JP5604054B2 - Method for manufacturing optical lens or optical waveguide or optical fiber core - Google Patents

Method for manufacturing optical lens or optical waveguide or optical fiber core Download PDF

Info

Publication number
JP5604054B2
JP5604054B2 JP2009115581A JP2009115581A JP5604054B2 JP 5604054 B2 JP5604054 B2 JP 5604054B2 JP 2009115581 A JP2009115581 A JP 2009115581A JP 2009115581 A JP2009115581 A JP 2009115581A JP 5604054 B2 JP5604054 B2 JP 5604054B2
Authority
JP
Japan
Prior art keywords
curable resin
ultraviolet curable
resin
optical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009115581A
Other languages
Japanese (ja)
Other versions
JP2010264603A (en
Inventor
弘司 野呂
友紀子 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009115581A priority Critical patent/JP5604054B2/en
Publication of JP2010264603A publication Critical patent/JP2010264603A/en
Application granted granted Critical
Publication of JP5604054B2 publication Critical patent/JP5604054B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Optical Record Carriers (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Description

本発明は、光学レンズまたは光導波路もしくは光ファイバのコアの製造方法に関するものである。 The present invention relates to a method for manufacturing an optical lens or a core of an optical waveguide or an optical fiber .

光学部品、例えば、光学レンズは、光の集束や発散等の性能を発揮するよう所定の立体的形状に形成されている。また、CD(Compact Disc),DVD(Digital Versatile Disc),BD(Blu-rey Disc)等の光記録メディアは、多層構造であり、そのうち記録層の表面(記録面)は凹凸等の立体的形状に形成されている。なお、光記録メディアの記録層の凹凸形状の記録面には、金属層が形成され、さらにその金属層の表面には、樹脂層が形成されている。   An optical component, for example, an optical lens is formed in a predetermined three-dimensional shape so as to exhibit performance such as light focusing and divergence. Optical recording media such as CD (Compact Disc), DVD (Digital Versatile Disc), and BD (Blu-rey Disc) have a multilayer structure, and the surface (recording surface) of the recording layer has a three-dimensional shape such as irregularities. Is formed. Note that a metal layer is formed on the uneven recording surface of the recording layer of the optical recording medium, and a resin layer is formed on the surface of the metal layer.

上記光学レンズ,光記録メディア等の立体的な光学部品では、高密度化,高耐熱化、あるいは安価生産のために、その製造方法として、樹脂を形成材料とし、その樹脂に成形型を型押しすることにより、上記所定形状,凹凸形状の立体的な光学部品を製造する方法が検討されている。   For three-dimensional optical parts such as the above optical lenses and optical recording media, as a manufacturing method for high density, high heat resistance, or low-cost production, a resin is used as a forming material, and a molding die is stamped on the resin. Thus, a method of manufacturing a three-dimensional optical component having the predetermined shape and the uneven shape has been studied.

このような立体的な光学部品の製造方法は、寸法安定性の観点から、大別して2種類の方法がある。一つは、加熱溶融した熱可塑性樹脂に成形型をプレス圧着した後、上記熱可塑性樹脂を冷却し、その熱可塑性樹脂の硬化体からなる立体的な光学部品を得る方法である。もう一つは、液状ないしペースト状の紫外線硬化性樹脂に成形型を型押しした後、上記成形型を透過させて紫外線を照射することにより、上記紫外線硬化性樹脂を露光し、その感光性樹脂の硬化体からなる立体的な光学部品を得る方法である。   Such three-dimensional optical component manufacturing methods are roughly classified into two types from the viewpoint of dimensional stability. One is a method in which a molding die is press-bonded to a heat-melted thermoplastic resin, and then the thermoplastic resin is cooled to obtain a three-dimensional optical component made of a cured product of the thermoplastic resin. The other is that the mold is pressed into a liquid or paste-like UV curable resin, and then the UV curable resin is exposed by irradiating the UV through the mold and the photosensitive resin. This is a method for obtaining a three-dimensional optical component made of a cured product.

上記2種類の製造方法は、一般に、要求される耐熱温度を基準に選択される。すなわち、耐熱性が要求されない分野においては、PMMA(ポリメタクリル酸メチル),ポリカーボネート,ポリノルボルネン等の透明性の熱可塑性樹脂が用いられ、半田リフロー,オートクレーブ等の耐熱性が要求される分野では、エポキシ樹脂を主な樹脂成分とする紫外線硬化性樹脂が用いられる。   The two types of manufacturing methods are generally selected based on the required heat-resistant temperature. That is, in fields where heat resistance is not required, transparent thermoplastic resins such as PMMA (polymethyl methacrylate), polycarbonate, polynorbornene are used, and in fields where heat resistance such as solder reflow and autoclave is required, An ultraviolet curable resin containing an epoxy resin as a main resin component is used.

その一例として、上記紫外線硬化性樹脂を用い、上記所定形状,凹凸形状の立体的な光学部品を製造する方法が提案されている(例えば、特許文献1,2参照)。この製造方法は、基板上に紫外線硬化性樹脂を供給し、その紫外線硬化性樹脂を成形型で型押しし、その状態で、型押しされた上記紫外線硬化性樹脂に紫外線を照射することにより、上記基板と上記成形型の型面との間の上記紫外線硬化性樹脂を露光し、上記紫外線硬化性樹脂の硬化体からなる立体的な光学部品を製造する方法である。   As an example thereof, a method of manufacturing the above-described three-dimensional optical component having a predetermined shape and an uneven shape using the ultraviolet curable resin has been proposed (for example, see Patent Documents 1 and 2). In this manufacturing method, an ultraviolet curable resin is supplied onto a substrate, the ultraviolet curable resin is embossed with a molding die, and the ultraviolet curable resin thus embossed is irradiated with ultraviolet rays in that state. In this method, the ultraviolet curable resin between the substrate and the mold surface of the mold is exposed to produce a three-dimensional optical component made of a cured product of the ultraviolet curable resin.

特開2002−355826号公報JP 2002-355826 A 特開平9−115191号公報JP-A-9-115191

ところで、上記従来技術のように、紫外線硬化性樹脂を露光により硬化させる方法では、一般に、紫外線硬化性樹脂の硬化性および紫外線に対する感受性を高めるために、紫外線硬化性樹脂に対して光酸発生剤(硬化剤)の添加量を増加させたり増感剤を併用したりすること等が行われる。しかしながら、上記光酸発生剤および増感剤は、発色団を有する化合物であるため、それらの添加量が増えるにつれて、製造された光学部品は、透明性が低下する。光学レンズ等の光学部品は光を通す部品であるため、透明性の低下は、避けたい問題である。そこで、透明性の低下を避けるために、光酸発生剤等の添加量を少なくすると、今度は、硬化性が悪化し、生産効率が低下する。   By the way, in the method of curing an ultraviolet curable resin by exposure as in the prior art described above, in general, in order to increase the curability of the ultraviolet curable resin and the sensitivity to ultraviolet rays, a photoacid generator is used for the ultraviolet curable resin. The addition amount of (curing agent) is increased or a sensitizer is used in combination. However, since the photoacid generator and the sensitizer are compounds having a chromophore, as the added amount thereof increases, the transparency of the manufactured optical component decreases. Since optical components such as optical lenses are components that allow light to pass through, a decrease in transparency is a problem that should be avoided. Therefore, if the addition amount of the photoacid generator or the like is decreased in order to avoid a decrease in transparency, the curability is deteriorated and the production efficiency is lowered.

