JP2006235007A - Laminated optical element, laminated diffractive optical element, molding method thereof and optical material - Google Patents
Laminated optical element, laminated diffractive optical element, molding method thereof and optical material Download PDFInfo
- Publication number
- JP2006235007A JP2006235007A JP2005046679A JP2005046679A JP2006235007A JP 2006235007 A JP2006235007 A JP 2006235007A JP 2005046679 A JP2005046679 A JP 2005046679A JP 2005046679 A JP2005046679 A JP 2005046679A JP 2006235007 A JP2006235007 A JP 2006235007A
- Authority
- JP
- Japan
- Prior art keywords
- optical element
- layer
- molding
- resin
- molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Diffracting Gratings Or Hologram Optical Elements (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Polymerisation Methods In General (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Description
本発明は、屈折光学素子及び回折光学素子等の光学素子に使用される光学素子の構成、材料に関するものであり、特に重合収縮等の応力負荷による欠陥(ひび、割れ等)の生じない光学素子の構成、材料及びそれにより成形した光学素子、回折光学素子に関し、特に積層型光学素子、積層型回折光学素子及びその成形方法及び光学材料に関するものである。 The present invention relates to a configuration and material of an optical element used for an optical element such as a refractive optical element and a diffractive optical element, and in particular, an optical element free from defects (cracks, cracks, etc.) due to stress load such as polymerization shrinkage. In particular, the present invention relates to a laminated optical element, a laminated diffractive optical element, a molding method thereof, and an optical material.
近年、エネルギー硬化性樹脂を用いた成型品の優れた転写性、生産性、光学特性等の観点から、ガラス基板等の部材の上にエネルギー硬化性樹脂を用いてレリーフパターン、階段形状、キノフォーム等を成形した、基板と一体のレプリカレンズが使用、考案されており、ガラス基板上にエネルギー硬化性樹脂を用いた回折格子を金型で成形する事で、色収差を減じる回折光学素子等がある(例えば、特許文献1参照)。 In recent years, from the viewpoint of excellent transferability, productivity, optical properties, etc. of molded products using energy curable resins, relief patterns, staircase shapes, kinoforms using energy curable resins on members such as glass substrates A replica lens integrated with the substrate is used and devised, and there is a diffractive optical element that reduces chromatic aberration by forming a diffraction grating using an energy curable resin on a glass substrate with a mold. (For example, refer to Patent Document 1).
しかしながらこのようにエネルギー硬化樹脂を用いて微細な形状を有する層をガラス基板上に直接成形することでは、成形層自身の硬化収縮等による応力負荷によって形成された形状等が歪によりクラック等の問題を有してしまうことがある。成形形状が微細であるほど、歪、クラック等によって設計形状からのズレは光学性能(回折効率等)へ大きく影響する。 However, when a layer having a fine shape is directly formed on a glass substrate using an energy curable resin in this way, the shape formed by a stress load due to hardening shrinkage or the like of the molded layer itself is a problem such as cracks due to strain. May be included. The finer the molded shape, the greater the deviation from the design shape due to distortion, cracks, etc., the greater the optical performance (diffraction efficiency, etc.).
そのため従来はレンズ用材料として、硬化した後により大きな柔軟性を示す樹脂を用いたり、架橋剤、柔軟剤等を大量に添加する事によって、また成形層と異なる弾性を示す異なる材料の層を中間層として設ける事で対応してきた。そのため単独であるならばレンズ用材料として優れた光学特性を有する樹脂であっても脆性の問題から使用を断念したり、または異なった材料と積層、混成体にする事によって、または多量の添加剤を混入させることによって光学特性を犠牲にして光学素子に使用しなければならない事があった。
回折光学素子の先行例においては、広い波長範囲で高い回折効率を有する構成を得るために、相対的に屈折率分散の低い材料と屈折率分散の高い材料のお互いの回折面を対向させて組み合わせて構成させている。 In the previous example of the diffractive optical element, in order to obtain a structure having high diffraction efficiency in a wide wavelength range, a material having a relatively low refractive index dispersion and a material having a high refractive index dispersion are combined with each other facing each other. Is configured.
具体的には、特許文献2の場合は、屈折率分散の低い材料としてBMS81(nd=1.64、νd=60.1:オハラ製)を、屈折率分散の高い材料としてプラスチック光学材料PC(nd=1.58、νd=30.5:帝人化成)を用いている。同様に特許文献3の場合は、屈折率分散の低い材料としてLaL14(nd=1.698、νd=55.5:オハラ製)、アクリル樹脂(nd=1.49、νd=57.7)、Cytop(登録商標)(nd=1.34149、νd=93.8:旭硝子製)を、屈折率分散の高い材料としてプラスチック光学材料PC(nd=1.58、νd=30.5:帝人化成)を用いている。 Specifically, in the case of Patent Document 2, BMS81 (n d = 1.64, ν d = 60.1: manufactured by OHARA) is used as a material having a low refractive index dispersion, and a plastic optical material is used as a material having a high refractive index dispersion. PC (n d = 1.58, ν d = 30.5: Teijin Chemicals) is used. Similarly, in the case of Patent Document 3, LaL14 (n d = 1.698, ν d = 55.5: manufactured by OHARA), acrylic resin (n d = 1.49, ν d = 57) are used as materials having a low refractive index dispersion. .7), Cytop (registered trademark) (n d = 1.34149, ν d = 93.8: manufactured by Asahi Glass Co., Ltd.), a plastic optical material PC (n d = 1.58, ν d ) as a material having a high refractive index dispersion. = 30.5: Teijin Kasei).
特許文献4及び特許文献5の場合は、屈折率分散の低い材料としてRC−C001(nd=1.525、νd=50.8:大日本インキ製)、PMMA(nd=1.4917、νd=57.4)、BMS81(nd=1.64、νd=60.1:オハラ製)を、屈折率分散の高い材料としてプラスチック光学材料PC(nd=1.58、νd=30.5:帝人化成)、PS(nd=1.5918、νd=31.1)、等を用いている。 In the case of Patent Document 4 and Patent Document 5, RC-C001 (n d = 1.525, ν d = 50.8: manufactured by Dainippon Ink), PMMA (n d = 1.4917) as a material having a low refractive index dispersion. , Ν d = 57.4), BMS81 (n d = 1.64, ν d = 60.1: manufactured by OHARA) as a material having a high refractive index dispersion, plastic optical material PC (n d = 1.58, ν d = 30.5: Teijin Kasei), PS (n d = 1.5918, ν d = 31.1), etc. are used.
このように回折光学素子等の光学素子においては、上記記載の様に使用する材料の屈折率、アッベ数等の光学特性の範囲が厳しく限定される。また成形した回折光学素子の形状も光学性能に影響してくる。特に形状変化に関して、エネルギー硬化性樹脂の硬化の際に生じる重合収縮や、成形後の外的環境(温度、湿度等)による応力負荷、離型時等に生じる外的な衝撃による圧力負荷よって、基板上に成形された成形層自身の変形、割れ、ひび、または基板と成形層との界面での破壊が生じる事が多々ある。こうした結果が光学的欠陥となり、光学性能を低下させてしまう。 As described above, in an optical element such as a diffractive optical element, the range of optical characteristics such as the refractive index and Abbe number of the material used is severely limited as described above. The shape of the molded diffractive optical element also affects the optical performance. Especially regarding the shape change, due to polymerization shrinkage that occurs when the energy curable resin is cured, stress load due to external environment (temperature, humidity, etc.) after molding, pressure load due to external impact that occurs at the time of mold release, There are many cases where deformation, cracking, cracking, or destruction at the interface between the substrate and the molding layer occurs in the molding layer itself molded on the substrate. Such a result becomes an optical defect, which deteriorates the optical performance.
そこで本発明の目的は、エネルギー硬化性樹脂によって成形した光学性能を発揮する成形層自身の変形、割れ、ひび、または基板と前記成形層との界面での破壊を抑制し、光学性能の低下のない光学素子の構成、光学材料、それにより成形した光学素子、回折光学素子、積層型光学素子、積層型回折光学素子およびその成形方法を提供するものである。 Therefore, an object of the present invention is to suppress deformation, cracking, cracking of the molding layer itself that exhibits the optical performance molded by the energy curable resin, or destruction at the interface between the substrate and the molding layer, and reducing optical performance. There are provided a configuration of an optical element, an optical material, an optical element molded thereby, a diffractive optical element, a laminated optical element, a laminated diffractive optical element, and a molding method thereof.
そこで本発明は、前述の課題を解決するために、以下の構成である光学素子、該光学素子の成形方法、該成形方法によって成形された該光学素子、および以下の材料構成によって成形された該光学素子を提供している。 Therefore, in order to solve the above-described problems, the present invention provides an optical element having the following configuration, a molding method of the optical element, the optical element molded by the molding method, and the molded material by the following material configuration. An optical element is provided.
本発明の積層型光学素子、積層型回折光学素子は、透明基板の少なくとも一方の面に、エネルギー硬化性樹脂により成形された成形層と前記透明基板との中間層として成形層と同種の材料を用いて成形された重合度の低い複数の緩和層を有する事を特徴とする積層型光学素子である。 In the laminated optical element and laminated diffractive optical element of the present invention, the same kind of material as that of the molded layer is used as an intermediate layer between the molded layer formed of an energy curable resin and the transparent substrate on at least one surface of the transparent substrate. It is a laminated optical element characterized by having a plurality of relaxation layers having a low degree of polymerization formed by use.
また本発明は、前記記載の成形層、緩和層が前記透明基板と一体化していることを特徴とする積層型光学素子を提供している。 The present invention also provides a laminated optical element characterized in that the molding layer and the relaxation layer described above are integrated with the transparent substrate.
