JP2005205860A - Method for production of optical element - Google Patents

Method for production of optical element Download PDF

Info

Publication number
JP2005205860A
JP2005205860A JP2004017610A JP2004017610A JP2005205860A JP 2005205860 A JP2005205860 A JP 2005205860A JP 2004017610 A JP2004017610 A JP 2004017610A JP 2004017610 A JP2004017610 A JP 2004017610A JP 2005205860 A JP2005205860 A JP 2005205860A
Authority
JP
Japan
Prior art keywords
mold
temperature
transfer
resin
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004017610A
Other languages
Japanese (ja)
Inventor
Akira Inoue
章 井上
Mikio Masui
幹生 桝井
Keiji Azuma
啓二 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004017610A priority Critical patent/JP2005205860A/en
Publication of JP2005205860A publication Critical patent/JP2005205860A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance heating efficiency, lessen energy consumption and reduce the occurrence of residual stress or strain in a molded article in a method for production of an optical element. <P>SOLUTION: The optical element production method of this invention comprises the steps of: arranging a thermoplastic resin 2 in the separation molds (5, 6) one of which is formed of a translucent material; irradiating the resin 2 with an energy beam 10 such as a visible or near infrared radiation from the side of the translucent mold 6 while controlling a mold temperature at a predetermined one ranging from the glass transition point of the resin 2 to (that point-20°C); compressing the resin by the molds in such a state that the temperature of the fine uneven surface (projection 5a) of a transfer mold 5 is the glass transition point or higher to transfer the uneven shape to the surface of the resin 2; curing the resin 2 while controlling the mold temperature in a predetermined level to release from the mold. According to the method, the portion to be heated by the energy beam can extremely be lessened, and the molding with good heating efficiency and high accuracy can be attained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱可塑性樹脂を基材とし、微細な凹凸面を持つ光学素子の製造方法に関する。   The present invention relates to a method for manufacturing an optical element having a fine uneven surface using a thermoplastic resin as a base material.

従来、この種の光学素子の製造方法において、赤外線を吸収する成形型と、赤外線を透過する加圧型との間に、赤外線を透過する材料を入れ、加圧型側から成形型側に向けて赤外線を照射し、加圧することにより、光学素子を形成する方法が知られている(特許文献1参照)。この方法において、ある程度はエネルギー損失も少なく、成形サイクルを短くすることができる。   Conventionally, in this type of optical element manufacturing method, a material that transmits infrared light is inserted between a mold that absorbs infrared light and a pressure mold that transmits infrared light, and infrared light is directed from the pressure mold side toward the mold side. A method of forming an optical element by irradiating and pressurizing is known (see Patent Document 1). In this method, energy loss is small to some extent, and the molding cycle can be shortened.

しかしながら、上記特許文献1に記載された方法においては、成形型全体を加熱し、その熱伝導により基材を溶融させ、形状を転写するため、加熱効率が良好でなく、エネルギー量は大きくなり、装置が大掛かりになったり、又は加熱・冷却に長時間を要する。また、冷却・固化時には、成形品全体が固化収縮するため、成形品に残留応力や歪が発生し易いといった問題がある。
特開昭57−70608号公報
However, in the method described in Patent Document 1, the entire mold is heated, the base material is melted by the heat conduction, and the shape is transferred. Therefore, the heating efficiency is not good, and the amount of energy increases. The apparatus becomes large, or it takes a long time for heating and cooling. Further, since the entire molded product is solidified and contracted during cooling and solidification, there is a problem that residual stress and distortion are likely to occur in the molded product.
JP-A-57-70608

本発明は、上記の問題を解決するためになされたものであり、加熱効率が良好で、エネルギー量は少なくて済み、しかも成形品に残留応力や歪が発生することが低減される光学素子の製造方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is an optical element that has good heating efficiency, requires a small amount of energy, and reduces the occurrence of residual stress and distortion in a molded product. An object is to provide a manufacturing method.

上記目的を達成するために請求項1の発明は、開閉される分離型内に基材としての熱可塑性樹脂を装入し、一方の型表面に形成された微細な凹凸面を、その熱可塑性樹脂に転写することにより形成される光学素子の製造方法であって、少なくとも一方の型が透光性材質で構成された分離型内に、熱可塑性樹脂を配置する樹脂供給工程と、分離型の型温度を熱可塑性樹脂のガラス転移温度乃至該温度の−20度の範囲の所定の温度に制御しつつ、透光性材質で構成された型の側より可視又は近赤外光等のエネルギー線を照射することにより微細な凹凸面をガラス転移温度以上の温度とした状態で、分離型で圧縮して、熱可塑性樹脂の表面に凹凸面を転写する樹脂転写工程と、分離型の型温度を所定の温度に制御した状態で前記熱可塑性樹脂を硬化させ、かつ分離型より離型する樹脂離型工程とを備えたものである。   In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that a thermoplastic resin as a base material is placed in a separation mold that is opened and closed, and a fine irregular surface formed on one mold surface is formed by the thermoplastic resin. A method of manufacturing an optical element formed by transferring to a resin, wherein a resin supply step of disposing a thermoplastic resin in a separation mold in which at least one mold is made of a translucent material, and a separation mold While controlling the mold temperature to the glass transition temperature of the thermoplastic resin to a predetermined temperature in the range of −20 degrees of the temperature, energy rays such as visible or near-infrared light from the mold side made of a translucent material The resin transfer process of transferring the uneven surface to the surface of the thermoplastic resin by compressing with a separation mold in a state where the fine uneven surface is set to a temperature equal to or higher than the glass transition temperature by irradiating, and the mold temperature of the separation mold The thermoplastic resin is hardened while being controlled at a predetermined temperature. It is allowed, and is obtained by a resin mold releasing step of releasing the separation type.