また、最近の環境負荷低減の観点から、上記紫外線の光源として、一般的に用いられる水銀ランプに代えて、電力消費の少ないLED(発光ダイオード)を用いるとこが望まれる。しかしながら、工業的に一般に用いられるLEDは、発光波長が355〜375nm領域内の単波長であり、上記水銀ランプとは異なり、エネルギーの高い短波長の紫外線を発光しない。このため、紫外線硬化性樹脂の硬化に時間を要し(硬化性が悪く)、生産性が低下するという問題が生じる。そこで、LEDを用いても紫外線硬化性樹脂の硬化性が悪化しないよう、紫外線硬化性樹脂への光酸発生剤や増感剤の添加量を増加すると、今度は、先に述べたように、製造される光学部品の透明性が大幅に低下する。   Further, from the viewpoint of recent environmental load reduction, it is desirable to use an LED (light emitting diode) with low power consumption instead of a generally used mercury lamp as the ultraviolet light source. However, an LED generally used industrially has a single emission wavelength in the 355 to 375 nm region, and unlike the mercury lamp, does not emit high-energy short-wavelength ultraviolet rays. For this reason, it takes time to cure the ultraviolet curable resin (the curability is poor), resulting in a problem that the productivity is lowered. Therefore, when the amount of photoacid generator and sensitizer added to the ultraviolet curable resin is increased so that the curability of the ultraviolet curable resin does not deteriorate even when the LED is used, this time, as described above, The transparency of manufactured optical components is greatly reduced.

本発明は、このような事情に鑑みなされたもので、優れた生産効率で透明性の高い立体的な光学レンズまたは光導波路もしくは光ファイバのコアを得ることができる光学レンズまたは光導波路もしくは光ファイバのコアの製造方法の提供をその目的とする。 The present invention is such made in view of the circumstances, an excellent highly transparent in production efficiency steric optical lens or an optical waveguide or an optical lens or an optical waveguide or an optical fiber it is possible to obtain a core of the optical fiber It is an object of the present invention to provide a method for manufacturing the core .

上記の目的を達成するため、本発明の光学レンズまたは光導波路もしくは光ファイバのコアの製造方法は、基板上に、エポキシ樹脂を主成分とし光酸発生剤を含有する紫外線硬化性樹脂を供給し、その紫外線硬化性樹脂を成形型で型押しし、その状態で、型押しされた上記紫外線硬化性樹脂に紫外線を照射することにより、その紫外線硬化性樹脂を露光し、上記紫外線硬化性樹脂の硬化体からなる立体的な光学部品を製造する方法であって、上記紫外線硬化性樹脂中の光酸発生剤が、0.1〜4重量%の範囲内であり、上記紫外線による露光が、上記紫外線硬化性樹脂を0〜60℃の範囲内に加温し、ゲル化時間を69〜315秒にした状態で行われるという構成をとる。 In order to achieve the above object, an optical lens or optical waveguide or optical fiber core manufacturing method of the present invention supplies an ultraviolet curable resin containing an epoxy resin as a main component and a photoacid generator on a substrate. The ultraviolet curable resin is embossed with a molding die, and the ultraviolet curable resin thus exposed is irradiated with ultraviolet rays to expose the ultraviolet curable resin. A method for producing a three-dimensional optical component comprising a cured body, wherein the photoacid generator in the ultraviolet curable resin is in the range of 0.1 to 4% by weight, and the exposure with the ultraviolet rays is performed as described above. The ultraviolet curable resin is heated within a range of 40 to 60 ° C. , and the gelation time is 69 to 315 seconds .

なお、本発明における「光学レンズまたは光導波路もしくは光ファイバのコア」は、光を透過す光学部品である。以下、上記「光学レンズまたは光導波路もしくは光ファイバのコア」を単に「光学部品」という。 Note that you Keru the present invention "optical lens or an optical waveguide or core of an optical fiber" is Ru optics der that spend translucent light. Hereinafter, the “optical lens or optical waveguide or optical fiber core” is simply referred to as “optical component”.

本発明者らは、エポキシ樹脂を主成分とし光酸発生剤を含有する紫外線硬化性樹脂を材料とし、成形型の型押しにより立体的な光学部品を製造するに際し、生産効率を高めるとともに、光学部品の透明性を高めるべく、紫外線による露光工程について研究を重ねた。その研究の過程で、紫外線硬化性樹脂を加温した状態で露光すると、紫外線硬化性樹脂への光酸発生剤等の添加量を少なくしても、紫外線硬化性樹脂の硬化が速まることを突き止めた。すなわち、このようにすることにより、光学部品の透明性低下の原因となる光酸発生剤等の添加量が少なくできることから、光学部品の透明性を高めることができる。しかも、紫外線硬化性樹脂の硬化が速まることから、光学部品の生産効率を高めることができる。そして、上記露光時の加温温度について、さらに研究を重ねた結果、その加温温度を30〜60℃の範囲内にすると、適正に紫外線硬化性樹脂が硬化することを見出した。すなわち、露光時の紫外線硬化性樹脂の温度が30℃を下回ると、紫外線硬化性樹脂の硬化性が悪化し、生産効率が低下し、上記温度が60℃を上回ると、光学部品の熱収縮が大きくなり、寸法安定性が悪化する。特に、上記加温温度を40〜60℃の範囲内にすると、ゲル化時間を69〜315秒と短くできる。 The inventors of the present invention use an ultraviolet curable resin containing an epoxy resin as a main component and a photoacid generator as a material, and increase production efficiency when manufacturing a three-dimensional optical component by embossing a molding die. In order to improve the transparency of parts, research was repeated on the exposure process using ultraviolet rays. In the course of that research, we found out that when UV curable resin is exposed in a heated state, curing of UV curable resin is accelerated even if the amount of photoacid generator added to the UV curable resin is reduced. It was. That is, by doing in this way, since the addition amount of a photo-acid generator etc. which causes the transparency fall of an optical component can be decreased, the transparency of an optical component can be improved. Moreover, since the curing of the ultraviolet curable resin is accelerated, the production efficiency of the optical component can be increased. As a result of further research on the heating temperature at the time of the exposure, it was found that when the heating temperature is in the range of 30 to 60 ° C., the ultraviolet curable resin is properly cured. That is, when the temperature of the ultraviolet curable resin at the time of exposure is less than 30 ° C., the curability of the ultraviolet curable resin is deteriorated and the production efficiency is lowered. It becomes large and dimensional stability deteriorates. In particular, when the heating temperature is in the range of 40 to 60 ° C., the gelation time can be shortened to 69 to 315 seconds.

