WO2021131179A1 - 氷供給装置及び製氷システム - Google Patents

氷供給装置及び製氷システム Download PDF

Info

Publication number
WO2021131179A1
WO2021131179A1 PCT/JP2020/035080 JP2020035080W WO2021131179A1 WO 2021131179 A1 WO2021131179 A1 WO 2021131179A1 JP 2020035080 W JP2020035080 W JP 2020035080W WO 2021131179 A1 WO2021131179 A1 WO 2021131179A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
sherbet
storage tank
salt concentration
sherbet ice
Prior art date
Application number
PCT/JP2020/035080
Other languages
English (en)
French (fr)
Inventor
俊介 東矢
植野 武夫
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to JP2020216205A priority Critical patent/JP7231848B2/ja
Priority to CN202080089740.0A priority patent/CN114867975B/zh
Priority to PCT/JP2020/048749 priority patent/WO2021132570A1/ja
Priority to EP20905869.2A priority patent/EP4083542B1/en
Publication of WO2021131179A1 publication Critical patent/WO2021131179A1/ja
Priority to US17/849,063 priority patent/US20220325933A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/02Apparatus for disintegrating, removing or harvesting ice
    • F25C5/04Apparatus for disintegrating, removing or harvesting ice without the use of saws
    • F25C5/08Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice
    • F25C5/10Apparatus for disintegrating, removing or harvesting ice without the use of saws by heating bodies in contact with the ice using hot refrigerant; using fluid heated by refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C5/00Working or handling ice
    • F25C5/20Distributing ice