請求項2の発明は、請求項1記載の光学素子の製造方法において、樹脂転写工程において、エネルギー線としてレーザを用い、レーザの照射焦点を、前記凹凸面を有する転写型内の凹凸面に近接した深さ位置としたものである。   According to a second aspect of the present invention, in the method for manufacturing an optical element according to the first aspect, in the resin transfer step, a laser is used as an energy beam, and the focal point of the laser is close to the concave / convex surface in the transfer mold having the concave / convex surface. This is the depth position.

請求項3の発明は、請求項1記載の光学素子の製造方法において、分離型は、透光性材質を備えた透光型と、微細な凹凸面を備えた転写型とで構成され、樹脂転写工程において透光型の温度を転写型の温度よりも低く制御し、型の厚さ方向に温度勾配を持たせたものである。   According to a third aspect of the present invention, in the method of manufacturing an optical element according to the first aspect, the separation mold is composed of a translucent mold provided with a translucent material and a transfer mold provided with fine uneven surfaces, and a resin. In the transfer process, the temperature of the translucent mold is controlled to be lower than the temperature of the transfer mold, and a temperature gradient is provided in the mold thickness direction.

請求項4の発明は、請求項1記載の光学素子の製造方法において、微細な凹凸面を備えた転写型が、透光性材質を備え、樹脂転写工程において該転写型の側よりエネルギー線を照射するものである。   According to a fourth aspect of the present invention, in the method for manufacturing an optical element according to the first aspect, the transfer mold having a fine uneven surface is provided with a translucent material, and an energy beam is applied from the transfer mold side in the resin transfer step. Irradiation.

請求項1の発明によれば、分離型をガラス転移点付近の温度として状態で、エネルギー線照射により型の微細な凹凸面をガラス転移温度以上の温度とするので、少ないエネルギー線を照射するだけで樹脂を賦形することができ、成形品全体の固化収縮でないので、離型時に成形品に割れ等が生じ難くなり、精度良く成形することができる   According to the first aspect of the present invention, since the fine uneven surface of the mold is set to a temperature equal to or higher than the glass transition temperature by irradiation with energy rays in a state where the separation mold is at a temperature near the glass transition point, only a small amount of energy rays are irradiated. Since the resin can be shaped with no solidification shrinkage of the entire molded product, it becomes difficult to cause cracks in the molded product at the time of mold release and can be molded with high accuracy.

請求項2の発明によれば、レーザによる加熱部位を微小に抑えることができるので、加熱効率が良い。   According to the second aspect of the present invention, the heating portion by the laser can be suppressed to be minute, so that the heating efficiency is good.

請求項3の発明によれば、分離型の厚み方向に温度差を設けることにより、転写側表面層のみを局所的に加熱することが可能となり、加熱効率が良くなる。   According to the invention of claim 3, by providing the temperature difference in the thickness direction of the separation mold, it is possible to locally heat only the transfer side surface layer, and the heating efficiency is improved.

請求項4の発明によれば、エネルギー線により熱可塑性樹脂の転写表面層のみガラス転移温度以上に熱することができ、加熱効率が良い。   According to invention of Claim 4, only the transfer surface layer of a thermoplastic resin can be heated more than a glass transition temperature with an energy ray, and heating efficiency is good.

本発明の実施形態について図面を参照して説明する。図1は本発明方法により製造される光学素子の一例を示す。この光学素子1は、基材である光透過性の熱可塑性樹脂2に微細な凹凸面が転写されることで形成される光導波路基板(クラッド)であって、ここでは光導波路3は光分岐のスプリッタ構造を持つ。光導波路3をなす凹部の幅寸法は、約10μm前後又はそれ以下とされ、この凹部に屈折率がクラッドよりも高いコア材(図示なし)が装入され、基板上はカバークラッドで覆われる。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an example of an optical element manufactured by the method of the present invention. The optical element 1 is an optical waveguide substrate (cladding) formed by transferring a fine uneven surface to a light-transmitting thermoplastic resin 2 as a base material. Here, the optical waveguide 3 is an optical branch. Has a splitter structure. The width of the recess forming the optical waveguide 3 is about 10 μm or less, and a core material (not shown) having a higher refractive index than that of the cladding is inserted into the recess, and the substrate is covered with a cover cladding.