本発明の光学部品の製造方法は、エポキシ樹脂を主成分とし光酸発生剤を含有する紫外線硬化性樹脂を材料とし、成形型の型押しにより立体的な光学部品を製造するに際し、紫外線による露光が、上記紫外線硬化性樹脂を0〜60℃の範囲内に加温し、ゲル化時間を69〜315秒にした状態で行われる。このため、紫外線硬化性樹脂への光酸発生剤等の添加量を少なくしても、紫外線硬化性樹脂の硬化を速めることができる。すなわち、光学部品の透明性を高めることができるとともに、生産効率も高めることができる。さらに、上記露光時の紫外線硬化性樹脂の温度の上限が60℃であるため、光学部品の熱収縮は小さく、寸法安定性に優れている。 The method for producing an optical component according to the present invention uses an ultraviolet curable resin containing an epoxy resin as a main component and containing a photoacid generator as a material. When producing a three-dimensional optical component by pressing a molding die, exposure by ultraviolet rays is performed. but warmed in the range of 4 0 to 60 ° C. the ultraviolet curable resin is performed in a state in which the gel time to 69-315 seconds. For this reason, even if the addition amount of a photo-acid generator etc. to ultraviolet curable resin is decreased, hardening of ultraviolet curable resin can be accelerated. That is, the transparency of the optical component can be increased and the production efficiency can be increased. Furthermore, since the upper limit of the temperature of the ultraviolet curable resin at the time of exposure is 60 ° C., the thermal shrinkage of the optical component is small and the dimensional stability is excellent.

また、上記紫外線硬化性樹脂を0〜60℃の範囲内に加温することが、上記基板上に上記紫外線硬化性樹脂を供給するに先立って、上記基板および成形型の少なくとも一方を加温することにより行われる場合には、供給される紫外線硬化性樹脂の品温等を考慮して、基板や成形型に対する加温を加減できるため、温度制御を精密にでき、かつ、上記紫外線硬化性樹脂に対する加温の容易化を実現できる。 In addition, heating the ultraviolet curable resin within a range of 40 to 60 ° C. heats at least one of the substrate and the mold prior to supplying the ultraviolet curable resin onto the substrate. In the case where it is carried out, the temperature of the substrate and the mold can be adjusted in consideration of the product temperature of the supplied UV curable resin, etc., so that the temperature control can be precisely performed, and the above UV curable Easier heating of the resin can be realized.

特に、上記紫外線の光源が、発光波長が単波長のLEDである場合には、水銀ランプを光源とする場合に比べて、環境に対する負荷を低減することができる。この場合、先に述べたように、工業的に一般に用いられるLEDは、水銀ランプとは異なり、エネルギーの高い短波長の紫外線を発光しないため、上記加温が行われない従来技術では、上記紫外線硬化性樹脂の硬化性が悪く、生産効率が低下する。そこで、LEDを用いても紫外線硬化性樹脂の硬化性が悪化しないよう、紫外線硬化性樹脂への光酸発生剤等の添加量を増加すると、今度は、製造された光学部品の透明性が大幅に低下する。これに対して、本発明では、露光時の紫外線硬化性樹脂の温度を0〜60℃の範囲内に加温することにより、硬化性を向上させているため、紫外線の光源がLEDであっても、生産効率を高めることができる。しかも、上記硬化性の向上により、紫外線の光源がLEDであっても、紫外線硬化性樹脂への光酸発生剤等の添加量を少なくすることができるため、光学部品の透明性も高めることができる。さらに、LEDは、電力消費が小さいことから、先に述べたように、環境への負荷を低減することができ、最近の環境問題にも対応することができる。 In particular, when the ultraviolet light source is an LED having a single emission wavelength, the burden on the environment can be reduced compared to the case where a mercury lamp is used as the light source. In this case, as described above, an LED generally used industrially does not emit high-energy short-wavelength ultraviolet light unlike a mercury lamp. The curability of the curable resin is poor and the production efficiency is lowered. Therefore, if the amount of photoacid generator added to the UV curable resin is increased so that the curability of the UV curable resin is not deteriorated even if an LED is used, this time, the transparency of the manufactured optical component is greatly increased. To drop. On the other hand, in the present invention, since the curability is improved by heating the temperature of the ultraviolet curable resin at the time of exposure within the range of 40 to 60 ° C., the ultraviolet light source is an LED. However, production efficiency can be increased. In addition, the above-described improvement in curability can reduce the amount of photoacid generator and the like added to the ultraviolet curable resin even if the ultraviolet light source is an LED, thereby increasing the transparency of the optical component. it can. Furthermore, since the power consumption of the LED is small, as described above, the load on the environment can be reduced and the recent environmental problems can be dealt with.

また、上記紫外線硬化性樹脂が、エポキシ樹脂を主成分とするものであるため、エポキシ樹脂が耐熱性に優れ、熱収縮が小さい樹脂であることから、光学部品の寸法安定性により優れている。 Moreover, since the said ultraviolet curable resin is what has an epoxy resin as a main component, since an epoxy resin is excellent in heat resistance and heat shrink is small, it is excellent in the dimensional stability of an optical component.

本発明の光学部品の製造方法の一実施の形態によって得られた光学部品を模式的に示す断面図である。It is sectional drawing which shows typically the optical component obtained by one Embodiment of the manufacturing method of the optical component of this invention. (a)〜(e)は、本発明の光学部品の製造方法の一実施の形態を模式的に示す説明図である。(A)-(e) is explanatory drawing which shows typically one Embodiment of the manufacturing method of the optical component of this invention. 紫外線硬化性樹脂を成形型で型押しする変形例を模式的に示す説明図である。It is explanatory drawing which shows typically the modification which presses an ultraviolet curable resin with a shaping | molding die. 実施例1,2、参考例1および比較例1〜3に用いた水銀ランプの発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the mercury lamp used for Example 1 , 2, Reference example 1, and Comparative Examples 1-3.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明の光学部品の製造方法の一実施の形態によって得られた光学部品を模式的に示す断面図である。この光学部品A1は、紫外線硬化性樹脂からなり、基板1上に複数(図1では7個)形成されている。光学部品A1の形状としては、例えば、レンズ形状,立方体状,直方体状,角柱状,円柱状,球体状,球面状,曲面状,角錐状,円錐状等の立体的形状があげられる(図1では立方体状に図示している)。   FIG. 1 is a cross-sectional view schematically showing an optical component obtained by an embodiment of a method for manufacturing an optical component of the present invention. The optical component A1 is made of an ultraviolet curable resin, and a plurality (seven in FIG. 1) are formed on the substrate 1. Examples of the shape of the optical component A1 include a three-dimensional shape such as a lens shape, a cubic shape, a rectangular parallelepiped shape, a prismatic shape, a cylindrical shape, a spherical shape, a spherical shape, a curved surface shape, a pyramid shape, and a conical shape (FIG. 1). In the figure of a cube).

