WO2022070600A1 - Transmissive diffractive optical element, bonding optical element, intraocular lens, contact lens, and method for manufacturing transmissive diffractive optical element - Google Patents

Transmissive diffractive optical element, bonding optical element, intraocular lens, contact lens, and method for manufacturing transmissive diffractive optical element Download PDF

Info

Publication number
WO2022070600A1
WO2022070600A1 PCT/JP2021/028838 JP2021028838W WO2022070600A1 WO 2022070600 A1 WO2022070600 A1 WO 2022070600A1 JP 2021028838 W JP2021028838 W JP 2021028838W WO 2022070600 A1 WO2022070600 A1 WO 2022070600A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
optical element
distribution
change
diffractive optical
Prior art date
Application number
PCT/JP2021/028838
Other languages
French (fr)
Japanese (ja)
Inventor
耕基 中林
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022553509A priority Critical patent/JP7408831B2/en
Publication of WO2022070600A1 publication Critical patent/WO2022070600A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes

Definitions

  • the technique of the present disclosure relates to a transmission type diffractive optical element, a junction optical element, an intraocular lens, a contact lens, and a method for manufacturing a transmission type diffractive optical element.
  • Japanese Unexamined Patent Publication No. 2011-107586 discloses a diffractive optical element in which a plurality of diffraction gratings made of at least three types of materials are laminated.
  • the plurality of diffraction gratings are made of materials M1A and M1B different from each other, and the lattice side edges of the grating portions are in contact with each other or arranged close to each other in the lattice pitch direction2.
  • a first combination portion consisting of one diffraction grating and a second one consisting of two diffraction gratings made of materials M2A and M2B different from each other, unlike the material of the two diffraction gratings whose material is at least one of the first combination parts. It has a combination part. Then, the d-line of the materials M1A and M1B forming the first combination portion, the refractive indexes N1Aw and N1Bw at a certain wavelength w (nm), the Abbe numbers ⁇ 1A and ⁇ 1B, and the materials M2A and M2B forming the second combination portion.
  • the values of the refractive indexes N2Ad and N2Bd, and the Abbe numbers ⁇ 2A and ⁇ 2B are appropriately set.
  • Japanese Patent Application Laid-Open No. 2009-530689 discloses a method for producing a wavefront avelator with increased stability against exposure to heat and / or sunlight.
  • the method for manufacturing the wavefront avelator described in JP-T-2009-530689 is described in a.
  • the polymerizable material is simultaneously subjected to thermal stimulation and variable photostimulation, and the polymerizable material is subjected to (i) variable pattern polymerization without completely consuming one or more monomers.
  • (Ii) A step of achieving a first intermediate variable index profile, and c.
  • the diffusion step is promoted, and the uncured monomer is diffused from the region where the curing is less to the region where the curing is more advanced, and the second intermediate.
  • Steps to achieve a variable index of refraction profile and d The partially cured polymerizable material of (c) is simultaneously subjected to thermal stimulation and uniform photostimulation to cure substantially all of the remaining one or more monomers, resulting in a variable refractive index.
  • the steps to achieve the profile include, thereby making the wave surface aberator stable to thermal and / or sunlight conditions.
  • One embodiment according to the technique of the present disclosure is to suppress ghosts caused by incident light as compared with a transmission type diffractive optical element that diffracts light by utilizing a blazed physical surface structure.
  • a method for manufacturing a transmission type diffractive optical element, a junction optical element, an intraocular lens, a contact lens, and a transmission type diffractive optical element are provided.
  • the first aspect according to the technique of the present disclosure is a transmission type diffraction optical element, comprising a layer in which a refractive index distribution is formed by a concentration ratio of at least two materials, and the refractive index distribution is a transmission type diffraction optical element. It is a transmission type diffractive optical element having a blazed distribution from the center to the outside.
  • the second aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the first aspect, wherein the refractive index of one of the two materials is higher than the refractive index of the other material.
  • the third aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the second aspect, in which the wavelength dispersion of one material is lower than the wavelength dispersion of the other material.
  • a fourth aspect according to the technique of the present disclosure is two types of cured resins in which two materials are cured by reacting with energy given from the outside, and the two types of cured resins have a reaction rate to energy. It is a transmission type diffractive optical element according to any one of the first aspect to the third aspect, which is a cured resin different from each other.
  • a fifth aspect according to the technique of the present disclosure is a permeation according to a fourth aspect comprising a first inorganic nanoparticles in which at least two materials react with one of the cured resins of the two types of cured resin. It is a type diffractive optical element.
  • a sixth aspect according to the technique of the present disclosure is the transmission diffractive optical element according to the fifth aspect, wherein the first inorganic nanoparticles are nanoparticles having the same reactive group as one of the cured resins surface-modified. be.
  • a seventh aspect according to the technique of the present disclosure is a fifth aspect or a sixth aspect comprising a second inorganic nanoparticles in which at least two materials react with the other cured resin of the two cured resins.
  • the transmission type diffractive optical element according to the above embodiment is a fifth aspect or a sixth aspect comprising a second inorganic nanoparticles in which at least two materials react with the other cured resin of the two cured resins.
  • Eighth aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the seventh aspect, wherein the second inorganic nanoparticles are nanoparticles having the same reactive group as the other cured resin surface-modified. be.
  • the blaze-type refractive index distribution has a first refractive index change range in which the refractive index changes at the first rate of change and a second aspect in which the refractive index is larger than the first rate of change.
  • the transmissive diffractive optical element according to any one of the first to eighth aspects, which is a distribution in which the second refractive index change range in which the refractive index changes according to the rate of change is alternately connected.
  • the tenth aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the ninth aspect in which the second rate of change is the rate of change in the direction opposite to the first rate of change.
  • the eleventh aspect according to the technique of the present disclosure is the transmission according to the ninth aspect or the tenth aspect in which the refractive index of the second refractive index change range changes at the second rate of change from the center to the outside. It is a type diffractive optical element.
  • the blaze-type refractive index distribution has a first refractive index change range in which the refractive index changes at the first rate of change and a second aspect in which the refractive index is larger than the first rate of change. It is a distribution in which the second refractive index change range in which the refractive index changes according to the rate of change is alternately connected.
  • the minimum refractive index is Na
  • the maximum refractive index is Nb
  • the second refractive index is alternately connected.
  • a thirteenth aspect according to the technique of the present disclosure is a transmissive diffractive optical element according to any one of the first to twelfth aspects, wherein the layer is formed in a film shape by at least two materials. be.
  • a fourteenth aspect according to the technique of the present disclosure comprises a transmission type diffractive optical element according to any one of the first to thirteenth aspects, and at least one optical element, and comprises transmission type diffractive optics.
  • the element is a bonded optical element that is bonded to at least one optical element.
  • a fifteenth aspect according to the technique of the present disclosure is an intraocular lens embedded in an eye, the transmissive diffractive optical element according to any one of the first to thirteenth aspects, and a first aspect.
  • An intraocular lens comprising a lens and a second lens, wherein the transmissive diffractive optical element is a junction layer between the first lens and the second lens.
  • a sixteenth aspect according to the technique of the present disclosure is a contact lens that comes into contact with the cornea and includes a transmission type diffractive optical element according to any one of the first to thirteenth aspects. ..
  • a seventeenth aspect according to the technique of the present disclosure is a transmissive diffractive optical element, comprising a layer in which a refractive index distribution is formed according to a concentration ratio of at least two materials, and the refractive index distribution has a first rate of change. It is a distribution in which the first refractive index change range in which the refractive index changes and the second refractive index change range in which the refractive index changes at a second change rate larger than the first change rate are alternately connected. , A transmissive diffractive optical element.
  • An eighteenth aspect according to the technique of the present disclosure is to apply a solution having at least two materials to a predetermined surface, and to cure the at least two materials to obtain a refractive index distribution based on the concentration ratio of the at least two materials.
  • a method for manufacturing a transmission type diffraction optical element which comprises forming a layer formed in a blazed shape.
  • a nineteenth aspect according to the technique of the present disclosure is two types of cured resins in which two materials are cured by reacting with energy given from the outside, and the two types of cured resins have a reaction rate to energy. It is a method for manufacturing a transmission type diffractive optical element according to an eighteenth aspect, which comprises applying energy to at least two materials with an energy distribution corresponding to the shape of a refractive index distribution, which are cured resins different from each other.
  • a twentieth aspect according to the technique of the present disclosure is a transmission type diffraction according to the nineteenth aspect, wherein the energy distribution is a distribution obtained by deforming a blazed reference energy distribution according to the distribution of concentrations of at least two materials. This is a method for manufacturing an optical element.
  • a twenty-first aspect according to the technique of the present disclosure is a method for manufacturing a transmission type diffractive optical element according to a nineteenth aspect or a twentieth aspect, which comprises applying energy to at least two materials while changing an energy distribution. Is.
  • a 22nd aspect according to the technique of the present disclosure is a 19th aspect comprising applying energy to at least two materials in an energy distribution and then applying energy to at least two materials in a uniform distribution. It is a method of manufacturing a transmission type diffractive optical element according to any one aspect of the 21st aspect.
  • a 23rd aspect according to the technique of the present disclosure includes applying energy to at least two materials in an energy distribution and then applying energy to at least two materials in a distribution opposite to the energy distribution. It is a method for manufacturing a transmission type diffractive optical element according to any one of 19th to 21st aspects.
  • the blaze-type refractive index distribution has a first refractive index change range in which the refractive index changes at the first rate of change and a second range in which the refractive index changes larger than the first rate of change. It is a distribution in which the second refractive index change range in which the refractive index changes according to the rate of change is alternately connected.
  • the minimum refractive index is Na
  • the maximum refractive index is Nb
  • the second refractive index is alternately connected.
  • a first including the generation of a layer in which the inequality of h ⁇ t ⁇ tan ⁇ c and the equation of ⁇ c asin (Na / Nb) are satisfied when the change width of the change range is t and the thickness of the layer is h. It is a method of manufacturing a transmission type refraction optical element which concerns on any one of 18th to 23rd aspects.
  • FIG. 1 A schematic cross section showing an example of the cross-sectional structure of a junction optical element when the adhesive filled between the plano-concave lens and the plano-convex lens transitions to a state before curing, a gelled state, and a completely cured state in order. It is a figure.
  • vertical is an error generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to the perfect verticality, which is contrary to the purpose of the technology of the present disclosure. It refers to the vertical in the sense that it includes an error that does not occur.
  • orthogonality is an error generally allowed in the technical field to which the technique of the present disclosure belongs, in addition to the perfect orthogonality, which is contrary to the purpose of the technique of the present disclosure. It refers to orthogonality in the sense that it includes an error that does not occur.
  • parallel is an error generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to the perfect parallelism, which is contrary to the purpose of the technology of the present disclosure. It refers to parallelism in the sense that it includes an error that does not occur.
  • identical is an error generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to being completely the same, which is contrary to the purpose of the technology of the present disclosure. It refers to the same in the sense that it includes an error to the extent that it does not occur.
  • the manufacturing apparatus 2 is an apparatus for manufacturing a junction optical element 10, and includes a manufacturing apparatus main body (hereinafter, also simply referred to as “main body”) 11 and a control device 12.
  • the control device 12 is communicably connected to the main body 11.
  • the control device 12 is, for example, a personal computer (in the example shown in FIG. 1, a desktop personal computer), and controls the operation of the main body 11.
  • the junction optical element 10 is used, for example, as a lens of an optical device (for example, a digital camera, a projector, a microscope, etc.) and a lens of a vision correction tool (for example, a lens of eyeglasses and an intraocular lens).
  • the junction optical element 10 includes a pair of lenses.
  • the pair of lenses included in the junction optical element 10 is a glass lens and transmits ultraviolet UV rays (see FIGS. 10 and 14).
  • a plano-concave lens 13 see also FIG. 2
  • a plano-convex lens 14 see also FIG. 3 are shown as a pair of lenses.
  • the plano-concave lens 13 and the plano-convex lens 14 are examples of "at least one optical element" according to the technique of the present disclosure.
  • a combination of a plano-concave lens 13 and a plano-convex lens 14 is illustrated as a pair of lenses, but this is only an example, and the pair of lenses is a combination of other types of lenses (for example, a plano-convex lens). It may be a combination with a biconcave lens, a combination of a biconvex lens and a plano-concave lens, etc.). Further, the pair of lenses does not have to be made of glass, and may be made of resin. Further, although a pair of lenses is illustrated here, the technique of the present disclosure is not limited to this, and only one lens may be used. Further, instead of the lens or together with the lens, an optical element such as a transparent substrate and / or a mirror may be applied.
  • the thickness direction of the plano-concave lens 13 and the plano-convex lens 14 is the Z direction
  • the width direction of the plano-concave lens 13 and the plano-convex lens 14 is the X direction
  • the direction, that is, the direction orthogonal to the Z direction and the X direction will be described as the Y direction.
  • the bonding optical element 10 includes a bonding layer 15.
  • the bonding layer 15 is an example of a "transmission type diffractive optical element" and a "layer” according to the technique of the present disclosure.
  • the bonding layer 15 is interposed between the concave surface 13A of the plano-concave lens 13 and the convex surface 14A of the plano-convex lens 14, and the concave surface 13A and the convex surface 14A are bonded via the bonding layer 15.
  • the bonding layer 15 is formed in a film shape between the concave surface 13A and the convex surface 14A.
  • the bonding layer 15 is a transmission type diffraction optical element that exhibits maximum diffraction efficiency at a specific diffraction order (for example, +1st order light). That is, the bonding layer 15 has a function of minimizing the amount of light to be contained in a specific diffraction order and the amount of light to be lost to other diffraction orders (for example, 0th-order light and -1st-order light, etc.). It is a layer to have.
  • the concave surface 13A of the plano-concave lens 13 has a spherical shape before being joined by the joining layer 15.
  • the convex surface 14A of the plano-convex lens 14 has a spherical shape before being joined by the joining layer 15.
  • the plano-concave lens 13 and the plano-convex lens 14 transmit ultraviolet UV (see FIGS. 10 and 14) given from the outside. Ultraviolet UV is an example of "energy" according to the technique of the present disclosure.
  • junction optical element 500 a conventionally known junction optical element 500 will be described with reference to FIGS. 4 to 7.
  • the junction optical element 500 is used in the image pickup optical system of a digital camera.
  • the junction optical element 500 includes a plano-convex lens 502 having a convex surface on the subject side, a plano-concave lens 504 having a concave surface on the image sensor side, and a laminated blazed diffraction grating element 506.
  • the laminated blazed diffraction optical element 506 is a known laminated blazed diffraction optical element.
  • the laminated blazed diffraction grating 506 is interposed between the plano-convex lens 502 and the plano-concave lens 504, and joins the plano-convex lens 502 and the plano-concave lens 504.
  • the subject light indicating the subject is incident on the junction optical element 500 from the convex side of the plano-convex lens 502, and is emitted from the concave surface of the plano-concave lens 504.
  • the laminated blazed diffraction grating 506 is formed by a pair of blazed members.
  • a first blazed member 508 and a second blazed member 510 are shown as a pair of blazed members.
  • the first blazed member 508 has a first serrated surface 512.
  • the first blazed member 508 has a first reference plane 508A.
  • the first reference plane 508A is a virtually set plane, for example, a plane parallel to the convex plane of the plano-convex lens 502 (see FIG. 4).
  • the first serrated surface 512 is formed by the first steep slope 512A and the first gentle slope 512B.
  • the first gentle slope 512B is a surface having a gentler slope with respect to the first reference surface 508A than the first steep slope 512A.
  • the first steep slope 512A is a plane perpendicular to the first reference plane 508A, and the height of the first steep slope 512A from the first reference plane 508A is the lattice height of the first blazed member 508.
  • the first steep slope 512A does not have to be perpendicular to the first reference surface 512A. This is because, in the optical system used, the angle of the first steep slope 512A is appropriately determined so as to have the highest diffraction efficiency with respect to the direction of the main incident light beam.
  • the second blazed member 510 has a second serrated surface 514.
  • the second blazed member 514 has a second reference plane 510A.
  • the second reference surface 510A is a virtually set surface, for example, a surface parallel to the concave surface of the plano-concave lens 504 (see FIG. 4).
  • the second serrated surface 514 is formed by the second steep slope 514A and the second gentle slope 514B.
  • the second gentle slope 514B is a surface having a gentler slope with respect to the second reference surface 510A than the second steep slope 514A.
  • the second steep slope 514A is a plane perpendicular to the second reference plane 510A, and the height of the second steep slope 514A from the second reference plane 510A is the lattice height of the second blazed member 510.
  • the first serrated surface 512 of the first blazed member 508 is directly engaged with the second serrated surface 514 of the second blazed member 510.
  • the first steep slope 512A is in direct contact with the second steep slope 514A
  • the first gentle slope 512B is in direct contact with the second gentle slope 514B.
  • first steep slope 512A and the second steep slope 514A when it is not necessary to distinguish between the first steep slope 512A and the second steep slope 514A for convenience of explanation, they are referred to as “steep slopes” without reference numerals and are referred to as the first steep slope.
  • gentle slope When it is not necessary to distinguish between the gentle slope 512B and the second gentle slope 514B, it is referred to as "gentle slope” without a reference numeral.
  • the refractive index of the first blazed member 508 is higher than the refractive index of the second blazed member 510, and in the examples shown in FIGS. 5 to 7, "1.58" is shown as the refractive index of the first blazed member 508.
  • the refractive index of the second blazed member 510 is shown as "1.56".
  • a mode in which processing marks remain on the steep slope of the laminated blazed diffraction optical element 506 is shown.
  • the subject light is applied to the layer side of 56
  • scattered light is generated on a steep slope due to the processing marks. That is, the subject light transmitted through the laminated blazed diffraction optical element 506 includes scattered light.
  • the subject light including the scattered light is imaged on the image sensor of the digital camera, and the scattered surface is reflected in the captured image obtained by capturing the subject light by the image sensor.
  • the subject light is transmitted from the first blazed member 508 (a layer having a refractive index of “1.58”) to the second blazed member via a gentle slope. It is incident on 510 (a layer having a refractive index of "1.56”), again incident on the first blazed member 508 via the steep slope, and then incident on the second blazed member 510 via the gentle slope.
  • the subject light is refracted on the steep slope depending on the angle ⁇ 1 at which the subject light is incident on the steep slope.
  • FIG. 1 the example shown in FIG.
  • the angle ⁇ 1 at which the subject light is incident on the steep slope is 5 degrees
  • the angle ⁇ 2 at which the subject light is refracted on the steep slope is 7 degrees.
  • the subject light transmitted from the first blazed member 508 through the gentle slope is incident on the steep slope, but in the example shown in FIG. 7, the subject light incident on the first blazed member 508 is incident on the gentle slope.
  • the steep slope is directly irradiated without going through.
  • the subject light is totally reflected on the steep slope.
  • the angle ⁇ 1 is in the range of 0 degrees or more and 11 degrees or less, the subject light is totally reflected on a steep slope.
  • the ghost due to the total reflection of the subject light is reflected in the captured image obtained by capturing the subject light by the image sensor.
  • the manufacturing apparatus 2 manufactures the junction optical element 10 (see FIG. 1).
  • FIG. 8 shows an example of a procedure for manufacturing the junction optical element 10 by the manufacturing apparatus 2.
  • step ST100 the manufacturing apparatus 2 fills a liquid adhesive 20 (see FIG. 10) between the plano-concave lens 13 and the plano-convex lens 14.
  • the liquid adhesive 20 is a solution in which two types of adhesives (first adhesive 20A and second adhesive 20B described later) are mixed.
  • the adhesive 20 is an ultraviolet curable resin and is cured by being irradiated with ultraviolet UV (see FIG. 10). Therefore, when the filling step of step ST100 is completed, in the next step ST200, the manufacturing apparatus 2 is charged with two kinds of adhesives in a liquid state between the plano-concave lens 13 and the plano-convex lens 14 in step ST100 (described later). It forms a concentration distribution of the first adhesive 20A and the second adhesive 20B) (for example, substantially the concentration distribution of the first monomer 23A and the second monomer 23B described later). In order to realize the formation of the concentration distributions of the two types of adhesives, the manufacturing apparatus 2 has an illuminance distribution 112 (FIG.
  • the adhesive 20 is started to be cured, and the concentration distribution forming step is started (see FIG. 10).
  • step ST300 the manufacturing apparatus 2 further cures the adhesive 20 by irradiating the adhesive 20 for which the concentration distribution forming step has been completed with ultraviolet UV rays according to the illuminance distribution 113 (see FIG. 19) described later. To make it solid (see FIG. 10). This produces a layer in which the refractive index distribution is blazed (see FIGS. 18 and 20).
  • step ST110 the manufacturing apparatus 2 cleans up the concave surface 13A of the plano-concave lens 13 and the convex surface 14A of the plano-convex lens 14.
  • step ST120 the manufacturing apparatus 2 applies the adhesive 20 in a liquid state to the concave surface 13A (an example of the “default surface” according to the technique of the present disclosure).
  • step ST130 the manufacturing apparatus 2 attaches the concave surface 13A and the convex surface 14A.
  • step ST140 the manufacturing apparatus 2 rubs the concave surface 13A and the convex surface 14A to remove air bubbles from the adhesive 20, and spreads the adhesive 20 thinly on the entire surfaces of the concave surface 13A and the convex surface 14A. Then, in step ST150, the manufacturing apparatus 2 removes the adhesive 20 protruding from the end face.
  • the combination of the plano-concave lens 13 and the plano-convex lens 14 in which the adhesive 20 in a liquid state is filled between the concave surface 13A and the convex surface 14A is also referred to as a pre-bonding optical element 10X. It should be noted that at least one of the plurality of steps included in the filling step of step ST100 may be performed manually without using the manufacturing apparatus 2.
  • the adhesive 20 filled between the plano-concave lens 13 and the plano-convex lens 14 is in a liquid state, and the liquid state first adhesive 20A and the liquid state. It is a solution mixed with the second adhesive 20B in the state.
  • the liquid adhesive 20 is an example of a "solution" according to the technique of the present disclosure.
  • the adhesive 20 contains an ultraviolet curable resin 21 in a liquid state (before curing).
  • the UV curable resin 21 has a monomer 23 and a polymerization initiator 24. Although the monomer 23 is illustrated here, the ultraviolet curable resin 21 may contain an oligomer in addition to the monomer 23.
  • the monomer 23 is roughly classified into a first monomer 23A and a second monomer 23B.
  • the first monomer 23A and the second monomer 23B are examples of "two materials" and "two kinds of cured resins" according to the technique of the present disclosure.
  • the first monomer 23A and the second monomer 23B are cured by reacting with ultraviolet UV given from the outside. Further, the first monomer 23A and the second monomer 23B have different reaction rates to ultraviolet UV.
  • An example of the first monomer 23A is a methacrylic acid-based monomer (for example, methyl methacrylate).
  • An example of the second monomer 23B is an acrylic acid-based monomer (for example, methyl acrylate).
  • the adhesive 20 thus configured is filled between the plano-concave lens 13 and the plano-convex lens 14, for example, when ultraviolet UV is irradiated from the plano-concave lens 13 side, the ultraviolet UV transmitted through the plano-concave lens 13. causes the polymerization initiator 24 to generate radicals. As a result, the radical polymerization reaction of the monomer 23 centered on the polymerization initiator 24 is started, and the ultraviolet curable resin 21 is gradually polymerized by repeating the chained addition reaction of the monomer 23.
  • the UV curable resin 21 is still in a liquid state, and the UV curable resin 21 is formed with a system having a large number of isolated small molecular weight molecular chains.
  • the ultraviolet curable resin 21 becomes a gel.
  • the refractive index when the first adhesive 20A is cured and becomes a solid state is higher than the refractive index when the second adhesive 20B is cured and becomes a solid state. Further, the wavelength dispersion when the first adhesive 20A is cured and becomes a solid state is lower than the wavelength dispersion when the second adhesive 20B is cured and becomes a solid state. That is, it can be said that the first adhesive 20A in the solid state is a material having a high refractive index and low dispersion when compared with the second adhesive 20B in the solid state. On the contrary, the solid state second adhesive 20B can be said to be a low refractive index and high dispersion material when compared with the solid state first adhesive 20A.
  • the curing rate by irradiation with ultraviolet UV is also different from that of the first monomer 23A. It is different from the second monomer 23B. Since the main component of the first adhesive 20A is the first monomer 23A and the main component of the second adhesive 20B is the second monomer 23B, the first monomer 23A and the second monomer 23B are cured. The difference in the rate means that the rate of curing of the first adhesive 20A and the rate of curing of the second adhesive 20B are different.
  • the first adhesive in the bonding layer 15 is in the process of transitioning from the liquid state to the solid state of the adhesive 20.
  • concentration of 20A and the concentration of the second adhesive 20B is the refractive index distribution 114 (see FIG. 20) in the bonding layer 15 in which the adhesive 20 is in a solid state. Appears.
  • the radical polymerization reaction of the monomer 23 is started, and the refractive index distribution 114 based on the concentration ratio of the first adhesive 20A and the second adhesive 20B is repeated by repeating the chained addition reaction of the monomer 23 (FIG. 20). See) is formed. Since the main component of the first adhesive 20A is the first monomer 23A and the main component of the second adhesive 20B is the second monomer 23B, the bonding layer in which the adhesive 20 is in a solid state In 15, the concentration ratio of the first monomer 23A and the second monomer 23B appears as a refractive index distribution 114 (see FIG. 20).
  • the first adhesive 20A contains the first inorganic nanoparticles 25A
  • the second adhesive 20B contains the second inorganic nanoparticles. It is preferable that 25B is contained.
  • the silane coupling agent 26 becomes unnecessary. If the inorganic nanoparticles 25 and the silane coupling agent 26 are not required in this way, it is possible to contribute to the reduction of material cost.
  • the first adhesive 20A contains the first inorganic nanoparticles 25A and the second adhesive 20B contains the second inorganic nanoparticles 25B
  • the first adhesive 20A is the first monomer. It has 23A and 25A of first inorganic nanoparticles.
  • the inorganic nanoparticles 25A are surface-modified with the first silane coupling agent 26A.
  • the second adhesive 20B has a second monomer 23B and a second inorganic nanoparticles 25B.
  • the second inorganic nanoparticles 25B are surface-modified with the second silane coupling agent 26B.
  • the first inorganic nanoparticles 25A are nanoparticles that react with the first monomer 23A.
  • the first inorganic nanoparticles 25A metal oxide nanoparticles such as ZrO2 nanoparticles can be mentioned.
  • the second inorganic nanoparticles 25B are nanoparticles that react with the second monomer 23B.
  • Examples of the second inorganic nanoparticles 25B include metal oxide nanoparticles such as ITO (Indium Tin Oxide) nanoparticles.
  • the inorganic nanoparticles may be metal nanoparticles or nanoparticles in which a metal and a metal oxide are combined, for example, nanoparticles having a core-shell structure.
  • inorganic nanoparticles 25 when it is not necessary to particularly distinguish between the first inorganic nanoparticles 25A and the second inorganic nanoparticles 25B, they are referred to as “inorganic nanoparticles 25". Further, in the following, for convenience of explanation, when it is not necessary to particularly distinguish between the first silane coupling agent 26A and the second silane coupling agent 26B, it is referred to as "silane coupling agent 26".
  • the silane coupling agent 26 has a reactive group that binds to the organic material and the inorganic material (for example, a reactive group that binds to the organic material and a reactive group that binds to the inorganic material) in the molecule.
  • a reactive group that binds to the organic material and a reactive group that binds to the inorganic material for example, a reactive group that binds to the organic material and a reactive group that binds to the inorganic material
  • the organic material and the inorganic material are bonded using a reactive group.
  • the inorganic nanoparticles 25 bind to the monomer 23 via the silane coupling agent 26 to control the refractive index in the bonding layer 15 and control the wavelength dispersion in the bonding layer 15.
  • the first inorganic nanoparticles 25A are different from the first polymer 27A produced by radical polymerization reaction of a plurality of first monomers 23A (see FIG. 10). It is bound via the silane coupling agent 26A of 1.
  • the first silane coupling agent 26A has an organic reactive group X1 which is the same reactive group as the first polymer 27A, and the organic reactive group X1 is chemically reacted with the first polymer 27A (radical polymerization reaction). By allowing it to bind to the first polymer 27A. Further, the first silane coupling agent 26A has an inorganic reactive group R1 and is bonded to the first inorganic nanoparticles 25A by chemically reacting the inorganic reactive group R1 with the first inorganic nanoparticles 25A. do.
  • the first silane coupling agent 26A chemically reacts with the first polymer 27A and the first inorganic nanoparticles 25A, whereby the organic reactive group X1 with respect to the first inorganic nanoparticles 25A. Is surface-modified.
  • a methacrylic acid-based polymer is shown as an example of the first polymer 27A.
  • a methacrylic group is used as the organic reaction group X1.
  • the inorganic reaction group R1 a methoxy group, an ethoxy group and the like can be mentioned.
  • the second inorganic nanoparticles 25B are formed by subjecting a plurality of second monomers 23B (see FIG. 10) to a radical polymerization reaction with respect to the second polymer 27B via a second silane coupling agent 26B. Is combined.
  • the second silane coupling agent 26B has an organic reactive group X2 which is the same reactive group as the second polymer 27B, and the organic reactive group X2 is chemically reacted with the second polymer 27B (radical polymerization reaction). By letting it bind to the second polymer 27B. Further, the second silane coupling agent 26B has an inorganic reactive group R2, and by chemically reacting the inorganic reactive group R2 with the second inorganic nanoparticles 25B, it binds to the second inorganic nanoparticles 25B. do.
  • the second silane coupling agent 26B chemically reacts with the second polymer 27B and the second inorganic nanoparticles 25B, whereby the organic reactive group X2 with respect to the second inorganic nanoparticles 25B. Is surface-modified.
  • an acrylic acid-based polymer is shown as an example of the second polymer 27B.
  • an acryloyl group is used as the organic reaction group X2.
  • an inorganic reaction group R2 a methoxy group, an ethoxy group and the like can be mentioned.
  • FIG. 12 schematically shows an example of a copolymerization reaction using two types of monomers, monomer A and monomer B.
  • kAA is a reaction rate coefficient when the radical of the monomer A added to the polymer R and the monomer A react and bond with each other
  • KAB is added to the polymer R.
  • KBA is the case where the radical of the monomer B added to the polymer R and the monomer A are reacted and bonded
  • KBB is a reaction rate coefficient when the radical of the monomer B added to the polymer R and the monomer B react and bond with each other.
  • the reaction ratio r1 is the ratio of the reaction rate coefficient kAA to KAB
  • the reaction ratio r2 is the ratio of KBA to KBB .
  • the reactivity ratio r1 indicates the ease of reaction between the monomers A
  • the reactivity ratio r2 indicates the ease of reaction between the monomers B. Therefore, in the copolymerization reaction between the monomer A and the monomer B, the concentration ratios of the monomer A and the monomer B change depending on the reactivity ratios r1 and r2. If the concentration ratio of the monomer A and the monomer B changes, the composition ratio of the monomer A and the monomer B in the polymer also changes.
  • the concentration of the monomer A before curing and the monomer in the polymer obtained by the copolymerization reaction using the monomer A and the monomer B It is important to understand the correspondence with the composition ratio of A in advance.
  • the relationship between the concentration of the monomer A before curing and the composition ratio of the monomer A in the polymer (occupancy of the monomer A in the polymer) is, for example, as shown in FIG. 13, the copolymer composition curves F1 to F5.
  • the copolymerization composition curves F1 to F5 are curves when the monomer A is common and the types of the monomers B are different. In the example shown in FIG.
  • the copolymer composition curves F1 to F5 corresponding to the five types of monomers B are shown.
  • the horizontal axis shows the concentration of the monomer A before curing
  • the vertical axis shows the composition ratio of the monomer A in the polymer.
  • the copolymerization composition curve F1 is a curve in which the reactivity ratio r1> 1 and the reactivity ratio r2 ⁇ 1 are established.
  • the copolymerization composition curve F1 shows a characteristic that the composition ratio of the monomer A is higher than that of the monomer B in the polymer even if the concentrations of the monomer A and the monomer B before curing are the same.