図2(a)は実施例1による光学素子の製造方法が適用される型装置の概略構成を、(b)は転写型へのエネルギー線照射状態を、(c)(d)は転写型の平面及び側面の構成を示す。型装置は、基材としての熱可塑性樹脂2が装入される開閉自在な転写型5と透過型6とから成る分離型を主要構成とする。転写型5には、その型表面に熱可塑性樹脂に転写される微細な凹凸形状が形成されており、図示では発明概念を理解し易くするため模式的に、この微細凹凸形状を凸部5aで表している。この凸部5aは、上記図1に示した光学素子1の光導波路3をなす凹部を熱可塑性樹脂2に転写形成するためのものである。透過型6は、任意のエネルギー線10を転写部に照射するために光透過性材で構成されている。いずれの型も、内部にヒータ7、8、冷却水通路(図示なし)及び温度センサ9が設置されており、製造工程の各段階に応じて温度制御される(詳細後述)。また、転写型5と透過型6とは、装入された熱可塑性樹脂を位置決め固定し、圧縮するために上下から押圧力を付与するための構成を有している。   2A shows a schematic configuration of a mold apparatus to which the optical element manufacturing method according to the first embodiment is applied, FIG. 2B shows an energy beam irradiation state on the transfer mold, and FIG. 2C and FIG. The structure of a plane and a side is shown. The mold apparatus is mainly composed of a separation mold composed of a transfer mold 5 and a transmission mold 6 which can be freely opened and closed, in which a thermoplastic resin 2 as a base material is inserted. The transfer mold 5 has a fine concavo-convex shape to be transferred to the thermoplastic resin on the surface of the mold, and in the drawing, this fine concavo-convex shape is schematically represented by a convex portion 5a for easy understanding of the inventive concept. Represents. The convex portion 5a is used to transfer and form the concave portion forming the optical waveguide 3 of the optical element 1 shown in FIG. The transmissive mold 6 is made of a light transmissive material for irradiating an arbitrary energy ray 10 to the transfer portion. Each type includes heaters 7 and 8, a cooling water passage (not shown), and a temperature sensor 9 inside, and the temperature is controlled according to each stage of the manufacturing process (details will be described later). Further, the transfer mold 5 and the transmission mold 6 have a configuration for applying a pressing force from above and below in order to position, fix and compress the inserted thermoplastic resin.

熱可塑性樹脂2には、例えば、PMMA、PC、COCなどが挙げられる。透過型6の材質は、エネルギー線10の波長によって異なり、紫外域ではフッ化カルシウム、サファイアなど、可視・近赤外域ではガラスなど、遠赤外ではシリコンなどが挙げられる。分離型の温度は、熱可塑性樹脂2のガラス転移温度からガラス転移温度−20℃の範囲内にする。分離型の温度制御は、特に、成形品の離型時の離型不良に関係するので重要であり、分離型の温度をガラス転移温度以上にした場合、離型時に熱可塑性樹脂の変形不良が生じ、分離型の温度をガラス転移温度−20℃よりも低い温度にした場合は、離型時に熱可塑性樹脂の破断不良が生じる。分離型の温度制御は、型内を通す冷却水とヒータ7、8及び温度センサ9を用いて行う。   Examples of the thermoplastic resin 2 include PMMA, PC, and COC. The material of the transmission type 6 varies depending on the wavelength of the energy beam 10, and examples include calcium fluoride and sapphire in the ultraviolet region, glass in the visible / near infrared region, and silicon in the far infrared region. The temperature of the separation type is set within the range of the glass transition temperature of the thermoplastic resin 2 to the glass transition temperature of −20 ° C. The temperature control of the separation mold is particularly important because it is related to the mold release failure at the time of mold release, and when the temperature of the mold is higher than the glass transition temperature, the deformation of the thermoplastic resin is not good at the time of mold release. When the temperature of the separation mold is set to a temperature lower than the glass transition temperature −20 ° C., the thermoplastic resin breaks at the time of mold release. The temperature control of the separation mold is performed using the cooling water passing through the mold, the heaters 7 and 8, and the temperature sensor 9.

エネルギー線10は、転写時に微細形状(凸部5a)を有する領域に照射し、エネルギー線照射部10aの熱可塑性樹脂2の温度をガラス転移温度以上まで上昇させ、分離型の圧縮によりエネルギー線10を照射した部分の熱可塑性樹脂2に微細形状を転写する。このように、微細形状を有する領域のみにエネルギー線10を照射することで、成形品全体の収縮による寸法変化を抑制することができる。分離型により転写に充分な時間だけ圧縮した後、エネルギー線10の照射を止め、微細形状の温度をガラス転移温度からガラス転移温度−20℃の範囲になるまで冷却し、離型させる。これにより、離型不良の少ない成形品が得られる。   The energy beam 10 is irradiated to a region having a fine shape (convex portion 5a) at the time of transfer, the temperature of the thermoplastic resin 2 of the energy beam irradiation unit 10a is increased to the glass transition temperature or more, and the energy beam 10 is separated by compression of the separation type. The fine shape is transferred to the portion of the thermoplastic resin 2 irradiated with. In this way, by irradiating only the region having a fine shape with the energy beam 10, it is possible to suppress a dimensional change due to shrinkage of the entire molded product. After being compressed by the separation mold for a time sufficient for transfer, the irradiation with the energy beam 10 is stopped, and the temperature of the fine shape is cooled to the range of the glass transition temperature to −20 ° C. to release the mold. Thereby, a molded product with few mold release defects is obtained.