このような立体的な光学部品は、つぎのようにして製造することができる。   Such a three-dimensional optical component can be manufactured as follows.

まず、図2(a)に示すように、上記光学部品A1の形成材料である紫外線硬化性樹脂(図示せず)と、その紫外線硬化性樹脂が供給される基板1と、上記基板1上の紫外線硬化性樹脂を型押しする成形型2とを準備する。この成形型2の型面には、型押しして上記紫外線硬化性樹脂を所望の立体形状にする凹部2aが形成されている。なお、上記基板1および成形型2の少なくとも一方は、紫外線を透過する材料からなっている。   First, as shown in FIG. 2A, an ultraviolet curable resin (not shown), which is a material for forming the optical component A1, a substrate 1 to which the ultraviolet curable resin is supplied, and the substrate 1 A mold 2 for embossing an ultraviolet curable resin is prepared. On the mold surface of the mold 2, a recess 2 a is formed by pressing the ultraviolet curable resin into a desired three-dimensional shape. Note that at least one of the substrate 1 and the mold 2 is made of a material that transmits ultraviolet rays.

上記紫外線硬化性樹脂は、エポキシ樹脂等の樹脂成分と、光酸発生剤(硬化剤)等の添加剤とからなるものであり、従来用いていた紫外線硬化性樹脂よりも、上記添加剤の添加量は少なくなっている。従来用いていた紫外線硬化性樹脂では、その紫外線硬化性樹脂中、光酸発生剤が、5〜8重量%(以下「%」と略す)の範囲内であったところ、本発明では、0.1〜4%の範囲内となっている。このように光酸発生剤の添加量が少量であっても、本発明では、紫外線硬化性樹脂の硬化を速めることが可能となるのである。また、上記紫外線硬化性樹脂の樹脂成分としては、上記エポキシ樹脂の他、例えば、アクリル樹脂,アクリルウレタン樹脂,シリコーン樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、耐熱性および熱収縮性に優れる観点から、エポキシ樹脂が好ましい。また、上記添加剤としては、上記光酸発生剤に加えて、必要に応じて増感剤等を併用してもよい。   The ultraviolet curable resin is composed of a resin component such as an epoxy resin and an additive such as a photoacid generator (curing agent), and the addition of the additive is higher than the conventionally used ultraviolet curable resin. The amount is decreasing. In the conventionally used ultraviolet curable resin, the photoacid generator in the ultraviolet curable resin is in the range of 5 to 8% by weight (hereinafter abbreviated as “%”). It is in the range of 1 to 4%. Thus, even if the addition amount of the photoacid generator is small, in the present invention, the curing of the ultraviolet curable resin can be accelerated. Examples of the resin component of the ultraviolet curable resin include acrylic resin, acrylic urethane resin, and silicone resin in addition to the epoxy resin. These may be used alone or in combination of two or more. Among these, an epoxy resin is preferable from the viewpoint of excellent heat resistance and heat shrinkability. Moreover, as said additive, in addition to the said photo-acid generator, you may use a sensitizer etc. together as needed.

上記基板1の形成材料としては、ガラス,樹脂等があげられる。上記ガラスとしては、例えば、白板ガラス,石英ガラス,パイレックス(登録商標)ガラス,BK−7,青板ガラス等があげられる。上記樹脂としては、ポリオレフィン,熱硬化性樹脂,光硬化性樹脂等があげられる。そのうちポリオレフィンとしては、例えば、ポリエチレン,ポリプロピレン,ポリスチレン,ポリメチルメタクリレート,ポリエチレンテレフタレート等があげられる。上記熱硬化性樹脂,光硬化性樹脂としては、例えば、エポキシ樹脂,ポリイミド樹脂,アクリル樹脂,シリコーン樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、汎用性,透明性,耐熱性の観点から、白板ガラスが好ましい。   Examples of the material for forming the substrate 1 include glass and resin. Examples of the glass include white plate glass, quartz glass, Pyrex (registered trademark) glass, BK-7, and blue plate glass. Examples of the resin include polyolefin, thermosetting resin, and photocurable resin. Among them, examples of the polyolefin include polyethylene, polypropylene, polystyrene, polymethyl methacrylate, and polyethylene terephthalate. As said thermosetting resin and photocurable resin, an epoxy resin, a polyimide resin, an acrylic resin, a silicone resin etc. are mention | raise | lifted, for example. These may be used alone or in combination of two or more. Of these, white plate glass is preferable from the viewpoints of versatility, transparency, and heat resistance.

上記成形型2は、下面(型面)に、光学部品A1の形状に対応する凹部2aが形成されている。その成形型2の形成材料としては、金属,ガラス,樹脂等があげられる。上記金属からなる成形型としては、表面に、例えば、ニッケルめっき層,クロムめっき層等が形成されたものがあげられる。透明性の観点からすれば、ガラス,樹脂等が好ましい。上記ガラスとしては、例えば、白板ガラス,石英ガラス,パイレックス(登録商標)ガラス,BK−7,青板ガラス等があげられる。上記樹脂としては、ポリオレフィン,熱硬化性樹脂,光硬化性樹脂等があげられる。そのうちポリオレフィンとしては、例えば、ポリエチレン,ポリプロピレン,ポリスチレン,ポリメチルメタクリレート,ポリエチレンテレフタレート等があげられる。上記熱硬化性樹脂,光硬化性樹脂としては、例えば、エポキシ樹脂,ポリイミド樹脂,アクリル樹脂,シリコーン樹脂等があげられる。これらは単独でもしくは2種以上併せて用いられる。なかでも、汎用性,耐光性,離型性の観点から、ニッケルめっき層が形成された金型,シリコーン樹脂製成形型が好ましい。また、離型性の観点から、成形型2の型面2aには、フッ素系,シリコーン系等の離型剤を塗布してもよい。   The molding die 2 has a recess 2a corresponding to the shape of the optical component A1 on the lower surface (mold surface). Examples of the forming material of the mold 2 include metal, glass, and resin. Examples of the mold made of the metal include those having a nickel plating layer, a chromium plating layer, or the like formed on the surface. From the viewpoint of transparency, glass, resin and the like are preferable. Examples of the glass include white plate glass, quartz glass, Pyrex (registered trademark) glass, BK-7, and blue plate glass. Examples of the resin include polyolefin, thermosetting resin, and photocurable resin. Among them, examples of the polyolefin include polyethylene, polypropylene, polystyrene, polymethyl methacrylate, and polyethylene terephthalate. As said thermosetting resin and photocurable resin, an epoxy resin, a polyimide resin, an acrylic resin, a silicone resin etc. are mention | raise | lifted, for example. These may be used alone or in combination of two or more. Among these, from the viewpoints of versatility, light resistance, and mold releasability, a mold having a nickel plating layer and a silicone resin mold are preferable. From the viewpoint of releasability, a mold release agent such as fluorine or silicone may be applied to the mold surface 2 a of the mold 2.