  • the copolymer composition curve F1 is a copolymer composition curve when the monomer A is methyl methacrylate and the monomer B is methyl acrylate.
  • the reactivity ratio r1 of methyl methacrylate is "1.91" and the reactivity ratio r2 of methyl acrylate is "0.50".
  • the main body 11 has a light source 30, an irradiation optical system 31, an intensity modulation element 32, and a stage 33.
  • the light source 30 emits ultraviolet UV under the control of the light source driver 35.
  • the light source 30 is, for example, an LED (Light Emitting Diode) and / or a black light.
  • the irradiation optical system 31 irradiates the ultraviolet UV emitted from the light source 30 toward the pre-bonding optical element 10X.
  • the intensity modulation element 32 modulates the intensity of ultraviolet UV rays that have passed through the irradiation optical system 31 under the control of the intensity modulation element driver 36.
  • the intensity modulation element 32 is, for example, an element using a liquid crystal display, and can increase or decrease the intensity of ultraviolet UV rays in a specific region of the pre-junction optical element 10X as compared with other regions.
  • the stage 33 holds the pre-junction optical element 10X.
  • the intensity modulation element 32 may be an element using a DMD (Digital Micromirror Device).
  • the main body 11 further includes a receiving unit 37, a read / write (hereinafter abbreviated as RW (Read Write)) control unit 38, a storage unit 39, and a main control unit 40.
  • the receiving unit 37 receives the ultraviolet UV irradiation profile 41 from the control device 12.
  • the receiving unit 37 outputs the irradiation profile 41 to the RW control unit 38.
  • the RW control unit 38 stores the irradiation profile 41 in the storage unit 39. Further, the RW control unit 38 reads out the irradiation profile 41 from the storage unit 39 and outputs the irradiation profile 41 to the main control unit 40. The RW control unit 38 rewrites the irradiation profile 41 of the storage unit 39 each time a new irradiation profile 41 is received by the receiving unit 37.
  • the storage unit 39 is also referred to as a memory or a storage device, and is, for example, a flash memory.
  • the main control unit 40 controls the overall operation of the main body 11. Specifically, the main control unit 40 operates the light source driver 35 and the intensity modulation element driver 36 according to the irradiation profile 41.
  • the main control unit 40 is a computer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • control device 12 is a device realized by a computer, and the control device 12 includes a storage device 50, a memory 51, a CPU 52, a communication unit 53, a display 54, and an input device 55. ing. These are interconnected via a bus 56.
  • the storage device 50 is a hard disk drive built in the control device 12.
  • the storage device 50 stores control programs such as an operating system, various application programs, and various data associated with these programs.
  • the control device 12 has a built-in hard disk drive, but the present invention is not limited to this, and the hard disk drive may be connected to the control device 12 via a cable and / or a network or the like. Further, a solid state drive may be used instead of the hard disk drive.
  • the memory 51 is a work memory used by the CPU 52.
  • the CPU 52 comprehensively controls each part of the computer by loading the program stored in the storage device 50 into the memory 51 and executing the processing according to the program.
  • the communication unit 53 is a network interface that controls transmission of various information via a network such as a LAN (Local Area Network).
  • the communication unit 53 is responsible for communication with the main body 11.
  • the display 54 displays various screens under the control of the CPU 52.
  • the control device 12 receives input of an operation instruction from the input device 55 through various screens.
  • the input device 55 is a keyboard, a mouse, a touch panel, or the like.
  • the operation program 60 is stored in the storage device 50 of the control device 12.
  • the operation program 60 is an application program for operating the computer as the control device 12.
  • the storage device 50 also stores the irradiation profile 41 and the generation reference information 61.
  • the CPU 52 When the operation program 60 is started, the CPU 52 operates as a display control unit 65, a reception unit 66, a generation unit 67, an RW control unit 68, and a transmission unit 69 in cooperation with the memory 51 and the like.
  • the display control unit 65 controls the display of various screens on the display 54.
  • the various screens include a setting screen 80 (see FIG. 17) used for setting the refractive index distribution information 75 and the like.
  • the reception unit 66 receives the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 set by the input device 55 through the setting screen 80.
  • the reception unit 66 outputs the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 to the generation unit 67.
  • the generation unit 67 generates an irradiation profile 41 from the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 with reference to the generation reference information 61.
  • the generation reference information 61 is a data table, a function, and a data table having the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 as input data, and the irradiation profile 41 as output data. / Or a machine learning model or the like.
  • the generation unit 67 outputs the irradiation profile 41 to the RW control unit 68.
  • the RW control unit 68 controls the storage of various data in the storage device 50 and the reading of various data in the storage device 50. For example, the RW control unit 68 reads the generation reference information 61 from the storage device 50 and outputs it to the generation unit 67.
  • the RW control unit 68 stores the irradiation profile 41 from the generation unit 67 in the storage device 50. Further, the RW control unit 68 reads the irradiation profile 41 from the storage device 50 and outputs the irradiation profile 41 to the transmission unit 69. The transmission unit 69 transmits the irradiation profile 41 to the main body 11.
  • the setting screen 80 has a refractive index distribution information input area 81, a first optical element information input area 82, a second optical element information input area 83, a first adhesive information input area 84, and A graphic user interface having a second adhesive information input area 85.
  • the refractive index distribution information input area 81 is a screen area used for inputting the refractive index distribution information 75.
  • the refractive index distribution information 75 is information showing the refractive index distribution 114 (see FIGS. 18 and 20) described later.
  • the distribution is such that the equation of "asin (Na / Nb)" (see FIG. 20) holds.
  • the refractive index distribution information input area 81 is provided with an input box 87 and a reference button 88.
  • the input box 87 is a box in which a file name representing the refractive index distribution information 75 is input.
  • the reference button 88 is a button that is turned on when searching a file representing the refractive index distribution information 75 from the file directory.
  • the first optical element information input area 82 and the second optical element information input area 83 are information about the first optical element and the second optical element, that is, the first optical element information 76 (see FIG. 16) and the second optical element information. This is a screen area used for inputting 77 (see FIG. 16).
  • the first optical element and the second optical element refer to, for example, a pair of lenses used in the junction optical element 10.
  • a plano-concave lens 13 is used as the first optical element
  • a plano-convex lens 14 is used as the second optical element. ing.
  • the pull-down menu boxes 89 and 90 are provided in the first optical element information input area 82.
  • a pull-down menu listing a plurality of types of lenses that can be used as the first optical element is displayed.
  • the plurality of lens types displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected lens type is displayed in the pull-down menu box 89. It is displayed in the column.
  • a pull-down menu listing the materials of the lenses selected using the pull-down menu box 89 is displayed.
  • the plurality of materials displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected material is displayed in the display field of the pull-down menu box 90.
  • Input boxes 91, 92 and 93 are provided in the first optical element information input area 82.
  • the outer diameter of the lens selected using the pull-down menu box 89 is input to the input box 91 according to the instructions accepted by the input device 55 (see FIGS. 15 and 16).
  • the thickness of the lens selected using the pull-down menu box 89 (denoted as “center thickness” in the example shown in FIG. 17) is an instruction received by the input device 55 (see FIGS. 15 and 16). Is entered according to.
  • the radius of curvature of the lens selected using the pull-down menu box 89 is input according to the instructions accepted by the input device 55 (see FIGS. 15 and 16).
  • the unit of the outer diameter of the lens, the thickness of the center of the lens, and the radius of curvature of the lens is mm.
  • the second optical element information input area 83 is a screen area used for the same purpose as the first optical element information input area 82 for the second optical element information 77, and is a pull-down menu box 94 corresponding to the pull-down menu box 89. It has a pull-down menu box 95 corresponding to the menu box 90, an input box 96 corresponding to the input box 91, an input box 97 corresponding to the input box 92, and an input box 98 corresponding to the input box 93.
  • the first adhesive information input area 84 and the second adhesive information input area 85 are screen areas used for inputting the adhesive information 78 (see FIG. 16).
  • the adhesive information 78 is information about the first adhesive 20A and information about the second adhesive 20B.
  • the first adhesive information input area 84 is a screen area used for inputting information regarding the first adhesive 20A.
  • the first adhesive information input area 84 is provided with pull-down menu boxes 99, 100 and 101.
  • a pull-down menu listing the types of monomers used in the first adhesive 20A is displayed.
  • the plurality of monomer types displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected monomer type is displayed in the pull-down menu box 99. It is displayed in the column.
  • a pull-down menu listing the types of inorganic particles used in the first adhesive 20A is displayed.
  • the plurality of inorganic particle types displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected inorganic particle type is selected in the pull-down menu box 100. It is displayed in the display field of.
  • a pull-down menu listing the types of organic reactive groups used in the first adhesive 20A is displayed.
  • the types of the plurality of organic reactive groups displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected organic reactive group types are selected in the pull-down menu. It is displayed in the display field of the box 101.
  • the second adhesive information input area 85 is a screen area used for the same purpose as the first adhesive information input area 84 for the second adhesive 20B, and is a pull-down menu box corresponding to the pull-down menu boxes 99, 100, and 101. It has 102, 103 and 104.
  • the refractive index distribution information input area 81 After input to the refractive index distribution information input area 81, the first optical element information input area 82, the second optical element information input area 83, the first adhesive information input area 84, and the second adhesive information input area 85 is completed. , The setting button 110 is turned on. As a result, the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 are received by the reception unit 66 (see FIG. 16).
  • the refractive index distribution information 75 is a numerical value representing a refractive index distribution 111 that changes in a blazed manner from the center of the bonding layer 15 in a plan view to the outer periphery of the bonding layer 15 in a plan view.
  • the refractive index that changes from the center of the bonding layer 15 in the plan view toward the outer periphery of the bonding layer 15 in a plan view is, in other words, the refractive index that changes from the center of the bonding optical element 10 to the outside. It means the refractive index.
  • the irradiation profile 41 shown in FIG. 19 is used by the main control unit 40 (see FIG. 14) as an example.
  • the irradiation profile 41 has an irradiation profile 41A for the concentration distribution forming step and an irradiation profile 41B for the main curing step.
  • the irradiation profile 41A for the concentration distribution forming step is used in the concentration distribution forming step (see FIG. 8), and the irradiation profile 41B for the main curing step is used in the main curing step (see FIG. 8).
  • the concentration distribution forming step is shown in FIG. 10 as an example by irradiating the liquid adhesive 20 filled between the plano-concave lens 13 and the plano-convex lens 14 with ultraviolet UV rays by the filling step exemplified in FIG.
  • This is a step of forming a concentration distribution in the adhesive 20 as described above.
  • the concentration distribution forming step may be referred to as a temporary curing step in the sense of contrasting with the main curing step.
  • the illuminance of the ultraviolet UV is changed by the intensity modulation element 32 according to the irradiation profile 41A for the concentration distribution forming step, so that the curing speed of the adhesive 20 is made different in a plurality of regions.
  • ultraviolet UV having a center wavelength of 365 nm is irradiated.
  • the irradiation profile 41A for the concentration distribution forming step has an irradiation time 41A1 and an illuminance distribution information 41A2.
  • the irradiation time 41A1 is the time during which the ultraviolet UV is irradiated to the adhesive 20 in the concentration distribution forming step (for example, the time during which the ultraviolet UV is irradiated for each region R_A to R_K described later).
  • An example of the irradiation time 41A1 is several tens of seconds (for example, 90 seconds).
  • the illuminance distribution information 41A2 is numerical data representing the illuminance distribution 112.
  • the illuminance distribution 112 is an example of the "energy distribution corresponding to the shape of the refractive index distribution" and the "blazeed type reference energy distribution” according to the technique of the present disclosure.
  • the illuminance distribution 112 is the distribution of the illuminance of ultraviolet UV rays irradiated to the adhesive 20 in the concentration distribution forming step.
  • the shape of the illuminance distribution 112 corresponds to the shape of the refractive index distribution 111 (see FIG. 18). That is, in the illuminance distribution 112, the illuminance of the ultraviolet UV changes in a blazed shape from the center of the bonding layer 15 in a plan view to the outside.
  • the joining layer 15 is concentrically divided into a plurality of regions in a plan view.
  • the bonding layer 15 is divided into a plurality of regions R_A to R_K from the center in a plan view to the outside.
  • the rate of change in the illuminance of ultraviolet UV is one of two different rates of change, the first rate of change in illuminance and the second rate of change in illuminance.
  • the second illuminance change rate is larger than the first illuminance change rate.
  • the illuminance distribution 112 includes a second irradiation range 112B, which is a range in which ultraviolet UV rays are irradiated at a second illuminance change rate from the center to the outside in the entire region of the junction layer 15 in a plan view, and a first illuminance change. It is a blaze-type distribution in which the first irradiation range 112A, which is the range in which ultraviolet rays and UV rays are irradiated at a rate, are alternately connected.
  • the second illuminance change rate is the rate of change in the direction opposite to the first illuminance change rate (change rate of the opposite polarity), and the first irradiation range 112A and the second irradiation range 112B are regions. From R_A to the region R_K, the illuminance is alternately alternated in region units while maintaining the continuity of the illuminance.
  • the illuminance of ultraviolet UV is controlled by the intensity modulation element 32 according to the irradiation profile 41B for the main curing step.
  • ultraviolet UV having a wavelength of 310 nm to 400 nm is irradiated. No heating is performed before the main curing step.
  • the irradiation profile 41B for the main curing step has an irradiation time 41B1 and an illuminance distribution information 41B2.
  • the irradiation time 41B1 is the time during which the ultraviolet UV is irradiated to the adhesive 20 (for example, the time during which the ultraviolet UV is irradiated for each region R_A to R_K) in the main curing step.
  • An example of the irradiation time 41B1 is several tens of minutes (for example, 30 minutes).
  • the illuminance distribution information 41B2 is numerical data representing the illuminance distribution 113.
  • the illuminance distribution 113 is the distribution of the illuminance of ultraviolet UV rays irradiated to the adhesive 20 in the main curing step. In the illuminance distribution 113, the illuminance of ultraviolet UV rays is uniformly distributed from the center of the bonding layer 15 in a plan view to the outside.
  • FIG. 20 shows as an example.
  • the refractive index distribution 114 is obtained.
  • the shape of the refractive index distribution 114 is a blazed type and corresponds to the shape of the irradiation distribution 112. That is, the refractive index of the bonding layer 15 changes in a blazed shape from the center of the bonding layer 15 in a plan view to the outside.
  • the refractive index distribution 114 is a distribution in which the first refractive index change range 114A corresponding to the first irradiation range 112A and the second refractive index change range 114B corresponding to the second irradiation range 112B are alternately connected. ..
  • the first refractive index change range 114A is a range in which the refractive index changes at the first rate of change corresponding to the first illuminance change rate.
  • the second refractive index change range 114B is a range in which the refractive index changes at the second rate of change corresponding to the second illuminance change rate.
  • the first refractive index change range 114A and the second refractive index change range 114B extend from the region R_A to the region R_K (see FIG. 19), and the refractive index is continuous. While maintaining the sex, they are alternately alternated in area units.
  • the fact that the first rate of change corresponds to the first rate of change in illuminance means that the tendency of the distribution of the illuminance of ultraviolet UV rays irradiated by the first rate of change in illuminance and the range of change in the first refractive index. It means that the tendency of the distribution of the refractive index at 114A is in agreement.
  • the fact that the second rate of change corresponds to the second rate of change in illuminance means that the tendency of the distribution of the illuminance of the ultraviolet UV irradiated at the second rate of change in illuminance and the second range of change in the refractive index 114B. It means that the tendency of the distribution of the refractive index in.
  • the first refractive index change range 114A and the first irradiation range 112A coincide with each other
  • the second refractive index change range 112B and the second irradiation range 112B coincide with each other.
  • the second rate of change is a larger rate of change than the first rate of change
  • the second rate of change is the rate of change in the opposite direction to the first rate of change (the rate of change of the opposite polarity). do.
  • the illuminance of the ultraviolet UV rays in the second irradiation range 112B changes from the center of the plan view of the bonding layer 15 to the outside at the second illuminance change rate for each region corresponding to the second irradiation range 112B.
  • the second refractive index change range 114B corresponds to the second irradiation range 112B
  • the second change rate corresponds to the second illuminance change rate.
  • the refractive index of the refractive index change range 114B of 2 is also a region corresponding to the second refractive index change range 114B from the center of the bonding layer 15 in a plan view to the outside (along the radial direction of the bonding optical element 10). Each time, it changes at the second rate of change.
  • “Na” is the minimum refractive index.
  • “Nb” is the maximum refractive index.
  • T is the change width of the second refractive index change range 114B, that is, the radial length of the second refractive index change range 114B in the plan view of the bonding layer 15.
  • the radial direction refers to the radial direction of the bonding layer 15, that is, the radial direction of the bonding optical element 10.
  • “H” is the thickness of the bonding layer 15, that is, the film thickness of the bonding layer 15.
  • “ ⁇ c” is a critical angle.
  • the angle of incidence is the optical path of the subject light incident on the junction surface of adjacent layers (for example, the junction surface between the plano-concave lens 13 and the junction layer 15 and the junction surface between the junction layer 15 and the plano-convex lens 14). Refers to an angle.
  • the angle of the optical path of the subject light incident on the joint surface of the adjacent layer refers to the angle of the joint surface with respect to the normal.
  • the refractive index of the bonding layer 15 is "N ⁇ "
  • the refractive index of the first adhesive 20A is "NA ⁇ "
  • the refractive index of the second adhesive 20B is "NB”.
  • the equation "N ⁇ ⁇ ⁇ NA ⁇ + (1- ⁇ ) ⁇ NB ⁇ " is established.
  • the transmitted wavefront (phase difference) of the bonding layer 15 can be represented by "N ⁇ ⁇ d”.
  • the transmitted wavefront of the bonding layer 15 appears in a blazed shape having a height corresponding to the wavelength ⁇ of the light incident on the bonding layer 15 from the center of the plan view of the bonding layer 15 to the outside.
  • the bonding layer 15 included in the bonding optical element 10 has a blazed refractive index distribution 114 (see FIGS. 18 and 20) from the center of the bonding layer 15 to the outside in a plan view. Therefore, the bonding layer 15 exhibits the maximum diffraction efficiency at a specific diffraction order (for example, +1 order) without using a physical surface structure having a blazed shape as in the laminated blazed diffraction optical element 506.
  • the laminated blazed diffraction grating element 506 diffracts light using the physical surface structure of the blazed shape, it is processed into a steep slope forming the blazed shape. If the marks remain, scattering will occur due to the processing marks.
  • the bonding layer 15 does not have a blazed physical surface structure. That is, there is no room for processing marks on the joint layer 15. The bonding layer 15 is less likely to cause scattering than the laminated blazed diffraction optical element 506.
  • the bonding layer 15 since the bonding layer 15 does not have a blazed-shaped physical surface structure, the degree of refraction of the subject light incident on the bonding layer 15 is the laminated blazed diffraction. It is smaller than the degree of refraction of the subject light on the steep slope of the optical element 506 (see "conventional reflected light path" shown in FIG. 23). Therefore, the subject light refracted on the steep slope of the laminated blazed diffraction optical element 506 does not fit in the specific diffraction order and appears as a ghost, but most of the subject light incident on the bonding layer 15 has a specific diffraction.
  • the bonding layer 15 can suppress ghosts caused by refracted light as compared with the laminated blazed diffraction optical element 506 that diffracts light by utilizing a blazed-shaped physical surface structure.
  • the bonding layer 15 does not have a blazed-shaped physical surface structure unlike the laminated blazed grating optical element 506, it has a blazed-shaped physical surface structure. Compared to the laminated blazed grating 506 that uses and diffracts light, the subject light is less likely to be totally reflected. Therefore, the subject light totally reflected on the steep slope of the laminated blazed diffractive optical element 506 does not fit in the specific diffraction order and appears as a ghost, but the amount of most of the subject light incident on the bonding layer 15 is specific.
  • the bonding layer 15 can suppress ghosts caused by reflected light as compared with the laminated blazed diffraction optical element 506 that diffracts light by utilizing a blazed-shaped physical surface structure.
  • a blazed refractive index distribution 111 (see FIGS. 18 and 20) is formed in the bonding layer 15 from the center of the bonding layer 15 in a plan view to the outside. Therefore, according to this configuration, ghosts caused by incident light can be suppressed as compared with a transmission type diffraction optical element that diffracts light by utilizing a blazed-shaped physical surface structure. Further, according to the method for manufacturing the junction optical element 10 as described above, it is possible to manufacture a diffractive optical element capable of suppressing wavelength dispersion more easily than before.
  • the refractive index of the polymerized first adhesive 20A in the bonding layer 15 is higher than the refractive index of the polymerized second adhesive 20B. Therefore, according to this configuration, it becomes easier to form a blazed-type refractive index distribution from the center in the plan view to the outside of the bonding layer 15 as compared with the case where only one type of adhesive is used.
  • the wavelength dispersion of the polymerized first adhesive 20A in the bonding layer 15 is lower than the wavelength dispersion of the polymerized second adhesive 20B. Therefore, according to this configuration, it becomes easier to form a blazed wavelength dispersion distribution from the center in a plan view to the outside of the bonding layer 15 as compared with the case where only one type of adhesive is used.
  • the reaction rate is different. Therefore, according to this configuration, it is possible to easily adjust the concentration ratio of the first monomer 23A and the second monomer 23B as compared with the case where the reaction rates of the two types of monomers are the same.
  • the first adhesive 20A contains the first inorganic nanoparticles 25A that react with the first monomer 23A (see FIG. 10). Therefore, according to this configuration, the refractive index and the refractive index when the plurality of first monomers 23A are polymerized as compared with the case where the first adhesive 20A is composed of only the first monomer 23A and the polymerization initiator 24. The degree of freedom in determining the dispersion characteristics can be increased.
  • the same organic reactive group X1 as the first monomer 23A is surface-modified to the first inorganic nanoparticles 25A (see FIG. 11). Therefore, according to this configuration, it is possible to polymerize the first polymer 27A obtained by curing the plurality of first monomers 23A and the first inorganic nanoparticles 25A.
  • the second adhesive 20B contains the second inorganic nanoparticles 25B that react with the second monomer 23B (see FIG. 10). Therefore, according to this configuration, the refractive index and the refractive index when the plurality of second monomers 23B are polymerized as compared with the case where the second adhesive 20B is composed of only the second monomer 23B and the polymerization initiator 24. The degree of freedom in determining the dispersion characteristics can be increased.
  • the same organic reactive group X2 as the second monomer 23B is surface-modified to the second inorganic nanoparticles 25B (see FIG. 11). Therefore, according to this configuration, it is possible to polymerize the second polymer 27B obtained by curing the plurality of second monomers 23B and the second inorganic nanoparticles 25B.
  • the blaze-type refractive index distribution 114 is larger than the first refractive index change range 114A and the first rate of change in which the refractive index changes at the first rate of change.
  • the distribution is such that the second refractive index change range 114B, in which the refractive index changes at the second rate of change, is alternately connected. That is, the bonding layer 15 does not diffract light by using a blazed-shaped physical surface structure, but diffracts light by using a blazed-type refractive index distribution 114.
  • the bonding layer 15 does not have a blazed-shaped physical surface structure, it is compared with a transmission type diffraction optical element that diffracts light by using the blazed-shaped physical surface structure. , Scattering can be suppressed.
  • the second rate of change in the bonding layer 15 is the rate of change in the direction opposite to the first rate of change. Therefore, according to this configuration, higher diffraction efficiency can be realized as compared with the case where the second rate of change is the rate of change in the same direction as the first rate of change.
  • the refractive index of the second refractive index change range 114B changes at the second rate of change from the center of the bonding layer 15 in a plan view to the outside. Therefore, according to this configuration, the refractive index of the second refractive index change range 114B does not change outward from the center of the plan view of the bonding layer 15, as compared with the case where the light incident on the bonding layer 15 does not change. The degree of scattering, refraction, and reflection can be moderated.
  • the change width of the second refractive index change range 114B and the thickness of the bonding layer 15 where ghosts are less likely to occur can be easily determined.
  • the bonding layer 15 is formed in a film shape. Therefore, according to this configuration, it is possible to make refraction and reflection less likely to occur as compared with the case where a bonding layer having a thickness thicker than that of a film is formed. Further, it can contribute to the thinning of the junction optical element 10.
  • ultraviolet UV rays are applied to the adhesive 20 with an illuminance distribution 112 (see FIGS. 19 and 20) corresponding to the shape of the refractive index distribution 114. Therefore, according to this configuration, the blazed type refraction intended by the designer or the like is compared with the case where the adhesive 20 is irradiated with ultraviolet rays with an illuminance distribution having a shape completely unrelated to the shape of the refractive index distribution 114.
  • the rate distribution 114 can be easily made.
  • the illuminance of the ultraviolet UV is uniformly distributed from the center in the plan view of the bonding layer 15 to the outside as the distribution of the illuminance of the ultraviolet UV applied to the adhesive 20.
  • the illuminance distribution 113 is used. Therefore, according to this configuration, the control content of irradiating the adhesive 20 with ultraviolet UV is simplified as compared with the case where the adhesive 20 is irradiated with ultraviolet UV according to a distribution having a shape more complicated than the illuminance distribution 113. Can be transformed into.
  • the illuminance of the ultraviolet UV is uniformly distributed from the center in the plan view of the bonding layer 15 to the outside.
  • the technique of the present disclosure is not limited to this.
  • the ultraviolet UV is applied to the adhesive 20 according to the illuminance distribution 115 in which the illuminance distribution of the ultraviolet UV is opposite to the irradiation distribution 112 used in the concentration distribution forming step. It may be irradiated against it.
  • the adhesive filled between the plano-concave lens 13 and the plano-convex lens 14 in the main curing step is compared with the case where ultraviolet UV rays are applied to the adhesive 20 according to the illuminance distribution 113 in the main curing step.
  • the portion that has not yet been polymerized can be efficiently irradiated with ultraviolet UV rays.
  • the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is not limited to this, although the embodiment in which the ultraviolet UV is irradiated to the adhesive 20 according to the illuminance distribution 112 in which the illuminance distribution is fixed has been described.
  • ultraviolet UV rays are applied to the adhesive 20 according to the illuminance distribution 116 in which the illuminance distribution 112 is deformed according to the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A. It may be irradiated against it.
  • the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is a distribution derived in advance by, for example, a test and / or a computer simulation.
  • the concentration change rate of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is constant in the initial state, but changes as the reaction progresses. Therefore, the change mode of the reaction rates of the first adhesive 20A and the second adhesive 20B on the concave surface 13A due to the irradiation of ultraviolet UV is grasped in advance by a test and / or a computer simulation or the like, and on the concave surface 13A.
  • the illuminance distribution 116 may be deformed over time according to the mode of change in the reaction rates of the first adhesive 20A and the second adhesive 20B over time.
  • the ultraviolet UV is an adhesive according to the illuminance distribution 116 in which the illuminance distribution 112 is deformed according to the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A. 20 is irradiated. Therefore, according to this configuration, a highly accurate refractive index distribution 114 can be obtained as compared with the case where the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is not considered at all. ..
  • the illuminance distribution 116 is deformed over time according to the change mode of the concentration distributions of the first adhesive 20A and the second adhesive 20B on the concave surface 13A. Therefore, according to this configuration, a highly accurate refractive index distribution 114 can be obtained as compared with the case where the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is not considered at all. ..
  • ultraviolet UV rays are irradiated from the concave surface 13A side (see FIG. 10)
  • the technique of the present disclosure is not limited to this.
  • ultraviolet UV may be irradiated from the convex surface 14A side.
  • the ultraviolet curable resin 21 (see FIG. 10) is exemplified, but the technique of the present disclosure is not limited to this.
  • it may be a photo-curing resin that cures in response to light having a wavelength different from that of ultraviolet rays, or it may be a heat-curing resin, and energy given from the outside (for example, light energy and / or heat energy, etc.) may be used.
  • energy given from the outside for example, light energy and / or heat energy, etc.
  • a pair of lenses is applied to the junction optical element 10, but the technique of the present disclosure is not limited to this, and any optical element that transmits light is an optical element other than the lens. You may.
  • the junction optical element 10 has been described, but the technique of the present disclosure is not limited to this, and the technique of the present disclosure may be applied to an intraocular lens.
  • the diffractive multifocal intraocular lens 198 which is an example of the “intraocular lens” according to the technique of the present disclosure, is incorporated in the eyeball 200 (hereinafter, also referred to as “intraocular”). Used for.
  • the diffractive multifocal intraocular lens 198 is implanted in the eye in place of the crystalline lens that is clouded by cataracts.
  • FIG. 26 the diffractive multifocal intraocular lens 198, which is an example of the “intraocular lens” according to the technique of the present disclosure, is incorporated in the eyeball 200 (hereinafter, also referred to as “intraocular”).
  • the diffractive multifocal intraocular lens 198 is implanted in the eye in place of the crystalline lens that is clouded by cataracts.
  • a diffractive multifocal intraocular lens 198 is arranged in place of the crystalline lens, and the diffractive multifocal intraocular lens 198 is fixed in the eye by a fixing member 99.
  • the fixing member 99 is, for example, an arc-shaped elastic member, and supports and fixes the diffractive multifocal intraocular lens 198 from the outer peripheral side of the diffractive multifocal intraocular lens 198.
  • the diffractive multifocal intraocular lens 198 includes a first lens 198A and a second lens 198B.
  • the first lens 198A is arranged on the cornea 202 side
  • the second lens 198B is arranged on the retina 204 side.
  • a bonding layer 198C corresponding to the bonding layer 15 described in the above embodiment is interposed between the first lens 198A and the second lens 198B, and the bonding layer 198C is the first lens 198A and the second lens 198B. And are joined.
  • the bonding layer 198C corresponding to the bonding layer 15 described in the above embodiment to the diffractive multifocal intraocular lens 198, the diffractive multifocal intraocular lens 198 is also described in the above embodiment.
  • the same effect as that of the junction optical element 10 described in the above can be obtained.
  • the technique of the present disclosure is not limited to this.
  • a diffractive multifocal intraocular lens 198 may be applied to the eye model 250.
  • the eyeball model 250 is an eyeball model used in an experimental stage for manufacturing a device (for example, an ophthalmic observation device or an ophthalmic laser treatment device) used for diagnosis or treatment of diabetic retinopathy or retinal detachment. It may be an eyeball model used for skill training for medical students or doctors to perform various ophthalmic operations or various examinations.
  • a device for example, an ophthalmic observation device or an ophthalmic laser treatment device
  • It may be an eyeball model used for skill training for medical students or doctors to perform various ophthalmic operations or various examinations.
  • the technique of the present disclosure may be applied to the contact lens 206 used for the eyeball 200.
  • the contact lens 206 is a film-shaped resin lens corresponding to the bonding layer 15 described in the above embodiment, and is used in contact with the cornea 202. In this case as well, the same effect as that of the junction optical element 10 described in the above embodiment can be obtained for the contact lens 206.
  • a and / or B is synonymous with "at least one of A and B". That is, “A and / or B” means that it may be only A, it may be only B, or it may be a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as “A and / or B" is applied.