また本発明は前記記載の緩和層の重合度が、重合禁止剤の種類および添加量が全重量割合の0.0005%〜5%の範囲で含有する事により、重合開始剤の種類および添加量が全重量割合の0.005〜10%の範囲で含有する事により、成形層より低く調整されており、膜厚が1μm〜500μmである事を特徴とする積層型光学素子を提供している。 In the present invention, the polymerization degree of the relaxation layer described above is such that the type and addition amount of the polymerization inhibitor are within the range of 0.0005% to 5% of the total weight ratio, so that the type and addition amount of the polymerization initiator are included. Is contained in the range of 0.005 to 10% of the total weight ratio, so that it is adjusted to be lower than the molding layer, and a laminated optical element having a film thickness of 1 μm to 500 μm is provided. .
また本発明は、前記記載の光学素子が、使用波長域全域で特定次数(設計次数)の回折効率を高くするようにした積層型回折光学素子であることを特徴としている。 Further, the present invention is characterized in that the above-described optical element is a laminated diffractive optical element in which the diffraction efficiency of a specific order (design order) is increased over the entire use wavelength range.
また本発明は、前記記載の積層型回折光学素子と、前記記載の積層型回折光学素子と同様の層構成で異なる光学特性、もしくは異なる層構成および光学特性とを、お互いの回折面を対向させて組み合わせることにより構成されていることを特徴とする積層型回折光学素子を提供している。 The present invention also provides the above-described laminated diffractive optical element and different optical characteristics in the same layer configuration as the above-described laminated diffractive optical element, or different layer configurations and optical characteristics, with the diffractive surfaces facing each other. And a laminated diffractive optical element characterized by being combined.
また本発明は、前記記載の光学素子を成形するに際して、成形型を用いて成形することを特徴とする成形方法を提供している。 The present invention also provides a molding method characterized by molding using the mold when molding the optical element described above.
また本発明は、前記記載の成形方法において、熱重合もしくは光重合により成形物を得る事を特徴とする成形方法提供している。 The present invention also provides a molding method characterized in that in the molding method described above, a molded product is obtained by thermal polymerization or photopolymerization.
また本発明は、前記記載の光学素子の材料として、少なくともカルバゾール骨格を有する物質を含む硬化性樹脂を主材料とする事を特徴とする光学材料を提供している。 The present invention also provides an optical material characterized in that a curable resin containing at least a substance having a carbazole skeleton is used as a main material as the material of the optical element described above.
また本発明は、少なくともN−ビニルカルバゾールを含む硬化性樹脂を主材料とする事を特徴とする前記に記載の光学材料を提供している。 The present invention also provides the optical material as described above, wherein the main material is a curable resin containing at least N-vinylcarbazole.
また本発明は、少なくともポリ(N−ビニルカルバゾール)を含む硬化性樹脂を主材料とする事を特徴とする前記に記載の光学材料を提供している。 The present invention also provides the optical material as described above, wherein the main material is a curable resin containing at least poly (N-vinylcarbazole).
また本発明は、少なくとも架橋剤としてアジピン酸ジビニルを含有する樹脂を主材料とする事を特徴とする前記に記載の光学材料を提供している。 The present invention also provides the optical material as described above, wherein the main material is a resin containing at least divinyl adipate as a crosslinking agent.
また本発明は、少なくともN−ビニルカルバゾールとポリ(N−ビニルカルバゾール)、アジピン酸ジビニルおよび光重合開始剤からなることを特徴とする前記に記載の光学材料を提供している。 The present invention also provides the optical material as described above, which comprises at least N-vinylcarbazole and poly (N-vinylcarbazole), divinyl adipate and a photopolymerization initiator.
また本発明は、前記光学材料の組成が、ポリ(N−ビニルカルバゾール):5〜30重量%、アジピン酸ジビニル:全重量割合の5〜30%の範囲であることを特徴とする前記に記載の光学材料を提供している。 In the present invention, the composition of the optical material is in the range of 5 to 30% by weight of poly (N-vinylcarbazole): 5% to 30% of the total weight ratio of divinyl adipate: Provides optical materials.
本発明によれば、平坦層として適宜、膜厚および重合禁止剤、重合開始剤を適量に含有する緩和層を透明基板と成形層の中間層に設けることで、成形した成形層にかかる応力負荷を平坦層が緩和し、緩和層は成形層と同種の樹脂を使用している事から光学性能をほぼ変えることなく、割れ防止性を兼ね備えた積層型回折光学素子を実現できる。 According to the present invention, the stress load applied to the molded layer formed by providing the intermediate layer between the transparent substrate and the molded layer with a relaxation layer containing an appropriate amount of film thickness, polymerization inhibitor, and polymerization initiator as a flat layer. Since the flat layer relaxes and the relaxed layer uses the same type of resin as the molded layer, a laminated diffractive optical element having anti-cracking properties can be realized without substantially changing the optical performance.
従って、脆性の大きな樹脂を用いた場合でも、異なる性質を有する樹脂体にして組み合わせることなく、その樹脂種類単独で用いることで光学素子を形成することが可能であり、その光学材料、該光学材料を用いた光学素子の成形方法、該成形方法によって成形された光学素子、及び該光学素子を有する光学系を実現することが可能となる。 Therefore, even when a highly brittle resin is used, it is possible to form an optical element by using the resin type alone without combining the resin bodies having different properties, and the optical material, the optical material It is possible to realize an optical element molding method using the optical element, an optical element molded by the molding method, and an optical system having the optical element.
以下本発明を実施するための最良の形態を、実施例により詳しく説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to examples.
本発明の光学素子を図1に示す。すなわち、透明基板11の少なくとも一方の面にエネルギー硬化性樹脂12により成形層13が成形されており、透明基板11と成形層13の中間層として、成形層13と同種の材料から構成された緩和層14が形成されている積層型回折光学素子である。 The optical element of the present invention is shown in FIG. That is, the molded layer 13 is molded by the energy curable resin 12 on at least one surface of the transparent substrate 11, and the intermediate layer between the transparent substrate 11 and the molded layer 13 is made of the same material as the molded layer 13. This is a laminated diffractive optical element in which the layer 14 is formed.
通常、レプリカレンズを作製する場合、透明基板11の一方の面にエネルギー硬化性樹脂12を用いて成形層13としてプリズム面、レンチキュラーレンズ面、フレネルレンズ面等の種々のレンズ面を直接に成形する。成形層13が単層もしくは複数層であって透明基板11と一体化している場合、成形層13としては成形後の内外的環境による経時変化を抑制するために、比較的高エネルギー(光、熱等)で硬化をさせる事が好ましい。しかしその際、硬化度合と共に成形層13は一般に高弾性化し、脆く硬くなる傾向にある。そのため硬化時の重合収縮による内部応力、成形後の外的環境(温度、湿度等)による応力負荷、または離型時等に加わる外的な衝撃による圧力負荷よって、基板上に強固に固定、成形された成形層13には変形、割れ、ひび、または透明基板11と成形層13との界面での破壊が生じてしまう。 Usually, when manufacturing a replica lens, various lens surfaces such as a prism surface, a lenticular lens surface, and a Fresnel lens surface are directly molded as a molding layer 13 using an energy curable resin 12 on one surface of the transparent substrate 11. . When the molding layer 13 is a single layer or a plurality of layers and is integrated with the transparent substrate 11, the molding layer 13 has a relatively high energy (light, heat, etc.) in order to suppress a change with time due to the internal and external environments after molding. Etc.) is preferably cured. However, at that time, the molding layer 13 generally has a high elasticity and a tendency to become brittle and hard with the degree of curing. Therefore, it is firmly fixed and molded on the substrate by internal stress due to polymerization shrinkage during curing, stress load due to external environment (temperature, humidity, etc.) after molding, or pressure load due to external impact applied during mold release, etc. The formed molded layer 13 is deformed, cracked, cracked, or broken at the interface between the transparent substrate 11 and the molded layer 13.
本発明では透明基板11と成形層13の間に、成形層13と同種の材料で構成された緩和層14を形成することにより、前記事由により成形層13にかかる応力の緩和をする事ができ、成形層13の問題発生を抑制し、光学性能の低下を防ぐことができる。 In the present invention, the stress applied to the molding layer 13 can be relaxed by the above reason by forming the relaxation layer 14 made of the same kind of material as the molding layer 13 between the transparent substrate 11 and the molding layer 13. It is possible to suppress the occurrence of the problem of the molding layer 13 and prevent the optical performance from deteriorating.
緩和層14の厚さは特に制限はないが好ましくは1〜500μmの範囲であり、フレネルレンズ等の微細な形状を成形層13に成形する場合は好ましくは1〜100μm、更に好ましくは1〜50μmの範囲である。緩和層14の厚さが1μm未満の範囲であると成形層13から緩和層14にかかる応力を十分緩和する事が困難となり、逆に500μmよりも十分に厚すぎると緩和層14自身の光学歪及び厚み方向の弾性率等の物性制御が困難である。 The thickness of the relaxation layer 14 is not particularly limited but is preferably in the range of 1 to 500 μm. When a fine shape such as a Fresnel lens is formed on the molding layer 13, it is preferably 1 to 100 μm, more preferably 1 to 50 μm. Range. If the thickness of the relaxation layer 14 is less than 1 μm, it is difficult to sufficiently relieve the stress applied from the molding layer 13 to the relaxation layer 14, and conversely, if the thickness is sufficiently thicker than 500 μm, the optical distortion of the relaxation layer 14 itself. In addition, it is difficult to control physical properties such as elastic modulus in the thickness direction.