つぎに、上記のようにして紫外線硬化性樹脂,基板1および成形型2を準備した後、基板1および成形型2の少なくとも一方(片方または双方)を、0〜60℃の範囲内に加温する。この加温方法としては、例えば、ホットプレート上に上記基板1,成形型2を載置する方法、電熱線やセラミックヒータ等の熱源を上記基板1,成形型2に放射する方法,ドライヤからの熱風を上記基板1,成形型2に吹き付ける方法等があげられる。 Next, after preparing the ultraviolet curable resin, the substrate 1 and the mold 2 as described above, add at least one (one or both) of the substrate 1 and the mold 2 within the range of 40 to 60 ° C. Warm up. As the heating method, for example, a method of placing the substrate 1 and the mold 2 on a hot plate, a method of radiating a heat source such as a heating wire or a ceramic heater to the substrate 1 and the mold 2, For example, a method of blowing hot air on the substrate 1 and the mold 2 can be used.

ついで、図2(b)に示すように、上記基板1上に、上記紫外線硬化性樹脂(液状ないしペースト状)Aをポッティング装置等を用いてポッティングする(供給する)。上記基板1上にポッティングされた紫外線硬化性樹脂Aは、それ自身の表面張力により、ドーム状の層になる。   Next, as shown in FIG. 2B, the ultraviolet curable resin (liquid or pasty) A is potted (supplied) on the substrate 1 using a potting device or the like. The ultraviolet curable resin A potted on the substrate 1 becomes a dome-shaped layer due to its own surface tension.

つぎに、図2(c)に示すように、成形型2の型面2aを基板1の表面に対面させた状態で、成形型2を基板1に押圧する(型押しする)。この実施の形態では、成形型2の型面を基板1の表面に密着させている。これにより、成形型2の型面の凹部2a内に、基板1上の紫外線硬化性樹脂Aが浸入して充満し、紫外線硬化性樹脂Aのドーム状の層が成形型2の凹部2aの形状に成形される。   Next, as shown in FIG. 2 (c), the mold 2 is pressed (pressed) against the substrate 1 with the mold surface 2 a of the mold 2 facing the surface of the substrate 1. In this embodiment, the mold surface of the mold 2 is brought into close contact with the surface of the substrate 1. As a result, the ultraviolet curable resin A on the substrate 1 enters and fills in the concave portion 2 a of the mold surface of the mold 2, and the dome-shaped layer of the ultraviolet curable resin A has the shape of the concave portion 2 a of the mold 2. To be molded.

このように上記紫外線硬化性樹脂Aが成形型2で型押しされた状態では、始めの工程における、上記基板1および成形型2の少なくとも一方に対する0〜60℃の範囲内の加温により、その熱が、型押しされた紫外線硬化性樹脂Aに伝導し、その紫外線硬化性樹脂Aも、0〜60℃の範囲内に加温される。この紫外線硬化性樹脂Aの加温温度は、熱収縮,硬化性の観点から、35〜55℃の範囲内がより好ましい。なお、上記紫外線硬化性樹脂Aの加温温度の測定(確認)は、例えば、熱電対により行うことができる。 Thus, in the state where the ultraviolet curable resin A is embossed with the mold 2, by heating in the range of 40 to 60 ° C. with respect to at least one of the substrate 1 and the mold 2 in the first step, The heat is conducted to the embossed ultraviolet curable resin A, and the ultraviolet curable resin A is also heated within a range of 40 to 60 ° C. The heating temperature of the ultraviolet curable resin A is more preferably in the range of 35 to 55 ° C. from the viewpoint of heat shrinkage and curability. In addition, the measurement (confirmation) of the heating temperature of the said ultraviolet curable resin A can be performed with a thermocouple, for example.

そして、上記紫外線硬化性樹脂Aの加温状態で、図2(d)に示すように、基板1および成形型2の少なくとも一方を透過させて紫外線Lを照射することにより、上記紫外線硬化性樹脂Aを露光し、その紫外線硬化性樹脂Aを硬化させ、立体的な光学部品A1を成形する。上記紫外線Lの光源としては、例えば、水銀ランプ,発光波長が355〜375nm領域内の単波長であるLED等があげられる。なかでも、エネルギーの高い短波長の紫外線Lを発光する観点からは、水銀ランプが好ましく、電力消費が小さく、環境への負荷を低減することができる観点からは、LED好ましい。このように、上記紫外線硬化性樹脂Aを0〜60℃の範囲内に加温した状態で、紫外線Lにより露光することが、本発明の大きな特徴である。 Then, in the heated state of the ultraviolet curable resin A, as shown in FIG. 2 (d), at least one of the substrate 1 and the mold 2 is transmitted and irradiated with the ultraviolet light L, thereby the ultraviolet curable resin. A is exposed, the ultraviolet curable resin A is cured, and a three-dimensional optical component A1 is formed. Examples of the light source of the ultraviolet light L include a mercury lamp, an LED having a single wavelength within a 355 to 375 nm emission wavelength, and the like. Among these, a mercury lamp is preferable from the viewpoint of emitting high-energy short-wavelength ultraviolet light L, and an LED is preferable from the viewpoint of reducing power consumption and reducing the burden on the environment. Thus, it is a major feature of the present invention that the ultraviolet curable resin A is exposed to the ultraviolet light L in a state where the ultraviolet curable resin A is heated within a range of 40 to 60 ° C.

そして、図2(e)に示すように、脱型し、硬化した感光性樹脂を基板1から剥離して光学レンズ等の立体的な光学部品A1を得る。   Then, as shown in FIG. 2E, the three-dimensional optical component A1 such as an optical lens is obtained by removing the demolded and cured photosensitive resin from the substrate 1.