図3は本実施例における製造工程全体の手順を示している。本実施例では、所定の型温度制御(#4)をした状態で、エネルギー線照射(#5)をして転写領域の温度を局部的に上げ、型圧縮による転写(#6)を行い、その後、エネルギー線照射を停止(#7)して、所定の型温度制御(#8)を行った状態で離型(#9)を行う。このような工程を経ることで、少ないエネルギー線を照射するだけで、成形品全体の固化収縮がなく、離型時に成形品に割れ等が生じ難くなり、樹脂を精度良く成形することができる。   FIG. 3 shows the procedure of the entire manufacturing process in the present embodiment. In this embodiment, in a state where the predetermined mold temperature control (# 4) is performed, energy beam irradiation (# 5) is performed to locally increase the temperature of the transfer region, and transfer by mold compression (# 6) is performed. Then, energy beam irradiation is stopped (# 7), and mold release (# 9) is performed in a state where predetermined mold temperature control (# 8) is performed. By passing through such a process, only a small amount of energy rays are irradiated, so that there is no solidification shrinkage of the entire molded product, cracking or the like hardly occurs in the molded product at the time of mold release, and the resin can be molded with high accuracy.

図4(a)は実施例2による光学素子の製造方法が適用される型装置の概略構成を、(b)はスキャニング方式の場合の転写型へのエネルギー線照射状態、(c)はマスキング方式の場合のマスクを示す。前述と同じ構成については重複説明を省く(以下同様)。本実施例は、エネルギー線としてレーザ光11を用いる場合であり、レーザとしては、近赤外光を照射可能なYAGレーザなどや、可視光を照射可能な半導体レーザなどを用いる。透過型6には、近赤外光や可視光を透過させるガラスなどを用い、熱可塑性樹脂2には、近赤外光及び可視光を透過しやすいものを使用する。転写型5には、レーザ光を吸収し発熱する材質で、微細形状の加工可能な材質を使用する。例えば、鋼材、銅、ニッケル、シリコンなどが挙げられる。   4A shows a schematic configuration of a mold apparatus to which the optical element manufacturing method according to the second embodiment is applied, FIG. 4B shows an energy beam irradiation state on a transfer mold in the case of a scanning method, and FIG. 4C shows a masking method. The mask in the case of. The same description as above will be omitted (the same applies hereinafter). In this embodiment, the laser beam 11 is used as the energy beam. As the laser, a YAG laser capable of irradiating near infrared light, a semiconductor laser capable of irradiating visible light, or the like is used. The transmission type 6 is made of glass that transmits near-infrared light or visible light, and the thermoplastic resin 2 is made of a material that easily transmits near-infrared light and visible light. The transfer mold 5 is made of a material that absorbs laser light and generates heat, and can be processed in a fine shape. For example, steel materials, copper, nickel, silicon and the like can be mentioned.

レーザ照射方法としては、スポット径11aを微細形状の凸部5aに合わせ、レーザ光又は基材をスキャニングにより動かして微細形状部のみを照射するか、若しくはレーザ光のスポット径を微細形状の存在する領域全てを覆う面積まで広げ、開口12aを持つマスク12を透過型6に装着したマスキングにより微細形状のみにレーザ光が照射されるようにする。このように、非転写部にレーザが照射されないようにすることにより、レーザによる加熱部位を微小に抑えることができるので、非転写部に発生する収縮を防止することができ、成形品の微細形状部の型内拘束による熱応力をなくすことが可能となる。また、レーザの焦点位置を、転写型5内で微細形状高さの0.5〜3.0倍の深さにすることで、最も加熱したい型表面部を効率的に加熱することができる。   As a laser irradiation method, the spot diameter 11a is adjusted to the fine-shaped convex part 5a, and the laser light or the base material is moved by scanning to irradiate only the fine-shaped part, or the spot diameter of the laser light has a fine shape. The area is expanded to cover the entire area, and only the fine shape is irradiated with the laser beam by masking with the mask 12 having the opening 12a attached to the transmission mold 6. In this way, by preventing the laser from being irradiated to the non-transfer area, it is possible to suppress the area heated by the laser to be small, so that the shrinkage that occurs in the non-transfer area can be prevented, and the fine shape of the molded product can be prevented. It is possible to eliminate the thermal stress due to the in-mold constraint of the part. Further, by setting the focal position of the laser to a depth of 0.5 to 3.0 times the fine shape height in the transfer mold 5, the mold surface portion to be heated most efficiently can be efficiently heated.