また、緩和層14の屈折率、アッベ数等の光学特性はベース樹脂、添加剤等の組成で変化するが、好ましくはレプリカレンズとしての機能を発生させる成形層13に影響がない程度の光学特性に調整する事が望ましく、更には成形層13と同様の光学特性にする事が望ましい。具体的には成形層13、緩和層14の屈折率、アッベ数としてはそれぞれndで1.50〜1.80、νdで13〜60の範囲が望ましい。 Further, the optical characteristics such as the refractive index and Abbe number of the relaxation layer 14 vary depending on the composition of the base resin, the additive, etc., but the optical characteristics preferably do not affect the molding layer 13 that generates a function as a replica lens. It is desirable to adjust to the same optical characteristics as the molding layer 13. Specifically, the refractive index and Abbe number of the molding layer 13 and the relaxation layer 14 are preferably in the range of 1.50 to 1.80 for nd and 13 to 60 for νd, respectively.
成形層13及び緩和層14を形成するエネルギー硬化性樹脂12としては、光(紫外線、電子線等)、熱重合開始剤を含有し硬化が進行するモノマー、オリゴマー、ポリマー等であれば特に限定されるものではないが、例えば、エステル系、アクリル系、ビニル系、ウレタン系、アミド系、シリコーン系、エポキシ系、フェノール系、尿素系、メラミン系などのモノマーやオリゴマーを配合したものが挙げられる。また必要に応じて本発明の積層体を構成する各層には、透明性等の光学特性を損なわない範囲で、架橋剤、重合促進剤、離型剤、増感剤、粘度調整剤、溶剤等を配合する事が可能である。また、無機・有機ハイブリット樹脂ならびに透明性を損なわない酸化ケイ素、酸化ジルコニア、ITO、酸化錫等の無機微粒子を分散させた上記樹脂なども使用できる。 The energy curable resin 12 that forms the molding layer 13 and the relaxation layer 14 is not particularly limited as long as it is a monomer, oligomer, polymer, or the like that contains light (ultraviolet rays, electron beams, etc.), a thermal polymerization initiator, and cure proceeds. Although it is not a thing, For example, what mix | blended monomers and oligomers, such as ester type | system | group, an acryl type | system | group, a vinyl type | system | group, a urethane type | system | group, an amide type | system | group, a silicone type, an epoxy type, a phenol type, a urea type, a melamine type, is mentioned. If necessary, each layer constituting the laminate of the present invention has a crosslinking agent, a polymerization accelerator, a release agent, a sensitizer, a viscosity modifier, a solvent, etc., as long as optical properties such as transparency are not impaired. It is possible to blend. In addition, inorganic / organic hybrid resins and the above-described resins in which inorganic fine particles such as silicon oxide, zirconia oxide, ITO, and tin oxide that do not impair transparency are dispersed can also be used.
本発明の成形層13、緩和層14を形成するエネルギー硬化性樹脂12は特に上記に制限する事はないが、耐熱性、耐溶剤性の観点から架橋アクリル系樹脂、架橋ビニル系樹脂であることが望ましい。該架橋アクリル系樹脂、該架橋ビニル系樹脂は、架橋性単量体50〜99重量%及び種々の重合体を主体とし、その重合体を溶解含有しても良い不飽和単量体50〜1重量%よりなる混合物を重合硬化して得られる樹脂である。前記架橋性単量体には分子内に少なくとも2個以上の不飽和エチレン基を有する単量体であることが好ましく、例えば特許文献6、特許文献7および特許文献8等に記載されている架橋性単量体を使用することができ、また複数の架橋性単量体を組み合わせて使用することも可能である。架橋剤の配合量としては特に全重量割合の5.0%以上、30.0%以下が好ましい。架橋剤の添加量が多すぎると白濁の原因となり光学的散乱が生じてしまうため、更に好ましくは5.0%以上、20.0%以下であることが望ましい。 The energy curable resin 12 forming the molding layer 13 and the relaxation layer 14 of the present invention is not particularly limited to the above, but is a crosslinked acrylic resin or a crosslinked vinyl resin from the viewpoint of heat resistance and solvent resistance. Is desirable. The cross-linked acrylic resin and the cross-linked vinyl resin mainly contain 50 to 99% by weight of a cross-linkable monomer and various polymers, and the unsaturated monomer 50 to 1 which may contain the polymer in a dissolved state. It is a resin obtained by polymerizing and curing a mixture consisting of% by weight. The crosslinkable monomer is preferably a monomer having at least two unsaturated ethylene groups in the molecule. For example, crosslinks described in Patent Literature 6, Patent Literature 7, Patent Literature 8, and the like It is also possible to use a crosslinkable monomer in combination. The blending amount of the crosslinking agent is particularly preferably 5.0% or more and 30.0% or less of the total weight ratio. If the addition amount of the crosslinking agent is too large, it causes white turbidity and optical scattering occurs. Therefore, it is more preferably 5.0% or more and 20.0% or less.
本発明の構成にかかる緩和層14の樹脂は、成形層13と同種の材料であり、硬化後、成形層13の樹脂よりも充分重合度が低く比較的柔軟であることが必要である。その緩和層14を形成するエネルギー硬化性樹脂12としては、基本的には成形層13と同種の樹脂であり、異なる点としては緩和層14の樹脂が調整された重合禁止剤を適量含有することによって、または調整された光、熱重合開始剤を成形層13の樹脂よりも重合度が低くなるよう適量含有することによって、応力緩和が可能な柔軟である緩和層14を形成できる。または成形層13の樹脂が含有する光もしくは熱重合開始剤と異なるエネルギーバンドを有する光もしくは熱重合開始剤を緩和層14の樹脂が含有する事によって、照射に用いる光源の波長もしくは温度を調整することで、最適化した光照射、熱処理により応力緩和が可能な柔軟である緩和層14を形成できる。 The resin of the relaxation layer 14 according to the configuration of the present invention is the same material as the molding layer 13, and after curing, the degree of polymerization is sufficiently lower than that of the resin of the molding layer 13 and needs to be relatively flexible. The energy curable resin 12 forming the relaxation layer 14 is basically the same type of resin as the molding layer 13, and the difference is that it contains an appropriate amount of a polymerization inhibitor in which the resin of the relaxation layer 14 is adjusted. By adding an appropriate amount of the adjusted light and thermal polymerization initiator so that the degree of polymerization is lower than that of the resin of the molding layer 13, a flexible relaxation layer 14 capable of stress relaxation can be formed. Alternatively, the light or thermal polymerization initiator having a different energy band from the light or thermal polymerization initiator contained in the resin of the molding layer 13 contains the resin of the relaxation layer 14 to adjust the wavelength or temperature of the light source used for irradiation. Thus, a flexible relaxation layer 14 capable of stress relaxation can be formed by optimized light irradiation and heat treatment.
具体的な重合禁止剤としては例えば、ヒドロキノン、2、6−ジーt−ブチルーp−クレゾール、2、2−メチレンービスー(4−メチルー6−t−ブチルフェノール)、1、1、3−トリスー(2−メチルー4−ヒドロキシー5−t−ブチルフェニル)ブタン等のフェノール系化合物、ジラウリル チオジプロピオネート等の硫黄系化合物、トリフェニルフォスファイト等のリン系化合物、フェノチアジン等のアミン系化合物などを好適なものとして挙げることができる。なお、モノマー主成分に対する重合禁止剤の添加比率は、光源、光照射量、更には、成形時の酸素存在量、付加的な加熱温度、重合後の着色に応じて、適宜選択することができ、2種類以上の重合禁止剤を組み合わせて使用も出来る。得られる成形体の目標とする重合度に応じて、調整することもできる。重合禁止剤の添加量としては、使用する樹脂全体量に対して0.0005〜5%程度の範囲の添加が好ましく、更に好ましくは0.001〜0.5重量%が好適である。 Specific examples of the polymerization inhibitor include hydroquinone, 2,6-di-t-butyl-p-cresol, 2,2-methylene-bis (4-methyl-6-t-butylphenol), 1,1,3-tris (2- Suitable compounds include phenolic compounds such as methyl-4-hydroxy-5-t-butylphenyl) butane, sulfur compounds such as dilauryl thiodipropionate, phosphorus compounds such as triphenyl phosphite, and amine compounds such as phenothiazine. Can be mentioned. The addition ratio of the polymerization inhibitor to the main monomer component can be appropriately selected according to the light source, the amount of light irradiation, and the amount of oxygen present during molding, additional heating temperature, and coloring after polymerization. Two or more polymerization inhibitors can be used in combination. It can also adjust according to the polymerization degree made into the target of the obtained molded object. The addition amount of the polymerization inhibitor is preferably in the range of about 0.0005 to 5%, more preferably 0.001 to 0.5% by weight, based on the total amount of the resin used.
また、具体的に光重合開始剤としては例えば、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン、ビス(2、4、6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド、4−フェニルベンゾフェノン、4−フェノキシベンゾフェノン、4、4’−ジフェニルベンゾフェノン、4、4’−ジフェノキシベンゾフェノン、などを好適なものとして挙げることができる。なお、モノマー主成分に対する光重合開始剤の添加比率は、光源、光照射量、更には成形時の酸素存在量、付加的な加熱温度に応じて、適宜選択することができ、2種類以上の重合開始剤を組み合わせて使用も出来る。また、得られる成形体の目標とする重合度に応じて、調整することもできる。光重合開始剤の添加比率に関して、原料体全体における光重合開始剤の含有率は全重量割合の0.005〜10%の範囲に選択することが好ましい。 Specific examples of the photopolymerization initiator include 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone, 1-hydroxy-cyclohexyl-phenyl-ketone, bis (2, 4,6-trimethylbenzoyl) -phenylphosphine oxide, 4-phenylbenzophenone, 4-phenoxybenzophenone, 4,4′-diphenylbenzophenone, 4,4′-diphenoxybenzophenone, and the like can be mentioned as suitable ones. . In addition, the addition ratio of the photopolymerization initiator with respect to the monomer main component can be appropriately selected according to the light source, the amount of light irradiation, the amount of oxygen present at the time of molding, and the additional heating temperature. Combinations of polymerization initiators can also be used. Moreover, it can also adjust according to the polymerization degree made into the target of the molded object obtained. Regarding the addition ratio of the photopolymerization initiator, the content of the photopolymerization initiator in the entire raw material is preferably selected in the range of 0.005 to 10% of the total weight ratio.