なお、上記実施の形態では、基板1に紫外線硬化性樹脂Aをポッティングするのに先立って、基板1および成形型2の少なくとも一方を加温したが、紫外線硬化性樹脂Aを成形型2で型押しした状態で、基板1および成形型2の少なくとも一方を加温し、紫外線照射時の紫外線硬化性樹脂Aの温度を0〜60℃(より好ましくは35〜55℃)の範囲内に加温してもよい。 In the above embodiment, at least one of the substrate 1 and the molding die 2 is heated prior to potting the ultraviolet curable resin A on the substrate 1, but the ultraviolet curable resin A is molded with the molding die 2. In the pressed state, at least one of the substrate 1 and the mold 2 is heated, and the temperature of the ultraviolet curable resin A at the time of ultraviolet irradiation is within a range of 40 to 60 ° C. (more preferably 35 to 55 ° C.). May be warm.

また、上記実施の形態では、図2(e)に示す工程において、脱型した後、硬化した感光性樹脂を基板1から剥離して光学部品A1として得たが、硬化した感光性樹脂が付着した基板1をそのまま光学部品として得てもよい。   In the above embodiment, after removing the mold in the step shown in FIG. 2E, the cured photosensitive resin is peeled from the substrate 1 to obtain the optical component A1, but the cured photosensitive resin is attached. The obtained substrate 1 may be obtained as an optical component as it is.

さらに、上記実施の形態では、図2(c)に示すように、紫外線硬化性樹脂Aを成形型2で型押しする際に、成形型2の下面を基板1の表面に密着させたが、図3に示すように、成形型2の下面を基板1の表面に密着させない程度に、成形型2を型押しし、紫外線硬化性樹脂Aの層の表面部分に、成形型2の型面2aの形状が転写された状態にして硬化させ、平板状体の表面に凸部が形成された立体的な光学部品を製造するようにしてもよい。   Further, in the above embodiment, when the ultraviolet curable resin A is embossed with the mold 2 as shown in FIG. 2C, the lower surface of the mold 2 is brought into close contact with the surface of the substrate 1. As shown in FIG. 3, the mold 2 is pressed so that the lower surface of the mold 2 does not adhere to the surface of the substrate 1, and the mold surface 2a of the mold 2 is placed on the surface portion of the layer of the ultraviolet curable resin A. A three-dimensional optical component in which convex portions are formed on the surface of the flat plate-like body may be manufactured by curing in a state where the shape of the plate is transferred.

つぎに、実施例および参考例について比較例と併せて説明する。但し、本発明は、実施例に限定されるわけではない。 Next, examples and reference examples will be described together with comparative examples. However, the present invention is not limited to the examples.

[実施例1〜4および参考例1,2,比較例2〜4]
〔紫外線硬化性樹脂(A):硬化剤の添加量が少ないタイプ〕
ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製、エピコート827)50g、脂環式エポキシ樹脂(ダイセル化学社製、CEL−2021P)50g、硬化剤(アデカ社製、アデカオプトマーSP−170)1gを、50℃で10分間攪拌混合することにより、紫外線硬化性樹脂(A)を調製し、その後、25℃未満に下がるまで放置した。なお、この紫外線硬化性樹脂(A)の25℃での粘度は1540mPa・s、硬化体の熱膨張係数は88ppm/Kであった。
[Examples 1 to 4 and Reference Examples 1 and 2 , Comparative Examples 2 to 4]
[Ultraviolet curable resin (A): type with a small amount of hardener added]
50 g of bisphenol A type epoxy resin (Japan Epoxy Resin, Epicoat 827), 50 g of alicyclic epoxy resin (CEL-2021P, manufactured by Daicel Chemical Industries), 1 g of curing agent (Adeka Corp., Adeka Optomer SP-170) The ultraviolet curable resin (A) was prepared by stirring and mixing at 50 ° C. for 10 minutes, and then allowed to stand until it fell below 25 ° C. The ultraviolet curable resin (A) had a viscosity of 1540 mPa · s at 25 ° C., and the cured product had a thermal expansion coefficient of 88 ppm / K.

[比較的1]
〔紫外線硬化性樹脂(B):硬化剤の添加量が多いタイプ〕
上記紫外線硬化性樹脂(A)において、硬化剤の添加量を4gにしたものを紫外線硬化性樹脂(B)とした。それ以外は、上記紫外線硬化性樹脂(A)と同様にした。なお、この紫外線硬化性樹脂(B)の25℃での粘度は1440mPa・s、硬化体の熱膨張係数は88ppm/Kであった。
[Relatively 1]
[Ultraviolet curable resin (B): type with a large amount of curing agent added]
In the ultraviolet curable resin (A), the amount of the curing agent added was 4 g, and the ultraviolet curable resin (B) was used. Other than that was carried out similarly to the said ultraviolet curable resin (A). The ultraviolet curable resin (B) had a viscosity at 25 ° C. of 1440 mPa · s, and the cured product had a thermal expansion coefficient of 88 ppm / K.

上記紫外線硬化性樹脂(A),(B)を用い、下記の基準に従って、各特性の評価を行った。その結果を、下記の表1,2に併せて示した。   Using the ultraviolet curable resins (A) and (B), each characteristic was evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.

〔紫外線硬化性樹脂(A),(B)のゲル化時間〕
レオロジカ社製のUVレオメータ(回転板として直径15mmのアルミニウム板を使用)を用いて、紫外線照射中における、上記紫外線硬化性樹脂(A),(B)の粘弾性を、下記の表1,2に示す各温度で測定し、測定開始から弾性項と粘性項とが交わるまでの時間をゲル化時間とした。そして、ゲル化時間が700秒以下のものを○、それを上回るもの×と評価した。
[Gelging time of UV curable resins (A) and (B)]
Tables 1 and 2 below show the viscoelasticity of the UV curable resins (A) and (B) during UV irradiation using a Rheologyka UV rheometer (a 15 mm diameter aluminum plate is used as a rotating plate). The time from the start of measurement to the intersection of the elastic term and the viscosity term was defined as the gelation time. And the thing whose gelation time is 700 seconds or less was evaluated as ○, and the thing exceeding it was evaluated as ×.

なお、上記紫外線の光源としては、下記の表1,2に示すように、水銀ランプ(浜松ホトニクス社製、LC−8:発光スペクトルは図4参照、波長365nmでの照度10mW/cm2 )またはUV−LED(浜松ホトニクス社製、光源タイプL9613−200:波長365nm単波長、照度10mW/cm2 )を用いた。また、上記粘弾性測定時の紫外線硬化性樹脂(A),(B)の温度は、ドライヤからの熱風により加温された温度であり、熱電対により測定(確認)することができる。 As the ultraviolet light source, as shown in Tables 1 and 2 below, a mercury lamp (manufactured by Hamamatsu Photonics Co., Ltd., LC-8: see FIG. 4 for the emission spectrum, illuminance of 10 mW / cm 2 at a wavelength of 365 nm) or UV-LED (manufactured by Hamamatsu Photonics, light source type L9613-200: wavelength 365 nm single wavelength, illuminance 10 mW / cm 2 ) was used. The temperature of the ultraviolet curable resins (A) and (B) at the time of measuring the viscoelasticity is a temperature heated by hot air from a dryer, and can be measured (confirmed) by a thermocouple.