図5は上記実施例2の変形例による光学素子の製造方法が適用される型装置の概略構成を示す。この変形例では、熱可塑性樹脂2として、レーザ光を吸収し易いものを使用する。レーザ光の種類は、遠赤外光、紫外光から選べる。透過型6には、遠赤外光を透過させるシリコンや、紫外光を透過するフッ化カルシウム、サファイアなどを用いる。転写型5は、微細形状の加工可能な材質を使用する。例えば、ガラス、鉄鋼、銅、ニッケル、シリコンなどが挙げられる。レーザの照射方法は、上記実施例2と同様である。この場合においても、最も加熱したい部位を効率的に加熱することができる。   FIG. 5 shows a schematic configuration of a mold apparatus to which an optical element manufacturing method according to a modification of the second embodiment is applied. In this modification, a thermoplastic resin 2 that easily absorbs laser light is used. The type of laser light can be selected from far infrared light and ultraviolet light. For the transmission type 6, silicon that transmits far-infrared light, calcium fluoride that transmits ultraviolet light, sapphire, or the like is used. The transfer mold 5 is made of a fine material that can be processed. For example, glass, steel, copper, nickel, silicon, etc. are mentioned. The laser irradiation method is the same as in the second embodiment. Even in this case, the most heated portion can be efficiently heated.

図6は実施例3による光学素子の製造方法が適用される型装置の概略構成を示す。本実施例においては、分離型の温度は、熱可塑性樹脂2のガラス転移温度からガラス転移温度−20℃の範囲に制御し、さらに透過型6の温度を転写型5の温度よりも低く制御する。例えば、熱可塑性樹脂2にPMMAを用いた場合、ガラス転移温度は110℃となり、透過型6の温度を95℃、転写型5の温度を105℃に制御した。これにより、熱可塑性樹脂2の表面温度は、転写型5側が105℃、透過型6側が95℃となり、厚さ方向に温度勾配を有する。この状態で、エネルギー線10を用いて近赤外光を熱可塑性樹脂2に照射すると、熱可塑性樹脂2の転写面側領域Aはガラス転移温度以上になるのに対して、透過型6側はガラス転移温度以下になり、熱可塑性樹脂2の透過側における熱応力の抑制などが可能となる。   FIG. 6 shows a schematic configuration of a mold apparatus to which the optical element manufacturing method according to the third embodiment is applied. In this embodiment, the temperature of the separation mold is controlled in the range from the glass transition temperature of the thermoplastic resin 2 to the glass transition temperature of −20 ° C., and the temperature of the transmission mold 6 is controlled to be lower than the temperature of the transfer mold 5. . For example, when PMMA is used for the thermoplastic resin 2, the glass transition temperature is 110 ° C., the temperature of the transmission mold 6 is controlled to 95 ° C., and the temperature of the transfer mold 5 is controlled to 105 ° C. Thus, the surface temperature of the thermoplastic resin 2 is 105 ° C. on the transfer mold 5 side and 95 ° C. on the transmission mold 6 side, and has a temperature gradient in the thickness direction. In this state, when the near-infrared light is irradiated to the thermoplastic resin 2 using the energy beam 10, the transfer surface side region A of the thermoplastic resin 2 is equal to or higher than the glass transition temperature, whereas the transmission type 6 side is It becomes below a glass transition temperature, and suppression of the thermal stress in the permeation | transmission side of the thermoplastic resin 2 etc. is attained.

図7は実施例4による光学素子の製造方法が適用される型装置の概略構成を示す。本実施例においては、分離型として、通常の型15と、エネルギー線10照射側に透過兼転写の透過・転写型16とを用いている。エネルギー線10の波長には、遠赤外域を用い、透過・転写型16は、遠赤外域の光をよく透過させるシリコンで作製する。熱可塑性樹脂2は、遠赤外波長を吸収し易い材質を用いる。分離型の温度をガラス転移温度以下からガラス転移温度よりも20℃低い温度の間に制御する。例えば、熱可塑性樹脂2にPMMA を用いた場合、ガラス転移温度は110℃であり、分離型の温度は100℃に制御する。エネルギー線10を透過・転写型16を介して熱可塑性樹脂2に照射することで、熱可塑性樹脂2の転写表面層の領域Aのみガラス転移温度以上に熱せられ、分離型を圧縮することで熱可塑性樹脂2に微細形状の転写が可能となる。こうして、樹脂の転写面側のみをガラス転移温度以上に局所的に加熱することによって、非転写部の収縮による熱応力をなくすことができる。   FIG. 7 shows a schematic configuration of a mold apparatus to which the optical element manufacturing method according to the fourth embodiment is applied. In this embodiment, a normal mold 15 and a transmission / transfer mold 16 for transmission and transfer on the irradiation side of the energy beam 10 are used as the separation mold. A far-infrared region is used for the wavelength of the energy beam 10, and the transmission / transfer mold 16 is made of silicon that transmits light in the far-infrared region well. The thermoplastic resin 2 is made of a material that easily absorbs far infrared wavelengths. The temperature of the separation mold is controlled between a temperature lower than the glass transition temperature and a temperature 20 ° C. lower than the glass transition temperature. For example, when PMMA is used for the thermoplastic resin 2, the glass transition temperature is 110 ° C., and the temperature of the separation mold is controlled to 100 ° C. By irradiating the energy ray 10 to the thermoplastic resin 2 through the transmission / transfer mold 16, only the region A of the transfer surface layer of the thermoplastic resin 2 is heated above the glass transition temperature, and heat is generated by compressing the separation mold. A fine shape can be transferred to the plastic resin 2. Thus, by locally heating only the transfer surface side of the resin to the glass transition temperature or higher, the thermal stress due to the shrinkage of the non-transfer portion can be eliminated.