また熱重合開始剤としては例えば、アゾビソイソブチルニトリル(AIBN)、ベンゾイルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシネオヘキサノエート、t−ヘキシルパーオキシネオヘキサノエート、t−ブチルパーオキシネオデカノエート、t−ヘキシルパーオキシネオデカノエート、クミルパーオキシネオヘキサノエート、クミルパーオキシネオデカノエート等を、好適なものとして挙げることができる。なお、モノマー主成分に対する、熱重合開始剤の添加比率は、加熱温度、更には成形時の酸素存在量に応じて、適宜選択することができ、2種類以上の重合開始剤を組み合わせて使用も出来る。また、得られる成形体の目標とする重合度に応じて、調整することもできる。熱重合開始剤の添加比率に関して、原料体全体における熱重合開始剤の含有率は全重量割合の0.005〜10%の範囲に選択することが好ましい。 Examples of the thermal polymerization initiator include azobisoisobutyl nitrile (AIBN), benzoyl peroxide, t-butyl peroxypivalate, t-butyl peroxyneohexanoate, t-hexyl peroxyneohexanoate, t -Butylperoxyneodecanoate, t-hexylperoxyneodecanoate, cumylperoxyneohexanoate, cumylperoxyneodecanoate, etc. can be mentioned as suitable ones. The addition ratio of the thermal polymerization initiator to the monomer main component can be appropriately selected according to the heating temperature and further the amount of oxygen present at the time of molding, and two or more polymerization initiators can be used in combination. I can do it. Moreover, it can also adjust according to the polymerization degree made into the target of the molded object obtained. Regarding the addition ratio of the thermal polymerization initiator, the content of the thermal polymerization initiator in the entire raw material body is preferably selected in the range of 0.005 to 10% of the total weight ratio.
また、成形手順の優位から各層において、光重合開始剤もしくは熱重合開始剤を使い分ける事も可能である。 Moreover, it is also possible to use a photopolymerization initiator or a thermal polymerization initiator properly in each layer because of the superiority of the molding procedure.
また、該成形材料の硬化により形成される緩和層14と同条件で作製したフィルムの引っ張り弾性率Eとしては、この値によって一概に制限される事はないが1.5〜2.6×109Pa(周波数10Hz、25℃±2℃、膜厚50μm)の範囲にあることが好ましく、さらに好ましくは1.8〜2.4×109Pa(周波数10Hz、25℃±2℃、膜厚50μm)の範囲にあることが望ましい。 Further, the tensile elastic modulus E of the film produced under the same conditions as the relaxation layer 14 formed by curing of the molding material is not generally limited by this value, but is 1.5 to 2.6 × 10. It is preferably in the range of 9 Pa (frequency 10 Hz, 25 ° C. ± 2 ° C., film thickness 50 μm), more preferably 1.8 to 2.4 × 10 9 Pa (frequency 10 Hz, 25 ° C. ± 2 ° C., film thickness). 50 μm) is desirable.
光学素子となる層の成形順序としては、透明基板11上の少なくとも一方の面に緩和層14を成形した後、緩和層14の上に成形層13を成形している。 As a molding order of the layers to be the optical elements, after forming the relaxation layer 14 on at least one surface on the transparent substrate 11, the molding layer 13 is molded on the relaxation layer 14.
成形体を作製する型の概略を図2に示す。成型体の成形方法について図3に概略を示す。 An outline of a mold for producing a compact is shown in FIG. An outline of the molding method of the molded body is shown in FIG.
光学素子の成形を行う型としては、目的とするレンズ面形状、例えば平面構造を有する形状に対応する型21(図2〔a〕)、回折格子を有する形状に対応する型22(図2〔b〕)を使用する。成形方法としては例えば前記架橋ビニル系樹脂を成形層13、同様のビニル系樹脂と最適化された重合禁止剤を配合したものを緩和層14の形成に用いた場合、流動性を示す緩和層14の樹脂を初めに型21上に適当量を滴下する。緩和層14の樹脂を型21上に滴下したその上から規定の透明基板11を圧接して、光照射もしくは熱により成形しつつ、重合を行う。圧接の際、樹脂中に空気等の気泡が混入しないよう充分に注意する必要がある。空気の泡を成形体に取り込んでしまうと、その部位を透過する光に散乱が生じてしまうからである。重合後、型21から離型することによって、透明基板11と一体化した平坦層である緩和層14が得られる。 As a mold for molding an optical element, a mold 21 (FIG. 2A) corresponding to a target lens surface shape, for example, a shape having a planar structure, and a mold 22 corresponding to a shape having a diffraction grating (FIG. 2 [FIG. b]). As a molding method, for example, when the cross-linked vinyl resin is used for forming the molding layer 13 and a mixture of the same vinyl resin and an optimized polymerization inhibitor is used to form the relaxation layer 14, the relaxation layer 14 exhibiting fluidity. First, an appropriate amount of the resin is dropped onto the mold 21. Polymerization is performed while the prescribed transparent substrate 11 is pressed from above the resin of the relaxation layer 14 dropped onto the mold 21 and molded by light irradiation or heat. When pressure welding, it is necessary to be careful not to allow air or other bubbles to enter the resin. This is because if air bubbles are taken into the molded body, the light transmitted through the part is scattered. After polymerization, release from the mold 21 yields a relaxation layer 14 that is a flat layer integrated with the transparent substrate 11.
この時、形成された緩和層14はあらかじめ調整された重合禁止剤を原料体である樹脂に含有するため光照射もしくは熱エネルギーによって、極端に重合度が大きくなる事はなく、比較的低弾性のままである。続いて成形層13の形成においては、緩和層14の樹脂に重合禁止剤を含有しない樹脂を用いて成形されるものであり、型22上に成形層13を形成する樹脂を適当量に滴下する。その上から先に得た緩和層14と一体化した透明基板11を成形層13と緩和層14が重なる様に圧接して、光照射もしくは熱により成形しつつ、重合を行う。その後、型22から離型することによって、透明基板11と一体化した平坦層である緩和層14及びその上に積層された型22の形状を転写した回折格子を有する層である成形層13を有する積層型回折光学素子が得られる。 At this time, since the formed relaxation layer 14 contains a preliminarily prepared polymerization inhibitor in the resin that is the raw material body, the degree of polymerization is not extremely increased by light irradiation or thermal energy, and has a relatively low elasticity. It remains. Subsequently, in forming the molding layer 13, the resin of the relaxation layer 14 is molded using a resin that does not contain a polymerization inhibitor, and an appropriate amount of the resin that forms the molding layer 13 is dropped on the mold 22. . Then, the transparent substrate 11 integrated with the relaxing layer 14 obtained earlier is pressed so that the molding layer 13 and the relaxing layer 14 overlap, and polymerization is performed while molding by light irradiation or heat. Thereafter, by releasing from the mold 22, the relaxing layer 14 that is a flat layer integrated with the transparent substrate 11 and the molding layer 13 that is a layer having a diffraction grating to which the shape of the mold 22 laminated thereon is transferred. A laminated diffractive optical element is obtained.
また、成形方法としては例えば前記架橋ビニル系樹脂を成形層13、同様の架橋ビニル系樹脂に成形層13よりも重合度が小さくなるように最適化した光もしくは熱重合開始剤を配合した樹脂を緩和層14形成に用いた場合、流動性を示す緩和層14の樹脂を初めに型21上に適当量を滴下する。緩和層14の樹脂を型21上に滴下したその上から規定の透明基板11を圧接して、光照射もしくは熱により成形しつつ、重合を行う。重合後、型21から離型することによって、透明基板11と一体化した平坦層である緩和層14が得られる。 Further, as a molding method, for example, the above-mentioned crosslinked vinyl resin is formed into a molding layer 13, and the same crosslinked vinyl resin is blended with a light or thermal polymerization initiator optimized so that the degree of polymerization is smaller than that of the molding layer 13. When used for forming the relaxation layer 14, an appropriate amount of the resin of the relaxation layer 14 showing fluidity is first dropped onto the mold 21. Polymerization is performed while the prescribed transparent substrate 11 is pressed from above the resin of the relaxation layer 14 dropped onto the mold 21 and molded by light irradiation or heat. After polymerization, release from the mold 21 yields a relaxation layer 14 that is a flat layer integrated with the transparent substrate 11.
この時、形成された緩和層14はあらかじめ量を調整された重合開始剤を樹脂に含有するため光照射もしくは熱エネルギーによって、極端に重合度が大きくなる事はなく、比較的低弾性のままである。続いて成形層13の形成においては、光もしくは熱硬化によって緩和層14の樹脂よりも重合度が充分大きくなるよう重合開始剤を配合した樹脂を用いて成形されるものであり、型22上に成形層13を形成する樹脂を適当量に滴下する。その上から先に得た緩和層14と一体化した透明基板11を成形層13と緩和層14が重なる様に圧接して、光照射もしくは熱により成形しつつ、重合を行う。その後、型22から離型することによって、透明基板11と一体化した平坦層である緩和層14及びその上に積層された型22の形状を転写した回折格子を有する層である成形層13を有する積層型回折光学素子が得られる。 At this time, the formed relaxation layer 14 contains a polymerization initiator whose amount is adjusted in advance in the resin, so that the degree of polymerization is not extremely increased by light irradiation or thermal energy, and it remains relatively low in elasticity. is there. Subsequently, in forming the molding layer 13, the molding layer 13 is molded using a resin in which a polymerization initiator is blended so that the degree of polymerization is sufficiently larger than that of the resin of the relaxation layer 14 by light or heat curing. An appropriate amount of resin for forming the molding layer 13 is dropped. Then, the transparent substrate 11 integrated with the relaxing layer 14 obtained earlier is pressed so that the molding layer 13 and the relaxing layer 14 overlap, and polymerization is performed while molding by light irradiation or heat. Thereafter, by releasing from the mold 22, the relaxing layer 14 that is a flat layer integrated with the transparent substrate 11 and the molding layer 13 that is a layer having a diffraction grating to which the shape of the mold 22 laminated thereon is transferred. A laminated diffractive optical element is obtained.