Abstract

This transmissive diffractive optical element comprises a layer in which a refractive index distribution due to a concentration ratio among at least two materials is formed, wherein the refractive index distribution is a blazed-type distribution from the center of the transmissive diffractive optical element toward the outside.

Description

透過型回折光学素子、接合光学素子、眼内レンズ、コンタクトレンズ、及び透過型回折光学素子の製造方法Method for manufacturing transmission type diffractive optical element, junction optical element, intraocular lens, contact lens, and transmission type diffractive optical element
 本開示の技術は、透過型回折光学素子、接合光学素子、眼内レンズ、コンタクトレンズ、及び透過型回折光学素子の製造方法に関する。 The technique of the present disclosure relates to a transmission type diffractive optical element, a junction optical element, an intraocular lens, a contact lens, and a method for manufacturing a transmission type diffractive optical element.
 特開2011-107586号公報には、少なくとも3種類の材料からなる複数の回折格子を積層した回折光学素子が開示されている。特開2011-107586号公報に記載の回折光学素子において、複数の回折格子は、互いに異なった材料M1A、M1Bより成り、格子部の格子側縁が、格子ピッチ方向に接触又は近接配置された2つの回折格子より成る第1の組合せ部と、少なくとも1つの材料が第1の組合せ部の2つの回折格子の材料と異なり、互いに異なった材料M2A、M2Bより成る2つの回折格子より成る第2の組合せ部とを有する。そして、第1の組合せ部を成す材料M1A、M1Bの、ある波長w(nm)における屈折率N1Aw、N1Bw、アッベ数ν1A、ν1B、第2の組合せ部を成す材料M2A、M2Bの、d線のおける屈折率N2Ad、N2Bd、アッベ数ν2A、ν2Bの値が適切に設定される。 Japanese Unexamined Patent Publication No. 2011-107586 discloses a diffractive optical element in which a plurality of diffraction gratings made of at least three types of materials are laminated. In the diffractive optical element described in JP-A-2011-107586, the plurality of diffraction gratings are made of materials M1A and M1B different from each other, and the lattice side edges of the grating portions are in contact with each other or arranged close to each other in the lattice pitch direction2. A first combination portion consisting of one diffraction grating and a second one consisting of two diffraction gratings made of materials M2A and M2B different from each other, unlike the material of the two diffraction gratings whose material is at least one of the first combination parts. It has a combination part. Then, the d-line of the materials M1A and M1B forming the first combination portion, the refractive indexes N1Aw and N1Bw at a certain wavelength w (nm), the Abbe numbers ν1A and ν1B, and the materials M2A and M2B forming the second combination portion. The values of the refractive indexes N2Ad and N2Bd, and the Abbe numbers ν2A and ν2B are appropriately set.
 特表2009-530689号公報には、熱及び/又は太陽光への曝露に対する安定性を増した、波面アベレータの製造方法が開示されている。 Japanese Patent Application Laid-Open No. 2009-530689 discloses a method for producing a wavefront avelator with increased stability against exposure to heat and / or sunlight.
 特表2009-530689号公報に記載の波面アベレータの製造方法は、a.2つの透明板の間に、少なくとも1種のポリマー、及び1種又は複数のモノマーを備えた重合性材料の層を生成し、重合性材料が初期屈折率を有するステップと、b.重合性材料に、同時に熱刺激、及び可変的な光刺激を与え、重合性材料に、(i)1種又は複数のモノマーを完全に消費することなく、可変的なパターンの重合を受けさせ、(ii)第1の中間的な可変的屈折率プロファイルを達成させるステップと、c.(b)の部分的に硬化した重合性材料を加熱することによって拡散工程を促進し、硬化がより少ない領域から、硬化がより進んだ領域へ、未硬化のモノマーを拡散させ、第2の中間的な可変的屈折率プロファイルを達成するステップと、d.(c)の部分的に硬化した重合性材料に、同時に熱刺激、及び均一な光刺激を与え、残存する1種又は複数のモノマーの実質的にすべてを硬化し、最終的な可変的屈折率プロファイルを達成するステップと、を含み、それにより、波面アベレータが、熱及び/又は太陽光の条件に安定である。 The method for manufacturing the wavefront avelator described in JP-T-2009-530689 is described in a. A step of forming a layer of a polymerizable material with at least one polymer and one or more monomers between the two transparent plates, wherein the polymerizable material has an initial index of refraction, b. The polymerizable material is simultaneously subjected to thermal stimulation and variable photostimulation, and the polymerizable material is subjected to (i) variable pattern polymerization without completely consuming one or more monomers. (Ii) A step of achieving a first intermediate variable index profile, and c. By heating the partially cured polymerizable material of (b), the diffusion step is promoted, and the uncured monomer is diffused from the region where the curing is less to the region where the curing is more advanced, and the second intermediate. Steps to achieve a variable index of refraction profile and d. The partially cured polymerizable material of (c) is simultaneously subjected to thermal stimulation and uniform photostimulation to cure substantially all of the remaining one or more monomers, resulting in a variable refractive index. The steps to achieve the profile include, thereby making the wave surface aberator stable to thermal and / or sunlight conditions.
 本開示の技術に係る一つの実施形態は、ブレーズド形状の物体的な面構造を利用して光を回折させる透過型回折光学素子に比べ、入射された光に起因して生じるゴーストを抑制することができる透過型回折光学素子、接合光学素子、眼内レンズ、コンタクトレンズ、及び透過型回折光学素子の製造方法を提供する。 One embodiment according to the technique of the present disclosure is to suppress ghosts caused by incident light as compared with a transmission type diffractive optical element that diffracts light by utilizing a blazed physical surface structure. Provided are a method for manufacturing a transmission type diffractive optical element, a junction optical element, an intraocular lens, a contact lens, and a transmission type diffractive optical element.
 本開示の技術に係る第1の態様は、透過型回折光学素子であって、少なくとも2つの材料の濃度比による屈折率分布が形成された層を備え、屈折率分布が、透過型回折光学素子の中心から外側に向かってブレーズド型の分布である、透過型回折光学素子である。 The first aspect according to the technique of the present disclosure is a transmission type diffraction optical element, comprising a layer in which a refractive index distribution is formed by a concentration ratio of at least two materials, and the refractive index distribution is a transmission type diffraction optical element. It is a transmission type diffractive optical element having a blazed distribution from the center to the outside.
 本開示の技術に係る第2の態様は、2つの材料のうちの一方の材料の屈折率が、他方の材料の屈折率よりも高い第1の態様に係る透過型回折光学素子である。 The second aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the first aspect, wherein the refractive index of one of the two materials is higher than the refractive index of the other material.
 本開示の技術に係る第3の態様は、一方の材料の波長分散が、他方の材料の波長分散よりも低い第2の態様に係る透過型回折光学素子である。 The third aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the second aspect, in which the wavelength dispersion of one material is lower than the wavelength dispersion of the other material.
 本開示の技術に係る第4の態様は、2つの材料が、外部から与えられたエネルギーに反応することで硬化する2種類の硬化樹脂であり、2種類の硬化樹脂が、エネルギーに対する反応速度が互いに異なる硬化樹脂である第1の態様から第3の態様の何れか1つの態様に係る透過型回折光学素子である。 A fourth aspect according to the technique of the present disclosure is two types of cured resins in which two materials are cured by reacting with energy given from the outside, and the two types of cured resins have a reaction rate to energy. It is a transmission type diffractive optical element according to any one of the first aspect to the third aspect, which is a cured resin different from each other.
 本開示の技術に係る第5の態様は、少なくとも2つの材料が、2種類の硬化樹脂のうちの一方の硬化樹脂に対して反応する第1の無機ナノ粒子を含む第4の態様に係る透過型回折光学素子である。 A fifth aspect according to the technique of the present disclosure is a permeation according to a fourth aspect comprising a first inorganic nanoparticles in which at least two materials react with one of the cured resins of the two types of cured resin. It is a type diffractive optical element.
 本開示の技術に係る第6の態様は、第1の無機ナノ粒子が、一方の硬化樹脂と同一の反応基が表面修飾されたナノ粒子である第5の態様に係る透過型回折光学素子である。 A sixth aspect according to the technique of the present disclosure is the transmission diffractive optical element according to the fifth aspect, wherein the first inorganic nanoparticles are nanoparticles having the same reactive group as one of the cured resins surface-modified. be.
 本開示の技術に係る第7の態様は、少なくとも2つの材料が、2種類の硬化樹脂のうちの他方の硬化樹脂に対して反応する第2の無機ナノ粒子を含む第5の態様又は第6の態様に係る透過型回折光学素子である。 A seventh aspect according to the technique of the present disclosure is a fifth aspect or a sixth aspect comprising a second inorganic nanoparticles in which at least two materials react with the other cured resin of the two cured resins. The transmission type diffractive optical element according to the above embodiment.
 本開示の技術に係る第8の態様は、第2の無機ナノ粒子が、他方の硬化樹脂と同一の反応基が表面修飾されたナノ粒子である第7の態様に係る透過型回折光学素子である。 Eighth aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the seventh aspect, wherein the second inorganic nanoparticles are nanoparticles having the same reactive group as the other cured resin surface-modified. be.
 本開示の技術に係る第9の態様は、ブレーズド型の屈折率分布が、第1の変化率で屈折率が変化する第1の屈折率変化範囲と、第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが交互に連なった分布である第1の態様から第8の態様の何れか1つの態様に係る透過型回折光学素子である。 In the ninth aspect according to the technique of the present disclosure, the blaze-type refractive index distribution has a first refractive index change range in which the refractive index changes at the first rate of change and a second aspect in which the refractive index is larger than the first rate of change. The transmissive diffractive optical element according to any one of the first to eighth aspects, which is a distribution in which the second refractive index change range in which the refractive index changes according to the rate of change is alternately connected.
 本開示の技術に係る第10の態様は、第2の変化率が、第1の変化率と逆方向の変化率である第9の態様に係る透過型回折光学素子である。 The tenth aspect according to the technique of the present disclosure is the transmission type diffractive optical element according to the ninth aspect in which the second rate of change is the rate of change in the direction opposite to the first rate of change.
 本開示の技術に係る第11の態様は、第2の屈折率変化範囲の屈折率は、中心から外側に向かって第2の変化率で変化する第9の態様又は第10の態様に係る透過型回折光学素子である。 The eleventh aspect according to the technique of the present disclosure is the transmission according to the ninth aspect or the tenth aspect in which the refractive index of the second refractive index change range changes at the second rate of change from the center to the outside. It is a type diffractive optical element.
 本開示の技術に係る第12の態様は、ブレーズド型の屈折率分布が、第1の変化率で屈折率が変化する第1の屈折率変化範囲と、第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが交互に連なった分布であり、屈折率分布において、最小屈折率をNaとし、最大屈折率をNbとし、第2の屈折率変化範囲の変化幅をtとし、層の厚さをhとしたとき、h<t・tanθcの不等式、及びθc=asin(Na/Nb)の等式が成立する第1の態様から第11の態様の何れか1つの態様に係る透過型回折光学素子である。 In the twelfth aspect of the technique of the present disclosure, the blaze-type refractive index distribution has a first refractive index change range in which the refractive index changes at the first rate of change and a second aspect in which the refractive index is larger than the first rate of change. It is a distribution in which the second refractive index change range in which the refractive index changes according to the rate of change is alternately connected. In the refractive index distribution, the minimum refractive index is Na, the maximum refractive index is Nb, and the second refractive index. From the first aspect to the eleventh aspect, when the change width of the change range is t and the layer thickness is h, the inequality of h <t · tan θc and the equation of θc = asin (Na / Nb) are established. A transmissive diffractive optical element according to any one of the embodiments.
 本開示の技術に係る第13の態様は、層が、少なくとも2つの材料によって膜状に形成されている第1の態様から第12の態様の何れか1つの態様に係る透過型回折光学素子である。 A thirteenth aspect according to the technique of the present disclosure is a transmissive diffractive optical element according to any one of the first to twelfth aspects, wherein the layer is formed in a film shape by at least two materials. be.
 本開示の技術に係る第14の態様は、第1の態様から第13の態様の何れか1つの態様に係る透過型回折光学素子と、少なくとも1つの光学素子と、を備え、透過型回折光学素子が、少なくとも1つの光学素子と接合されている接合光学素子である。 A fourteenth aspect according to the technique of the present disclosure comprises a transmission type diffractive optical element according to any one of the first to thirteenth aspects, and at least one optical element, and comprises transmission type diffractive optics. The element is a bonded optical element that is bonded to at least one optical element.
 本開示の技術に係る第15の態様は、眼内に埋め込まれる眼内レンズであって、第1の態様から第13の態様の何れか1つの態様に係る透過型回折光学素子と、第1レンズと、第2レンズと、を備え、透過型回折光学素子が、第1レンズと第2レンズとの接合層である、眼内レンズである。 A fifteenth aspect according to the technique of the present disclosure is an intraocular lens embedded in an eye, the transmissive diffractive optical element according to any one of the first to thirteenth aspects, and a first aspect. An intraocular lens comprising a lens and a second lens, wherein the transmissive diffractive optical element is a junction layer between the first lens and the second lens.
 本開示の技術に係る第16の態様は、角膜に接触させるコンタクトレンズであって、第1の態様から第13の態様の何れか1つの態様に係る透過型回折光学素子を備えるコンタクトレンズである。 A sixteenth aspect according to the technique of the present disclosure is a contact lens that comes into contact with the cornea and includes a transmission type diffractive optical element according to any one of the first to thirteenth aspects. ..
 本開示の技術に係る第17の態様は、透過型回折光学素子であって、少なくとも2つの材料の濃度比による屈折率分布が形成された層を備え、屈折率分布が、第1の変化率で屈折率が変化する第1の屈折率変化範囲と、第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが交互に連なった分布である、透過型回折光学素子である。 A seventeenth aspect according to the technique of the present disclosure is a transmissive diffractive optical element, comprising a layer in which a refractive index distribution is formed according to a concentration ratio of at least two materials, and the refractive index distribution has a first rate of change. It is a distribution in which the first refractive index change range in which the refractive index changes and the second refractive index change range in which the refractive index changes at a second change rate larger than the first change rate are alternately connected. , A transmissive diffractive optical element.
 本開示の技術に係る第18の態様は、少なくとも2つの材料を有する溶液を既定面に塗布すること、及び、少なくとも2つの材料を硬化させることで少なくとも2つの材料の濃度比による屈折率分布がブレーズド型に形成された層を生成することを含む、透過型回折光学素子の製造方法である。 An eighteenth aspect according to the technique of the present disclosure is to apply a solution having at least two materials to a predetermined surface, and to cure the at least two materials to obtain a refractive index distribution based on the concentration ratio of the at least two materials. A method for manufacturing a transmission type diffraction optical element, which comprises forming a layer formed in a blazed shape.
 本開示の技術に係る第19の態様は、2つの材料が、外部から与えられたエネルギーに反応することで硬化する2種類の硬化樹脂であり、2種類の硬化樹脂が、エネルギーに対する反応速度が互いに異なる硬化樹脂であり、屈折率分布の形状に対応したエネルギー分布で少なくとも2つの材料に対してエネルギーを与えることを含む第18の態様に係る透過型回折光学素子の製造方法である。 A nineteenth aspect according to the technique of the present disclosure is two types of cured resins in which two materials are cured by reacting with energy given from the outside, and the two types of cured resins have a reaction rate to energy. It is a method for manufacturing a transmission type diffractive optical element according to an eighteenth aspect, which comprises applying energy to at least two materials with an energy distribution corresponding to the shape of a refractive index distribution, which are cured resins different from each other.
 本開示の技術に係る第20の態様は、エネルギー分布が、ブレーズド型の基準エネルギー分布を、少なくとも2つの材料の濃度の分布に応じて変形させた分布である第19の態様に係る透過型回折光学素子の製造方法である。 A twentieth aspect according to the technique of the present disclosure is a transmission type diffraction according to the nineteenth aspect, wherein the energy distribution is a distribution obtained by deforming a blazed reference energy distribution according to the distribution of concentrations of at least two materials. This is a method for manufacturing an optical element.
 本開示の技術に係る第21の態様は、エネルギー分布を変化させながら少なくとも2つの材料に対してエネルギーを与えることを含む第19の態様又は第20の態様に係る透過型回折光学素子の製造方法である。 A twenty-first aspect according to the technique of the present disclosure is a method for manufacturing a transmission type diffractive optical element according to a nineteenth aspect or a twentieth aspect, which comprises applying energy to at least two materials while changing an energy distribution. Is.
 本開示の技術に係る第22の態様は、エネルギー分布で少なくとも2つの材料に対してエネルギーを与えてから、少なくとも2つの材料に対して、均一な分布でエネルギーを与えることを含む第19の態様から第21の態様の何れか1つの態様に係る透過型回折光学素子の製造方法である。 A 22nd aspect according to the technique of the present disclosure is a 19th aspect comprising applying energy to at least two materials in an energy distribution and then applying energy to at least two materials in a uniform distribution. It is a method of manufacturing a transmission type diffractive optical element according to any one aspect of the 21st aspect.
 本開示の技術に係る第23の態様は、エネルギー分布で少なくとも2つの材料に対してエネルギーを与えてから、少なくとも2つの材料に対して、エネルギー分布とは逆の分布でエネルギーを与えることを含む第19の態様から第21の態様の何れか1つの態様に係る透過型回折光学素子の製造方法である。 A 23rd aspect according to the technique of the present disclosure includes applying energy to at least two materials in an energy distribution and then applying energy to at least two materials in a distribution opposite to the energy distribution. It is a method for manufacturing a transmission type diffractive optical element according to any one of 19th to 21st aspects.
 本開示の技術に係る第24の態様は、ブレーズド型の屈折率分布が、第1の変化率で屈折率が変化する第1の屈折率変化範囲と、第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが交互に連なった分布であり、屈折率分布において、最小屈折率をNaとし、最大屈折率をNbとし、第2の屈折率変化範囲の変化幅をtとし、層の厚さをhとしたとき、h<t・tanθcの不等式、及びθc=asin(Na/Nb)の等式が成立する層を生成することを含む第18の態様から第23の態様の何れか1つの態様に係る透過型回折光学素子の製造方法である。 In the twenty-fourth aspect of the technique of the present disclosure, the blaze-type refractive index distribution has a first refractive index change range in which the refractive index changes at the first rate of change and a second range in which the refractive index changes larger than the first rate of change. It is a distribution in which the second refractive index change range in which the refractive index changes according to the rate of change is alternately connected. In the refractive index distribution, the minimum refractive index is Na, the maximum refractive index is Nb, and the second refractive index. A first including the generation of a layer in which the inequality of h <t · tan θc and the equation of θc = asin (Na / Nb) are satisfied when the change width of the change range is t and the thickness of the layer is h. It is a method of manufacturing a transmission type refraction optical element which concerns on any one of 18th to 23rd aspects.
接合光学素子を製造する製造装置の外観の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the appearance of the manufacturing apparatus which manufactures a junction optical element. 平凹レンズの外観の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the appearance of a plano-concave lens. 平凸レンズの外観の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of the appearance of a plano-convex lens. 従来の積層型ブレーズド回折光学素子の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of the conventional laminated blazed diffraction optical element. 従来の積層型ブレーズド回折光学素子に被写体光が入射された場合に生じる散乱の態様例を示す概念図である。It is a conceptual diagram which shows the mode example of the scattering which occurs when the subject light is incident on the conventional laminated blazed diffraction optical element. 従来の積層型ブレーズド回折光学素子に被写体光が入射された場合に生じる屈折によるゴーストの態様例を示す概念図である。It is a conceptual diagram which shows the mode example of the ghost by the refraction which occurs when the subject light is incident on the conventional laminated blazed diffraction optical element. 従来の積層型ブレーズド回折光学素子に被写体光が入射された場合に生じる全反射によるゴーストの態様例を示す概念図である。It is a conceptual diagram which shows the mode example of the ghost by the total reflection generated when the subject light is incident on the conventional laminated blazed diffraction optical element. 接合光学素子の製造方法の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the manufacturing method of a junction optical element. 接合光学素子の製造方法の手順に含まれる充填工程の内容の一例を示すフローチャートである。It is a flowchart which shows an example of the content of the filling process included in the procedure of the manufacturing method of a junction optical element. 平凹レンズと平凸レンズとの間に充填された接着剤が、硬化前の状態、ゲル化した状態、及び完全に硬化した状態に順に遷移する場合の接合光学素子の断面構造の一例を示す概略断面図である。A schematic cross section showing an example of the cross-sectional structure of a junction optical element when the adhesive filled between the plano-concave lens and the plano-convex lens transitions to a state before curing, a gelled state, and a completely cured state in order. It is a figure. 無機ナノ粒子にポリマーと同一の反応基が表面修飾された態様の一例を示す概念図である。It is a conceptual diagram which shows an example of an embodiment in which the same reactive group as a polymer is surface-modified to inorganic nanoparticles. 2種類のモノマーを混ぜたときの共重合反応によって生成される高分子(例えば、ポリマー)の組成比の説明に用いる説明図である。It is explanatory drawing used for the explanation of the composition ratio of the polymer (for example, a polymer) produced by the copolymerization reaction when two kinds of monomers are mixed. 2種類のモノマーによる共重合反応が行った場合の硬化前のモノマーの濃度と高分子中のモノマーの構成比との相関の一例を示す共重合組成曲線である。6 is a copolymer composition curve showing an example of the correlation between the concentration of the monomer before curing and the composition ratio of the monomer in the polymer when the copolymerization reaction by two kinds of monomers is carried out. 製造装置本体の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of a manufacturing apparatus main body. 制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of a control device. 主として制御装置のCPUの機能の一例を示すブロック図である。It is a block diagram which mainly shows an example of the function of the CPU of a control device. 設定画面の構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of a setting screen. 接合光学素子及び屈折率分布情報の一例を示す概念図である。It is a conceptual diagram which shows an example of the junction optical element and the refractive index distribution information. 照射プロファイルの構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of an irradiation profile. 照度分布と屈折率分布との対応関係の一例を示す概念図である。It is a conceptual diagram which shows an example of the correspondence relation between the illuminance distribution and the refractive index distribution. 接合光学素子の透過波面の態様の一例を示す概念図である。It is a conceptual diagram which shows an example of the aspect of the transmitted wavefront of a junction optical element. 接合光学素子の断面構造の一例を示す概略断面図である。It is a schematic cross-sectional view which shows an example of the cross-sectional structure of a junction optical element. 接合光学素子の断面構造の一例を示す概略断面図である。It is a schematic cross-sectional view which shows an example of the cross-sectional structure of a junction optical element. 本硬化工程で用いられる照度分布の変形例を示す概念図である。It is a conceptual diagram which shows the modification of the illuminance distribution used in this curing process. 濃度分布形成工程で用いられる照度分布の変形例を示す概念図である。It is a conceptual diagram which shows the modification of the illuminance distribution used in the density distribution formation process. 眼内レンズの構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of an intraocular lens. コンタクトレンズの構成の一例を示す概念図である。It is a conceptual diagram which shows an example of the structure of a contact lens.
 以下、添付図面に従って本開示の技術に係る透過型回折光学素子、接合光学素子、眼内レンズ、コンタクトレンズ、及び透過型回折光学素子の製造方法の実施形態の一例について説明する。 Hereinafter, an example of an embodiment of a method for manufacturing a transmission type diffractive optical element, a junction optical element, an intraocular lens, a contact lens, and a transmission type diffractive optical element according to the technique of the present disclosure will be described with reference to the attached drawings.
 なお、本明細書の説明において、「垂直」とは、完全な垂直の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの垂直を指す。また、本明細書の説明において、「直交」とは、完全な直交の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの直交を指す。また、本明細書の説明において、「平行」とは、完全な平行の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの平行を指す。また、本明細書の説明において、「同一」とは、完全な同一の他に、本開示の技術が属する技術分野で一般的に許容される誤差であって、本開示の技術の趣旨に反しない程度の誤差を含めた意味合いでの同一を指す。 In the description of the present specification, "vertical" is an error generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to the perfect verticality, which is contrary to the purpose of the technology of the present disclosure. It refers to the vertical in the sense that it includes an error that does not occur. Further, in the description of the present specification, "orthogonal" is an error generally allowed in the technical field to which the technique of the present disclosure belongs, in addition to the perfect orthogonality, which is contrary to the purpose of the technique of the present disclosure. It refers to orthogonality in the sense that it includes an error that does not occur. Further, in the description of the present specification, "parallel" is an error generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to the perfect parallelism, which is contrary to the purpose of the technology of the present disclosure. It refers to parallelism in the sense that it includes an error that does not occur. Further, in the description of the present specification, "identical" is an error generally allowed in the technical field to which the technology of the present disclosure belongs, in addition to being completely the same, which is contrary to the purpose of the technology of the present disclosure. It refers to the same in the sense that it includes an error to the extent that it does not occur.
 一例として図1に示すように、製造装置2は、接合光学素子10を製造する装置であり、製造装置本体(以下、単に「本体」とも称する)11及び制御装置12を備えている。制御装置12は、本体11と通信可能に接続されている。制御装置12は、例えばパーソナルコンピュータ(図1に示す例では、デスクトップ型のパーソナルコンピュータ)であり、本体11の動作を制御する。 As an example, as shown in FIG. 1, the manufacturing apparatus 2 is an apparatus for manufacturing a junction optical element 10, and includes a manufacturing apparatus main body (hereinafter, also simply referred to as “main body”) 11 and a control device 12. The control device 12 is communicably connected to the main body 11. The control device 12 is, for example, a personal computer (in the example shown in FIG. 1, a desktop personal computer), and controls the operation of the main body 11.
 接合光学素子10は、例えば、光学装置(例えば、デジタルカメラ、プロジェクタ、及び顕微鏡等)のレンズ、及び視力矯正具のレンズ(例えば、眼鏡のレンズ及び眼内レンズ)として利用される。接合光学素子10は、一対のレンズを備えている。接合光学素子10に含まれる一対のレンズはガラス製のレンズであり、紫外線UV(図10及び図14参照)を透過する。図1に示す例では、一対のレンズとして、平凹レンズ13(図2も参照)及び平凸レンズ14(図3も参照)が示されている。平凹レンズ13及び平凸レンズ14は、本開示の技術に係る「少なくとも1つの光学素子」の一例である。 The junction optical element 10 is used, for example, as a lens of an optical device (for example, a digital camera, a projector, a microscope, etc.) and a lens of a vision correction tool (for example, a lens of eyeglasses and an intraocular lens). The junction optical element 10 includes a pair of lenses. The pair of lenses included in the junction optical element 10 is a glass lens and transmits ultraviolet UV rays (see FIGS. 10 and 14). In the example shown in FIG. 1, a plano-concave lens 13 (see also FIG. 2) and a plano-convex lens 14 (see also FIG. 3) are shown as a pair of lenses. The plano-concave lens 13 and the plano-convex lens 14 are examples of "at least one optical element" according to the technique of the present disclosure.
 ここでは、一対のレンズとして、平凹レンズ13と平凸レンズ14との組み合わせを例示しているが、これはあくまでも一例に過ぎず、一対のレンズは、他種類のレンズの組み合わせ(例えば、平凸レンズと両凹レンズとの組み合わせ、及び、両凸レンズと平凹レンズとの組み合わせ等)であってもよい。また、一対のレンズはガラス製である必要はなく、樹脂製であってもよい。また、ここでは、一対のレンズを例示しているが、本開示の技術はこれに限定されず、1つのレンズだけであってもよい。また、レンズに代えて、又は、レンズと共に、透明基板及び/又はミラー等の光学素子が適用されてもよい。 Here, a combination of a plano-concave lens 13 and a plano-convex lens 14 is illustrated as a pair of lenses, but this is only an example, and the pair of lenses is a combination of other types of lenses (for example, a plano-convex lens). It may be a combination with a biconcave lens, a combination of a biconvex lens and a plano-concave lens, etc.). Further, the pair of lenses does not have to be made of glass, and may be made of resin. Further, although a pair of lenses is illustrated here, the technique of the present disclosure is not limited to this, and only one lens may be used. Further, instead of the lens or together with the lens, an optical element such as a transparent substrate and / or a mirror may be applied.
 なお、以下では、説明の便宜上、平凹レンズ13及び平凸レンズ14の厚み方向をZ方向とし、平凹レンズ13及び平凸レンズ14の幅方向をX方向とし、平凹レンズ13及び平凸レンズ14の図中奥行方向、すなわち、Z方向及びX方向に直交する方向をY方向として説明する。 In the following, for convenience of explanation, the thickness direction of the plano-concave lens 13 and the plano-convex lens 14 is the Z direction, the width direction of the plano-concave lens 13 and the plano-convex lens 14 is the X direction, and the depth in the figure of the plano-concave lens 13 and the plano-convex lens 14. The direction, that is, the direction orthogonal to the Z direction and the X direction will be described as the Y direction.
 接合光学素子10は、接合層15を備えている。接合層15は、本開示の技術に係る「透過型回折光学素子」及び「層」の一例である。接合層15は、平凹レンズ13の凹面13Aと平凸レンズ14の凸面14Aとの間に介在しており、凹面13A及び凸面14Aは、接合層15を介して接合されている。凹面13Aと凸面14Aとの間において、接合層15は、膜状に形成されている。 The bonding optical element 10 includes a bonding layer 15. The bonding layer 15 is an example of a "transmission type diffractive optical element" and a "layer" according to the technique of the present disclosure. The bonding layer 15 is interposed between the concave surface 13A of the plano-concave lens 13 and the convex surface 14A of the plano-convex lens 14, and the concave surface 13A and the convex surface 14A are bonded via the bonding layer 15. The bonding layer 15 is formed in a film shape between the concave surface 13A and the convex surface 14A.
 詳細な構成例は後述するが、接合層15は、特定の回折次数(例えば、+1次光)において最大の回折効率を発揮させる透過型回折光学素子である。すなわち、接合層15は、大半の光量が特定の回折次数に収まり、かつ、光量が他の回折次数(例えば、0次光及び-1次光等)へ損失することを最小限に抑える機能を有する層である。 Although a detailed configuration example will be described later, the bonding layer 15 is a transmission type diffraction optical element that exhibits maximum diffraction efficiency at a specific diffraction order (for example, +1st order light). That is, the bonding layer 15 has a function of minimizing the amount of light to be contained in a specific diffraction order and the amount of light to be lost to other diffraction orders (for example, 0th-order light and -1st-order light, etc.). It is a layer to have.
 一例として図2に示すように、平凹レンズ13の凹面13Aは、接合層15により接合される前は球面形状を有している。同様に、一例として図3に示すように、平凸レンズ14の凸面14Aは、接合層15により接合される前は球面形状を有している。平凹レンズ13及び平凸レンズ14は、外部から与えられた紫外線UV(図10及び図14参照)を透過する。紫外線UVは、本開示の技術に係る「エネルギー」の一例である。 As an example, as shown in FIG. 2, the concave surface 13A of the plano-concave lens 13 has a spherical shape before being joined by the joining layer 15. Similarly, as shown in FIG. 3 as an example, the convex surface 14A of the plano-convex lens 14 has a spherical shape before being joined by the joining layer 15. The plano-concave lens 13 and the plano-convex lens 14 transmit ultraviolet UV (see FIGS. 10 and 14) given from the outside. Ultraviolet UV is an example of "energy" according to the technique of the present disclosure.
 ここで、図4~図7を参照して従来既知の接合光学素子500について説明する。なお、図4~図7に示す例では、接合光学素子500がデジタルカメラの撮像光学系に利用されることを前提として説明する。 Here, a conventionally known junction optical element 500 will be described with reference to FIGS. 4 to 7. In the examples shown in FIGS. 4 to 7, it is assumed that the junction optical element 500 is used in the image pickup optical system of a digital camera.
 一例として図4に示すように、接合光学素子500は、被写体側に凸面を有する平凸レンズ502、イメージセンサ側に凹面を有する平凹レンズ504、及び積層型ブレーズド回折光学素子506を備えている。積層型ブレーズド回折光学素子506は、公知の積層型ブレーズド回折光学素子である。積層型ブレーズド回折光学素子506は、平凸レンズ502と平凹レンズ504との間に介在しており、平凸レンズ502と平凹レンズ504とを接合している。接合光学素子500には、被写体を示す被写体光が平凸レンズ502の凸面側から入射され、平凹レンズ504の凹面から出射される。 As an example, as shown in FIG. 4, the junction optical element 500 includes a plano-convex lens 502 having a convex surface on the subject side, a plano-concave lens 504 having a concave surface on the image sensor side, and a laminated blazed diffraction grating element 506. The laminated blazed diffraction optical element 506 is a known laminated blazed diffraction optical element. The laminated blazed diffraction grating 506 is interposed between the plano-convex lens 502 and the plano-concave lens 504, and joins the plano-convex lens 502 and the plano-concave lens 504. The subject light indicating the subject is incident on the junction optical element 500 from the convex side of the plano-convex lens 502, and is emitted from the concave surface of the plano-concave lens 504.
 一例として図5に示すように、積層型ブレーズド回折光学素子506は、一対のブレーズド部材によって形成されている。図5に示す例では、一対のブレーズド部材として、第1ブレーズド部材508及び第2ブレーズド部材510が示されている。 As an example, as shown in FIG. 5, the laminated blazed diffraction grating 506 is formed by a pair of blazed members. In the example shown in FIG. 5, a first blazed member 508 and a second blazed member 510 are shown as a pair of blazed members.