〔紫外線硬化性樹脂(A),(B)の着色度〕
熱硬化性樹脂(ダウコーニング社製、SYLGARD184)を材料とする成形型(直径50mm×厚み268μm)を作製した。そして、パイレックス(登録商標)ガラス基板上に、上記紫外線硬化性樹脂(A),(B)をポッティングした後、上記成形型で型押しし、下記の表1,2に示す各温度にした状態で各光源から紫外線を照射することにより、成形物を作製した。ついで、100℃で1時間加熱ポストキュアを行った後、カラーコンピュータ(スガ試験機社製、SM−T)を用いて、イエローインデックスを測定した。そして、そのイエローインデックスが5以下のものを○、それを上回るもの×と評価した。
[Coloring degree of ultraviolet curable resins (A) and (B)]
A molding die (diameter 50 mm × thickness 268 μm) using a thermosetting resin (SYLGARD 184, manufactured by Dow Corning) was produced. Then, after potting the ultraviolet curable resins (A) and (B) on a Pyrex (registered trademark) glass substrate, the molds are embossed with the molds, and the temperatures shown in Tables 1 and 2 below are set. Then, a molded product was produced by irradiating ultraviolet rays from each light source. Next, after heating and curing at 100 ° C. for 1 hour, the yellow index was measured using a color computer (SM-T, manufactured by Suga Test Instruments Co., Ltd.). The yellow index of 5 or less was evaluated as ○, and the index exceeding it was evaluated as ×.

〔成形物の寸法誤差(収縮率)〕
熱硬化性樹脂(ダウコーニング社製、SYLGARD184)を材料とする成形型(直径50mm×厚み224μm)を作製した。そして、パイレックス(登録商標)ガラス基板上に、上記紫外線硬化性樹脂(A),(B)をポッティングした後、上記成形型で型押しし、下記の表1,2に示す各温度にした状態で各光源から紫外線を照射することにより、成形物を作製した。その後、触針式表面形状測定器(アルバック社製、Dektak8)を用いて、成形型のキャビティ深さと成形物の高さとを測定し、成形型に対する成形物の収縮率を算出した。そして、その収縮率が2.00%以下のものを○、それを上回るもの×と評価した。
[Dimensional error (shrinkage rate) of molded product]
A molding die (diameter 50 mm × thickness 224 μm) made of a thermosetting resin (SYLARD184, manufactured by Dow Corning) was produced. Then, after potting the ultraviolet curable resins (A) and (B) on a Pyrex (registered trademark) glass substrate, the molds are embossed with the molds, and the temperatures shown in Tables 1 and 2 below are set. Then, a molded product was produced by irradiating ultraviolet rays from each light source. Thereafter, the cavity depth of the mold and the height of the molded product were measured using a stylus type surface shape measuring instrument (Dektak 8 manufactured by ULVAC, Inc.), and the shrinkage ratio of the molded product with respect to the mold was calculated. And the thing with the shrinkage | contraction rate of 2.00% or less was evaluated as (circle) and what exceeded it x.

Figure 0005604054
Figure 0005604054

Figure 0005604054
Figure 0005604054

上記結果から、実施例1〜4および参考例1,2では、いずれも、ゲル化時間が短く、着色度も低く、収縮率も小さい成形物を得ることが可能であった。特に、実施例1〜4ではゲル化時間が短かった。これに対して、比較例1では、ゲル化時間および収縮率は良好であるものの、著しく着色された成形物が得られた。これは、紫外線硬化性樹脂(B)における硬化剤の添加量が多いことに原因がある。また、比較例2では、着色度および収縮率は良好であるものの、ゲル化時間が長くなった。これは、光源として水銀ランプを使用したもにかかわらず、紫外線硬化性樹脂(A)における硬化剤の添加量が少なく、しかも、加温した温度が低いことに原因がある。また、比較例3では、ゲル化時間および着色度は良好であるものの、収縮率が大きい成形物が得られた。これは、加温した温度が高いことに原因がある。また、比較例4では、着色度および収縮率は良好であるものの、ゲル化時間が長くなった。これは、紫外線硬化性樹脂(A)における硬化剤の添加量が少ないうえに、加温した温度が低いことに原因がある。 From the above results, in Examples 1 to 4 and Reference Examples 1 and 2 , it was possible to obtain molded articles having a short gelation time, a low degree of coloring, and a small shrinkage rate. In particular, in Examples 1 to 4, the gelation time was short. On the other hand, in Comparative Example 1, although the gelation time and the shrinkage rate were good, a remarkably colored molded product was obtained. This is because the amount of the curing agent added in the ultraviolet curable resin (B) is large. In Comparative Example 2, although the degree of coloring and the shrinkage rate were good, the gelation time was long. This is because, despite the use of a mercury lamp as the light source, the amount of the curing agent added to the ultraviolet curable resin (A) is small, and the heated temperature is low. In Comparative Example 3, a molded article having a high shrinkage rate was obtained although the gelation time and the coloring degree were good. This is because the heated temperature is high. In Comparative Example 4, although the degree of coloring and the shrinkage rate were good, the gelation time was long. This is because the amount of the curing agent added to the ultraviolet curable resin (A) is small and the heated temperature is low.

なお、上記紫外線硬化性樹脂(A),(B)は、エポキシ樹脂を主成分とするものとしたが、アクリル樹脂,アクリルウレタン樹脂,シリコーン樹脂をそれぞれ主成分とするもを用いても、上記と同様の結果が得られた。   In addition, although the said ultraviolet curable resin (A) and (B) shall have an epoxy resin as a main component, even if it uses what has an acrylic resin, an acrylic urethane resin, and a silicone resin as a main component, the said Similar results were obtained.

本発明の光学部品の製造方法は、光学レンズ,光導波路や光ファイバのコアの製造に利用可能である。
Method of manufacturing an optical component of the present invention is applicable to the manufacture of core of the optical lens, an optical waveguide or an optical fiber.