成形の際、用いる樹脂が結晶性等を有しており流動性が小さく滴下が困難であるならば型21、22及び樹脂をヒーター31、ディスペンサー32等で適宜加熱して樹脂を溶融状態のまま用いる事も出来る。その際、加熱によって原材料の硬化が進行しない程度の温度に調整する事が望ましい。また樹脂が溶剤に溶解している場合に型成形する手法では、所望の形状を良く保存する成形体とするために、利用した溶剤を徐々に蒸発除去することにより行われることになるが、モノマー主成分としては溶媒を使用することなく室温で流動体、もしくは加熱により溶融可能なモノマーを用いた方が所望の形状を良く保存する成形体を相対的に短い作業時間で作製することができる。 When molding, if the resin used has crystallinity, etc., and its fluidity is small and it is difficult to drop, the molds 21 and 22 and the resin are appropriately heated with the heater 31, the dispenser 32, etc., and the resin remains in a molten state. It can also be used. At that time, it is desirable to adjust the temperature so that the raw material does not cure by heating. In the method of molding when the resin is dissolved in a solvent, in order to obtain a molded body that well preserves the desired shape, the solvent used is gradually removed by evaporation. Using a fluid as a main component at room temperature without using a solvent or a monomer that can be melted by heating makes it possible to produce a molded product that better preserves the desired shape in a relatively short working time.
これら成形方法によって得られる樹脂の成形体は、目的とする形状に単一の工程で形成でき、高い成形加工の再現性が達成できる。 Resin molded bodies obtained by these molding methods can be formed in a desired shape in a single step, and high reproducibility of molding can be achieved.
成形型21、22と透明基板11の間に供給されるエネルギー硬化性樹脂12は、成形する層を一定に形成させるために一定の粘度に調整、保持することが必要である。粘度範囲は形成する層の厚さによっても異なるが、一般的には50〜5000mPa・sの範囲の粘度にすることが好ましい。この範囲の粘度に調整することによりディスペンサー32を用いて安定的に吐出量を調整することが出来る。更に好ましくは100〜1000mPa・sの範囲に調整する事が好ましい。粘度が50mPa・s未満の場合には少量の滴下の調整が困難であり、また滴下ノズルより液が飛散するといった現象が生じる。 The energy curable resin 12 supplied between the molding dies 21 and 22 and the transparent substrate 11 needs to be adjusted and held at a certain viscosity in order to form a layer to be molded uniformly. Although the viscosity range varies depending on the thickness of the layer to be formed, it is generally preferable that the viscosity be in the range of 50 to 5000 mPa · s. By adjusting the viscosity within this range, the discharge amount can be stably adjusted using the dispenser 32. More preferably, it is preferable to adjust to the range of 100 to 1000 mPa · s. When the viscosity is less than 50 mPa · s, it is difficult to adjust a small amount of dripping, and a phenomenon occurs in which the liquid scatters from the dripping nozzle.
また5000mPa・s以上の粘度においては、本発明の光学材料はえい糸性を持つためノズルから糸を引き所望の個所以外に付着する可能性がある。粘度の調整方法としては、ベースとなる樹脂の単量体に対して、その重合体を相溶させる事が有効である。そうすることで光学特性を変えることなく粘度の最適化を図る事ができる。重合体の添加量は全重量割合の5重量%以上、30重量%以下であることが望ましい。上記の範囲であれば成形に好ましい粘度範囲に調整することが出来る。 In addition, when the viscosity is 5000 mPa · s or more, the optical material of the present invention has the yarn property, so that there is a possibility that the yarn is pulled from the nozzle and adhered to other than the desired portion. As a method for adjusting the viscosity, it is effective to make the polymer compatible with the monomer of the base resin. By doing so, the viscosity can be optimized without changing the optical characteristics. The amount of the polymer added is desirably 5% by weight or more and 30% by weight or less of the total weight ratio. If it is said range, it can adjust to the viscosity range preferable for shaping | molding.
この構成をとることによって、成形層13にかかる内部応力、外力による応力負荷を緩和層14が吸収、緩和してくれる。また緩和層14は成形層13と同種の材料にて形成されていることからほぼ同様の光学特性を有することとなり、積層型となっても光学素子として回折効率等の光学性能の損失は小さい。 By adopting this configuration, the relaxation layer 14 absorbs and relaxes the stress load caused by internal stress and external force applied to the molding layer 13. Further, since the relaxation layer 14 is formed of the same kind of material as that of the molding layer 13, it has substantially the same optical characteristics, and even if it is a laminated type, the loss of optical performance such as diffraction efficiency is small as an optical element.
以下本発明の実施例について更に具体的に説明するが、本発明がそれらによって何ら制約されるものではない。 Examples of the present invention will be described more specifically below, but the present invention is not limited by them.
本発明の実施例においては、各化合物を表1の割合で混合調整した組成1〜9の樹脂を用いた。N−ビニルカルバゾール(東京化成工業株式会社製:以下VCz)、ポリN−ビニルカルバゾール(東京化成工業株式会社製:以下PVCz)、光重合開始剤としてイルガキュア184(登録商標)(チバスペシャリティ・ケミカル製:以下IC−184)、架橋剤としてアジピン酸ジビニル(信越酢酸ビニル株式会社製:以下ADV)、離型剤としてメガファック1405(大日本インキ化学工業株式会社製:以下MF−1405)及び重合禁止剤としてノンフレックスF(精工化学株式会社製:以下NF−F)を適宜混合し、80℃で3時間加熱溶融した。完全に溶融した事を確認し、本実施例の光硬化型樹脂33を得た。 In the Example of this invention, resin of the composition 1-9 which mixed and adjusted each compound in the ratio of Table 1 was used. N-vinylcarbazole (Tokyo Chemical Industry Co., Ltd .: hereinafter referred to as VCz), poly N-vinylcarbazole (Tokyo Chemical Industry Co., Ltd .: hereinafter referred to as PVCz), Irgacure 184 (registered trademark) (manufactured by Ciba Specialty Chemicals) as a photopolymerization initiator : Hereinafter referred to as IC-184), divinyl adipate (manufactured by Shin-Etsu Vinyl Acetate Co., Ltd .: hereinafter referred to as ADV) as a crosslinking agent, MegaFac 1405 (manufactured by Dainippon Ink & Chemicals, Inc .: hereinafter referred to as MF-1405) as a release agent, and polymerization prohibition Nonflex F (manufactured by Seiko Chemical Co., Ltd .: NF-F) was appropriately mixed as an agent, and heated and melted at 80 ° C. for 3 hours. After confirming that it was completely melted, a photocurable resin 33 of this example was obtained.
成形体を作製する型は図2に示した。円柱形状SUS種の表面上に銅めっきを厚さ400μmに形成させた平坦型、およびピッチ80μm、格子高さ10μm、頂角45°の回折格子を有する型を準備した。次いで無電解ニッケルめっきを平坦型の平坦部位上、および回折格子を有する型のパターン部位上に施し、本発明の実施例に用いるレンズ型21、22とした。金型には温度を与えるため、透明基板11、光硬化型樹脂33、金型の線膨張係数を考慮に入れ金型を作製した。 A mold for producing the molded body is shown in FIG. A flat mold in which copper plating was formed to a thickness of 400 μm on the surface of a cylindrical SUS type and a mold having a diffraction grating with a pitch of 80 μm, a grating height of 10 μm, and an apex angle of 45 ° were prepared. Next, electroless nickel plating was performed on the flat portion of the flat mold and on the pattern portion of the mold having the diffraction grating to obtain lens molds 21 and 22 used in the examples of the present invention. In order to give a temperature to the mold, the mold was manufactured taking into consideration the linear expansion coefficient of the transparent substrate 11, the photocurable resin 33, and the mold.
本発明の実施例における成型品の成形方法について図3の模式図を用いてその概略を説明する。図3において、平坦型21もしくは回折格子を有する型22に光硬化型樹脂33(表1内組成1〜9)を滴下し、その上から透明基板11を圧着させて押し広げ、所望の形状になったところで、光源34から光を照射し光硬化性樹脂33を硬化させて、透明基板11と共に硬化物を離型することで成形を行う。型21、22は必要に応じてヒーター31で加熱する事が出来る。本実施例の成形時の型温度は80℃とした。積層する工程は先に得られた透明基板11と一体の成形体を用いて、積層させたい材料、型形状に代えて前記と同様の工程を繰り返す。 The outline of the molding method of the molded product in the embodiment of the present invention will be described with reference to the schematic diagram of FIG. In FIG. 3, a photocurable resin 33 (compositions 1 to 9 in Table 1) is dropped onto a flat mold 21 or a mold 22 having a diffraction grating, and the transparent substrate 11 is pressed and spread from above to form a desired shape. At this point, light is emitted from the light source 34 to cure the photocurable resin 33, and molding is performed by releasing the cured product together with the transparent substrate 11. The molds 21 and 22 can be heated by a heater 31 as necessary. The mold temperature during molding in this example was 80 ° C. In the step of laminating, using the molded body integrated with the transparent substrate 11 obtained previously, the same steps as described above are repeated in place of the material and mold shape to be laminated.