 第1ブレーズド部材508は、第1鋸歯状面512を有する。第1ブレーズド部材508は、第1基準面508Aを有する。第1基準面508Aは、仮想的に設定された面であり、例えば、平凸レンズ502(図4参照)の凸面に対して平行な面である。 The first blazed member 508 has a first serrated surface 512. The first blazed member 508 has a first reference plane 508A. The first reference plane 508A is a virtually set plane, for example, a plane parallel to the convex plane of the plano-convex lens 502 (see FIG. 4).
 第1鋸歯状面512は、第1急斜面512A及び第1緩斜面512Bによって形成されている。第1緩斜面512Bは、第1急斜面512Aよりも第1基準面508Aに対して勾配が緩い面である。第1急斜面512Aは、第1基準面508Aに対して垂直な面であり、第1基準面508Aからの第1急斜面512Aの高さが、第1ブレーズド部材508の格子高さである。なお、第1急斜面512Aは、第1基準面512Aに対して垂直でなくてもよい。なぜならば、使用される光学系において、主たる入射光線の方向に対し、最も回折効率が高くなるように第1急斜面512Aの角度が適切に決定されるからである。 The first serrated surface 512 is formed by the first steep slope 512A and the first gentle slope 512B. The first gentle slope 512B is a surface having a gentler slope with respect to the first reference surface 508A than the first steep slope 512A. The first steep slope 512A is a plane perpendicular to the first reference plane 508A, and the height of the first steep slope 512A from the first reference plane 508A is the lattice height of the first blazed member 508. The first steep slope 512A does not have to be perpendicular to the first reference surface 512A. This is because, in the optical system used, the angle of the first steep slope 512A is appropriately determined so as to have the highest diffraction efficiency with respect to the direction of the main incident light beam.
 第2ブレーズド部材510は、第2鋸歯状面514を有する。第2ブレーズド部材514は、第2基準面510Aを有する。第2基準面510Aは、仮想的に設定された面であり、例えば、平凹レンズ504(図4参照)の凹面に対して平行な面である。 The second blazed member 510 has a second serrated surface 514. The second blazed member 514 has a second reference plane 510A. The second reference surface 510A is a virtually set surface, for example, a surface parallel to the concave surface of the plano-concave lens 504 (see FIG. 4).
 第2鋸歯状面514は、第2急斜面514A及び第2緩斜面514Bによって形成されている。第2緩斜面514Bは、第2急斜面514Aよりも第2基準面510Aに対して勾配が緩い面である。第2急斜面514Aは、第2基準面510Aに対して垂直な面であり、第2基準面510Aからの第2急斜面514Aの高さが、第2ブレーズド部材510の格子高さである。 The second serrated surface 514 is formed by the second steep slope 514A and the second gentle slope 514B. The second gentle slope 514B is a surface having a gentler slope with respect to the second reference surface 510A than the second steep slope 514A. The second steep slope 514A is a plane perpendicular to the second reference plane 510A, and the height of the second steep slope 514A from the second reference plane 510A is the lattice height of the second blazed member 510.
 第1ブレーズド部材508の第1鋸歯状面512は、第2ブレーズド部材510の第2鋸歯状面514に直接係合している。この場合、第1急斜面512Aは、第2急斜面514Aに直接接触しており、第1緩斜面512Bは、第2緩斜面514Bに直接接触している。 The first serrated surface 512 of the first blazed member 508 is directly engaged with the second serrated surface 514 of the second blazed member 510. In this case, the first steep slope 512A is in direct contact with the second steep slope 514A, and the first gentle slope 512B is in direct contact with the second gentle slope 514B.
 なお、図5~図7に示す例では、説明の便宜上、第1急斜面512Aと第2急斜面514Aとを区別して説明する必要がない場合、符号を付さずに「急斜面」と称し、第1緩斜面512Bと第2緩斜面514Bとを区別して説明する必要がない場合、符号を付さずに「緩斜面」と称する。 In the examples shown in FIGS. 5 to 7, when it is not necessary to distinguish between the first steep slope 512A and the second steep slope 514A for convenience of explanation, they are referred to as “steep slopes” without reference numerals and are referred to as the first steep slope. When it is not necessary to distinguish between the gentle slope 512B and the second gentle slope 514B, it is referred to as "gentle slope" without a reference numeral.
 第1ブレーズド部材508の屈折率は、第2ブレーズド部材510の屈折率よりも高く、図5~図7に示す例では、第1ブレーズド部材508の屈折率として“1.58”が示されており、第2ブレーズド部材510の屈折率として“1.56”が示されている。 The refractive index of the first blazed member 508 is higher than the refractive index of the second blazed member 510, and in the examples shown in FIGS. 5 to 7, "1.58" is shown as the refractive index of the first blazed member 508. The refractive index of the second blazed member 510 is shown as "1.56".
 図5に示す例では、積層型ブレーズド回折光学素子506の急斜面に加工痕が残存している態様が示されている。この場合、第1ブレーズド部材508側、すなわち、高屈折率(例えば、屈折率=1.58)の層側から、第2ブレーズド部材510側、すなわち、低屈折率(例えば、屈折率=1.56)の層側にかけて被写体光が照射されると、加工痕に起因して急斜面で散乱光が生じる。すなわち、積層型ブレーズド回折光学素子506を透過する被写体光には散乱光が含まれる。散乱光を含んだ被写体光は、デジタルカメラのイメージセンサに結像され、被写体光がイメージセンサによって撮像されることで得られる撮像画像には散乱面が写り込んでしまう。 In the example shown in FIG. 5, a mode in which processing marks remain on the steep slope of the laminated blazed diffraction optical element 506 is shown. In this case, from the first blaze member 508 side, that is, the layer side with a high refractive index (for example, refractive index = 1.58) to the second blaze member 510 side, that is, the low refractive index (for example, refractive index = 1.). When the subject light is applied to the layer side of 56), scattered light is generated on a steep slope due to the processing marks. That is, the subject light transmitted through the laminated blazed diffraction optical element 506 includes scattered light. The subject light including the scattered light is imaged on the image sensor of the digital camera, and the scattered surface is reflected in the captured image obtained by capturing the subject light by the image sensor.
 また、積層型ブレーズド回折光学素子506では、一例として図6に示すように、被写体光が第1ブレーズド部材508(屈折率が“1.58”の層)から緩斜面を介して第2ブレーズド部材510(屈折率が“1.56”の層)に入射され、再び、急斜面を介して第1ブレーズド部材508に入射されてから、緩斜面を介して第2ブレーズド部材510に入射される。ここで、被写体光が急斜面に入射される角度θ1次第で、急斜面で被写体光が屈折する。図6に示す例では、被写体光が急斜面に入射される角度θ1は5度であり、急斜面で被写体光が屈折する角度θ2は7度である。この結果、被写体光がイメージセンサによって撮像されることで得られる撮像画像には、被写体光の屈折によるゴーストが写り込んでしまう。 Further, in the laminated blazed grating element 506, as shown in FIG. 6 as an example, the subject light is transmitted from the first blazed member 508 (a layer having a refractive index of “1.58”) to the second blazed member via a gentle slope. It is incident on 510 (a layer having a refractive index of "1.56"), again incident on the first blazed member 508 via the steep slope, and then incident on the second blazed member 510 via the gentle slope. Here, the subject light is refracted on the steep slope depending on the angle θ1 at which the subject light is incident on the steep slope. In the example shown in FIG. 6, the angle θ1 at which the subject light is incident on the steep slope is 5 degrees, and the angle θ2 at which the subject light is refracted on the steep slope is 7 degrees. As a result, the ghost due to the refraction of the subject light is reflected in the captured image obtained by capturing the subject light by the image sensor.
 図6に示す例では、第1ブレーズド部材508から緩斜面を透過した被写体光が急斜面に入射されているが、図7に示す例では、第1ブレーズド部材508に入射された被写体光が緩斜面を介さずに急斜面に直接照射されている。この場合、角度θ1次第で、急斜面で被写体光が全反射する。例えば、角度θ1が0度以上11度以下の範囲の場合、被写体光は急斜面で全反射される。この結果、被写体光がイメージセンサによって撮像されることで得られる撮像画像には、被写体光の全反射によるゴーストが写り込んでしまう。 In the example shown in FIG. 6, the subject light transmitted from the first blazed member 508 through the gentle slope is incident on the steep slope, but in the example shown in FIG. 7, the subject light incident on the first blazed member 508 is incident on the gentle slope. The steep slope is directly irradiated without going through. In this case, depending on the angle θ1, the subject light is totally reflected on the steep slope. For example, when the angle θ1 is in the range of 0 degrees or more and 11 degrees or less, the subject light is totally reflected on a steep slope. As a result, the ghost due to the total reflection of the subject light is reflected in the captured image obtained by capturing the subject light by the image sensor.
 このような事情に鑑みて、本実施形態では、製造装置2(図1参照)が接合光学素子10(図1参照)を製造している。図8には、製造装置2による接合光学素子10の製造方法の手順の一例が示されている。 In view of such circumstances, in the present embodiment, the manufacturing apparatus 2 (see FIG. 1) manufactures the junction optical element 10 (see FIG. 1). FIG. 8 shows an example of a procedure for manufacturing the junction optical element 10 by the manufacturing apparatus 2.
 図8に示す例では、先ず、ステップST100で、製造装置2は、平凹レンズ13と平凸レンズ14との間に液体状態の接着剤20(図10参照)を充填する。詳しくは後述するが、液体状態の接着剤20は、2種類の接着剤(後述の第1接着剤20A及び第2接着剤20B)が混合された溶液である。 In the example shown in FIG. 8, first, in step ST100, the manufacturing apparatus 2 fills a liquid adhesive 20 (see FIG. 10) between the plano-concave lens 13 and the plano-convex lens 14. As will be described in detail later, the liquid adhesive 20 is a solution in which two types of adhesives (first adhesive 20A and second adhesive 20B described later) are mixed.
 接着剤20は、紫外線硬化樹脂であり、紫外線UV(図10参照)が照射されることによって硬化する。そこで、ステップST100の充填工程が終了すると、次のステップST200で、製造装置2は、ステップST100で平凹レンズ13と平凸レンズ14との間に充填された液体状態の2種類の接着剤(後述の第1接着剤20A及び第2接着剤20B)の濃度の分布(例えば、実質的には、後述の第1のモノマー23A及び第2のモノマー23Bの濃度の分布)を形成する。2種類の接着剤の濃度の分布の形成を実現するために、製造装置2は、平凹レンズ13と平凸レンズ14との間に充填された接着剤20に対して、後述の照度分布112(図19及び図20参照)に従って紫外線UVを照射することで接着剤20の硬化を開始させ、濃度分布形成工程を開始させる(図10参照)。 The adhesive 20 is an ultraviolet curable resin and is cured by being irradiated with ultraviolet UV (see FIG. 10). Therefore, when the filling step of step ST100 is completed, in the next step ST200, the manufacturing apparatus 2 is charged with two kinds of adhesives in a liquid state between the plano-concave lens 13 and the plano-convex lens 14 in step ST100 (described later). It forms a concentration distribution of the first adhesive 20A and the second adhesive 20B) (for example, substantially the concentration distribution of the first monomer 23A and the second monomer 23B described later). In order to realize the formation of the concentration distributions of the two types of adhesives, the manufacturing apparatus 2 has an illuminance distribution 112 (FIG. 2) described later with respect to the adhesive 20 filled between the plano-concave lens 13 and the plano-convex lens 14. By irradiating with ultraviolet UV according to 19 and FIG. 20), the adhesive 20 is started to be cured, and the concentration distribution forming step is started (see FIG. 10).
 そして、ステップST300で、製造装置2は、濃度分布形成工程が完了した接着剤20に対して、後述の照度分布113(図19参照)に従って紫外線UVを照射することで接着剤20を更に硬化させて固体にする(図10参照)。これにより、屈折率の分布がブレーズド型に形成された層が生成される(図18及び図20参照)。 Then, in step ST300, the manufacturing apparatus 2 further cures the adhesive 20 by irradiating the adhesive 20 for which the concentration distribution forming step has been completed with ultraviolet UV rays according to the illuminance distribution 113 (see FIG. 19) described later. To make it solid (see FIG. 10). This produces a layer in which the refractive index distribution is blazed (see FIGS. 18 and 20).
 一例として図9に示すように、ステップST100の充填工程では、先ず、ステップST110で、製造装置2は、平凹レンズ13の凹面13A及び平凸レンズ14の凸面14Aをクリーンアップする。次のステップST120で、製造装置2は、凹面13A(本開示の技術に係る「既定面」の一例)に液体状態の接着剤20を塗布する。次のステップST130で、製造装置2は、凹面13Aと凸面14Aとを貼り合わせる。次のステップST140で、製造装置2は、凹面13Aと凸面14Aとを擦り合わせて接着剤20の気泡を抜き、凹面13A及び凸面14Aの全面に接着剤20を薄く広げる。そして、ステップST150で、製造装置2は、端面からはみ出した接着剤20を除去する。 As an example, as shown in FIG. 9, in the filling step of step ST100, first, in step ST110, the manufacturing apparatus 2 cleans up the concave surface 13A of the plano-concave lens 13 and the convex surface 14A of the plano-convex lens 14. In the next step ST120, the manufacturing apparatus 2 applies the adhesive 20 in a liquid state to the concave surface 13A (an example of the “default surface” according to the technique of the present disclosure). In the next step ST130, the manufacturing apparatus 2 attaches the concave surface 13A and the convex surface 14A. In the next step ST140, the manufacturing apparatus 2 rubs the concave surface 13A and the convex surface 14A to remove air bubbles from the adhesive 20, and spreads the adhesive 20 thinly on the entire surfaces of the concave surface 13A and the convex surface 14A. Then, in step ST150, the manufacturing apparatus 2 removes the adhesive 20 protruding from the end face.
 なお、以下では、説明の便宜上、凹面13Aと凸面14Aとの間に液体状態の接着剤20が充填された状態の平凹レンズ13と平凸レンズ14との組み合わせを、接合前光学素子10Xとも称する。なお、ステップST100の充填工程に含まれる複数の工程のうちの少なくとも1つの工程は、製造装置2を用いずに手作業で行われるようにしてもよい。 In the following, for convenience of explanation, the combination of the plano-concave lens 13 and the plano-convex lens 14 in which the adhesive 20 in a liquid state is filled between the concave surface 13A and the convex surface 14A is also referred to as a pre-bonding optical element 10X. It should be noted that at least one of the plurality of steps included in the filling step of step ST100 may be performed manually without using the manufacturing apparatus 2.
 一例として図10に示すように、接合前光学素子10Xにおいて、平凹レンズ13と平凸レンズ14との間に充填された接着剤20は、液体状態であり、液体状態の第1接着剤20Aと液体状態の第2接着剤20Bとが混合された溶液である。なお、液体状態の接着剤20は、本開示の技術に係る「溶液」の一例である。 As an example, as shown in FIG. 10, in the pre-bonding optical element 10X, the adhesive 20 filled between the plano-concave lens 13 and the plano-convex lens 14 is in a liquid state, and the liquid state first adhesive 20A and the liquid state. It is a solution mixed with the second adhesive 20B in the state. The liquid adhesive 20 is an example of a "solution" according to the technique of the present disclosure.
 接着剤20には、液体状態(硬化前)の紫外線硬化樹脂21が含まれている。紫外線硬化樹脂21は、モノマー23及び重合開始剤24を有する。なお、ここでは、モノマー23を例示しているが、紫外線硬化樹脂21は、モノマー23に加えて、オリゴマーを含んでいてもよい。 The adhesive 20 contains an ultraviolet curable resin 21 in a liquid state (before curing). The UV curable resin 21 has a monomer 23 and a polymerization initiator 24. Although the monomer 23 is illustrated here, the ultraviolet curable resin 21 may contain an oligomer in addition to the monomer 23.
 モノマー23は、第1のモノマー23Aと第2のモノマー23Bとに大別される。第1のモノマー23A及び第2のモノマー23Bは、本開示の技術に係る「2つの材料」及び「2種類の硬化樹脂」の一例である。第1のモノマー23A及び第2のモノマー23Bは、外部から与えられた紫外線UVに反応することで硬化する。また、第1のモノマー23A及び第2のモノマー23Bは、紫外線UVに対する反応速度が異なる。第1のモノマー23Aの一例としては、メタクリル酸系モノマー(例えば、メタクリル酸メチル)が挙げられる。第2のモノマー23Bの一例としては、アクリル酸系モノマー(例えば、アクリル酸メチル)が挙げられる。 The monomer 23 is roughly classified into a first monomer 23A and a second monomer 23B. The first monomer 23A and the second monomer 23B are examples of "two materials" and "two kinds of cured resins" according to the technique of the present disclosure. The first monomer 23A and the second monomer 23B are cured by reacting with ultraviolet UV given from the outside. Further, the first monomer 23A and the second monomer 23B have different reaction rates to ultraviolet UV. An example of the first monomer 23A is a methacrylic acid-based monomer (for example, methyl methacrylate). An example of the second monomer 23B is an acrylic acid-based monomer (for example, methyl acrylate).
 このように構成された接着剤20が平凹レンズ13と平凸レンズ14との間に充填された状態で、例えば、平凹レンズ13側から紫外線UVが照射された場合、平凹レンズ13を透過した紫外線UVによって、重合開始剤24がラジカルを発生させる。これにより、重合開始剤24を中心としたモノマー23のラジカル重合反応が開始され、モノマー23の連鎖的な付加反応の繰り返しによって、紫外線硬化樹脂21は徐々にポリマー化していく。 When the adhesive 20 thus configured is filled between the plano-concave lens 13 and the plano-convex lens 14, for example, when ultraviolet UV is irradiated from the plano-concave lens 13 side, the ultraviolet UV transmitted through the plano-concave lens 13. Causes the polymerization initiator 24 to generate radicals. As a result, the radical polymerization reaction of the monomer 23 centered on the polymerization initiator 24 is started, and the ultraviolet curable resin 21 is gradually polymerized by repeating the chained addition reaction of the monomer 23.
 紫外線UVの照射初期は、紫外線硬化樹脂21は未だ液体状態にあり、紫外線硬化樹脂21には、多数の孤立した小分子量の分子鎖を有する系が形成されている。時間経過によりラジカル重合反応が進むと、紫外線硬化樹脂21はゲルの状態になる。 At the initial stage of UV UV irradiation, the UV curable resin 21 is still in a liquid state, and the UV curable resin 21 is formed with a system having a large number of isolated small molecular weight molecular chains. When the radical polymerization reaction proceeds with the passage of time, the ultraviolet curable resin 21 becomes a gel.
 ラジカル重合反応が更に進み、実質的に全てのモノマー23がポリマー化して、ラジカル重合反応が停止した場合、紫外線硬化樹脂21は固体の状態になる。 When the radical polymerization reaction further proceeds, substantially all the monomers 23 are polymerized, and the radical polymerization reaction is stopped, the ultraviolet curable resin 21 becomes a solid state.
 第1接着剤20Aが硬化して固体状態になった場合の屈折率は、第2接着剤20Bが硬化して固体状態になった場合の屈折率よりも高い。また、第1接着剤20Aが硬化して固体状態になった場合の波長分散は、第2接着剤20Bが硬化して固体状態になった場合の波長分散よりも低い。すなわち、固体状態の第1接着剤20Aは、固体状態の第2接着剤20Bと対比した場合、高屈折率低分散材料と言える。逆に、固体状態の第2接着剤20Bは、固体状態の第1接着剤20Aと対比した場合、低屈折率高分散材料と言える。 The refractive index when the first adhesive 20A is cured and becomes a solid state is higher than the refractive index when the second adhesive 20B is cured and becomes a solid state. Further, the wavelength dispersion when the first adhesive 20A is cured and becomes a solid state is lower than the wavelength dispersion when the second adhesive 20B is cured and becomes a solid state. That is, it can be said that the first adhesive 20A in the solid state is a material having a high refractive index and low dispersion when compared with the second adhesive 20B in the solid state. On the contrary, the solid state second adhesive 20B can be said to be a low refractive index and high dispersion material when compared with the solid state first adhesive 20A.
 ところで、第1のモノマー23Aの紫外線UVに対する反応速度、及び第2のモノマー23Bの紫外線UVに対する反応速度は異なっているため、紫外線UVが照射されることによる硬化の速度も第1のモノマー23Aと第2のモノマー23Bとでは異なる。第1接着剤20Aの主成分は第1のモノマー23Aであり、第2接着剤20Bの主成分は第2のモノマー23Bであるので、第1のモノマー23Aと第2のモノマー23Bとで硬化の速度が異なるということは、第1接着剤20Aの硬化の速度と第2接着剤20Bの硬化の速度とが異なるということを意味する。 By the way, since the reaction rate of the first monomer 23A to ultraviolet UV and the reaction rate of the second monomer 23B to ultraviolet UV are different, the curing rate by irradiation with ultraviolet UV is also different from that of the first monomer 23A. It is different from the second monomer 23B. Since the main component of the first adhesive 20A is the first monomer 23A and the main component of the second adhesive 20B is the second monomer 23B, the first monomer 23A and the second monomer 23B are cured. The difference in the rate means that the rate of curing of the first adhesive 20A and the rate of curing of the second adhesive 20B are different.
 第1接着剤20Aの硬化の速度と第2接着剤20Bの硬化の速度とが異なることで、接着剤20が液体状態から固体状態へ遷移する過程で、接合層15内での第1接着剤20Aの濃度と第2接着剤20Bの濃度とに違いが生じる。接合層15内での第1接着剤20Aの濃度と第2接着剤20Bの濃度との違いは、接着剤20が固体状態になった接合層15で屈折率分布114(図20参照)となって現れる。すなわち、接合層15では、モノマー23のラジカル重合反応が開始され、モノマー23の連鎖的な付加反応の繰り返しによって第1接着剤20A及び第2接着剤20Bの濃度比による屈折率分布114(図20参照)が形成される。なお、第1接着剤20Aの主成分は、第1のモノマー23Aであり、第2接着剤20Bの主成分は、第2のモノマー23Bであるため、接着剤20が固体状態になった接合層15では、第1のモノマー23A及び第2のモノマー23Bの濃度比が屈折率分布114(図20参照)となって現れる。 Due to the difference between the curing rate of the first adhesive 20A and the curing rate of the second adhesive 20B, the first adhesive in the bonding layer 15 is in the process of transitioning from the liquid state to the solid state of the adhesive 20. There is a difference between the concentration of 20A and the concentration of the second adhesive 20B. The difference between the concentration of the first adhesive 20A and the concentration of the second adhesive 20B in the bonding layer 15 is the refractive index distribution 114 (see FIG. 20) in the bonding layer 15 in which the adhesive 20 is in a solid state. Appears. That is, in the bonding layer 15, the radical polymerization reaction of the monomer 23 is started, and the refractive index distribution 114 based on the concentration ratio of the first adhesive 20A and the second adhesive 20B is repeated by repeating the chained addition reaction of the monomer 23 (FIG. 20). See) is formed. Since the main component of the first adhesive 20A is the first monomer 23A and the main component of the second adhesive 20B is the second monomer 23B, the bonding layer in which the adhesive 20 is in a solid state In 15, the concentration ratio of the first monomer 23A and the second monomer 23B appears as a refractive index distribution 114 (see FIG. 20).
 接合層15の屈折率及び波長分散の設計の自由度を高めるために、第1接着剤20Aに第1の無機ナノ粒子25Aが含まれており、第2接着剤20Bに第2の無機ナノ粒子25Bが含まれていることが好ましい。なお、金属ナノ粒子が含まれていない場合、シランカップリング剤26が不要となる。このように無機ナノ粒子25及びシランカップリング剤26が不要になれば、材料コストの削減に寄与することができる。 In order to increase the degree of freedom in designing the refractive index and wavelength dispersion of the bonding layer 15, the first adhesive 20A contains the first inorganic nanoparticles 25A, and the second adhesive 20B contains the second inorganic nanoparticles. It is preferable that 25B is contained. When the metal nanoparticles are not contained, the silane coupling agent 26 becomes unnecessary. If the inorganic nanoparticles 25 and the silane coupling agent 26 are not required in this way, it is possible to contribute to the reduction of material cost.
 第1接着剤20Aに第1の無機ナノ粒子25Aが含まれており、第2接着剤20Bに第2の無機ナノ粒子25Bが含まれている場合、第1接着剤20Aは、第1のモノマー23A及び第1の無機ナノ粒子25Aを有する。無機ナノ粒子25Aは、第1のシランカップリング剤26Aで表面修飾されている。第2接着剤20Bは、第2のモノマー23B、第2の無機ナノ粒子25Bを有する。第2の無機ナノ粒子25Bは、第2のシランカップリング剤26Bで表面修飾されている。第1の無機ナノ粒子25Aは、第1のモノマー23Aに対して反応するナノ粒子である。第1の無機ナノ粒子25Aの一例としては、ZrOナノ粒子等の金属酸化物ナノ粒子が挙げられる。第2の無機ナノ粒子25Bは、第2のモノマー23Bに対して反応するナノ粒子である。第2の無機ナノ粒子25Bの一例としては、ITO(Indium Tin Oxide)ナノ粒子等の金属酸化物ナノ粒子が挙げられる。なお、無機ナノ粒子は、金属ナノ粒子であってもよいし、金属と金属酸化物とを組み合わせたナノ粒子、例えば、コアシェル構造のナノ粒子であってもよい。 When the first adhesive 20A contains the first inorganic nanoparticles 25A and the second adhesive 20B contains the second inorganic nanoparticles 25B, the first adhesive 20A is the first monomer. It has 23A and 25A of first inorganic nanoparticles. The inorganic nanoparticles 25A are surface-modified with the first silane coupling agent 26A. The second adhesive 20B has a second monomer 23B and a second inorganic nanoparticles 25B. The second inorganic nanoparticles 25B are surface-modified with the second silane coupling agent 26B. The first inorganic nanoparticles 25A are nanoparticles that react with the first monomer 23A. As an example of the first inorganic nanoparticles 25A, metal oxide nanoparticles such as ZrO2 nanoparticles can be mentioned. The second inorganic nanoparticles 25B are nanoparticles that react with the second monomer 23B. Examples of the second inorganic nanoparticles 25B include metal oxide nanoparticles such as ITO (Indium Tin Oxide) nanoparticles. The inorganic nanoparticles may be metal nanoparticles or nanoparticles in which a metal and a metal oxide are combined, for example, nanoparticles having a core-shell structure.
 なお、以下では、説明の便宜上、第1の無機ナノ粒子25Aと第2の無機ナノ粒子25Bとを特に区別する必要がない場合、「無機ナノ粒子25」と称する。また、以下では、説明の便宜上、第1のシランカップリング剤26Aと第2のシランカップリング剤26Bとを特に区別する必要がない場合、「シランカップリング剤26」と称する。 In the following, for convenience of explanation, when it is not necessary to particularly distinguish between the first inorganic nanoparticles 25A and the second inorganic nanoparticles 25B, they are referred to as "inorganic nanoparticles 25". Further, in the following, for convenience of explanation, when it is not necessary to particularly distinguish between the first silane coupling agent 26A and the second silane coupling agent 26B, it is referred to as "silane coupling agent 26".
 詳しくは後述するが、シランカップリング剤26は、分子内に有機材料及び無機材料と結合する反応基(例えば、有機材料と結合する反応基及び無機材料と結合する反応基)を有しており、反応基を用いて有機材料と無機材料とを結合させる。 As will be described in detail later, the silane coupling agent 26 has a reactive group that binds to the organic material and the inorganic material (for example, a reactive group that binds to the organic material and a reactive group that binds to the inorganic material) in the molecule. , The organic material and the inorganic material are bonded using a reactive group.
 無機ナノ粒子25は、シランカップリング剤26を介してモノマー23と結合することで、接合層15内での屈折率を制御したり、接合層15内での波長分散を制御したりする。 The inorganic nanoparticles 25 bind to the monomer 23 via the silane coupling agent 26 to control the refractive index in the bonding layer 15 and control the wavelength dispersion in the bonding layer 15.
 一例として図11に示すように、第1の無機ナノ粒子25Aは、複数の第1のモノマー23A(図10参照)をラジカル重合反応させることによって生成された第1のポリマー27Aに対して、第1のシランカップリング剤26Aを介して結合されている。 As an example, as shown in FIG. 11, the first inorganic nanoparticles 25A are different from the first polymer 27A produced by radical polymerization reaction of a plurality of first monomers 23A (see FIG. 10). It is bound via the silane coupling agent 26A of 1.
 第1のシランカップリング剤26Aは、第1のポリマー27Aと同一の反応基である有機反応基X1を有しており、有機反応基X1を第1のポリマー27Aと化学反応(ラジカル重合反応)させることで、第1のポリマー27Aと結合する。また、第1のシランカップリング剤26Aは、無機反応基R1を有しており、無機反応基R1を第1の無機ナノ粒子25Aと化学反応させることで、第1の無機ナノ粒子25Aと結合する。このように、第1のシランカップリング剤26Aが第1のポリマー27A及び第1の無機ナノ粒子25Aに対して化学反応することで、第1の無機ナノ粒子25Aに対して、有機反応基X1が表面修飾される。 The first silane coupling agent 26A has an organic reactive group X1 which is the same reactive group as the first polymer 27A, and the organic reactive group X1 is chemically reacted with the first polymer 27A (radical polymerization reaction). By allowing it to bind to the first polymer 27A. Further, the first silane coupling agent 26A has an inorganic reactive group R1 and is bonded to the first inorganic nanoparticles 25A by chemically reacting the inorganic reactive group R1 with the first inorganic nanoparticles 25A. do. As described above, the first silane coupling agent 26A chemically reacts with the first polymer 27A and the first inorganic nanoparticles 25A, whereby the organic reactive group X1 with respect to the first inorganic nanoparticles 25A. Is surface-modified.
 なお、図11に示す例では、第1のポリマー27Aの一例として、メタクリル酸系ポリマーが示されている。この場合、有機反応基X1として、例えば、メタクリル基が用いられる。また、無機反応基R1の一例としては、メトキシ基又はエトキシ基等が挙げられる。 In the example shown in FIG. 11, a methacrylic acid-based polymer is shown as an example of the first polymer 27A. In this case, for example, a methacrylic group is used as the organic reaction group X1. Moreover, as an example of the inorganic reaction group R1, a methoxy group, an ethoxy group and the like can be mentioned.
 第2の無機ナノ粒子25Bは、複数の第2のモノマー23B(図10参照)をラジカル重合反応させることによって生成された第2のポリマー27Bに対して、第2のシランカップリング剤26Bを介して結合されている。 The second inorganic nanoparticles 25B are formed by subjecting a plurality of second monomers 23B (see FIG. 10) to a radical polymerization reaction with respect to the second polymer 27B via a second silane coupling agent 26B. Is combined.
 第2のシランカップリング剤26Bは、第2のポリマー27Bと同一の反応基である有機反応基X2を有しており、有機反応基X2を第2のポリマー27Bと化学反応(ラジカル重合反応)させることで、第2のポリマー27Bと結合する。また、第2のシランカップリング剤26Bは、無機反応基R2を有しており、無機反応基R2を第2の無機ナノ粒子25Bと化学反応させることで、第2の無機ナノ粒子25Bと結合する。このように、第2のシランカップリング剤26Bが第2のポリマー27B及び第2の無機ナノ粒子25Bに対して化学反応することで、第2の無機ナノ粒子25Bに対して、有機反応基X2が表面修飾される。 The second silane coupling agent 26B has an organic reactive group X2 which is the same reactive group as the second polymer 27B, and the organic reactive group X2 is chemically reacted with the second polymer 27B (radical polymerization reaction). By letting it bind to the second polymer 27B. Further, the second silane coupling agent 26B has an inorganic reactive group R2, and by chemically reacting the inorganic reactive group R2 with the second inorganic nanoparticles 25B, it binds to the second inorganic nanoparticles 25B. do. As described above, the second silane coupling agent 26B chemically reacts with the second polymer 27B and the second inorganic nanoparticles 25B, whereby the organic reactive group X2 with respect to the second inorganic nanoparticles 25B. Is surface-modified.
 なお、図11に示す例では、第2のポリマー27Bの一例として、アクリル酸系ポリマーが示されている。この場合、有機反応基X2として、例えば、アクリロイル基が用いられる。また、無機反応基R2の一例としては、メトキシ基又はエトキシ基等が挙げられる。 In the example shown in FIG. 11, an acrylic acid-based polymer is shown as an example of the second polymer 27B. In this case, for example, an acryloyl group is used as the organic reaction group X2. Moreover, as an example of an inorganic reaction group R2, a methoxy group, an ethoxy group and the like can be mentioned.
 ここで、図12及び図13を参照しながら、2種類のモノマーA及びBを混ぜたときの共重合反応の特性について説明する。 Here, with reference to FIGS. 12 and 13, the characteristics of the copolymerization reaction when the two types of monomers A and B are mixed will be described.
 図12には、モノマーA及びモノマーBという2種類のモノマーを用いた共重合反応の態様例が模式的に示されている。図12に示す例において、kAAは、ポリマーRに付加されているモノマーAのラジカルとモノマーAとが反応して結合する場合の反応速度係数であり、KABは、ポリマーRに付加されているモノマーAのラジカルとモノマーBとが反応して結合する場合の反応速度係数であり、KBAは、ポリマーRに付加されているモノマーBのラジカルとモノマーAとが反応して結合する場合の反応速度係数であり、KBBは、ポリマーRに付加されているモノマーBのラジカルとモノマーBとが反応して結合する場合の反応速度係数である。反応性比r1は、KABに対する反応速度係数kAAの割合であり、反応性比r2は、KBBに対するKBAの割合である。 FIG. 12 schematically shows an example of a copolymerization reaction using two types of monomers, monomer A and monomer B. In the example shown in FIG. 12, kAA is a reaction rate coefficient when the radical of the monomer A added to the polymer R and the monomer A react and bond with each other, and KAB is added to the polymer R. It is a reaction rate coefficient when the radical of the monomer A and the monomer B are reacted and bonded, and KBA is the case where the radical of the monomer B added to the polymer R and the monomer A are reacted and bonded. It is a reaction rate coefficient, and KBB is a reaction rate coefficient when the radical of the monomer B added to the polymer R and the monomer B react and bond with each other. The reaction ratio r1 is the ratio of the reaction rate coefficient kAA to KAB , and the reaction ratio r2 is the ratio of KBA to KBB .
 反応性比r1は、モノマーA同士の反応のし易さを示しており、反応性比r2は、モノマーB同士の反応のし易さを示している。従って、モノマーAとモノマーBとの共重合反応では、反応性比r1及びr2次第で、モノマーA及びモノマーBの濃度比が変わる。モノマーA及びモノマーBの濃度比が変われば、高分子内におけるモノマーAとモノマーBとの構成比も変わる。 The reactivity ratio r1 indicates the ease of reaction between the monomers A, and the reactivity ratio r2 indicates the ease of reaction between the monomers B. Therefore, in the copolymerization reaction between the monomer A and the monomer B, the concentration ratios of the monomer A and the monomer B change depending on the reactivity ratios r1 and r2. If the concentration ratio of the monomer A and the monomer B changes, the composition ratio of the monomer A and the monomer B in the polymer also changes.
 高分子内におけるモノマーAとモノマーBとの構成比を決めるためには、例えば、硬化前のモノマーAの濃度と、モノマーA及びモノマーBを用いた共重合反応によって得られる高分子内でのモノマーAの構成比との対応関係を事前に把握しておくことが重要である。硬化前のモノマーAの濃度と高分子内のモノマーAの構成比(高分子内でのモノマーAの占有率)との関係は、例えば、図13に示すように、共重合組成曲線F1~F5として一般的に知られている。共重合組成曲線F1~F5は、モノマーAが共通であり、モノマーBの種類が異なる場合の曲線である。図13に示す例では、5種類のモノマーBに対応する共重合組成曲線F1~F5が示されている。共重合組成曲線F1~F5において、横軸は、硬化前のモノマーAの濃度を示しており、縦軸は、高分子中のモノマーAの構成比を示している。 In order to determine the composition ratio of the monomer A and the monomer B in the polymer, for example, the concentration of the monomer A before curing and the monomer in the polymer obtained by the copolymerization reaction using the monomer A and the monomer B It is important to understand the correspondence with the composition ratio of A in advance. The relationship between the concentration of the monomer A before curing and the composition ratio of the monomer A in the polymer (occupancy of the monomer A in the polymer) is, for example, as shown in FIG. 13, the copolymer composition curves F1 to F5. Commonly known as. The copolymerization composition curves F1 to F5 are curves when the monomer A is common and the types of the monomers B are different. In the example shown in FIG. 13, the copolymer composition curves F1 to F5 corresponding to the five types of monomers B are shown. In the copolymer composition curves F1 to F5, the horizontal axis shows the concentration of the monomer A before curing, and the vertical axis shows the composition ratio of the monomer A in the polymer.
 図13に示す例では、共重合組成曲線F1が、反応性比r1>1、かつ、反応性比r2<1が成立する曲線である。共重合組成曲線F1は、硬化前のモノマーA及びモノマーBの濃度が同じであったとしても、高分子内でモノマーBよりもモノマーAの構成比の方が高くなる特性を示している。なお、共重合組成曲線F1は、モノマーAがメタクリル酸メチルであり、かつ、モノマーBがアクリル酸メチルの場合の共重合組成曲線である。メタクリル酸メチルの反応性比r1は“1.91”であり、アクリル酸メチルの反応性比r2は、“0.50”である。 In the example shown in FIG. 13, the copolymerization composition curve F1 is a curve in which the reactivity ratio r1> 1 and the reactivity ratio r2 <1 are established. The copolymerization composition curve F1 shows a characteristic that the composition ratio of the monomer A is higher than that of the monomer B in the polymer even if the concentrations of the monomer A and the monomer B before curing are the same. The copolymer composition curve F1 is a copolymer composition curve when the monomer A is methyl methacrylate and the monomer B is methyl acrylate. The reactivity ratio r1 of methyl methacrylate is "1.91" and the reactivity ratio r2 of methyl acrylate is "0.50".