1 基板
2 成形型
A 紫外線硬化性樹脂
A1 光学部品
L 紫外線
1 Substrate 2 Mold A UV curable resin A1 Optical component L UV

Claims (3)

基板上に、エポキシ樹脂を主成分とし光酸発生剤を含有する紫外線硬化性樹脂を供給し、その紫外線硬化性樹脂を成形型で型押しし、その状態で、型押しされた上記紫外線硬化性樹脂に紫外線を照射することにより、その紫外線硬化性樹脂を露光し、上記紫外線硬化性樹脂の硬化体からなる立体的な光学部品を製造する方法であって、上記紫外線硬化性樹脂中の光酸発生剤が、0.1〜4重量%の範囲内であり、上記紫外線による露光が、上記紫外線硬化性樹脂を0〜60℃の範囲内に加温し、ゲル化時間を69〜315秒にした状態で行われることを特徴とする光学レンズまたは光導波路もしくは光ファイバのコアの製造方法。 On the substrate, an ultraviolet curable resin containing an epoxy resin as a main component and containing a photoacid generator is supplied, and the ultraviolet curable resin is embossed with a molding die. A method for producing a three-dimensional optical component comprising a cured product of the ultraviolet curable resin by exposing the ultraviolet curable resin to ultraviolet rays on the resin, wherein the photoacid in the ultraviolet curable resin is produced. The generator is within the range of 0.1 to 4% by weight, and the exposure with the ultraviolet rays warms the ultraviolet curable resin within the range of 40 to 60 ° C. , and the gelation time is 69 to 315 seconds. An optical lens or a method of manufacturing a core of an optical waveguide or an optical fiber, which is performed in the state described above. 上記紫外線硬化性樹脂を0〜60℃の範囲内に加温することが、上記基板上に上記紫外線硬化性樹脂を供給するに先立って、上記基板および成形型の少なくとも一方を加温することにより行われる請求項1記載の光学レンズまたは光導波路もしくは光ファイバのコアの製造方法。 Heating the ultraviolet curable resin within a range of 40 to 60 ° C. heats at least one of the substrate and the mold prior to supplying the ultraviolet curable resin onto the substrate. The manufacturing method of the core of the optical lens of Claim 1, or an optical waveguide, or an optical fiber performed by these . 上記紫外線の光源が、発光波長が単波長のLEDである請求項1または2記載の光学レンズまたは光導波路もしくは光ファイバのコアの製造方法。 3. The method of manufacturing an optical lens, an optical waveguide, or an optical fiber core according to claim 1, wherein the ultraviolet light source is an LED having a single emission wavelength.
JP2009115581A 2009-05-12 2009-05-12 Method for manufacturing optical lens or optical waveguide or optical fiber core Expired - Fee Related JP5604054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009115581A JP5604054B2 (en) 2009-05-12 2009-05-12 Method for manufacturing optical lens or optical waveguide or optical fiber core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009115581A JP5604054B2 (en) 2009-05-12 2009-05-12 Method for manufacturing optical lens or optical waveguide or optical fiber core

Publications (2)

Publication Number Publication Date
JP2010264603A JP2010264603A (en) 2010-11-25
JP5604054B2 true JP5604054B2 (en) 2014-10-08

Family

ID=43362042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009115581A Expired - Fee Related JP5604054B2 (en) 2009-05-12 2009-05-12 Method for manufacturing optical lens or optical waveguide or optical fiber core

Country Status (1)

Country Link
JP (1) JP5604054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032038A (en) * 2017-08-09 2019-02-28 ノードソン コーポレーションNordson Corporation Sealing member formation device, sealing member formation method, and ultraviolet curing material injection device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199199A1 (en) * 2014-06-27 2015-12-30 古河電気工業株式会社 Method for manufacturing optical fiber, and device for manufacturing optical fiber

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160035A (en) * 1986-12-23 1988-07-02 Hitachi Chem Co Ltd Production of optical disk substrate
JP2002355826A (en) * 2001-05-31 2002-12-10 Omron Corp Method for producing lens part for optical communication
JP2003055462A (en) * 2001-08-16 2003-02-26 Brother Ind Ltd Active energy ray curable composition, ink containing the same and the printer using the ink
JP5117002B2 (en) * 2006-07-10 2013-01-09 富士フイルム株式会社 Photocurable composition and pattern forming method using the same
JP5052887B2 (en) * 2006-12-28 2012-10-17 信越化学工業株式会社 Photoradical curable resin composition and method for producing the composition
JP5025404B2 (en) * 2007-09-28 2012-09-12 吉佳エンジニアリング株式会社 Light irradiation apparatus, light irradiation system for pipe repair lining material, and photocuring method using these apparatuses or systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019032038A (en) * 2017-08-09 2019-02-28 ノードソン コーポレーションNordson Corporation Sealing member formation device, sealing member formation method, and ultraviolet curing material injection device
US11707902B2 (en) 2017-08-09 2023-07-25 Nordson Corporation Seal member forming system and method
JP7460316B2 (en) 2017-08-09 2024-04-02 ノードソン コーポレーション Apparatus for forming sealing member, method for forming sealing member, and ultraviolet curable material injection device

Also Published As

Publication number Publication date
JP2010264603A (en) 2010-11-25

Similar Documents

Publication Publication Date Title
CN101594980B (en) Method and arrangement for manufacturing optical products with complex three-dimensional forms
JP2007086787A5 (en)
KR20120102627A (en) Method to provide microstructure for encapsulated high-brightness led chips
JP2014006545A (en) Molded optical articles and methods of making the same
JP4467388B2 (en) COMPOUND LENS, COMPOSITE LENS MANUFACTURING METHOD, AND LENS MODULE
JP2007110122A (en) Method for manufacturing high sag lens, and high sag lens manufactured thereby
JP4670669B2 (en) Composite optical component and manufacturing method thereof
JP5604054B2 (en) Method for manufacturing optical lens or optical waveguide or optical fiber core
JP2007310389A (en) Multilayer optical film and its manufacturing method
KR100551623B1 (en) Process of Producing Hybrid Lens
JP5351096B2 (en) Optical waveguide manufacturing method
JP5206247B2 (en) Method for producing fine hollow body and method for producing fine composite part
WO2019160058A1 (en) Mold formation method and mold
JP2011143592A (en) Method for manufacturing optical part
JP5351101B2 (en) Optical waveguide manufacturing method
JP2005205860A (en) Method for production of optical element
JP2004098457A (en) Composite optical element and manufacturing apparatus therefor
JP2006113340A (en) Manufacturing method of composite optical element and composite optical element
JP3545796B2 (en) Optical device and optical device manufacturing method
JP5351102B2 (en) Optical waveguide manufacturing method
JP2008015010A (en) Compound optical element and its manufacturing method
CN103817829A (en) Method for heating mold with laser and mold device
TWI419781B (en) Method for manufacturing mold
JP2005017940A (en) Method for manufacturing optical waveguide
JP2002240057A (en) Method for manufacturing composite optical element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130403

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees