein the aspherical shape is a non-rotationally symmetric shape.
  5.  前記接着剤は、光硬化性樹脂を含む請求項1から請求項4のいずれか1項に記載の接合型光学素子。 The bonded optical element according to any one of claims 1 to 4, wherein the adhesive contains a photocurable resin.
  6.  前記第1光学素子および前記第2光学素子のうちの少なくとも一方は、前記光硬化性樹脂を硬化させるための光を透過する請求項5に記載の接合型光学素子。 The junctional optical element according to claim 5, wherein at least one of the first optical element and the second optical element transmits light for curing the photocurable resin.
  7.  前記歪みは、前記第1光学素子および前記第2光学素子のうちの少なくとも一方を、設定された光学特性に応じた形状に変形させる歪みである請求項1から請求項6のいずれか1項に記載の接合型光学素子。 The distortion is any one of claims 1 to 6, which is a distortion that deforms at least one of the first optical element and the second optical element into a shape corresponding to a set optical characteristic. The junction type optical element described.
  8.  第1光学素子と第2光学素子とを接合する接合層となる樹脂製の接着剤であって、液体状態の接着剤を前記第1光学素子と前記第2光学素子との間に充填する充填工程と、
     液体状態の前記接着剤に第1硬化刺激を与えることで、前記接着剤をゲル化させるゲル化工程であって、前記第1硬化刺激の強度を変更することで、前記接着剤の硬化速度を複数の領域において異ならせるゲル化工程と、
     前記接着剤に第2硬化刺激を与えることで、前記接着剤を硬化させる本硬化工程と、
     を備える接合型光学素子の製造方法。
    A resin adhesive that serves as a bonding layer for joining the first optical element and the second optical element, and is filled with a liquid adhesive between the first optical element and the second optical element. Process and
    It is a gelling step of gelling the adhesive by giving a first curing stimulus to the liquid adhesive, and by changing the intensity of the first curing stimulus, the curing rate of the adhesive can be increased. The gelling process, which is different in multiple areas,
    The main curing step of curing the adhesive by giving a second curing stimulus to the adhesive, and
    A method for manufacturing a bonded optical element.
  9.  前記第1硬化刺激と前記第2硬化刺激は同種である請求項8に記載の接合型光学素子の製造方法。 The method for manufacturing a junctional optical element according to claim 8, wherein the first curing stimulus and the second curing stimulus are the same type.
  10.  前記本硬化工程は、前記ゲル化工程との間に他の工程を挟むことなく行われる請求項8または請求項9に記載の接合型光学素子の製造方法。 The method for manufacturing a bonded optical element according to claim 8 or 9, wherein the main curing step is performed without interposing another step between the gelling step and the gelling step.
  11.  前記他の工程は、加熱工程である請求項10に記載の接合型光学素子の製造方法。 The method for manufacturing a bonded optical element according to claim 10, wherein the other step is a heating step.
  12.  前記本硬化工程においては、前記複数の領域のうちの前記硬化速度が遅い領域の前記接着剤を、前記硬化速度が速い領域の前記接着剤よりも収縮させる請求項8から請求項11のいずれか1項に記載の接合型光学素子の製造方法。 Any of claims 8 to 11 in the main curing step, in which the adhesive in the region having a slow curing rate among the plurality of regions is shrunk more than the adhesive in the region having a high curing rate. The method for manufacturing a junction type optical element according to item 1.
  13.  前記本硬化工程においては、前記第1光学素子および前記第2光学素子のうちの少なくとも一方を変形させる歪みを生じさせる請求項12に記載の接合型光学素子の製造方法。 The method for manufacturing a junction type optical element according to claim 12, wherein in the main curing step, distortion that deforms at least one of the first optical element and the second optical element is generated.
  14.  前記第1光学素子および前記第2光学素子のうちの少なくとも一方は、前記接合層により接合された状態において非球面形状を有する請求項13に記載の接合型光学素子の製造方法。 The method for manufacturing a bonded optical element according to claim 13, wherein at least one of the first optical element and the second optical element has an aspherical shape in a state of being bonded by the bonding layer.
  15.  前記第1光学素子および前記第2光学素子のうち、前記接合層により接合された状態において非球面形状を有する光学素子は、前記接合層により接合される前は球面形状を有する請求項14に記載の接合型光学素子の製造方法。 The 14th aspect of the first optical element and the second optical element, wherein the optical element having an aspherical shape in a state of being bonded by the bonding layer has a spherical shape before being bonded by the bonding layer. Manufacturing method of the junction type optical element.
  16.  前記非球面形状は、非回転対称な形状である請求項14または請求項15に記載の接合型光学素子の製造方法。 The method for manufacturing a bonded optical element according to claim 14 or 15, wherein the aspherical shape is a non-rotationally symmetric shape.
  17.  前記歪みは、前記第1光学素子および前記第2光学素子のうちの少なくとも一方を、設定された光学特性に応じた形状に変形させる歪みである請求項13から請求項16のいずれか1項に記載の接合型光学素子の製造方法。 The distortion is any one of claims 13 to 16, which is a distortion that deforms at least one of the first optical element and the second optical element into a shape corresponding to a set optical characteristic. The method for manufacturing a junctional optical element according to the description.
  18.  前記接着剤は、光硬化性樹脂を含む請求項8から請求項17のいずれか1項に記載の接合型光学素子の製造方法。 The method for manufacturing a bonded optical element according to any one of claims 8 to 17, wherein the adhesive contains a photocurable resin.
PCT/JP2020/041510 2019-12-27 2020-11-06 Bonding-type optical element and method for manufacturing bonding-type optical element WO2021131348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021566887A JPWO2021131348A1 (en) 2019-12-27 2020-11-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019238179 2019-12-27
JP2019-238179 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021131348A1 true WO2021131348A1 (en) 2021-07-01

Family

ID=76574001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041510 WO2021131348A1 (en) 2019-12-27 2020-11-06 Bonding-type optical element and method for manufacturing bonding-type optical element

Country Status (2)

Country Link
JP (1) JPWO2021131348A1 (en)
WO (1) WO2021131348A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071852A (en) * 2001-09-05 2003-03-12 Seiko Epson Corp Plastic lens manufacturing method
JP2008512704A (en) * 2004-09-07 2008-04-24 オフソニックス,インク Method for producing optical element with stabilized refractive index profile using polymer mixture
JP2009530689A (en) * 2006-03-20 2009-08-27 オフソニックス・インコーポレーテッド Materials and methods for making lenses
JP2011227523A (en) * 2004-09-07 2011-11-10 Ophthonix Inc Optic lens manufacturing method
JP2015134936A (en) * 2009-04-10 2015-07-27 三井化学株式会社 Curable adhesive composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0509623A (en) * 2004-04-05 2007-09-18 Advanced Medical Optics Inc ophthalmic lenses capable of reducing chromatic aberration
EP3171213B1 (en) * 2014-07-15 2023-11-22 Menicon Co., Ltd. Contact lens manufacturing method and contact lens

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003071852A (en) * 2001-09-05 2003-03-12 Seiko Epson Corp Plastic lens manufacturing method
JP2008512704A (en) * 2004-09-07 2008-04-24 オフソニックス,インク Method for producing optical element with stabilized refractive index profile using polymer mixture
JP2011227523A (en) * 2004-09-07 2011-11-10 Ophthonix Inc Optic lens manufacturing method
JP2009530689A (en) * 2006-03-20 2009-08-27 オフソニックス・インコーポレーテッド Materials and methods for making lenses
JP2015134936A (en) * 2009-04-10 2015-07-27 三井化学株式会社 Curable adhesive composition

Also Published As

Publication number Publication date
JPWO2021131348A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US7772297B2 (en) Method for stabilizing refractive index profiles using polymer mixtures
JP2006209012A (en) Lens sheet, transmissive screen, and production method of lens sheet
JP5699046B2 (en) Structural color body
CN110300998B (en) Method for manufacturing image display device
JP5711058B2 (en) Resin molded body
CN110869200B (en) Method of manufacturing an optical device and corresponding system
EP1337395B1 (en) Photochromic articles and methods for making them
WO2021131348A1 (en) Bonding-type optical element and method for manufacturing bonding-type optical element
AU2002245037A1 (en) Photochromic articles and methods for making them
WO2021021411A1 (en) Multi-faceted diffuser providing specific light distributions from a light source
CN104395795A (en) Illumination converter
CN108474979B (en) Edge cure for display assembly with masked clear adhesive
KR101727245B1 (en) Optical clear resin composition for a disply deivce
US6599957B2 (en) Photosensitive material suitable for making waveguides and method of making waveguides utilizing this photosensitive optical material
US20240036321A1 (en) Systems, methods, and devices for adhesion of interior waveguide pillars
WO2022070600A1 (en) Transmissive diffractive optical element, bonding optical element, intraocular lens, contact lens, and method for manufacturing transmissive diffractive optical element
JP2003147281A (en) Adhesive, method for adhering object to be adhered and optical device
US20040131872A1 (en) Photochromic articles and methods for making them
JP5604054B2 (en) Method for manufacturing optical lens or optical waveguide or optical fiber core
JP7134235B2 (en) Three-dimensional modeling apparatus, control device, and manufacturing method of modeled object
JP2004346125A (en) Optical curing type resin composition and light-resistant optical part
JP2012027331A (en) Alignment method of composite optical element and alignment device therefor
JP2006232907A (en) Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element
JP2006235007A (en) Laminated optical element, laminated diffractive optical element, molding method thereof and optical material
JP2020062841A (en) Three-dimensional modeling apparatus and three-dimensional modeling method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904287

Country of ref document: EP

Kind code of ref document: A1