 一例として図14に示すように、本体11は、光源30、照射光学系31、強度変調素子32、及びステージ33を有する。光源30は、光源ドライバ35の制御下で、紫外線UVを発する。光源30は、例えばLED(Light Emitting Diode)、及び/又は、ブラックライトである。照射光学系31は、光源30から発せられた紫外線UVを、接合前光学素子10Xに向けて照射する。強度変調素子32は、強度変調素子ドライバ36の制御下で、照射光学系31を通過した紫外線UVの強度を変調する。強度変調素子32は、例えば液晶を用いた素子であり、接合前光学素子10Xの特定の領域における紫外線UVの強度を、他の領域よりも強めたり弱めたりすることが可能である。ステージ33は、接合前光学素子10Xを保持する。なお、強度変調素子32は、DMD(Digital Micromirror Device)を用いた素子であってもよい。 As an example, as shown in FIG. 14, the main body 11 has a light source 30, an irradiation optical system 31, an intensity modulation element 32, and a stage 33. The light source 30 emits ultraviolet UV under the control of the light source driver 35. The light source 30 is, for example, an LED (Light Emitting Diode) and / or a black light. The irradiation optical system 31 irradiates the ultraviolet UV emitted from the light source 30 toward the pre-bonding optical element 10X. The intensity modulation element 32 modulates the intensity of ultraviolet UV rays that have passed through the irradiation optical system 31 under the control of the intensity modulation element driver 36. The intensity modulation element 32 is, for example, an element using a liquid crystal display, and can increase or decrease the intensity of ultraviolet UV rays in a specific region of the pre-junction optical element 10X as compared with other regions. The stage 33 holds the pre-junction optical element 10X. The intensity modulation element 32 may be an element using a DMD (Digital Micromirror Device).
 本体11は、更に、受信部37、リードライト(以下、RW(Read Write)と略す)制御部38、記憶部39、及び主制御部40を有する。受信部37は、紫外線UVの照射プロファイル41を制御装置12から受信する。受信部37は、照射プロファイル41をRW制御部38に出力する。 The main body 11 further includes a receiving unit 37, a read / write (hereinafter abbreviated as RW (Read Write)) control unit 38, a storage unit 39, and a main control unit 40. The receiving unit 37 receives the ultraviolet UV irradiation profile 41 from the control device 12. The receiving unit 37 outputs the irradiation profile 41 to the RW control unit 38.
 RW制御部38は、照射プロファイル41を記憶部39に記憶する。また、RW制御部38は、照射プロファイル41を記憶部39から読み出し、主制御部40に出力する。RW制御部38は、受信部37において新たな照射プロファイル41が受信される度に、記憶部39の照射プロファイル41を書き換える。記憶部39は、メモリ、ストレージデバイスとも言い換えられ、例えばフラッシュメモリである。 The RW control unit 38 stores the irradiation profile 41 in the storage unit 39. Further, the RW control unit 38 reads out the irradiation profile 41 from the storage unit 39 and outputs the irradiation profile 41 to the main control unit 40. The RW control unit 38 rewrites the irradiation profile 41 of the storage unit 39 each time a new irradiation profile 41 is received by the receiving unit 37. The storage unit 39 is also referred to as a memory or a storage device, and is, for example, a flash memory.
 主制御部40は、本体11の全体の動作を制御する。具体的には、主制御部40は、照射プロファイル41に従って、光源ドライバ35及び強度変調素子ドライバ36を動作させる。なお、主制御部40は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を備えたコンピュータである。 The main control unit 40 controls the overall operation of the main body 11. Specifically, the main control unit 40 operates the light source driver 35 and the intensity modulation element driver 36 according to the irradiation profile 41. The main control unit 40 is a computer equipped with a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
 一例として図15に示すように、制御装置12は、コンピュータによって実現される装置であり、制御装置12は、ストレージデバイス50、メモリ51、CPU52、通信部53、ディスプレイ54、および入力デバイス55を備えている。これらはバス56を介して相互接続されている。 As an example, as shown in FIG. 15, the control device 12 is a device realized by a computer, and the control device 12 includes a storage device 50, a memory 51, a CPU 52, a communication unit 53, a display 54, and an input device 55. ing. These are interconnected via a bus 56.
 ストレージデバイス50は、制御装置12に内蔵されたハードディスクドライブである。ストレージデバイス50には、オペレーティングシステム等の制御プログラム、各種アプリケーションプログラム、及びこれらのプログラムに付随する各種データ等が記憶されている。なお、ここでは、制御装置12にハードディスクドライブが内蔵されているが、これに限らず、ハードディスクドライブは、ケーブル及び/又はネットワーク等を通じて制御装置12に接続されていてもよい。また、ハードディスクドライブに代えてソリッドステートドライブを用いてもよい。 The storage device 50 is a hard disk drive built in the control device 12. The storage device 50 stores control programs such as an operating system, various application programs, and various data associated with these programs. Here, the control device 12 has a built-in hard disk drive, but the present invention is not limited to this, and the hard disk drive may be connected to the control device 12 via a cable and / or a network or the like. Further, a solid state drive may be used instead of the hard disk drive.
 メモリ51は、CPU52によって用いられるワークメモリである。CPU52は、ストレージデバイス50に記憶されたプログラムをメモリ51へロードして、プログラムにしたがった処理を実行することにより、コンピュータの各部を統括的に制御する。 The memory 51 is a work memory used by the CPU 52. The CPU 52 comprehensively controls each part of the computer by loading the program stored in the storage device 50 into the memory 51 and executing the processing according to the program.
 通信部53は、LAN(Local Area Network)等のネットワークを介した各種情報の伝送制御を行うネットワークインターフェースである。通信部53は、本体11との通信を担う。ディスプレイ54は、CPU52の制御下で、各種画面を表示する。制御装置12は、各種画面を通じて、入力デバイス55からの操作指示の入力を受け付ける。入力デバイス55は、キーボード、マウス、タッチパネル等である。 The communication unit 53 is a network interface that controls transmission of various information via a network such as a LAN (Local Area Network). The communication unit 53 is responsible for communication with the main body 11. The display 54 displays various screens under the control of the CPU 52. The control device 12 receives input of an operation instruction from the input device 55 through various screens. The input device 55 is a keyboard, a mouse, a touch panel, or the like.
 制御装置12のストレージデバイス50には、作動プログラム60が記憶されている。作動プログラム60は、コンピュータを制御装置12として機能させるためのアプリケーションプログラムである。ストレージデバイス50には、照射プロファイル41及び生成参照情報61も記憶される。 The operation program 60 is stored in the storage device 50 of the control device 12. The operation program 60 is an application program for operating the computer as the control device 12. The storage device 50 also stores the irradiation profile 41 and the generation reference information 61.
 作動プログラム60が起動されると、CPU52は、メモリ51等と協働して、表示制御部65、受付部66、生成部67、RW制御部68、及び送信部69として動作する。 When the operation program 60 is started, the CPU 52 operates as a display control unit 65, a reception unit 66, a generation unit 67, an RW control unit 68, and a transmission unit 69 in cooperation with the memory 51 and the like.
 表示制御部65は、ディスプレイ54への各種画面の表示を制御する。各種画面には、屈折率分布情報75等の設定に用いられる設定画面80(図17参照)等が含まれる。 The display control unit 65 controls the display of various screens on the display 54. The various screens include a setting screen 80 (see FIG. 17) used for setting the refractive index distribution information 75 and the like.
 受付部66は、設定画面80を通じて入力デバイス55により設定された屈折率分布情報75、第1光学素子情報76、第2光学素子情報77、及び接着剤情報78を受け付ける。受付部66は、屈折率分布情報75、第1光学素子情報76、第2光学素子情報77、及び接着剤情報78を生成部67に出力する。 The reception unit 66 receives the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 set by the input device 55 through the setting screen 80. The reception unit 66 outputs the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 to the generation unit 67.
 生成部67は、生成参照情報61を参照して、屈折率分布情報75、第1光学素子情報76、第2光学素子情報77、及び接着剤情報78から照射プロファイル41を生成する。生成参照情報61は、屈折率分布情報75、第1光学素子情報76、第2光学素子情報77、及び接着剤情報78を入力データとし、照射プロファイル41を出力データとするデータテーブル、関数、及び/又は機械学習モデル等である。生成部67は、照射プロファイル41をRW制御部68に出力する。 The generation unit 67 generates an irradiation profile 41 from the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 with reference to the generation reference information 61. The generation reference information 61 is a data table, a function, and a data table having the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 as input data, and the irradiation profile 41 as output data. / Or a machine learning model or the like. The generation unit 67 outputs the irradiation profile 41 to the RW control unit 68.
 RW制御部68は、ストレージデバイス50への各種データの記憶、及びストレージデバイス50内の各種データの読み出しを制御する。例えば、RW制御部68は、ストレージデバイス50から生成参照情報61を読み出し、生成部67に出力する。 The RW control unit 68 controls the storage of various data in the storage device 50 and the reading of various data in the storage device 50. For example, the RW control unit 68 reads the generation reference information 61 from the storage device 50 and outputs it to the generation unit 67.
 RW制御部68は、生成部67からの照射プロファイル41を、ストレージデバイス50に記憶する。また、RW制御部68は、ストレージデバイス50から照射プロファイル41を読み出し、送信部69に出力する。送信部69は、照射プロファイル41を本体11に送信する。 The RW control unit 68 stores the irradiation profile 41 from the generation unit 67 in the storage device 50. Further, the RW control unit 68 reads the irradiation profile 41 from the storage device 50 and outputs the irradiation profile 41 to the transmission unit 69. The transmission unit 69 transmits the irradiation profile 41 to the main body 11.
 一例として図17に示すように、設定画面80は、屈折率分布情報入力領域81、第1光学素子情報入力領域82、第2光学素子情報入力領域83、第1接着剤情報入力領域84、及び第2接着剤情報入力領域85を有するグラフィックユーザインタフェースである。 As an example, as shown in FIG. 17, the setting screen 80 has a refractive index distribution information input area 81, a first optical element information input area 82, a second optical element information input area 83, a first adhesive information input area 84, and A graphic user interface having a second adhesive information input area 85.
 屈折率分布情報入力領域81は、屈折率分布情報75の入力に用いられる画面領域である。屈折率分布情報75は、後述する屈折率分布114(図18及び図20参照)を示す情報である。詳しくは後述するが、屈折率分布114は、接合層15の膜厚内で被写体光が通過するための必要条件として、“h<t・tanθc”の不等式(図20参照)、及び“θc=asin(Na/Nb)”の等式(図20参照)が成立する分布とされている。 The refractive index distribution information input area 81 is a screen area used for inputting the refractive index distribution information 75. The refractive index distribution information 75 is information showing the refractive index distribution 114 (see FIGS. 18 and 20) described later. As will be described in detail later, the refractive index distribution 114 is a necessary condition for the subject light to pass within the film thickness of the bonding layer 15, and is an inequality of “h <t · tan θc” (see FIG. 20) and “θc =”. The distribution is such that the equation of "asin (Na / Nb)" (see FIG. 20) holds.
 屈折率分布情報入力領域81には、入力ボックス87及び参照ボタン88が設けられている。入力ボックス87は、屈折率分布情報75を表すファイル名が入力されるボックスである。参照ボタン88は、屈折率分布情報75を表すファイルをファイルディレクトリから検索する場合にオンされるボタンである。 The refractive index distribution information input area 81 is provided with an input box 87 and a reference button 88. The input box 87 is a box in which a file name representing the refractive index distribution information 75 is input. The reference button 88 is a button that is turned on when searching a file representing the refractive index distribution information 75 from the file directory.
 第1光学素子情報入力領域82及び第2光学素子情報入力領域83は、第1光学素子及び第2光学素子に関する情報、すなわち、第1光学素子情報76(図16参照)及び第2光学素子情報77(図16参照)の入力に用いられる画面領域である。ここで、第1光学素子及び第2光学素子とは、例えば、接合光学素子10に用いられる一対のレンズを指す。なお、本実施形態では、第1光学素子として、平凹レンズ13(図1及び図2参照)が用いられており、第2光学素子として、平凸レンズ14(図1及び図3参照)が用いられている。 The first optical element information input area 82 and the second optical element information input area 83 are information about the first optical element and the second optical element, that is, the first optical element information 76 (see FIG. 16) and the second optical element information. This is a screen area used for inputting 77 (see FIG. 16). Here, the first optical element and the second optical element refer to, for example, a pair of lenses used in the junction optical element 10. In this embodiment, a plano-concave lens 13 (see FIGS. 1 and 2) is used as the first optical element, and a plano-convex lens 14 (see FIGS. 1 and 3) is used as the second optical element. ing.
 第1光学素子情報入力領域82には、プルダウンメニューボックス89及び90が設けられている。プルダウンメニューボックス89のメニューボタンがオンされると、第1光学素子として用いることが可能な複数のレンズの種類がリスト化されたプルダウンメニューが表示される。プルダウンメニューに表示された複数のレンズの種類は、入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って択一的に選択され、選択されたレンズの種類がプルダウンメニューボックス89の表示欄に表示される。 The pull- down menu boxes 89 and 90 are provided in the first optical element information input area 82. When the menu button of the pull-down menu box 89 is turned on, a pull-down menu listing a plurality of types of lenses that can be used as the first optical element is displayed. The plurality of lens types displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected lens type is displayed in the pull-down menu box 89. It is displayed in the column.
 プルダウンメニューボックス90のメニューボタンがオンされると、プルダウンメニューボックス89を用いて選択されたレンズの材質がリスト化されたプルダウンメニューが表示される。プルダウンメニューに表示された複数の材質は、入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って択一的に選択され、選択された材質がプルダウンメニューボックス90の表示欄に表示される。 When the menu button of the pull-down menu box 90 is turned on, a pull-down menu listing the materials of the lenses selected using the pull-down menu box 89 is displayed. The plurality of materials displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected material is displayed in the display field of the pull-down menu box 90. To.
 第1光学素子情報入力領域82には、入力ボックス91、92及び93が設けられている。入力ボックス91には、プルダウンメニューボックス89を用いて選択されたレンズの外径が入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って入力される。入力ボックス92には、プルダウンメニューボックス89を用いて選択されたレンズの厚み(図17に示す例では「中心厚」と表記)が入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って入力される。入力ボックス93には、プルダウンメニューボックス89を用いて選択されたレンズの曲率半径が入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って入力される。なお、レンズの外径、レンズの中心の厚み、及びレンズの曲率半径の単位はmmである。 Input boxes 91, 92 and 93 are provided in the first optical element information input area 82. The outer diameter of the lens selected using the pull-down menu box 89 is input to the input box 91 according to the instructions accepted by the input device 55 (see FIGS. 15 and 16). In the input box 92, the thickness of the lens selected using the pull-down menu box 89 (denoted as “center thickness” in the example shown in FIG. 17) is an instruction received by the input device 55 (see FIGS. 15 and 16). Is entered according to. In the input box 93, the radius of curvature of the lens selected using the pull-down menu box 89 is input according to the instructions accepted by the input device 55 (see FIGS. 15 and 16). The unit of the outer diameter of the lens, the thickness of the center of the lens, and the radius of curvature of the lens is mm.
 第2光学素子情報入力領域83は、第2光学素子情報77について第1光学素子情報入力領域82と同様の目的で用いられる画面領域であり、プルダウンメニューボックス89に対応するプルダウンメニューボックス94、プルダウンメニューボックス90に対応するプルダウンメニューボックス95、入力ボックス91に対応する入力ボックス96、入力ボックス92に対応する入力ボックス97、及び入力ボックス93に対応する入力ボックス98を有する。 The second optical element information input area 83 is a screen area used for the same purpose as the first optical element information input area 82 for the second optical element information 77, and is a pull-down menu box 94 corresponding to the pull-down menu box 89. It has a pull-down menu box 95 corresponding to the menu box 90, an input box 96 corresponding to the input box 91, an input box 97 corresponding to the input box 92, and an input box 98 corresponding to the input box 93.
 第1接着剤情報入力領域84及び第2接着剤情報入力領域85は、接着剤情報78(図16参照)の入力に用いられる画面領域である。接着剤情報78は、第1接着剤20Aに関する情報、及び第2接着剤20Bに関する情報である。 The first adhesive information input area 84 and the second adhesive information input area 85 are screen areas used for inputting the adhesive information 78 (see FIG. 16). The adhesive information 78 is information about the first adhesive 20A and information about the second adhesive 20B.
 第1接着剤情報入力領域84は、第1接着剤20Aに関する情報の入力に用いられる画面領域である。第1接着剤情報入力領域84には、プルダウンメニューボックス99、100及び101が設けられている。プルダウンメニューボックス99のメニューボタンがオンされると、第1接着剤20Aに用いられるモノマーの種類がリスト化されたプルダウンメニューが表示される。プルダウンメニューに表示された複数のモノマーの種類は、入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って択一的に選択され、選択されたモノマーの種類がプルダウンメニューボックス99の表示欄に表示される。 The first adhesive information input area 84 is a screen area used for inputting information regarding the first adhesive 20A. The first adhesive information input area 84 is provided with pull- down menu boxes 99, 100 and 101. When the menu button of the pull-down menu box 99 is turned on, a pull-down menu listing the types of monomers used in the first adhesive 20A is displayed. The plurality of monomer types displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected monomer type is displayed in the pull-down menu box 99. It is displayed in the column.
 プルダウンメニューボックス100のメニューボタンがオンされると、第1接着剤20Aに用いられる無機粒子の種類がリスト化されたプルダウンメニューが表示される。プルダウンメニューに表示された複数の無機粒子の種類は、入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って択一的に選択され、選択された無機粒子の種類がプルダウンメニューボックス100の表示欄に表示される。 When the menu button of the pull-down menu box 100 is turned on, a pull-down menu listing the types of inorganic particles used in the first adhesive 20A is displayed. The plurality of inorganic particle types displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected inorganic particle type is selected in the pull-down menu box 100. It is displayed in the display field of.
プルダウンメニューボックス101のメニューボタンがオンされると、第1接着剤20Aに用いられる有機反応基の種類がリスト化されたプルダウンメニューが表示される。プルダウンメニューに表示された複数の有機反応基の種類は、入力デバイス55(図15及び図16参照)によって受け付けられた指示に従って択一的に選択され、選択された有機反応基の種類がプルダウンメニューボックス101の表示欄に表示される。 When the menu button of the pull-down menu box 101 is turned on, a pull-down menu listing the types of organic reactive groups used in the first adhesive 20A is displayed. The types of the plurality of organic reactive groups displayed in the pull-down menu are selectively selected according to the instructions received by the input device 55 (see FIGS. 15 and 16), and the selected organic reactive group types are selected in the pull-down menu. It is displayed in the display field of the box 101.
 第2接着剤情報入力領域85は、第2接着剤20Bについて第1接着剤情報入力領域84と同様の目的で用いられる画面領域であり、プルダウンメニューボックス99、100及び101に対応するプルダウンメニューボックス102、103及び104を有する。 The second adhesive information input area 85 is a screen area used for the same purpose as the first adhesive information input area 84 for the second adhesive 20B, and is a pull-down menu box corresponding to the pull- down menu boxes 99, 100, and 101. It has 102, 103 and 104.
 屈折率分布情報入力領域81、第1光学素子情報入力領域82、第2光学素子情報入力領域83、第1接着剤情報入力領域84、及び第2接着剤情報入力領域85に対する入力が済んだ後、設定ボタン110がオンされる。これにより、屈折率分布情報75、第1光学素子情報76、第2光学素子情報77、及び接着剤情報78が、受付部66(図16参照)によって受け付けられる。 After input to the refractive index distribution information input area 81, the first optical element information input area 82, the second optical element information input area 83, the first adhesive information input area 84, and the second adhesive information input area 85 is completed. , The setting button 110 is turned on. As a result, the refractive index distribution information 75, the first optical element information 76, the second optical element information 77, and the adhesive information 78 are received by the reception unit 66 (see FIG. 16).
 一例として図18に示すように、屈折率分布情報75は、接合層15の平面視中心から接合層15の平面視外周に向かってブレーズド型に変化する屈折率分布111を表す数値である。ここで、接合層15の平面視中心から接合層15の平面視外周に向かってブレーズド型に変化する屈折率とは、換言すると、接合光学素子10の中心から外側に向かってブレーズド型に変化する屈折率を意味する。このようなブレーズド型の屈折率分布111を実現するために、一例として図19に示す照射プロファイル41が主制御部40(図14参照)によって用いられる。 As shown in FIG. 18 as an example, the refractive index distribution information 75 is a numerical value representing a refractive index distribution 111 that changes in a blazed manner from the center of the bonding layer 15 in a plan view to the outer periphery of the bonding layer 15 in a plan view. Here, the refractive index that changes from the center of the bonding layer 15 in the plan view toward the outer periphery of the bonding layer 15 in a plan view is, in other words, the refractive index that changes from the center of the bonding optical element 10 to the outside. It means the refractive index. In order to realize such a blazed refractive index distribution 111, the irradiation profile 41 shown in FIG. 19 is used by the main control unit 40 (see FIG. 14) as an example.
 照射プロファイル41は、濃度分布形成工程用照射プロファイル41Aと本硬化工程用照射プロファイル41Bとを有する。濃度分布形成工程用照射プロファイル41Aは濃度分布形成工程(図8参照)に用いられ、本硬化工程用照射プロファイル41Bは本硬化工程(図8参照)に用いられる。 The irradiation profile 41 has an irradiation profile 41A for the concentration distribution forming step and an irradiation profile 41B for the main curing step. The irradiation profile 41A for the concentration distribution forming step is used in the concentration distribution forming step (see FIG. 8), and the irradiation profile 41B for the main curing step is used in the main curing step (see FIG. 8).
 濃度分布形成工程は、図9で例示した充填工程によって平凹レンズ13と平凸レンズ14との間に充填された液体状態の接着剤20に紫外線UVを照射することで、一例として図10で示したように接着剤20に濃度分布を形成する工程である。濃度分布形成工程は、本硬化工程と対比する意味で、仮硬化工程と呼んでもよい。 The concentration distribution forming step is shown in FIG. 10 as an example by irradiating the liquid adhesive 20 filled between the plano-concave lens 13 and the plano-convex lens 14 with ultraviolet UV rays by the filling step exemplified in FIG. This is a step of forming a concentration distribution in the adhesive 20 as described above. The concentration distribution forming step may be referred to as a temporary curing step in the sense of contrasting with the main curing step.
 濃度分布形成工程では、濃度分布形成工程用照射プロファイル41Aに従って強度変調素子32によって紫外線UVの照度が変更されることで、接着剤20の硬化速度を複数の領域において異ならせる。なお、濃度分布形成工程においては、例えば中心波長365nmの紫外線UVが照射される。 In the concentration distribution forming step, the illuminance of the ultraviolet UV is changed by the intensity modulation element 32 according to the irradiation profile 41A for the concentration distribution forming step, so that the curing speed of the adhesive 20 is made different in a plurality of regions. In the concentration distribution forming step, for example, ultraviolet UV having a center wavelength of 365 nm is irradiated.
 一例として図19に示すように、濃度分布形成工程用照射プロファイル41Aは、照射時間41A1及び照度分布情報41A2を有する。照射時間41A1は、濃度分布形成工程において紫外線UVが接着剤20に照射される時間(例えば、後述の領域R_A~領域R_Kの領域毎に紫外線UVが照射される時間)である。照射時間41A1の一例としては、数十秒(例えば、90秒)が挙げられる。 As an example, as shown in FIG. 19, the irradiation profile 41A for the concentration distribution forming step has an irradiation time 41A1 and an illuminance distribution information 41A2. The irradiation time 41A1 is the time during which the ultraviolet UV is irradiated to the adhesive 20 in the concentration distribution forming step (for example, the time during which the ultraviolet UV is irradiated for each region R_A to R_K described later). An example of the irradiation time 41A1 is several tens of seconds (for example, 90 seconds).
 照度分布情報41A2は、照度分布112を表す数値データである。照度分布112は、本開示の技術に係る「屈折率分布の形状に対応したエネルギー分布」及び「ブレーズド型の基準エネルギー分布」の一例である。照度分布112は、濃度分布形成工程において接着剤20に対して照射される紫外線UVの照度の分布である。照度分布112の形状は、屈折率分布111(図18参照)の形状に対応している。すなわち、照度分布112において、紫外線UVの照度は、接合層15の平面視中心から外側にかけてブレーズド型に変化している。 The illuminance distribution information 41A2 is numerical data representing the illuminance distribution 112. The illuminance distribution 112 is an example of the "energy distribution corresponding to the shape of the refractive index distribution" and the "blazeed type reference energy distribution" according to the technique of the present disclosure. The illuminance distribution 112 is the distribution of the illuminance of ultraviolet UV rays irradiated to the adhesive 20 in the concentration distribution forming step. The shape of the illuminance distribution 112 corresponds to the shape of the refractive index distribution 111 (see FIG. 18). That is, in the illuminance distribution 112, the illuminance of the ultraviolet UV changes in a blazed shape from the center of the bonding layer 15 in a plan view to the outside.
 接合層15は、平面視で同心円状に複数の領域に区分されている。図19に示す例では、接合層15の平面視中心から外側にかけて領域R_A~領域R_Kという複数の領域に区分されている。紫外線UVの照度の変化率は、第1の照度変化率及び第2の照度変化率という2種類の異なる変化率の何れかである。第2の照度変化率は、第1の照度変化率よりも大きい。照度分布112は、接合層15の平面視の全領域において、中心から外側にかけて、第2の照度変化率で紫外線UVが照射される範囲である第2の照射範囲112Bと、第1の照度変化率で紫外線UVが照射される範囲である第1の照射範囲112Aとが交互に連なったブレーズド型の分布である。換言すると、第2の照度変化率は、第1の照度変化率と逆方向の変化率(反対の極性の変化率)であり、第1の照射範囲112A及び第2の照射範囲112Bが、領域R_Aから領域R_Kにかけて、照度の連続性を維持したまま、領域単位で交互に入れ替わっている。 The joining layer 15 is concentrically divided into a plurality of regions in a plan view. In the example shown in FIG. 19, the bonding layer 15 is divided into a plurality of regions R_A to R_K from the center in a plan view to the outside. The rate of change in the illuminance of ultraviolet UV is one of two different rates of change, the first rate of change in illuminance and the second rate of change in illuminance. The second illuminance change rate is larger than the first illuminance change rate. The illuminance distribution 112 includes a second irradiation range 112B, which is a range in which ultraviolet UV rays are irradiated at a second illuminance change rate from the center to the outside in the entire region of the junction layer 15 in a plan view, and a first illuminance change. It is a blaze-type distribution in which the first irradiation range 112A, which is the range in which ultraviolet rays and UV rays are irradiated at a rate, are alternately connected. In other words, the second illuminance change rate is the rate of change in the direction opposite to the first illuminance change rate (change rate of the opposite polarity), and the first irradiation range 112A and the second irradiation range 112B are regions. From R_A to the region R_K, the illuminance is alternately alternated in region units while maintaining the continuity of the illuminance.
 本硬化工程では、本硬化工程用照射プロファイル41Bに従って強度変調素子32によって紫外線UVの照度が制御される。なお、本硬化工程においては、例えば波長310nm~400nmの紫外線UVが照射される。なお、本硬化工程の前に加熱は行わない。 In the main curing step, the illuminance of ultraviolet UV is controlled by the intensity modulation element 32 according to the irradiation profile 41B for the main curing step. In this curing step, for example, ultraviolet UV having a wavelength of 310 nm to 400 nm is irradiated. No heating is performed before the main curing step.
 本硬化工程用照射プロファイル41Bは、照射時間41B1及び照度分布情報41B2を有する。照射時間41B1は、本硬化工程において紫外線UVが接着剤20(例えば、領域R_A~領域R_Kの領域毎に紫外線UVが照射される時間)に照射される時間である。照射時間41B1の一例としては、数十分(例えば、30分)が挙げられる。 The irradiation profile 41B for the main curing step has an irradiation time 41B1 and an illuminance distribution information 41B2. The irradiation time 41B1 is the time during which the ultraviolet UV is irradiated to the adhesive 20 (for example, the time during which the ultraviolet UV is irradiated for each region R_A to R_K) in the main curing step. An example of the irradiation time 41B1 is several tens of minutes (for example, 30 minutes).
 照度分布情報41B2は、照度分布113を表す数値データである。照度分布113は、本硬化工程において接着剤20に対して照射される紫外線UVの照度の分布である。照度分布113では、接合層15の平面視中心から外側にかけて紫外線UVの照度が均一に分布している。 The illuminance distribution information 41B2 is numerical data representing the illuminance distribution 113. The illuminance distribution 113 is the distribution of the illuminance of ultraviolet UV rays irradiated to the adhesive 20 in the main curing step. In the illuminance distribution 113, the illuminance of ultraviolet UV rays is uniformly distributed from the center of the bonding layer 15 in a plan view to the outside.
 このように、濃度分布形成工程において照度分布112に従って紫外線UVが接着剤20に照射され、次いで、本硬化工程において照度分布113に従って紫外線UVが接着剤20に照射されると、一例として図20に示すように、屈折率分布114が得られる。屈折率分布114の形状はブレーズド型であり、照射分布112の形状と対応している。すなわち、接合層15の屈折率は、接合層15の平面視中心から外側にかけてブレーズド型に変化している。 As described above, when the adhesive 20 is irradiated with ultraviolet UV according to the illuminance distribution 112 in the concentration distribution forming step and then the ultraviolet UV is irradiated to the adhesive 20 according to the illuminance distribution 113 in the main curing step, FIG. 20 shows as an example. As shown, the refractive index distribution 114 is obtained. The shape of the refractive index distribution 114 is a blazed type and corresponds to the shape of the irradiation distribution 112. That is, the refractive index of the bonding layer 15 changes in a blazed shape from the center of the bonding layer 15 in a plan view to the outside.
 屈折率分布114は、第1の照射範囲112Aに対応する第1の屈折率変化範囲114A、及び第2の照射範囲112Bに対応する第2の屈折率変化範囲114Bが交互に連なった分布である。第1の屈折率変化範囲114Aは、第1の照度変化率に対応する第1の変化率で屈折率が変化している範囲である。第2の屈折率変化範囲114Bは、第2の照度変化率に対応する第2の変化率で屈折率が変化している範囲である。つまり、照度分布112と同様に、屈折率分布114でも、第1の屈折率変化範囲114A及び第2の屈折率変化範囲114Bが、領域R_Aから領域R_Kにかけて(図19参照)、屈折率の連続性を維持したまま、領域単位で交互に入れ替わっている。 The refractive index distribution 114 is a distribution in which the first refractive index change range 114A corresponding to the first irradiation range 112A and the second refractive index change range 114B corresponding to the second irradiation range 112B are alternately connected. .. The first refractive index change range 114A is a range in which the refractive index changes at the first rate of change corresponding to the first illuminance change rate. The second refractive index change range 114B is a range in which the refractive index changes at the second rate of change corresponding to the second illuminance change rate. That is, in the refractive index distribution 114 as well as the illuminance distribution 112, the first refractive index change range 114A and the second refractive index change range 114B extend from the region R_A to the region R_K (see FIG. 19), and the refractive index is continuous. While maintaining the sex, they are alternately alternated in area units.
 ここで、第1の変化率が第1の照度変化率に対応しているということは、第1の照度変化率で照射される紫外線UVの照度の分布の傾向と第1の屈折率変化範囲114Aでの屈折率の分布の傾向とが一致しているということを意味する。また、第2の変化率が第2の照度変化率に対応しているということは、第2の照度変化率で照射される紫外線UVの照度の分布の傾向と第2の屈折率変化範囲114Bでの屈折率の分布の傾向とが一致しているということを意味する。これは、接合層15の平面視において、第1の屈折率変化範囲114Aと第1の照射範囲112Aとが一致し、第2の屈折率変化範囲112Bと第2の照射範囲112Bとが一致し、第2の変化率が第1の変化率よりも大きな変化率であり、第2の変化率が第1の変化率と逆方向の変化率(反対の極性の変化率)であることを意味する。 Here, the fact that the first rate of change corresponds to the first rate of change in illuminance means that the tendency of the distribution of the illuminance of ultraviolet UV rays irradiated by the first rate of change in illuminance and the range of change in the first refractive index. It means that the tendency of the distribution of the refractive index at 114A is in agreement. Further, the fact that the second rate of change corresponds to the second rate of change in illuminance means that the tendency of the distribution of the illuminance of the ultraviolet UV irradiated at the second rate of change in illuminance and the second range of change in the refractive index 114B. It means that the tendency of the distribution of the refractive index in. This means that in the plan view of the bonding layer 15, the first refractive index change range 114A and the first irradiation range 112A coincide with each other, and the second refractive index change range 112B and the second irradiation range 112B coincide with each other. , It means that the second rate of change is a larger rate of change than the first rate of change, and the second rate of change is the rate of change in the opposite direction to the first rate of change (the rate of change of the opposite polarity). do.
 第2の照射範囲112Bの紫外線UVの照度は、接合層15の平面視の中心から外側に向かって、第2の照射範囲112Bに対応する領域毎に、第2の照度変化率で変化している。従って、上述したように、第2の屈折率変化範囲114Bは、第2の照射範囲112Bに対応しており、第2の変化率は、第2の照度変化率に対応しているので、第2の屈折率変化範囲114Bの屈折率も、接合層15の平面視の中心から外側に向かって(接合光学素子10の径方向に沿って)、第2の屈折率変化範囲114Bに対応する領域毎に、第2の変化率で変化している。 The illuminance of the ultraviolet UV rays in the second irradiation range 112B changes from the center of the plan view of the bonding layer 15 to the outside at the second illuminance change rate for each region corresponding to the second irradiation range 112B. There is. Therefore, as described above, the second refractive index change range 114B corresponds to the second irradiation range 112B, and the second change rate corresponds to the second illuminance change rate. The refractive index of the refractive index change range 114B of 2 is also a region corresponding to the second refractive index change range 114B from the center of the bonding layer 15 in a plan view to the outside (along the radial direction of the bonding optical element 10). Each time, it changes at the second rate of change.
 屈折率分布114は、接合層15の膜厚内で被写体光が通過するための必要条件として、“h<t・tanθc”の不等式、及び“θc=asin(Na/Nb)”の等式が成立する分布とされている。ここで、“Na”は、最小屈折率である。“Nb”は、最大屈折率である。“t”は、第2の屈折率変化範囲114Bの変化幅、すなわち、接合層15の平面視での第2の屈折率変化範囲114Bの径方向の長さである。ここで、径方向とは、接合層15の径方向、すなわち、接合光学素子10の径方向を指す。“h”は、接合層15の厚さ、すなわち、接合層15の膜厚である。“θc”は、臨界角である。入射角とは、隣接する層の接合面(例えば、平凹レンズ13と接合層15との接合面、及び接合層15と平凸レンズ14との接合面)に対して入射される被写体光の光路の角度を指す。隣接する層の接合面に対して入射される被写体光の光路の角度とは、接合面の法線に対する角度を指す。 The refractive index distribution 114 has an inequality of "h <t · tan θc" and an equation of "θc = asin (Na / Nb)" as necessary conditions for the subject light to pass within the film thickness of the bonding layer 15. It is said that the distribution holds. Here, "Na" is the minimum refractive index. "Nb" is the maximum refractive index. “T” is the change width of the second refractive index change range 114B, that is, the radial length of the second refractive index change range 114B in the plan view of the bonding layer 15. Here, the radial direction refers to the radial direction of the bonding layer 15, that is, the radial direction of the bonding optical element 10. “H” is the thickness of the bonding layer 15, that is, the film thickness of the bonding layer 15. “Θc” is a critical angle. The angle of incidence is the optical path of the subject light incident on the junction surface of adjacent layers (for example, the junction surface between the plano-concave lens 13 and the junction layer 15 and the junction surface between the junction layer 15 and the plano-convex lens 14). Refers to an angle. The angle of the optical path of the subject light incident on the joint surface of the adjacent layer refers to the angle of the joint surface with respect to the normal.
 なお、一例として図21に示すように、接合層15の屈折率を“Nλ”とし、第1接着剤20Aの屈折率を“NAλ”とし、第2接着剤20Bの屈折率を“NBλ”とし、第1接着剤20Aの濃度を“α”としたとき、“Nλ=α・NAλ+(1-α)・NBλ”の等式が成立する。また、接合層15の膜厚を“d”としたとき、接合層15の透過波面(位相差)は、“Nλ・d”で表すことができる。接合層15の透過波面は、接合層15の平面視の中心から外側に向かって、接合層15に入射される光の波長λに相当する高さを有するブレーズド形状で現れる。 As an example, as shown in FIG. 21, the refractive index of the bonding layer 15 is "N λ ", the refractive index of the first adhesive 20A is "NA λ ", and the refractive index of the second adhesive 20B is "NB". When " λ " is used and the concentration of the first adhesive 20A is "α", the equation "N λ = α · NA λ + (1-α) · NB λ " is established. Further, when the film thickness of the bonding layer 15 is "d", the transmitted wavefront (phase difference) of the bonding layer 15 can be represented by "N λ · d". The transmitted wavefront of the bonding layer 15 appears in a blazed shape having a height corresponding to the wavelength λ of the light incident on the bonding layer 15 from the center of the plan view of the bonding layer 15 to the outside.
 次に、接合光学素子10の作用について説明する。 Next, the operation of the junction optical element 10 will be described.
 接合光学素子10に含まれる接合層15は、接合層15の平面視の中心から外側にかけてブレーズド型の屈折率分布114(図18及び図20参照)を有している。そのため、接合層15は、積層型ブレーズド回折光学素子506のようにブレーズド形状の物理的な面構造を利用せずとも、特定の回折次数(例えば、+1次)において最大の回折効率を発揮する。 The bonding layer 15 included in the bonding optical element 10 has a blazed refractive index distribution 114 (see FIGS. 18 and 20) from the center of the bonding layer 15 to the outside in a plan view. Therefore, the bonding layer 15 exhibits the maximum diffraction efficiency at a specific diffraction order (for example, +1 order) without using a physical surface structure having a blazed shape as in the laminated blazed diffraction optical element 506.
 また、図5~図7に示す例では、積層型ブレーズド回折光学素子506がブレーズド形状の物理的な面構造を利用して光を回折させているので、ブレーズド形状を形成している急斜面に加工痕が残存していれば、加工痕に起因して散乱が生じる。これに対し、接合層15は、ブレーズド形状の物理的な面構造を有していない。つまり、接合層15には、加工痕が生じる余地はない。接合層15は、積層型ブレーズド回折光学素子506に比べ、散乱が生じ難い。 Further, in the examples shown in FIGS. 5 to 7, since the laminated blazed diffraction grating element 506 diffracts light using the physical surface structure of the blazed shape, it is processed into a steep slope forming the blazed shape. If the marks remain, scattering will occur due to the processing marks. On the other hand, the bonding layer 15 does not have a blazed physical surface structure. That is, there is no room for processing marks on the joint layer 15. The bonding layer 15 is less likely to cause scattering than the laminated blazed diffraction optical element 506.
 また、一例として図22に示すように、接合層15は、ブレーズド形状の物理的な面構造を有していないため、接合層15に入射された被写体光の屈折の度合いは、積層型ブレーズド回折光学素子506の急斜面での被写体光の屈折の度合い(図23に示す「従来の反射光路」参照)に比べ、小さい。そのため、積層型ブレーズド回折光学素子506の急斜面で屈折した被写体光は、特定の回折次数に収まらずにゴーストとなって現れるが、接合層15に入射された被写体光の大半の光量は特定の回折次数に収まり、光量の他の回折次数(例えば、0次光及び-1次光等)への損失が最小限に抑えられる。よって、接合層15は、ブレーズド形状の物体的な面構造を利用して光を回折させる積層型ブレーズド回折光学素子506に比べ、屈折光に起因して生じるゴーストを抑制することができる。 Further, as shown in FIG. 22 as an example, since the bonding layer 15 does not have a blazed-shaped physical surface structure, the degree of refraction of the subject light incident on the bonding layer 15 is the laminated blazed diffraction. It is smaller than the degree of refraction of the subject light on the steep slope of the optical element 506 (see "conventional reflected light path" shown in FIG. 23). Therefore, the subject light refracted on the steep slope of the laminated blazed diffraction optical element 506 does not fit in the specific diffraction order and appears as a ghost, but most of the subject light incident on the bonding layer 15 has a specific diffraction. It is within the order and the loss of the amount of light to other diffraction orders (eg, 0th order light, -1st order light, etc.) is minimized. Therefore, the bonding layer 15 can suppress ghosts caused by refracted light as compared with the laminated blazed diffraction optical element 506 that diffracts light by utilizing a blazed-shaped physical surface structure.
 また、一例として図23に示すように、接合層15は、積層型ブレーズド回折光学素子506のようにブレーズド形状の物理的な面構造を有していないため、ブレーズド形状の物体的な面構造を利用して光を回折させる積層型ブレーズド回折光学素子506に比べ、被写体光が全反射され難い。そのため、積層型ブレーズド回折光学素子506の急斜面で全反射した被写体光は、特定の回折次数に収まらずにゴーストとなって現れるが、接合層15に入射された被写体光の大半の光量は特定の回折次数に収まり、光量の他の回折次数(例えば、0次光及び-1次光等)への損失が最小限に抑えられる。よって、接合層15は、ブレーズド形状の物体的な面構造を利用して光を回折させる積層型ブレーズド回折光学素子506に比べ、反射光に起因して生じるゴーストを抑制することができる。 Further, as shown in FIG. 23 as an example, since the bonding layer 15 does not have a blazed-shaped physical surface structure unlike the laminated blazed grating optical element 506, it has a blazed-shaped physical surface structure. Compared to the laminated blazed grating 506 that uses and diffracts light, the subject light is less likely to be totally reflected. Therefore, the subject light totally reflected on the steep slope of the laminated blazed diffractive optical element 506 does not fit in the specific diffraction order and appears as a ghost, but the amount of most of the subject light incident on the bonding layer 15 is specific. It fits in the diffraction order, and the loss of the light amount to other diffraction orders (for example, 0th order light and -1st order light) is minimized. Therefore, the bonding layer 15 can suppress ghosts caused by reflected light as compared with the laminated blazed diffraction optical element 506 that diffracts light by utilizing a blazed-shaped physical surface structure.
 以上説明したように、接合光学素子10では、接合層15に、接合層15の平面視中心から外側に向かってブレーズド型の屈折率分布111(図18及び図20参照)が形成されている。従って、本構成によれば、ブレーズド形状の物体的な面構造を利用して光を回折させる透過型回折光学素子に比べ、入射された光に起因して生じるゴーストを抑制することができる。また、以上説明したような接合光学素子10の製造方法によれば、波長分散を抑制できる回折光学素子を従来よりも容易に製造することができる。 As described above, in the bonding optical element 10, a blazed refractive index distribution 111 (see FIGS. 18 and 20) is formed in the bonding layer 15 from the center of the bonding layer 15 in a plan view to the outside. Therefore, according to this configuration, ghosts caused by incident light can be suppressed as compared with a transmission type diffraction optical element that diffracts light by utilizing a blazed-shaped physical surface structure. Further, according to the method for manufacturing the junction optical element 10 as described above, it is possible to manufacture a diffractive optical element capable of suppressing wavelength dispersion more easily than before.
 また、接合光学素子10では、接合層15において、ポリマー化された第1接着剤20Aの屈折率は、ポリマー化された第2接着剤20Bの屈折率よりも高い。従って、本構成によれば、1種類の接着剤のみを用いる場合に比べ、接合層15の平面視中心から外側にかけてブレーズド型の屈折率の分布を形成し易くなる。 Further, in the bonding optical element 10, the refractive index of the polymerized first adhesive 20A in the bonding layer 15 is higher than the refractive index of the polymerized second adhesive 20B. Therefore, according to this configuration, it becomes easier to form a blazed-type refractive index distribution from the center in the plan view to the outside of the bonding layer 15 as compared with the case where only one type of adhesive is used.
 また、接合光学素子10では、接合層15において、ポリマー化された第1接着剤20Aの波長分散は、ポリマー化された第2接着剤20Bの波長分散よりも低い。従って、本構成によれば、1種類の接着剤のみを用いる場合に比べ、接合層15の平面視中心から外側にかけてブレーズド型の波長分散の分布を形成し易くなる。 Further, in the bonding optical element 10, the wavelength dispersion of the polymerized first adhesive 20A in the bonding layer 15 is lower than the wavelength dispersion of the polymerized second adhesive 20B. Therefore, according to this configuration, it becomes easier to form a blazed wavelength dispersion distribution from the center in a plan view to the outside of the bonding layer 15 as compared with the case where only one type of adhesive is used.
 また、接合光学素子10では、接合層15において、第1接着剤20Aに含まれる第1のモノマー23Aの紫外線UVに対する反応速度と第2接着剤20Bに含まれる第2のモノマー23Bの紫外線UVに対する反応速度とが異なっている。従って、本構成によれば、2種類のモノマーの反応速度が同じ場合に比べ、第1のモノマー23A及び第2のモノマー23Bの濃度比を容易に調整することが可能となる。 Further, in the bonding optical element 10, in the bonding layer 15, the reaction rate of the first monomer 23A contained in the first adhesive 20A with respect to ultraviolet UV and the reaction rate of the second monomer 23B contained in the second adhesive 20B with respect to ultraviolet UV of the second monomer 23B. The reaction rate is different. Therefore, according to this configuration, it is possible to easily adjust the concentration ratio of the first monomer 23A and the second monomer 23B as compared with the case where the reaction rates of the two types of monomers are the same.
 また、接合光学素子10では、接合層15において、第1接着剤20Aに、第1のモノマー23Aに対して反応する第1の無機ナノ粒子25Aが含まれている(図10参照)。従って、本構成によれば、第1接着剤20Aが第1のモノマー23A及び重合開始剤24のみで構成されている場合に比べ、複数の第1のモノマー23Aがポリマー化した場合の屈折率及び分散特性を決める自由度を高めることができる。 Further, in the bonding optical element 10, in the bonding layer 15, the first adhesive 20A contains the first inorganic nanoparticles 25A that react with the first monomer 23A (see FIG. 10). Therefore, according to this configuration, the refractive index and the refractive index when the plurality of first monomers 23A are polymerized as compared with the case where the first adhesive 20A is composed of only the first monomer 23A and the polymerization initiator 24. The degree of freedom in determining the dispersion characteristics can be increased.
 また、接合光学素子10では、接合層15において、第1のモノマー23Aと同一の有機反応基X1が第1の無機ナノ粒子25Aに表面修飾されている(図11参照)。従って、本構成によれば、複数の第1のモノマー23Aが硬化されて得られた第1のポリマー27Aと第1の無機ナノ粒子25Aとを重合させることが可能となる。 Further, in the bonding optical element 10, in the bonding layer 15, the same organic reactive group X1 as the first monomer 23A is surface-modified to the first inorganic nanoparticles 25A (see FIG. 11). Therefore, according to this configuration, it is possible to polymerize the first polymer 27A obtained by curing the plurality of first monomers 23A and the first inorganic nanoparticles 25A.
 また、接合光学素子10では、接合層15において、第2接着剤20Bに、第2のモノマー23Bに対して反応する第2の無機ナノ粒子25Bが含まれている(図10参照)。従って、本構成によれば、第2接着剤20Bが第2のモノマー23B及び重合開始剤24のみで構成されている場合に比べ、複数の第2のモノマー23Bがポリマー化した場合の屈折率及び分散特性を決める自由度を高めることができる。 Further, in the bonding optical element 10, in the bonding layer 15, the second adhesive 20B contains the second inorganic nanoparticles 25B that react with the second monomer 23B (see FIG. 10). Therefore, according to this configuration, the refractive index and the refractive index when the plurality of second monomers 23B are polymerized as compared with the case where the second adhesive 20B is composed of only the second monomer 23B and the polymerization initiator 24. The degree of freedom in determining the dispersion characteristics can be increased.
 また、接合光学素子10では、接合層15において、第2のモノマー23Bと同一の有機反応基X2が第2の無機ナノ粒子25Bに表面修飾されている(図11参照)。従って、本構成によれば、複数の第2のモノマー23Bが硬化されて得られた第2のポリマー27Bと第2の無機ナノ粒子25Bとを重合させることが可能となる。 Further, in the bonding optical element 10, in the bonding layer 15, the same organic reactive group X2 as the second monomer 23B is surface-modified to the second inorganic nanoparticles 25B (see FIG. 11). Therefore, according to this configuration, it is possible to polymerize the second polymer 27B obtained by curing the plurality of second monomers 23B and the second inorganic nanoparticles 25B.
 また、接合光学素子10では、接合層15において、ブレーズド型の屈折率分布114は、第1の変化率で屈折率が変化する第1の屈折率変化範囲114Aと第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲114Bとが交互に連なった分布とされている。つまり、接合層15は、ブレーズド形状の物体的な面構造を利用して光を回折させているわけではなく、ブレーズド型の屈折率分布114を用いて光を回折させている。従って、本構成によれば、接合層15がブレーズド形状の物体的な面構造を有していないので、ブレーズド形状の物体的な面構造を利用して光を回折させる透過型回折光学素子に比べ、散乱を抑制することができる。 Further, in the bonding optical element 10, in the bonding layer 15, the blaze-type refractive index distribution 114 is larger than the first refractive index change range 114A and the first rate of change in which the refractive index changes at the first rate of change. The distribution is such that the second refractive index change range 114B, in which the refractive index changes at the second rate of change, is alternately connected. That is, the bonding layer 15 does not diffract light by using a blazed-shaped physical surface structure, but diffracts light by using a blazed-type refractive index distribution 114. Therefore, according to this configuration, since the bonding layer 15 does not have a blazed-shaped physical surface structure, it is compared with a transmission type diffraction optical element that diffracts light by using the blazed-shaped physical surface structure. , Scattering can be suppressed.
 また、接合光学素子10では、接合層15において、第2の変化率は、第1の変化率と逆方向の変化率とされている。従って、本構成によれば、第2の変化率が第1の変化率と同一の方向の変化率とされている場合に比べ、高い回折効率を実現することができる。 Further, in the bonding optical element 10, the second rate of change in the bonding layer 15 is the rate of change in the direction opposite to the first rate of change. Therefore, according to this configuration, higher diffraction efficiency can be realized as compared with the case where the second rate of change is the rate of change in the same direction as the first rate of change.
 また、接合光学素子10では、接合層15において、第2の屈折率変化範囲114Bの屈折率が、接合層15の平面視中心から外側に向かって第2の変化率で変化している。従って、本構成によれば、第2の屈折率変化範囲114Bの屈折率が、接合層15の平面視中心から外側に向かって変化していない場合に比べ、接合層15に入射される光の散乱、屈折、及び反射の度合いを緩やかにすることができる。 Further, in the bonding optical element 10, in the bonding layer 15, the refractive index of the second refractive index change range 114B changes at the second rate of change from the center of the bonding layer 15 in a plan view to the outside. Therefore, according to this configuration, the refractive index of the second refractive index change range 114B does not change outward from the center of the plan view of the bonding layer 15, as compared with the case where the light incident on the bonding layer 15 does not change. The degree of scattering, refraction, and reflection can be moderated.
 また、接合光学素子10では、接合層15において、“Na”を最小屈折率とし、“Nb”を最大屈折率とし、“t”を第2の屈折率変化範囲114Bの変化幅とし、“h”を接合層15の厚さとし、“θc”を臨界角としたとき、接合層15の膜厚内で被写体光が通過するための必要条件として、屈折率分布114が、“h<t・tanθc”の不等式、及び“θc=asin(Na/Nb)”の等式が成立する分布とされている。従って、本構成によれば、“h<t・tanθc”の不等式、及び“θc=asin(Na/Nb)”の等式が成立しない条件を用いて第2の屈折率変化範囲114Bの変化幅及び接合層15の厚さを定める場合に比べ、ゴーストが発生し難い第2の屈折率変化範囲114Bの変化幅及び接合層15の厚さを容易に定めることができる。 Further, in the bonding optical element 10, in the bonding layer 15, "Na" is the minimum refractive index, "Nb" is the maximum refractive index, "t" is the change width of the second refractive index change range 114B, and "h". When "" is the thickness of the bonding layer 15 and "θc" is the critical angle, the refractive index distribution 114 is set to "h <t. Tan θc" as a necessary condition for the subject light to pass within the film thickness of the bonding layer 15. The distribution is such that the inequality of "" and the equation of "θc = asin (Na / Nb)" are satisfied. Therefore, according to this configuration, the change width of the second refractive index change range 114B is used under the condition that the inequality of “h <t ・ tanθc” and the equation of “θc = asin (Na / Nb)” do not hold. Compared with the case where the thickness of the bonding layer 15 is determined, the change width of the second refractive index change range 114B and the thickness of the bonding layer 15 where ghosts are less likely to occur can be easily determined.
 また、接合光学素子10では、接合層15が膜状に形成されている。従って、本構成によれば、膜状よりも厚みを有する接合層が形成されている場合に比べ、屈折及び反射を起こり難くすることができる。また、接合光学素子10の薄型化に寄与することができる。 Further, in the bonding optical element 10, the bonding layer 15 is formed in a film shape. Therefore, according to this configuration, it is possible to make refraction and reflection less likely to occur as compared with the case where a bonding layer having a thickness thicker than that of a film is formed. Further, it can contribute to the thinning of the junction optical element 10.
 また、接合層15の製造方法では、屈折率分布114の形状に対応した照度分布112(図19及び図20参照)で接着剤20に対して紫外線UVが照射される。従って、本構成によれば、屈折率分布114の形状とは全く無関係な形状の照度分布で接着剤20に対して紫外線UVが照射される場合に比べ、設計者等が意図するブレーズド型の屈折率分布114を容易に作ることができる。 Further, in the method for manufacturing the bonding layer 15, ultraviolet UV rays are applied to the adhesive 20 with an illuminance distribution 112 (see FIGS. 19 and 20) corresponding to the shape of the refractive index distribution 114. Therefore, according to this configuration, the blazed type refraction intended by the designer or the like is compared with the case where the adhesive 20 is irradiated with ultraviolet rays with an illuminance distribution having a shape completely unrelated to the shape of the refractive index distribution 114. The rate distribution 114 can be easily made.
 また、接合層15の製造方法では、本硬化工程において、接着剤20に対して照射される紫外線UVの照度の分布として、接合層15の平面視中心から外側にかけて紫外線UVの照度が均一に分布している照度分布113が用いられている。従って、本構成によれば、照度分布113よりも複雑な形状の分布に従って接着剤20に対して紫外線UVが照射される場合に比べ、接着剤20に対して紫外線UVを照射する制御内容を簡素化することができる。 Further, in the method for manufacturing the bonding layer 15, in the main curing step, the illuminance of the ultraviolet UV is uniformly distributed from the center in the plan view of the bonding layer 15 to the outside as the distribution of the illuminance of the ultraviolet UV applied to the adhesive 20. The illuminance distribution 113 is used. Therefore, according to this configuration, the control content of irradiating the adhesive 20 with ultraviolet UV is simplified as compared with the case where the adhesive 20 is irradiated with ultraviolet UV according to a distribution having a shape more complicated than the illuminance distribution 113. Can be transformed into.
 なお、上記実施形態では、本硬化工程において、接着剤20に対して照射される紫外線UVの照度の分布として、接合層15の平面視中心から外側にかけて紫外線UVの照度が均一に分布している照度分布113を用いた形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、図24に示すように、本硬化工程では、紫外線UVの照度の分布が濃度分布形成工程で用いられる照射分布112とは逆の分布とされた照度分布115に従って紫外線UVが接着剤20に対して照射されるようにしてもよい。この場合、本硬化工程において、照度分布113に従って紫外線UVが接着剤20に対して照射される場合に比べ、本硬化工程において、平凹レンズ13と平凸レンズ14との間に充填されている接着剤20のうち、未だにポリマー化していない部分に対して効率的に紫外線UVを照射することが可能となる。 In the above embodiment, as the distribution of the illuminance of the ultraviolet UV irradiated to the adhesive 20 in the main curing step, the illuminance of the ultraviolet UV is uniformly distributed from the center in the plan view of the bonding layer 15 to the outside. Although the embodiment using the illuminance distribution 113 has been described, the technique of the present disclosure is not limited to this. For example, as shown in FIG. 24, in the main curing step, the ultraviolet UV is applied to the adhesive 20 according to the illuminance distribution 115 in which the illuminance distribution of the ultraviolet UV is opposite to the irradiation distribution 112 used in the concentration distribution forming step. It may be irradiated against it. In this case, the adhesive filled between the plano-concave lens 13 and the plano-convex lens 14 in the main curing step is compared with the case where ultraviolet UV rays are applied to the adhesive 20 according to the illuminance distribution 113 in the main curing step. Of the 20 parts, the portion that has not yet been polymerized can be efficiently irradiated with ultraviolet UV rays.
 また、上記実施形態では、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布(例えば、実質的には、第1のモノマー23A及び第2のモノマー23Bの濃度の分布)に関わらず照度の分布が固定された照度分布112に従って紫外線UVが接着剤20に対して照射される形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、図25に示すように、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布に応じて照度分布112を変形させた照度分布116に従って紫外線UVが接着剤20に対して照射されるようにしてもよい。なお、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布は、例えば、試験及び/又はコンピュータ・シミュレーション等によって予め導き出された分布である。 Further, in the above embodiment, the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A (for example, substantially the distribution of the concentrations of the first monomer 23A and the second monomer 23B). ), The technique of the present disclosure is not limited to this, although the embodiment in which the ultraviolet UV is irradiated to the adhesive 20 according to the illuminance distribution 112 in which the illuminance distribution is fixed has been described. For example, as shown in FIG. 25, ultraviolet UV rays are applied to the adhesive 20 according to the illuminance distribution 116 in which the illuminance distribution 112 is deformed according to the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A. It may be irradiated against it. The distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is a distribution derived in advance by, for example, a test and / or a computer simulation.
 また、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度変化速度は初期状態では一定だが、反応が進むに従って変化する。そこで、紫外線UVの照射に伴う凹面13A上での第1接着剤20A及び第2接着剤20Bの反応速度の変化態様を、試験及び/又はコンピュータ・シミュレーション等によって予め把握しておき、凹面13A上での第1接着剤20A及び第2接着剤20Bの反応速度の経時的な変化態様に従って照度分布116を経時的に変形させるようにしてもよい。 Further, the concentration change rate of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is constant in the initial state, but changes as the reaction progresses. Therefore, the change mode of the reaction rates of the first adhesive 20A and the second adhesive 20B on the concave surface 13A due to the irradiation of ultraviolet UV is grasped in advance by a test and / or a computer simulation or the like, and on the concave surface 13A. The illuminance distribution 116 may be deformed over time according to the mode of change in the reaction rates of the first adhesive 20A and the second adhesive 20B over time.
 このように、図25に示す例では、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布に応じて照度分布112を変形させた照度分布116に従って紫外線UVが接着剤20に対して照射される。従って、本構成によれば、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布が何ら考慮されていない場合に比べ、高精度な屈折率分布114を得ることができる。 As described above, in the example shown in FIG. 25, the ultraviolet UV is an adhesive according to the illuminance distribution 116 in which the illuminance distribution 112 is deformed according to the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A. 20 is irradiated. Therefore, according to this configuration, a highly accurate refractive index distribution 114 can be obtained as compared with the case where the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is not considered at all. ..
 また、図25に示す例では、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布の経時的な変化態様に従って照度分布116を経時的に変形させるようにしている。従って、本構成によれば、凹面13A上での第1接着剤20A及び第2接着剤20Bの濃度の分布が何ら考慮されていない場合に比べ、高精度な屈折率分布114を得ることができる。 Further, in the example shown in FIG. 25, the illuminance distribution 116 is deformed over time according to the change mode of the concentration distributions of the first adhesive 20A and the second adhesive 20B on the concave surface 13A. Therefore, according to this configuration, a highly accurate refractive index distribution 114 can be obtained as compared with the case where the distribution of the concentrations of the first adhesive 20A and the second adhesive 20B on the concave surface 13A is not considered at all. ..
 また、上記実施形態では、凹面13A側から紫外線UVが照射される形態例(図10参照)を挙げて説明したが、本開示の技術はこれに限定されない。例えば、凸面14A側から紫外線UVが照射されるようにしてもよい。 Further, in the above embodiment, an example of a form in which ultraviolet UV rays are irradiated from the concave surface 13A side (see FIG. 10) has been described, but the technique of the present disclosure is not limited to this. For example, ultraviolet UV may be irradiated from the convex surface 14A side.
 また、上記実施形態では、紫外線硬化樹脂21(図10参照)を例示したが、本開示の技術はこれに限定されない。例えば、紫外線とは異なる波長光に反応して硬化する光硬化樹脂であってもよいし、熱硬化樹脂であってもよく、外部から与えられたエネルギー(例えば、光エネルギー及び/又は熱エネルギー等)に反応することで硬化する硬化樹脂であればよい。 Further, in the above embodiment, the ultraviolet curable resin 21 (see FIG. 10) is exemplified, but the technique of the present disclosure is not limited to this. For example, it may be a photo-curing resin that cures in response to light having a wavelength different from that of ultraviolet rays, or it may be a heat-curing resin, and energy given from the outside (for example, light energy and / or heat energy, etc.) may be used. ) Can be used as long as it is a cured resin that cures by reacting with).
 また、上記実施形態では、接合光学素子10に対して一対のレンズを適用したが、本開示の技術はこれに限定されず、光を透過する光学素子であれば、レンズ以外の光学素子であってもよい。 Further, in the above embodiment, a pair of lenses is applied to the junction optical element 10, but the technique of the present disclosure is not limited to this, and any optical element that transmits light is an optical element other than the lens. You may.
 また、上記実施形態では、接合光学素子10について説明したが、本開示の技術はこれに限定されず、眼内レンズに対して本開示の技術を適用してもよい。一例として図26に示すように、本開示の技術に係る「眼内レンズ」の一例である回折型多焦点眼内レンズ198は、眼球200内(以下、「眼内」とも称する)に組み込まれて用いられる。例えば、回折型多焦点眼内レンズ198は、白内障によって濁った水晶体に代えて、眼内に埋め込まれる。図26に示す例では、水晶体に代えて回折型多焦点眼内レンズ198が配置されており、回折型多焦点眼内レンズ198が固定部材99によって眼内に固定されている。固定部材99は、例えば、円弧状の弾性部材であり、回折型多焦点眼内レンズ198の外周側から回折型多焦点眼内レンズ198を支持し、かつ、眼内に固定する。回折型多焦点眼内レンズ198は、第1レンズ198A及び第2レンズ198Bを備えている。第1レンズ198Aは角膜202側に配置され、第2レンズ198Bは網膜204側に配置される。第1レンズ198Aと第2レンズ198Bとの間には、上記実施形態で説明した接合層15に相当する接合層198Cが介在しており、接合層198Cは、第1レンズ198Aと第2レンズ198Bとを接合している。 Further, in the above embodiment, the junction optical element 10 has been described, but the technique of the present disclosure is not limited to this, and the technique of the present disclosure may be applied to an intraocular lens. As shown in FIG. 26 as an example, the diffractive multifocal intraocular lens 198, which is an example of the “intraocular lens” according to the technique of the present disclosure, is incorporated in the eyeball 200 (hereinafter, also referred to as “intraocular”). Used for. For example, the diffractive multifocal intraocular lens 198 is implanted in the eye in place of the crystalline lens that is clouded by cataracts. In the example shown in FIG. 26, a diffractive multifocal intraocular lens 198 is arranged in place of the crystalline lens, and the diffractive multifocal intraocular lens 198 is fixed in the eye by a fixing member 99. The fixing member 99 is, for example, an arc-shaped elastic member, and supports and fixes the diffractive multifocal intraocular lens 198 from the outer peripheral side of the diffractive multifocal intraocular lens 198. The diffractive multifocal intraocular lens 198 includes a first lens 198A and a second lens 198B. The first lens 198A is arranged on the cornea 202 side, and the second lens 198B is arranged on the retina 204 side. A bonding layer 198C corresponding to the bonding layer 15 described in the above embodiment is interposed between the first lens 198A and the second lens 198B, and the bonding layer 198C is the first lens 198A and the second lens 198B. And are joined.
 このように、回折型多焦点眼内レンズ198に対して上記実施形態で説明した接合層15に相当する接合層198Cを適用することで、回折型多焦点眼内レンズ198についても、上記実施形態で説明した接合光学素子10と同様の効果が得られる。 As described above, by applying the bonding layer 198C corresponding to the bonding layer 15 described in the above embodiment to the diffractive multifocal intraocular lens 198, the diffractive multifocal intraocular lens 198 is also described in the above embodiment. The same effect as that of the junction optical element 10 described in the above can be obtained.
 なお、ここでは、回折型多焦点眼内レンズ198が眼内に埋め込まれて使用される形態例を挙げて説明したが、本開示の技術はこれに限定されない。例えば、眼球模型250に対して回折型多焦点眼内レンズ198が適用されてもよい。 Although the morphological example in which the diffractive multifocal intraocular lens 198 is embedded in the eye and used is described here, the technique of the present disclosure is not limited to this. For example, a diffractive multifocal intraocular lens 198 may be applied to the eye model 250.
 眼球模型250は、例えば、糖尿病網膜症又は網膜剥離等の診察又は治療に用いられる装置(例えば、眼科用観察装置又は眼科用レーザ治療器)を製造する場合の実験段階で用いられる眼球模型であってもよいし、医学生又は医師等が眼科の各種手術又は各種診察を行うための技能訓練に用いられる眼球模型であってもよい。 The eyeball model 250 is an eyeball model used in an experimental stage for manufacturing a device (for example, an ophthalmic observation device or an ophthalmic laser treatment device) used for diagnosis or treatment of diabetic retinopathy or retinal detachment. It may be an eyeball model used for skill training for medical students or doctors to perform various ophthalmic operations or various examinations.
 また、一例として図27に示すように、眼球200に対して用いられるコンタクトレンズ206に対して本開示の技術が適用されてもよい。コンタクトレンズ206は、上記実施形態で説明した接合層15に相当する膜状の樹脂レンズであり、角膜202に接触させて用いられる。この場合も、コンタクトレンズ206について、上記実施形態で説明した接合光学素子10と同様の効果が得られる。 Further, as shown in FIG. 27 as an example, the technique of the present disclosure may be applied to the contact lens 206 used for the eyeball 200. The contact lens 206 is a film-shaped resin lens corresponding to the bonding layer 15 described in the above embodiment, and is used in contact with the cornea 202. In this case as well, the same effect as that of the junction optical element 10 described in the above embodiment can be obtained for the contact lens 206.
 なお、本開示の技術は、上述の実施形態と種々の変形例を適宜組み合わせることも可能である。また、上記実施形態に限らず、要旨を逸脱しない限り種々の構成を採用し得ることはもちろんである。 It should be noted that the technique of the present disclosure can be appropriately combined with the above-described embodiment and various modified examples. Further, it is of course not limited to the above embodiment, and various configurations can be adopted as long as they do not deviate from the gist.
 以上に示した記載内容及び図示内容は、本開示の技術に係る部分についての詳細な説明であり、本開示の技術の一例に過ぎない。例えば、上記の構成、機能、作用、及び効果に関する説明は、本開示の技術に係る部分の構成、機能、作用、及び効果の一例に関する説明である。よって、本開示の技術の主旨を逸脱しない範囲内において、以上に示した記載内容及び図示内容に対して、不要な部分を削除したり、新たな要素を追加したり、置き換えたりしてもよいことはいうまでもない。また、錯綜を回避し、本開示の技術に係る部分の理解を容易にするために、以上に示した記載内容及び図示内容では、本開示の技術の実施を可能にする上で特に説明を要しない技術常識等に関する説明は省略されている。 The description and illustrations shown above are detailed explanations of the parts related to the technology of the present disclosure, and are merely examples of the technology of the present disclosure. For example, the description of the configuration, function, action, and effect described above is an example of the configuration, function, action, and effect of a portion of the art of the present disclosure. Therefore, unnecessary parts may be deleted, new elements may be added, or replacements may be made to the contents described above and the contents shown above within a range not deviating from the gist of the technique of the present disclosure. Needless to say. In addition, in order to avoid complications and facilitate understanding of the parts relating to the technology of the present disclosure, the contents described above and the contents shown above require special explanation in order to enable the implementation of the technology of the present disclosure. Explanations regarding common technical knowledge, etc. are omitted.
 本明細書において、「A及び/又はB」は、「A及びBのうちの少なくとも1つ」と同義である。つまり、「A及び/又はB」は、Aだけであってもよいし、Bだけであってもよいし、A及びBの組み合わせであってもよい、という意味である。また、本明細書において、3つ以上の事柄を「及び/又は」で結び付けて表現する場合も、「A及び/又はB」と同様の考え方が適用される。 In the present specification, "A and / or B" is synonymous with "at least one of A and B". That is, "A and / or B" means that it may be only A, it may be only B, or it may be a combination of A and B. Further, in the present specification, when three or more matters are connected and expressed by "and / or", the same concept as "A and / or B" is applied.
 本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications and technical standards described herein are to the same extent as if it were specifically and individually stated that the individual documents, patent applications and technical standards are incorporated by reference. Incorporated by reference in the book.