本発明の実施例における透明基板11としては、硝材BK7、厚さ3mm、Φ40mmを用いた。 As the transparent substrate 11 in the example of the present invention, a glass material BK7, a thickness of 3 mm, and Φ40 mm were used.
<分光光度計を用いた透過率測定>
分光光度計(U4000、(株)日立製作所)を用い、波長280−800nmにおける透過率及び反射率を測定した。本測定に用いた光硬化型樹脂33の組成比率は表1に示した通りである。透過率測定を行うためのサンプルは80℃にて保温した表1の光硬化型樹脂33を各約0.15gを80℃の平坦型21の上にディスペンサー32を用いて吐出した。平坦型21の温度は温度制御によって±1.0℃以内に制御されている。その平坦型21上に50μmのスペーサー35を置き、80℃に保温された透明基板11(BK7:オハラ製)を吐出液上に載せ、液を平坦型21と透明基板11の間に充填させた。更に、透明基板11方向から中心波長365nmの紫外線40mW/cm2で1000秒(40J)照射し硬化させ、平坦型21から離型させた。得られた成形膜は透明基板11と一体化しており温度を室温まで自然に冷却させた。こうして本実施例光硬化型樹脂33を用いた透過率測定用サンプルを得た。
<Transmittance measurement using a spectrophotometer>
Using a spectrophotometer (U4000, Hitachi, Ltd.), the transmittance and reflectance at a wavelength of 280 to 800 nm were measured. The composition ratio of the photocurable resin 33 used in this measurement is as shown in Table 1. As a sample for measuring transmittance, about 0.15 g of the photocurable resin 33 in Table 1 kept at 80 ° C. was discharged onto the flat mold 21 at 80 ° C. using the dispenser 32. The temperature of the flat mold 21 is controlled within ± 1.0 ° C. by temperature control. A 50 μm spacer 35 is placed on the flat mold 21, the transparent substrate 11 (BK7: manufactured by OHARA) kept at 80 ° C. is placed on the discharge liquid, and the liquid is filled between the flat mold 21 and the transparent substrate 11. . Further, the substrate was irradiated with ultraviolet rays of 40 mW / cm 2 with a central wavelength of 365 nm from the direction of the transparent substrate 11 for 1000 seconds (40 J) and cured, and released from the flat mold 21. The obtained molded film was integrated with the transparent substrate 11, and the temperature was naturally cooled to room temperature. Thus, a transmittance measurement sample using the photocurable resin 33 of this example was obtained.
<動的粘弾性装置によるせん断弾性率測定>
動的粘弾性測定装置(Rheogel E4000、ユービーエム(株))を用い、温度依存性−20−250℃、5℃/min、周波数10Hzの条件でせん断弾性率Gを測定した。サンプルは5mm×25mm、膜厚50μmとした。本測定に用いた光硬化型樹脂33の組成比率は表1に示した通りである。動的粘弾性測定を行うためのサンプルは80℃にて保温した表1の光硬化型樹脂33を各約0.15gを80℃の平坦型21の上にディスペンサー32を用いて吐出した。平坦型21の温度は温度制御によって±1.0℃以内に制御されている。
<Measurement of shear modulus by dynamic viscoelasticity device>
Using a dynamic viscoelasticity measuring device (Rheogel E4000, UBM Co., Ltd.), the shear modulus G was measured under the conditions of temperature dependence of −20 to 250 ° C., 5 ° C./min, and a frequency of 10 Hz. The sample was 5 mm × 25 mm and the film thickness was 50 μm. The composition ratio of the photocurable resin 33 used in this measurement is as shown in Table 1. As a sample for performing dynamic viscoelasticity measurement, about 0.15 g of the photocurable resin 33 in Table 1 kept at 80 ° C. was discharged onto the flat mold 21 at 80 ° C. using the dispenser 32. The temperature of the flat mold 21 is controlled within ± 1.0 ° C. by temperature control.
その平坦型21上に50μmのスペーサー35を置き、80℃に保温された透明基板11(BK7:オハラ製)を吐出液上に載せ、液を平坦型21と透明基板11の間に充填させた。更に、透明基板11方向から中心波長365nmの紫外線40mW/cm2で1000秒(40J)照射し硬化させ、平坦型21から離型させた。得られた成形膜は透明基板11と一体化しており温度を室温まで自然に冷却させた後、カッター等を用いて欠損なく透明基板11から成形膜を剥がし、次いで規定の測定形状5mm×25mmの短冊状にカットした。こうして本実施例光硬化型樹脂33を用いた動的粘弾性測定用サンプルを得た。 A 50 μm spacer 35 is placed on the flat mold 21, the transparent substrate 11 (BK7: manufactured by OHARA) kept at 80 ° C. is placed on the discharge liquid, and the liquid is filled between the flat mold 21 and the transparent substrate 11. . Further, it was cured by irradiation with ultraviolet rays of 40 mW / cm 2 with a central wavelength of 365 nm from the direction of the transparent substrate 11 for 1000 seconds (40 J), and released from the flat mold 21. The obtained molded film is integrated with the transparent substrate 11 and after the temperature is naturally cooled to room temperature, the molded film is peeled off from the transparent substrate 11 without using a cutter or the like, and then the prescribed measurement shape of 5 mm × 25 mm is used. Cut into strips. In this way, a sample for dynamic viscoelasticity measurement using the photocurable resin 33 of this example was obtained.
各組成1〜9を上記同様に硬化させた時に得られた成形膜について硬化時の透過率(365nm)、黄変の確認、せん断弾性率測定結果(周波数10Hz、25℃±1℃)を表2に示す。 Table 1 shows the transmittance at the time of curing (365 nm), confirmation of yellowing, and measurement results of shear modulus (frequency 10 Hz, 25 ° C. ± 1 ° C.) for the molded films obtained when the respective compositions 1 to 9 were cured in the same manner as described above. It is shown in 2.
重合禁止剤を添加した組成2〜5にかけて添加量が増加するほど透過率及びせん断弾性率は低下した。組成5においては重合禁止剤の添加量が多いため比較的大きな黄変の結果となり、光学素子としては透過率の面からあまり適当ではない。また組成1、6、7において光重合開始剤が増加するほど、透過率は低下傾向を示しせん断弾性率は上昇傾向を示した。 The transmittance and shear modulus decreased as the amount added increased over compositions 2 to 5 to which a polymerization inhibitor was added. In composition 5, since the addition amount of the polymerization inhibitor is large, it results in a relatively large yellowing and is not very suitable as an optical element from the aspect of transmittance. Moreover, the transmittance | permeability showed a tendency to fall, and the shear elasticity modulus showed the upward tendency, so that the photoinitiator in composition 1, 6, 7 increased.
以下実験例1〜9、比較例1〜4に実際に組成1〜9を組み合わせて、型を用いて積層型回折光学素子を成形した例を示す。 Hereinafter, examples in which the compositions 1 to 9 are actually combined with Experimental Examples 1 to 9 and Comparative Examples 1 to 4 and a laminated diffractive optical element is molded using a mold will be described.
〔実験例1〕
80℃にて保温した組成1樹脂0.15gを80℃の回折格子を有する型22の上にディスペンサー32を用いて吐出した。型22の温度は温度制御によって±1.0℃以内に制御されている。その型22上に50μmのスペーサー35を置き、80℃に保温された透明基板11(BK7:オハラ製)を吐出液上に載せ、液を型22と透明基板11の間に充填させた。更に、透明基板11方向から中心波長365nmの紫外線40mW/cm2で1000秒(40J)照射し硬化させ、型22から離型させた。得られた成型体は透明基板11と一体化しており温度を室温まで自然に冷却させた。結果、組成1樹脂を用いた回折格子を有する成形層13(透明基板11+組成1樹脂の回折格子を有する成形層13)である実験例1の回折光学素子を得た。
[Experimental Example 1]
0.15 g of composition 1 resin kept at 80 ° C. was discharged onto a mold 22 having a diffraction grating at 80 ° C. using a dispenser 32. The temperature of the mold 22 is controlled within ± 1.0 ° C. by temperature control. A 50 μm spacer 35 was placed on the mold 22 and a transparent substrate 11 (BK7: manufactured by OHARA) kept at 80 ° C. was placed on the discharge liquid, and the liquid was filled between the mold 22 and the transparent substrate 11. Further, the film was irradiated with ultraviolet rays of 40 mW / cm 2 with a central wavelength of 365 nm from the direction of the transparent substrate 11 for 1000 seconds (40 J) and cured, and released from the mold 22. The obtained molded body was integrated with the transparent substrate 11, and the temperature was naturally cooled to room temperature. As a result, a diffractive optical element of Experimental Example 1 was obtained which was a molding layer 13 having a diffraction grating using composition 1 resin (transparent substrate 11 + molding layer 13 having a diffraction grating of composition 1 resin).