図8(a)は実施例5による光学素子の製造方法が適用される型装置の概略構成を、(b)(c)は転写型の平面及び側面を示す。本実施例においては、転写型5の微細凹凸表面にNi、Crをコーティング処理した型を用いた。エネルギー線の種類としては、近赤外光、遠赤外光、可視光、紫外光などが挙げられる。透過型6の材質としては、近赤外光、可視光の場合はガラス、遠赤外光の場合はシリコン、紫外光の場合はフッ化カルシウム、サファイアなどが挙げられる。転写型5の材料には、微細形状を加工しやすい鋼材、銅、ニッケル、シリコンなどを用い、微細形状の表面にNi、Crなどをコーティングする。透過型6、熱可塑性樹脂2を介して、エネルギー線10を転写型5の微細形状部に照射すると、コーティング材料に吸収されて発熱し、熱可塑性樹脂2の転写面側を集中的にガラス転移温度以上に加熱でき、分離型を圧縮することで微細形状の転写が可能となる。   FIG. 8A shows a schematic configuration of a mold apparatus to which the optical element manufacturing method according to the fifth embodiment is applied, and FIGS. 8B and 8C show a plane and side surfaces of the transfer mold. In the present embodiment, a mold in which Ni and Cr are coated on the fine uneven surface of the transfer mold 5 is used. Examples of the energy ray include near infrared light, far infrared light, visible light, and ultraviolet light. Examples of the material of the transmission type 6 include glass for near infrared light and visible light, silicon for far infrared light, and calcium fluoride and sapphire for ultraviolet light. The transfer mold 5 is made of steel, copper, nickel, silicon, or the like, which can easily process a fine shape, and Ni, Cr, etc. are coated on the surface of the fine shape. When the energy line 10 is irradiated to the fine shape portion of the transfer mold 5 through the transmission mold 6 and the thermoplastic resin 2, it is absorbed by the coating material and generates heat, and the transfer surface side of the thermoplastic resin 2 is concentrated on the glass transition. It can be heated to a temperature higher than that, and a fine shape can be transferred by compressing the separation mold.

図9(a)は上記実施例5の変形例による光学素子の製造方法が適用される型装置の概略構成を、(b)(c)は透過・転写型の平面及び側面の構成を示す。この変形例は、実施例4と同様、分離型として、通常の型15と、エネルギー線10照射側に透過兼転写の透過・転写型16とを用い、この透過・転写型16の微細凹凸表面にNi、Crをコーティング処理した型を用いた。エネルギー線10の波長としては、近赤外光、遠赤外光、可視光、紫外光などが挙げられる。透過・転写型16の材質は、近赤外光、可視光の場合はガラス、遠赤外光の場合はシリコン、紫外光の場合はフッ化カルシウム、サファイアなどが挙げられる。透過・転写型16を介してエネルギー線10を照射することにより、透過・転写型16表面のコーティング層がエネルギー線10を吸収、発熱し、分離型を圧縮させることで熱可塑性樹脂2に微細形状を転写させることができる。こうして、微細形状部のみを加熱することができるため、全体成形品の収縮の抑制が可能となる。   FIG. 9A shows a schematic configuration of a mold apparatus to which an optical element manufacturing method according to a modification of the fifth embodiment is applied, and FIGS. 9B and 9C show a plane and side configuration of a transmission / transfer mold. Similar to the fourth embodiment, this modification uses a normal mold 15 as a separation mold and a transmission / transfer mold 16 for transmission and transfer on the irradiation side of the energy beam 10, and the fine uneven surface of the transmission / transfer mold 16 is used. A die coated with Ni and Cr was used. Examples of the wavelength of the energy beam 10 include near infrared light, far infrared light, visible light, and ultraviolet light. Examples of the material of the transmission / transfer mold 16 include glass for near infrared light and visible light, silicon for far infrared light, and calcium fluoride and sapphire for ultraviolet light. By irradiating the energy beam 10 through the transmission / transfer mold 16, the coating layer on the surface of the transmission / transfer mold 16 absorbs the energy beam 10, generates heat, and compresses the separation mold to form a fine shape on the thermoplastic resin 2. Can be transferred. In this way, since only the finely shaped portion can be heated, shrinkage of the entire molded product can be suppressed.

なお、本発明は、上記実施形態に限られるものではなく、様々な変形が可能である。例えば、本実施形態では、分離型内に熱可塑性樹脂2を装入配置する例を示したが、溶融樹脂を型内に注入する形式であっても構わない。   In addition, this invention is not restricted to the said embodiment, Various deformation | transformation are possible. For example, in the present embodiment, the example in which the thermoplastic resin 2 is charged and arranged in the separation mold is shown, but the molten resin may be injected into the mold.

本発明方法により製造される光学素子の一例を示す斜視図。The perspective view which shows an example of the optical element manufactured by the method of this invention. (a)は実施例1による光学素子の製造方法が適用される型装置の概略構成図、(b)は転写型へのエネルギー線の照射状態を示す平面図、(c)は転写型の平面図、(d)は転写型の側面図。(A) is a schematic block diagram of the type | mold apparatus with which the manufacturing method of the optical element by Example 1 is applied, (b) is a top view which shows the irradiation state of the energy beam to a transfer type | mold, (c) is a plane of a transfer type | mold. FIG. 4D is a side view of the transfer mold. 本実施例における製造工程全体の手順を示す図。The figure which shows the procedure of the whole manufacturing process in a present Example. (a)は実施例2による光学素子の製造方法が適用される型装置の概略構成図、(b)はスキャニング方式の場合の転写型へのエネルギー線の照射状態を示す平面図、(c)はマスキング方式の場合のマスクの平面図。(A) is a schematic block diagram of the type | mold apparatus with which the manufacturing method of the optical element by Example 2 is applied, (b) is a top view which shows the irradiation state of the energy beam | light to a transfer type | mold in the case of a scanning system, (c). Is a plan view of a mask in the case of a masking method. 実施例3による光学素子の製造方法が適用される型装置の概略構成図。FIG. 10 is a schematic configuration diagram of a mold apparatus to which the method for manufacturing an optical element according to Example 3 is applied. 実施例3による光学素子の製造方法が適用される型装置の概略構成図。FIG. 10 is a schematic configuration diagram of a mold apparatus to which the method for manufacturing an optical element according to Example 3 is applied. 実施例4による光学素子の製造方法が適用される型装置の概略構成図。FIG. 10 is a schematic configuration diagram of a mold apparatus to which the method for manufacturing an optical element according to Example 4 is applied. (a)は実施例5による光学素子の製造方法が適用される型装置の概略構成図、(b)は転写型へのエネルギー線の照射状態を示す平面図、(c)は転写型の側面図。(A) is a schematic block diagram of the type | mold apparatus with which the manufacturing method of the optical element by Example 5 is applied, (b) is a top view which shows the irradiation state of the energy beam to a transfer type | mold, (c) is a side surface of a transfer type | mold. Figure. (a)は実施例5の変形例による光学素子の製造方法が適用される型装置の概略構成図、(b)は透過・転写型へのエネルギー線の照射状態を示す平面図、(c)は透過・転写型の側面図。(A) is a schematic block diagram of the type | mold apparatus with which the manufacturing method of the optical element by the modification of Example 5 is applied, (b) is a top view which shows the irradiation state of the energy beam to a transmission and transfer type | mold, (c). Is a side view of a transmission / transfer mold.

符号の説明Explanation of symbols

1 光学素子
2 熱可塑性樹脂
5 転写型(分離型)
5a 凸部
6 透過型(分離型)
10 エネルギー線
11 レーザ光
15 型
16 透過・転写型
DESCRIPTION OF SYMBOLS 1 Optical element 2 Thermoplastic resin 5 Transfer type (separation type)
5a Convex part 6 Transmission type (separate type)
10 energy beam 11 laser beam 15 type 16 transmission / transfer type

Claims (4)

開閉される分離型内に基材としての熱可塑性樹脂を装入し、一方の型表面に形成された微細な凹凸面を、その熱可塑性樹脂に転写することにより形成される光学素子の製造方法であって、
少なくとも一方の型が透光性材質で構成された分離型内に、熱可塑性樹脂を配置する樹脂供給工程と、
分離型の型温度を熱可塑性樹脂のガラス転移温度乃至該温度の−20度の範囲の所定の温度に制御しつつ、透光性材質で構成された型の側より可視又は近赤外光等のエネルギー線を照射することにより微細な凹凸面をガラス転移温度以上の温度とした状態で、分離型で圧縮して、熱可塑性樹脂の表面に凹凸面を転写する樹脂転写工程と、
分離型の型温度を所定の温度に制御した状態で前記熱可塑性樹脂を硬化させ、かつ分離型より離型する樹脂離型工程と
を備えたことを特徴とする光学素子の製造方法。
A method of manufacturing an optical element formed by inserting a thermoplastic resin as a base material into a separation mold that is opened and closed, and transferring a fine uneven surface formed on one mold surface to the thermoplastic resin Because
A resin supply step of disposing a thermoplastic resin in a separation mold in which at least one mold is made of a translucent material;
While controlling the mold temperature of the separation mold to a predetermined temperature in the range of the glass transition temperature of the thermoplastic resin to −20 degrees of the temperature, visible or near infrared light or the like from the mold side made of a translucent material A resin transfer step of transferring the uneven surface to the surface of the thermoplastic resin by compressing with a separation mold in a state where the fine uneven surface is set to a temperature equal to or higher than the glass transition temperature by irradiating
A method for producing an optical element, comprising: a resin mold release step of curing the thermoplastic resin in a state in which a mold temperature of a separation mold is controlled to a predetermined temperature and releasing the mold from the separation mold.
前記樹脂転写工程において、エネルギー線としてレーザを用い、レーザの照射焦点を、前記凹凸面を有する転写型内の凹凸面に近接した深さ位置としたことを特徴とする請求項1記載の光学素子の製造方法。   2. The optical element according to claim 1, wherein, in the resin transfer step, a laser is used as an energy ray, and a laser irradiation focus is set to a depth position close to the uneven surface in the transfer mold having the uneven surface. Manufacturing method. 前記分離型は、透光性材質を備えた透光型と、微細な凹凸面を備えた転写型とで構成され、
前記樹脂転写工程において透光型の温度を転写型の温度よりも低く制御し、型の厚さ方向に温度勾配を持たせたことを特徴とする請求項1記載の光学素子の製造方法。
The separation mold is composed of a translucent mold provided with a translucent material and a transfer mold provided with a fine uneven surface,
2. The method of manufacturing an optical element according to claim 1, wherein the temperature of the translucent mold is controlled to be lower than the temperature of the transfer mold in the resin transfer step so as to have a temperature gradient in the thickness direction of the mold.
微細な凹凸面を備えた転写型が、透光性材質を備え、
前記樹脂転写工程において該転写型の側よりエネルギー線を照射することを特徴とする請求項1記載の光学素子の製造方法。
The transfer mold with fine uneven surface has a translucent material,
2. The method of manufacturing an optical element according to claim 1, wherein energy rays are irradiated from the transfer mold side in the resin transfer step.
JP2004017610A 2004-01-26 2004-01-26 Method for production of optical element Withdrawn JP2005205860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017610A JP2005205860A (en) 2004-01-26 2004-01-26 Method for production of optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017610A JP2005205860A (en) 2004-01-26 2004-01-26 Method for production of optical element