Claims (24)

  1.  透過型回折光学素子であって、
     少なくとも2つの材料の濃度比による屈折率分布が形成された層を備え、
     前記屈折率分布は、前記透過型回折光学素子の中心から外側に向かってブレーズド型の分布である
     透過型回折光学素子。
    It is a transmission type diffractive optical element.
    It comprises a layer in which a refractive index distribution is formed by the concentration ratio of at least two materials.
    The refractive index distribution is a transmission type diffraction optical element which is a blazed distribution from the center of the transmission type diffraction optical element toward the outside.
  2.  前記2つの材料のうちの一方の材料の屈折率は、他方の材料の屈折率よりも高い請求項1に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 1, wherein the refractive index of one of the two materials is higher than the refractive index of the other material.
  3.  前記一方の材料の波長分散は、前記他方の材料の波長分散よりも低い請求項2に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 2, wherein the wavelength dispersion of the one material is lower than the wavelength dispersion of the other material.
  4.  前記2つの材料は、外部から与えられたエネルギーに反応することで硬化する2種類の硬化樹脂であり、
     前記2種類の硬化樹脂は、前記エネルギーに対する反応速度が互いに異なる硬化樹脂である請求項1から請求項3の何れか一項に記載の透過型回折光学素子。
    The two materials are two types of curable resins that cure by reacting with energy given from the outside.
    The transmissive diffractive optical element according to any one of claims 1 to 3, wherein the two types of cured resins are cured resins having different reaction rates to the energy.
  5.  前記少なくとも2つの材料は、前記2種類の硬化樹脂のうちの一方の硬化樹脂に対して反応する第1の無機ナノ粒子を含む請求項4に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 4, wherein the at least two materials include first inorganic nanoparticles that react with one of the two types of curable resins.
  6.  前記第1の無機ナノ粒子は、前記一方の硬化樹脂と同一の反応基が表面修飾されたナノ粒子である請求項5に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 5, wherein the first inorganic nanoparticles are nanoparticles having the same reactive group as the one cured resin surface-modified.
  7.  前記少なくとも2つの材料は、前記2種類の硬化樹脂のうちの他方の硬化樹脂に対して反応する第2の無機ナノ粒子を含む請求項5又は請求項6に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 5 or 6, wherein the at least two materials include second inorganic nanoparticles that react with the other cured resin of the two types of cured resins.
  8.  前記第2の無機ナノ粒子は、前記他方の硬化樹脂と同一の反応基が表面修飾されたナノ粒子である請求項7に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 7, wherein the second inorganic nanoparticles are nanoparticles having the same reactive group as the other cured resin surface-modified.
  9.  前記ブレーズド型の前記屈折率分布は、
      第1の変化率で屈折率が変化する第1の屈折率変化範囲と、
      前記第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが
      交互に連なった分布である
     請求項1から請求項8の何れか一項に記載の透過型回折光学素子。
    The refractive index distribution of the blazed type is
    The first refractive index change range in which the refractive index changes at the first rate of change, and
    The invention according to any one of claims 1 to 8, which is a distribution in which the second refractive index change range in which the refractive index changes at a second rate of change larger than the first rate of change is alternately connected. Transmission type diffractive optical element.
  10.  前記第2の変化率は、前記第1の変化率と逆方向の変化率である請求項9に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 9, wherein the second rate of change is a rate of change in the direction opposite to the first rate of change.
  11.  前記第2の屈折率変化範囲の屈折率は、前記中心から前記外側に向かって前記第2の変化率で変化する請求項9又は請求項10に記載の透過型回折光学素子。 The transmissive diffractive optical element according to claim 9, wherein the refractive index in the second refractive index change range changes from the center toward the outside at the second rate of change.
  12.  前記ブレーズド型の前記屈折率分布は、
      第1の変化率で屈折率が変化する第1の屈折率変化範囲と、
      前記第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが
      交互に連なった分布であり、
     前記屈折率分布において、
      最小屈折率をNaとし、
      最大屈折率をNbとし、
      前記第2の屈折率変化範囲の変化幅をtとし、
      前記層の厚さをhとしたとき、
       h<t・tanθcの不等式、及び
       θc=asin(Na/Nb)の等式が成立する
     請求項1から請求項11の何れか一項に記載の透過型回折光学素子。
    The refractive index distribution of the blazed type is
    The first refractive index change range in which the refractive index changes at the first rate of change, and
    It is a distribution in which the second refractive index change range in which the refractive index changes at a second rate of change larger than the first rate of change is alternately connected.
    In the refractive index distribution,
    The minimum refractive index is Na,
    The maximum refractive index is Nb, and
    Let t be the change width of the second refractive index change range.
    When the thickness of the layer is h,
    The transmissive diffractive optical element according to any one of claims 1 to 11, wherein the inequality of h <t · tan θc and the equation of θc = asin (Na / Nb) are satisfied.
  13.  前記層は、前記少なくとも2つの材料によって膜状に形成されている請求項1から請求項12の何れか一項に記載の透過型回折光学素子。 The transmissive diffractive optical element according to any one of claims 1 to 12, wherein the layer is formed in a film shape by the at least two materials.
  14.  請求項1から請求項13の何れか一項に記載の透過型回折光学素子と、
     少なくとも1つの光学素子と、を備え、
     前記透過型回折光学素子は、前記少なくとも1つの光学素子と接合されている
     接合光学素子。
    The transmission type diffractive optical element according to any one of claims 1 to 13.
    With at least one optical element,
    The transmission type diffractive optical element is a bonded optical element bonded to the at least one optical element.
  15.  眼内に埋め込まれる眼内レンズであって、
     請求項1から請求項13の何れか一項に記載の透過型回折光学素子と、
     第1レンズと、
     第2レンズと、を備え、
     前記透過型回折光学素子は、前記第1レンズと前記第2レンズとの接合層である
     眼内レンズ。
    An intraocular lens that is embedded in the eye
    The transmission type diffractive optical element according to any one of claims 1 to 13.
    With the first lens
    With a second lens,
    The transmissive diffractive optical element is an intraocular lens that is a junction layer between the first lens and the second lens.
  16.  角膜に接触させるコンタクトレンズであって、
     請求項1から請求項13の何れか一項に記載の透過型回折光学素子を備えるコンタクトレンズ。
    A contact lens that comes into contact with the cornea
    A contact lens comprising the transmissive diffractive optical element according to any one of claims 1 to 13.
  17.  透過型回折光学素子であって、
     少なくとも2つの材料の濃度比による屈折率分布が形成された層を備え、
     前記屈折率分布は、第1の変化率で屈折率が変化する第1の屈折率変化範囲と、前記第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが交互に連なった分布である
     透過型回折光学素子。
    It is a transmission type diffractive optical element.
    It comprises a layer in which a refractive index distribution is formed by the concentration ratio of at least two materials.
    The refractive index distribution includes a first refractive index change range in which the refractive index changes at the first rate of change, and a second refractive index in which the refractive index changes at a second rate of change larger than the first rate of change. A transmissive diffractive optical element that has a distribution in which the rate change range is alternately connected.
  18.  少なくとも2つの材料を有する溶液を既定面に塗布すること、及び、
     前記少なくとも2つの材料を硬化させることで前記少なくとも2つの材料の濃度比による屈折率分布がブレーズド型に形成された層を生成することを含む
     透過型回折光学素子の製造方法。
    Applying a solution with at least two materials to a predetermined surface, and
    A method for manufacturing a transmission type diffractive optical element, which comprises curing the at least two materials to form a layer in which a refractive index distribution based on the concentration ratio of the at least two materials is formed in a blazed shape.
  19.  前記2つの材料は、外部から与えられたエネルギーに反応することで硬化する2種類の硬化樹脂であり、
     前記2種類の硬化樹脂は、前記エネルギーに対する反応速度が互いに異なる硬化樹脂であり、
     前記屈折率分布の形状に対応したエネルギー分布で前記少なくとも2つの材料に対して前記エネルギーを与えることを含む請求項18に記載の透過型回折光学素子の製造方法。
    The two materials are two types of curable resins that cure by reacting with energy given from the outside.
    The two types of cured resins are cured resins having different reaction rates to the energy.
    The method for manufacturing a transmission type diffractive optical element according to claim 18, wherein the energy is applied to the at least two materials with an energy distribution corresponding to the shape of the refractive index distribution.
  20.  前記エネルギー分布は、ブレーズド型の基準エネルギー分布を、前記少なくとも2つの材料の濃度の分布に応じて変形させた分布である請求項19に記載の透過型回折光学素子の製造方法。 The method for manufacturing a transmission type diffraction optical element according to claim 19, wherein the energy distribution is a distribution obtained by deforming a blazed reference energy distribution according to the distribution of concentrations of at least two materials.
  21.  前記エネルギー分布を変化させながら前記少なくとも2つの材料に対して前記エネルギーを与えることを含む請求項19又は請求項20に記載の透過型回折光学素子の製造方法。 The method for manufacturing a transmission type diffractive optical element according to claim 19, which comprises applying the energy to the at least two materials while changing the energy distribution.
  22.  前記エネルギー分布で前記少なくとも2つの材料に対して前記エネルギーを与えてから、前記少なくとも2つの材料に対して、均一な分布で前記エネルギーを与えることを含む請求項19から請求項21の何れか一項に記載の透過型回折光学素子の製造方法。 Any one of claims 19 to 21, which comprises applying the energy to the at least two materials in the energy distribution and then applying the energy to the at least two materials in a uniform distribution. The method for manufacturing a transmission type diffractive optical element according to the above item.
  23.  前記エネルギー分布で前記少なくとも2つの材料に対して前記エネルギーを与えてから、前記少なくとも2つの材料に対して、前記エネルギー分布とは逆の分布で前記エネルギーを与えることを含む請求項19から請求項21の何れか一項に記載の透過型回折光学素子の製造方法。 19. Claims 19 to claim that the energy distribution comprises applying the energy to the at least two materials and then applying the energy to the at least two materials in a distribution opposite to the energy distribution. 21. The method for manufacturing a transmission type diffractive optical element according to any one of items.
  24.  前記ブレーズド型の前記屈折率分布は、
      第1の変化率で屈折率が変化する第1の屈折率変化範囲と、
      前記第1の変化率よりも大きな第2の変化率で屈折率が変化する第2の屈折率変化範囲とが
      交互に連なった分布であり、
     前記屈折率分布において、
      最小屈折率をNaとし、
      最大屈折率をNbとし、
      前記第2の屈折率変化範囲の変化幅をtとし、
      前記層の厚さをhとしたとき、
      h<t・tanθcの不等式、及び
      θc=asin(Na/Nb)の等式が成立する前記層を生成することを含む請求項18から請求項23の何れか一項に記載の透過型回折光学素子の製造方法。
    The refractive index distribution of the blazed type is
    The first refractive index change range in which the refractive index changes at the first rate of change, and
    It is a distribution in which the second refractive index change range in which the refractive index changes at a second rate of change larger than the first rate of change is alternately connected.
    In the refractive index distribution,
    The minimum refractive index is Na,
    The maximum refractive index is Nb, and
    Let t be the change width of the second refractive index change range.
    When the thickness of the layer is h,
    The transmissive diffractive optics according to any one of claims 18 to 23, which comprises forming the layer in which the inequality of h <t · tan θc and the equation of θc = asin (Na / Nb) are satisfied. Manufacturing method of the element.
PCT/JP2021/028838 2020-09-30 2021-08-03 Transmissive diffractive optical element, bonding optical element, intraocular lens, contact lens, and method for manufacturing transmissive diffractive optical element WO2022070600A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553509A JP7408831B2 (en) 2020-09-30 2021-08-03 Transmission type diffractive optical element, cemented optical element, intraocular lens, contact lens, and method for manufacturing transmission type diffraction optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-166412 2020-09-30
JP2020166412 2020-09-30

Publications (1)

Publication Number Publication Date
WO2022070600A1 true WO2022070600A1 (en) 2022-04-07

Family

ID=80951324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028838 WO2022070600A1 (en) 2020-09-30 2021-08-03 Transmissive diffractive optical element, bonding optical element, intraocular lens, contact lens, and method for manufacturing transmissive diffractive optical element

Country Status (2)

Country Link
JP (1) JP7408831B2 (en)
WO (1) WO2022070600A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502219A (en) * 1989-05-12 1992-04-16 エシロール、アンテルナショナル (コンパニー、ジェネラル、ドプチック) Method for manufacturing a lens made of a transparent polymer with a modulated refractive index
JPH05500123A (en) * 1990-05-11 1993-01-14 エシロール、アンテルナショナル(コンパニー、ジェネラル、ドプチック) Method for manufacturing a lens made of a transparent polymer with a modulated refractive index
JPH0868907A (en) * 1994-08-31 1996-03-12 Dainippon Printing Co Ltd Difraction grating and its forming method
JPH10142411A (en) * 1996-11-06 1998-05-29 Canon Inc Diffraction optical element and its manufacture
JPH10339856A (en) * 1997-04-08 1998-12-22 Asahi Optical Co Ltd Spectacle lens
JP2008523453A (en) * 2004-12-14 2008-07-03 ダッチ ポリマー インスティテュート Porous holographic membrane
JP2010271706A (en) * 2009-04-22 2010-12-02 Canon Inc Method for producing optical part
JP2011107586A (en) * 2009-11-20 2011-06-02 Canon Inc Diffraction optical element and optical system having the same
JP2013037747A (en) * 2011-08-09 2013-02-21 Asahi Glass Co Ltd Wavelength selection diffraction element and optical head device using the same
WO2016021075A1 (en) * 2014-08-08 2016-02-11 株式会社メニコン Diffractive multi-focal lens and method for manufacturing diffractive multi-focal lens

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502219A (en) * 1989-05-12 1992-04-16 エシロール、アンテルナショナル (コンパニー、ジェネラル、ドプチック) Method for manufacturing a lens made of a transparent polymer with a modulated refractive index
JPH05500123A (en) * 1990-05-11 1993-01-14 エシロール、アンテルナショナル(コンパニー、ジェネラル、ドプチック) Method for manufacturing a lens made of a transparent polymer with a modulated refractive index
JPH0868907A (en) * 1994-08-31 1996-03-12 Dainippon Printing Co Ltd Difraction grating and its forming method
JPH10142411A (en) * 1996-11-06 1998-05-29 Canon Inc Diffraction optical element and its manufacture
JPH10339856A (en) * 1997-04-08 1998-12-22 Asahi Optical Co Ltd Spectacle lens
JP2008523453A (en) * 2004-12-14 2008-07-03 ダッチ ポリマー インスティテュート Porous holographic membrane
JP2010271706A (en) * 2009-04-22 2010-12-02 Canon Inc Method for producing optical part
JP2011107586A (en) * 2009-11-20 2011-06-02 Canon Inc Diffraction optical element and optical system having the same
JP2013037747A (en) * 2011-08-09 2013-02-21 Asahi Glass Co Ltd Wavelength selection diffraction element and optical head device using the same
WO2016021075A1 (en) * 2014-08-08 2016-02-11 株式会社メニコン Diffractive multi-focal lens and method for manufacturing diffractive multi-focal lens

Also Published As

Publication number Publication date
JP7408831B2 (en) 2024-01-05
JPWO2022070600A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
KR102581320B1 (en) Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges
JP7331216B2 (en) Spatial variable liquid crystal diffraction grating
US11899234B2 (en) Input coupling
US20200400951A1 (en) Surface-relief grating with patterned refractive index modulation
US8034262B2 (en) Optical element for stabilizing refractive index profiles using polymer mixtures
JP2012522279A5 (en)
JP2011501219A (en) Higher transmittance light control film
JP2003043904A (en) Method for improving holographic writing by using beam apodization
JP2006162798A (en) Optical device, image display device, and head-mounted display
Liu et al. Modeling the photochemical kinetics induced by holographic exposures in PQ/PMMA photopolymer material
US20070110380A1 (en) Projection display-use screen and projection display system optical system
WO2022070600A1 (en) Transmissive diffractive optical element, bonding optical element, intraocular lens, contact lens, and method for manufacturing transmissive diffractive optical element
Nakamura et al. Design of discretely depth-varying holographic grating for image guide based see-through and near-to-eye displays
WO2000011504A1 (en) Device including an optical element with an integral surface diffuser
JP2022544733A (en) Refractive index modulation correction in holographic gratings
JP2002501444A (en) Radially symmetric graded-index transparent product and its manufacturing method
Lima et al. Are polywave light-emitting diodes more effective than monowave ones in the photoactivation of resin-based materials containing alternative photoinitiators? A systematic review
CN110146985B (en) Variable focal length AR glasses based on aspheric surface
JP7473648B2 (en) Blazed diffractive optical element and method for manufacturing blazed diffractive optical element
US20240077677A1 (en) Waveguide device and optical engine
JP2006162794A (en) Method of manufacturing optical device, optical device, image display device, and head-mounted display device
Song Geometric-phase intraocular lenses with multifocality
CN115433313A (en) Holographic photopolymer material, holographic volume grating device and preparation method thereof
JPH09101402A (en) Production of synthetic resin optical transmission body
KR20070020393A (en) Projection display-use screen and projection display system optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874903

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2022553509

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874903

Country of ref document: EP

Kind code of ref document: A1