〔実験例2〕
80℃にて保温した組成2樹脂0.15gを80℃の平坦型21の上にディスペンサー32を用いて吐出した。平坦型21の温度は温度制御によって±1.0℃以内に制御されている。その平坦型21上に50μmのスペーサー35を置き、80℃に保温された透明基板11(BK7:オハラ製)を吐出液上に載せ、液を平坦型21と透明基板11の間に充填させた。更に、透明基板11方向から中心波長365nmの紫外線40mW/cm2で1000秒(40J)照射し硬化させ、平坦型21から離型させた。得られた成型体は透明基板11と一体化しており温度を室温まで自然に冷却させた。結果、組成2樹脂を用いた平坦な緩和層14を得た。
[Experimental example 2]
0.15 g of the composition 2 resin kept at 80 ° C. was discharged onto the flat mold 21 at 80 ° C. using the dispenser 32. The temperature of the flat mold 21 is controlled within ± 1.0 ° C. by temperature control. A 50 μm spacer 35 is placed on the flat mold 21, the transparent substrate 11 (BK7: manufactured by OHARA) kept at 80 ° C. is placed on the discharge liquid, and the liquid is filled between the flat mold 21 and the transparent substrate 11. . Further, it was cured by irradiation with ultraviolet rays of 40 mW / cm 2 with a central wavelength of 365 nm from the direction of the transparent substrate 11 for 1000 seconds (40 J), and released from the flat mold 21. The obtained molded body was integrated with the transparent substrate 11, and the temperature was naturally cooled to room temperature. As a result, a flat relaxation layer 14 using the composition 2 resin was obtained.
次いで80℃にて保温した組成1樹脂0.15gを80℃の回折格子を有する型22の上にディスペンサー32を用いて吐出した。型22の温度は温度制御によって±1.0℃以内に制御されている。その型22上に50μmのスペーサー35を置き、あらかじめ80℃に保温しておいた前述の透明基板11と一体の組成2樹脂を用いて成形された緩和層14(透明基板11+組成2樹脂の緩和層14)を緩和層14側が型22上の吐出液上に付くように載せ、液を型22と(透明基板11+組成2樹脂の緩和層14)の間に充填させた。更に、透明基板11方向から中心波長365nmの紫外線40mW/cm2で1000秒(40J)照射し硬化させ、型22から離型させた。得られた成型体は透明基板11と一体化しており温度を室温まで自然に冷却させた。
その結果、組成2樹脂を用いた緩和層14と一体化した組成1樹脂を用いた回折格子を有する成形層13(透明基板11+組成2樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例2の積層型回折光学素子を得た。
Next, 0.15 g of the composition 1 resin kept at 80 ° C. was discharged onto the mold 22 having the diffraction grating at 80 ° C. using the dispenser 32. The temperature of the mold 22 is controlled within ± 1.0 ° C. by temperature control. A relaxing layer 14 (transparent substrate 11 + relaxation of composition 2 resin) formed by using a composition 2 resin integral with the above-mentioned transparent substrate 11 placed on the mold 22 with a spacer 35 of 50 μm and kept at 80 ° C. in advance. The layer 14) was placed so that the relaxation layer 14 side was attached to the discharge liquid on the mold 22, and the liquid was filled between the mold 22 and the (transparent substrate 11 + composition 2 resin relaxation layer 14). Further, the film was irradiated with ultraviolet rays of 40 mW / cm 2 with a central wavelength of 365 nm from the direction of the transparent substrate 11 for 1000 seconds (40 J) and cured, and released from the mold 22. The obtained molded body was integrated with the transparent substrate 11, and the temperature was naturally cooled to room temperature.
As a result, a molding layer 13 having a diffraction grating using composition 1 resin integrated with a relaxation layer 14 using composition 2 resin (transparent substrate 11 + relaxation layer 14 of composition 2 resin + molding layer having a diffraction grating of composition 1 resin) The laminated diffractive optical element of Experimental Example 2 as 13) was obtained.
〔実験例3〕
実験例2と同様の工程により、緩和層14として組成3樹脂を用いた(透明基板11+組成3樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例3の積層型回折光学素子を得た。
[Experimental Example 3]
In the same process as in Experimental Example 2, composition 3 resin was used as relaxation layer 14 (transparent substrate 11 + relaxation layer 14 of composition 3 resin + molded layer 13 having diffraction grating of composition 1 resin). A diffractive optical element was obtained.
〔実験例4〕
実験例2と同様の工程により、緩和層14として組成4樹脂を用いた(透明基板11+組成4樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例4の積層型回折光学素子を得た。
[Experimental Example 4]
In the same process as in Experimental Example 2, a laminate type of Experimental Example 4 is used in which the composition 4 resin is used as the relaxing layer 14 (transparent substrate 11 + releasing layer 14 of composition 4 resin + molding layer 13 having a diffraction grating of composition 1 resin). A diffractive optical element was obtained.
〔実験例5〕
実験例2と同様の工程により、緩和層14として組成5樹脂を用いた(透明基板11+組成5樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例5の積層型回折光学素子を得た。
[Experimental Example 5]
In the same process as in Experimental Example 2, the laminated type of Experimental Example 5 is that the composition 5 resin is used as the relaxing layer 14 (transparent substrate 11 + releasing layer 14 of composition 5 resin + molding layer 13 having a diffraction grating of composition 1 resin). A diffractive optical element was obtained.
〔実験例6〕
実験例2と同様の工程により、緩和層14として組成6樹脂を用いた(透明基板11+組成6樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例6の積層型回折光学素子を得た。
[Experimental Example 6]
In the same process as in Experimental Example 2, composition 6 resin was used as relaxation layer 14 (transparent substrate 11 + relaxation layer 14 of composition 6 resin + molding layer 13 having diffraction grating of composition 1 resin). A diffractive optical element was obtained.
〔実験例7〕
実験例2と同様の工程により、緩和層14として組成7樹脂を用いた(透明基板11+組成7樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例7の積層型回折光学素子を得た。
[Experimental Example 7]
In the same process as in Experimental Example 2, composition 7 resin was used as relaxation layer 14 (transparent substrate 11 + relaxation layer 14 of composition 7 resin + molded layer 13 having diffraction grating of composition 1 resin). A diffractive optical element was obtained.
〔実験例8〕
実験例2と同様の工程により、緩和層14として組成8樹脂を用いた(透明基板11+組成8樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例8の積層型回折光学素子を得た。
[Experimental Example 8]
In the same process as in Experimental Example 2, composition 8 resin was used as relaxation layer 14 (transparent substrate 11 + relaxation layer 14 of composition 8 resin + molded layer 13 having diffraction grating of composition 1 resin). A diffractive optical element was obtained.
〔実験例9〕
実験例2と同様の工程により、緩和層14として組成9樹脂を用いた(透明基板11+組成9樹脂の緩和層14+組成1樹脂の回折格子を有する成形層13)である実験例9の積層型回折光学素子を得た。
[Experimental Example 9]
The laminated type of Experimental Example 9 using composition 9 resin as the relaxing layer 14 (transparent substrate 11 + releasing layer 14 of composition 9 resin + molding layer 13 having a diffraction grating of composition 1 resin) as the relaxing layer 14 by the same process as in Experimental Example 2 A diffractive optical element was obtained.
〔比較例1〕
緩和層14の膜厚を100μmにした以外は実験例2に準じた。
[Comparative Example 1]
The experimental example 2 was followed except that the thickness of the relaxation layer 14 was changed to 100 μm.
〔比較例2〕
緩和層14の膜厚を100μmにした以外は実験例3に準じた。
[Comparative Example 2]
Except that the thickness of the relaxation layer 14 was 100 μm, the same procedure as in Experimental Example 3 was performed.
〔比較例3〕
緩和層14の膜厚を100μmにした以外は実験例6に準じた。
[Comparative Example 3]
Except for the thickness of the relaxation layer 14 being 100 μm, the same procedure as in Experimental Example 6 was followed.
〔比較例4〕
緩和層14の膜厚を100μmにした以外は実験例9に準じた。
[Comparative Example 4]
Experimental Example 9 was followed except that the thickness of the relaxation layer 14 was 100 μm.
上記により得た光学素子の割れ状況を表3に示す。成形により得られた各光学素子は24時間室温(23〜24℃)に放置後、高温高湿環境試験(温度60℃、湿度90%)に一定時間(0〜240、480、1000時間)投入し割れの発生を確認した。 Table 3 shows the cracking state of the optical element obtained as described above. Each optical element obtained by molding is allowed to stand at room temperature (23 to 24 ° C.) for 24 hours, and then put into a high temperature and high humidity environment test (temperature 60 ° C., humidity 90%) for a certain time (0 to 240, 480, 1000 hours). The occurrence of cracks was confirmed.
実験例1において組成1樹脂を成形層13とした場合、高温高湿環境試験に投入する前の成形後から半日程度の室温放置で成形層13全面にクラックを生じ割れた。 When the composition 1 resin was used as the molding layer 13 in Experimental Example 1, cracks occurred on the entire molding layer 13 after standing at room temperature for about half a day after molding before being put into the high temperature and high humidity environment test.
実験例2〜5において組成2〜5樹脂を緩和層14とし、組成1樹脂を成形層13とした場合、重合禁止剤の配合量の増加と共に高温高湿耐久試験に対する成形層13の耐久時間が増加した。その際、割れに関して、実験例2で得た成形層13は240時間で取り出し後、全面にクラックを生じ割れた。実験例3、実験例4で得た成形層13は、それぞれ480、1000時間で取り出し後、クラックもしくは格子形状に沿った輪体割れを生じ割れた。実験例5で得た成形層13は高温高湿環境耐久試験1000時間経過後も割れを発生することはなかった。 In Experimental Examples 2 to 5, when the composition 2 to 5 resin is the relaxation layer 14 and the composition 1 resin is the molding layer 13, the durability of the molding layer 13 with respect to the high temperature and high humidity durability test is increased with an increase in the amount of the polymerization inhibitor. Increased. At that time, regarding the crack, the molded layer 13 obtained in Experimental Example 2 was taken out in 240 hours and then cracked on the entire surface. The molded layer 13 obtained in Experimental Example 3 and Experimental Example 4 was cracked after being taken out after 480 and 1000 hours, respectively, and cracked or cracked along the lattice shape. The molding layer 13 obtained in Experimental Example 5 did not crack even after 1000 hours of the high temperature and high humidity environment durability test.
実験例6において光重合開始剤を組成1樹脂より少なく含有する組成6樹脂を緩和層14とし、組成1樹脂を成形層13とした場合、重合禁止剤を含有する組成3樹脂を用いた実験例3とほぼ同様の高温高湿耐久試験結果を示した。成形層13は一部にクラックもしくは格子形状に沿った輪体割れを生じ割れた。 In Experimental Example 6, the composition 6 resin containing less photopolymerization initiator than the composition 1 resin was used as the relaxation layer 14, and the composition 1 resin was used as the molding layer 13, the experimental example using the composition 3 resin containing the polymerization inhibitor. The results of the high-temperature and high-humidity durability test almost the same as those in No. 3 The molding layer 13 was cracked by causing cracks or cracks in the ring body along the lattice shape.
実験例7において光重合開始剤を組成1樹脂より多く含有する組成7樹脂を緩和層14とし、組成1樹脂を成形層13とした場合、高温高湿環境試験に投入する前の成形後から半日程度の室温放置で成形層13全面にクラックを生じ割れた。 In Experimental Example 7, when the composition 7 resin containing more photopolymerization initiator than the composition 1 resin is used as the relaxation layer 14 and the composition 1 resin is used as the molding layer 13, half a day after molding before being put into the high temperature and high humidity environment test. Cracks were generated on the entire surface of the molding layer 13 when left at room temperature.
実験例8において光重合開始剤を組成1樹脂より少なく含有する及び重合禁止剤を含有する組成8樹脂を緩和層14とし、組成1樹脂を成形層13とした場合、重合禁止剤を含有しない組成6樹脂を用いた実験例6より高い耐久強度を示した。割れに関して、組成1樹脂を用いた成形層13は一部にクラックもしくは格子形状に沿った輪体割れを生じ割れた。 In Experimental Example 8, when the photopolymerization initiator is contained less than the composition 1 resin and the composition 8 resin containing the polymerization inhibitor is the relaxation layer 14 and the composition 1 resin is the molding layer 13, the composition does not contain the polymerization inhibitor. The durability strength was higher than that of Experimental Example 6 using 6 resins. Regarding the crack, the molded layer 13 using the composition 1 resin partially cracked due to a crack or a ring-shaped crack along the lattice shape.
実験例9において光重合開始剤を組成1樹脂より多く含有する及び重合禁止剤を含有する組成9樹脂を緩和層14とし、組成1樹脂を成形層13とした場合、高温高湿環境試験に投入する前の成形後から半日程度の室温放置で成形層13全面にクラックを生じ割れた。 In Experimental Example 9, when the composition 9 resin containing more photopolymerization initiator than the composition 1 resin and the polymerization inhibitor containing the composition 9 resin was used as the relaxation layer 14 and the composition 1 resin was used as the molding layer 13, it was put into a high temperature and high humidity environment test. Cracks were generated on the entire surface of the molding layer 13 by standing at room temperature for about half a day after molding before molding.
比較例1、2において、それぞれ実験例2、3の倍の膜厚を緩和層14とした場合、実験例2、3と比較し、それぞれ倍の膜厚を有する比較例1、2の方が高い耐久試験結果を示した。 In Comparative Examples 1 and 2, when the thickness of each of the experimental examples 2 and 3 is set as the relaxation layer 14, the comparative examples 1 and 2 each having a double thickness are compared with the experimental examples 2 and 3 High durability test results were shown.
比較例3において、実験例6の倍の膜厚を緩和層14とした場合、実験例6と比較し、倍の膜厚を有する比較例3の方が高い耐久試験結果を示した。 In Comparative Example 3, when the thickness of the double layer of Experimental Example 6 was used as the relaxation layer 14, compared with Experimental Example 6, Comparative Example 3 having a double thickness showed a higher durability test result.
比較例4において、実験例9の倍の膜厚を緩和層14とした場合、実験例9と比較し、倍の膜厚を有する比較例4の方が高い耐久試験結果を示した。 In the comparative example 4, when the thickness of the double layer of the experimental example 9 was used as the relaxation layer 14, the durability test result was higher in the comparative example 4 having the double thickness than in the experimental example 9.
表3の結果から明らかな通り、実験例1を基準にして、平坦層として重合禁止剤、重合開始剤を適量に含有する緩和層14を透明基板11と成形層13の中間層に設けることで、組成1で成形した成形層13の応力負荷を柔軟な緩和層14が緩和し、割れ防止性を兼ね備えた積層型回折光学素子を実現できる。 As is clear from the results of Table 3, by providing the relaxation layer 14 containing an appropriate amount of a polymerization inhibitor and a polymerization initiator as a flat layer on the intermediate layer between the transparent substrate 11 and the molding layer 13 based on Experimental Example 1. Further, the stress relaxation of the molding layer 13 molded with the composition 1 is relaxed by the flexible relaxation layer 14, and a laminated diffractive optical element having crack prevention properties can be realized.
11 透明基板
12 エネルギー硬化性樹脂
13 成形層
14 緩和層
21 平坦型
22 回折格子を有する型
31 ヒーター、
32 ディスペンサー
33 本発明の光硬化型樹脂
34 光源
35 スペーサー
DESCRIPTION OF SYMBOLS 11 Transparent substrate 12 Energy curable resin 13 Molding layer 14 Relaxation layer 21 Flat mold | type 22 Type | mold 31 heater which has a diffraction grating,
32 Dispenser 33 Photo-curing resin 34 of the present invention Light source 35 Spacer
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005046679A JP2006235007A (en) | 2005-02-23 | 2005-02-23 | Laminated optical element, laminated diffractive optical element, molding method thereof and optical material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005046679A JP2006235007A (en) | 2005-02-23 | 2005-02-23 | Laminated optical element, laminated diffractive optical element, molding method thereof and optical material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006235007A true JP2006235007A (en) | 2006-09-07 |
Family
ID=37042755
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005046679A Withdrawn JP2006235007A (en) | 2005-02-23 | 2005-02-23 | Laminated optical element, laminated diffractive optical element, molding method thereof and optical material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006235007A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8159747B2 (en) | 2007-12-03 | 2012-04-17 | Canon Kabushiki Kaisha | Diffractive optical element and optical system including the same |
JP2014516173A (en) * | 2011-06-10 | 2014-07-07 | オラフォル アメリカズ インコーポレイテッド | Method and device for optimizing materials for lenses and lens arrays |
WO2021054358A1 (en) * | 2019-09-20 | 2021-03-25 | 三井化学株式会社 | Method for producing optical member and optical member |
-
2005
- 2005-02-23 JP JP2005046679A patent/JP2006235007A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8159747B2 (en) | 2007-12-03 | 2012-04-17 | Canon Kabushiki Kaisha | Diffractive optical element and optical system including the same |
JP2014516173A (en) * | 2011-06-10 | 2014-07-07 | オラフォル アメリカズ インコーポレイテッド | Method and device for optimizing materials for lenses and lens arrays |
WO2021054358A1 (en) * | 2019-09-20 | 2021-03-25 | 三井化学株式会社 | Method for producing optical member and optical member |
JPWO2021054358A1 (en) * | 2019-09-20 | 2021-03-25 | ||
CN114269550A (en) * | 2019-09-20 | 2022-04-01 | 三井化学株式会社 | Method for manufacturing optical component and optical component |
JP7182723B2 (en) | 2019-09-20 | 2022-12-02 | 三井化学株式会社 | OPTICAL MEMBER MANUFACTURING METHOD AND OPTICAL MEMBER |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI427318B (en) | Resin composite optical element and manufacturing method thereof | |
JP5361613B2 (en) | Optical material and optical element | |
JP5597550B2 (en) | Optical molded body, light guide plate and light diffuser using the same | |
JP2013018910A (en) | Resin cured product | |
JP2012227190A (en) | Curable resin composition for nanoimprint | |
WO2017179476A1 (en) | Composition for high refractive index low dispersion resins for composite diffraction optical elements, and composite diffraction optical element using same | |
KR101860116B1 (en) | Light curing type imprinting composition for fine patterning of light guide panel for display devices, imprinted light guide panel thereof, and back light unit and display device containing the same | |
KR101508761B1 (en) | Composition for optical film and optical film fabricated using the same | |
JP2006235007A (en) | Laminated optical element, laminated diffractive optical element, molding method thereof and optical material | |
TW200907507A (en) | Retardation film, retardation film laminate, and their production methods | |
KR100580077B1 (en) | Optical element and method of manufacturing the same, or laminated optical element and method of manufacturing the same | |
JP2009048184A (en) | Photocurable resin composition for laminated layer type optical member, and laminated layer type optical member and viewing angle expansion film comprised by using it | |
US6811830B2 (en) | Photochromic article and method of preparation | |
JP2012141355A (en) | Manufacturing method of optical member having fine rugged structure on surface thereof, and article thereof | |
JP2006232907A (en) | Optical material, method for molding optical element by using the same, optical element molded by the method and optical device having the optical element | |
JP7072452B2 (en) | Photocurable composition | |
JP5626630B2 (en) | Material composition and optical element using the same | |
JP6442973B2 (en) | Photo-curable composition for microstructure formation and cured product thereof | |
JP6753038B2 (en) | Photocurable composition | |
JP2004346125A (en) | Optical curing type resin composition and light-resistant optical part | |
JP2004126499A (en) | Optical element, method for manufacturing optical element, laminated optical element, and method for manufacturing laminated optical element or optical material therefor | |
JP7086588B2 (en) | Cured products, optical elements, optical instruments and methods for manufacturing optical elements | |
KR20060120692A (en) | A process for the fabrication of optical microstructures | |
TWI768007B (en) | Laminated body and method for producing the same | |
AU2001243955B2 (en) | Photochromic article and method of preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080513 |