Publications (1)

Publication Number Publication Date
JP2005205860A true JP2005205860A (en) 2005-08-04

Family

ID=34902374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017610A Withdrawn JP2005205860A (en) 2004-01-26 2004-01-26 Method for production of optical element

Country Status (1)

Country Link
JP (1) JP2005205860A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833719B1 (en) 2006-12-28 2008-05-29 주식회사 극동기계 A cooling and heating apparatus for shoe sole
JP2008290461A (en) * 2008-06-23 2008-12-04 Japan Steel Works Ltd:The Manufacturing method of molding
JP2010170081A (en) * 2008-12-25 2010-08-05 Tokuyama Corp Optical element for far infrared ray
US7794643B2 (en) 2006-03-24 2010-09-14 Ricoh Company, Ltd. Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
US20130056147A1 (en) * 2010-03-11 2013-03-07 Lisa Draxlmaier Gmbh Method for laminating a flexible material layer onto a substrate having a three-dimensional contour and device for the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794643B2 (en) 2006-03-24 2010-09-14 Ricoh Company, Ltd. Apparatus and method for molding object with enhanced transferability of transfer face and object made by the same
KR100833719B1 (en) 2006-12-28 2008-05-29 주식회사 극동기계 A cooling and heating apparatus for shoe sole
JP2008290461A (en) * 2008-06-23 2008-12-04 Japan Steel Works Ltd:The Manufacturing method of molding
JP4595000B2 (en) * 2008-06-23 2010-12-08 株式会社日本製鋼所 Manufacturing method of molded body
JP2010170081A (en) * 2008-12-25 2010-08-05 Tokuyama Corp Optical element for far infrared ray
US20130056147A1 (en) * 2010-03-11 2013-03-07 Lisa Draxlmaier Gmbh Method for laminating a flexible material layer onto a substrate having a three-dimensional contour and device for the same

Similar Documents

Publication Publication Date Title
EP2637846B1 (en) Method of producing composite optical element
US8507073B2 (en) Exterior parts
JP2007086787A5 (en)
JP5885394B2 (en) Method for manufacturing composite diffractive optical element
JP5672961B2 (en) Molding method for plastic molded products
JP5009635B2 (en) Manufacturing method and manufacturing apparatus for resin molded product
JP2005205860A (en) Method for production of optical element
JP4919413B2 (en) Method and apparatus for manufacturing plastic molded product
JP5349777B2 (en) Optical element manufacturing method
JP6651716B2 (en) Method for manufacturing molded article and apparatus for producing molded article
JP3347839B2 (en) Manufacturing method of optical parts
JP3566635B2 (en) Optical article manufacturing method
KR102321375B1 (en) Apparatus and Method for Producing Lens
JPS6362373B2 (en)
JP2006095901A (en) Plastic molding method, plastic molding device, and molding die
JP2006341493A (en) Molding die for optical element and manufacturing method of optical element
JP2006113340A (en) Manufacturing method of composite optical element and composite optical element
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
JP2010264603A (en) Method of manufacturing optical component
JP4895348B2 (en) Plastic molded product, manufacturing apparatus and manufacturing method thereof
JP4786085B2 (en) Apparatus for molding minute parts and molding method of minute parts
JP2962485B2 (en) Release method of composite optical element
JP2006007546A (en) Molding transfer method
JPS59124820A (en) Manufacture of plastic optical part
JP2003322743A (en) Optical waveguide and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403