Definitions

  • This disclosure relates to an ice supply device and an ice making system.
  • Sherbet ice produced from saltwater such as seawater may be used to refrigerate saltwater fish.
  • the sherbet ice produced by the ice maker is stored in an ice storage tank and pumped to the user at any time.
  • the temperature suitable for refrigeration differs depending on the fish species and size. If the saltwater fish is kept cold at a temperature lower than the temperature suitable for the saltwater fish to be kept cold, the body of the saltwater fish may freeze and its commercial value may be significantly impaired.
  • the salt concentration of the salt water mixed sherbet-shaped ice in the ice storage tank is adjusted by injecting fresh water into the ice storage tank, and the adjusted sherbet-shaped ice is stored. I'm taking it out of the tank.
  • the salt concentration of the sherbet ice is adjusted by injecting fresh water into the ice storage tank in which the produced sherbet ice is stored, so that a specific salt concentration can be adjusted. Only sherbet ice can be obtained. Therefore, when it is desired to refrigerate different types of saltwater fish, it is difficult to adjust the sherbet ice to a salt concentration suitable for the saltwater fish.
  • the ice supply device of the present disclosure is (1) An ice storage tank for storing sherbet ice, a supply path for taking out sherbet ice from the ice storage tank, and a water flow path for water to join the supply path are provided.
  • a water channel through which water flows joins a supply path for taking out sherbet ice from an ice storage tank. This makes it possible to adjust the salt concentration of the sherbet ice supplied to the user.
  • the ice supply device of the above (1) further includes a pump arranged on the downstream side in the flow direction of sherbet ice from the confluence portion where the water flow path joins the supply path.
  • a pump arranged on the downstream side in the flow direction of the sherbet ice from the confluence portion, the sherbet ice and water can be flowed by one pump.
  • the flow rate adjusting valve provided in the water flow path and the front flow rate adjusting valve are controlled so that the salt concentration of sherbet ice after merging becomes a target value. It is desirable that the control unit is further provided. By controlling the flow rate adjusting valve provided in the water flow path by the control unit, the salt concentration of the sherbet ice after merging can be adjusted.
  • a first temperature sensor for detecting the temperature of the sherbet ice or a first for detecting the salt concentration of the sherbet ice is located downstream of the confluence in the flow direction of the sherbet ice. Equipped with a density sensor It is desirable that the control unit controls the flow rate adjusting valve so that the temperature detected by the first temperature sensor or the concentration detected by the first concentration sensor becomes a target value. By controlling the flow rate adjusting valve using the temperature or concentration detected by the first temperature sensor or the first concentration sensor, the salt concentration of the sherbet ice after merging can be adjusted.
  • a first temperature sensor for detecting the temperature of the sherbet ice is further provided on the downstream side in the flow direction of the sherbet ice from the confluence portion. It is desirable that the control unit calculates the salt concentration from the temperature detected by the first temperature sensor and controls the flow rate adjusting valve so that the calculated salt concentration becomes a target value. Since there is a correlation between the salt concentration of sherbet ice and the temperature, the salt concentration can be calculated from the detected temperature by detecting the temperature of the sherbet ice with the first temperature sensor. Then, the control unit adjusts the salt concentration of the sherbet ice after merging by controlling the flow rate adjusting valve so that the calculated salt concentration becomes the target value and adjusting the flow rate of the water merging into the supply path. be able to.
  • control unit controls the opening and / or opening time of the flow rate adjusting valve.
  • the control unit can adjust the flow rate of the water merging into the supply path by controlling the opening and / or opening time of the flow rate adjusting valve.
  • a second concentration sensor for detecting the salt concentration of sherbet ice in the ice storage tank is further provided. It is desirable that the control unit prohibits the operation of taking out the sherbet ice in the ice storage tank when the salt concentration detected by the second concentration sensor is not within the predetermined range. By prohibiting the operation of taking out the sherbet ice in the ice storage tank when the detected salt concentration is not within the predetermined range, it is possible to suppress the supply of the sherbet ice in an insufficient state to the user.
  • the second temperature sensor for detecting the temperature of the sherbet ice in the ice storage tank and the second temperature sensor.
  • the temperature of the medium to be cooled which was supplied to the ice storage tank before the operation of the ice making device and detected by the second temperature sensor, and stored in the ice storage tank after the operation of the ice making device was started and detected by the second temperature sensor.
  • the salinity calculation unit can calculate the salinity of the sherbet ice based on the temperature of the medium to be cooled before the operation and the temperature of the sherbet ice after the start of the operation detected by the second sensor.
  • the supply path is arranged in the ice storage tank and has an outlet for taking out sherbet ice in the ice storage tank. It is desirable that the outlet is arranged below the liquid level of sherbet ice in the ice storage tank by a predetermined distance.
  • High IPF Ice Packing Factor: ratio of the weight of ice to the total weight
  • the ice making system of the present disclosure is (11) Ice making equipment and It is equipped with any of the ice supply devices (1) to (10).
  • a water channel through which water flows joins a supply path for taking out sherbet ice from an ice storage tank. This makes it possible to adjust the salt concentration of the sherbet ice supplied to the user.
  • FIG. 1 is an explanatory view of an ice making system S according to an embodiment of the present disclosure
  • FIG. 2 is an explanatory view of an ice making machine 1 in the ice making system S shown in FIG. 1
  • FIG. 3 is shown in FIG. It is explanatory drawing of the ice supply apparatus C including the ice storage tank T in the ice making system S shown.
  • the ice making system S includes an ice making device I and an ice supply device C.
  • the ice making device I and the ice storage tank T which is a component of the ice supply device C, are connected by a pipe.
  • the ice making device I produces sherbet ice from the cooled medium by heat exchange with the refrigerant.
  • seawater is used as a medium to be cooled, and the ice making device I generates fine ice from seawater as a raw material, and stores the sherbet ice mixed with seawater, which is a mixture of the generated fine ice and seawater, in an ice storage tank.
  • Sherbet ice is also called slurry ice, ice slurry, slurry ice, sluff ice, or liquid ice.
  • salt water containing salt in water can be used as used herein, "water” includes industrial water, tap water, and fresh water that are substantially free of salt.
  • the ice-making device I includes a compressor 2, a heat source-side heat exchanger 3, a four-way switching valve 4, a user-side expansion valve 5, a heat source-side expansion valve 6, and internal heat. It includes a exchanger 7 and a receiver 8.
  • the ice maker 1 includes an evaporator 13 including an inner tube 11 and an outer tube 12, and an ice scraping unit 14.
  • the ice maker 1 is a horizontal double-tube ice maker in which the axes of the inner tube 11 and the outer tube 12 are arranged horizontally.
  • the liquid refrigerant passes through most of the annular space 24 between the inner pipe 11 and the outer pipe 12.
  • the inner pipe 11 is an element through which seawater, which is a medium to be cooled, passes through, and is made of a metal material such as stainless steel or iron.
  • the inner tube 11 has a cylindrical shape and is arranged inside the outer tube 12. Both ends of the inner pipe 11 are closed. Inside the inner pipe 11, an ice scraping portion 14 is provided which scoops up the ice generated on the inner peripheral surface of the inner pipe 11 and disperses it in the seawater in the inner pipe 11.
  • a seawater pipe 15 for supplying seawater in the ice storage tank T into the inner pipe 11 is connected to one end side in the axial direction of the inner pipe 11. Further, a sherbet pipe 16 for returning seawater from the inner pipe 11 to the ice storage tank T is connected to the other end side of the inner pipe 11 in the axial direction.
  • the outer tube 12 has a cylindrical shape, and is made of a metal material such as stainless steel or iron like the inner tube 11.
  • a plurality of (three in the illustrated example) refrigerant inlet pipes 17 branched on the downstream side of the utilization side expansion valve 5 are connected to the lower part of the outer pipe 12.
  • a refrigerant outlet pipe 18 leading to the internal heat exchanger 7 is connected to the upper part of the outer pipe 12.
  • three refrigerant inlet pipes 17 are provided, but the number of refrigerant inlet pipes 17 may be 2 or less, or 4 or more.
  • the number of refrigerant outlet pipes 18 is 1, but it may be 2 or more.
  • the ice scraping unit 14 includes a rotating shaft 19, a support bar 20, a blade 21, and a motor 22.
  • the other end of the rotating shaft 19 in the axial direction is provided extending outward from the flange 23 provided at the other end of the inner pipe 11 in the axial direction, and is connected to the motor 22 for driving the rotating shaft 19.
  • Support bars 20 are erected on the peripheral surface of the rotating shaft 19 at predetermined intervals, and blades 21 are attached to the tips of the support bars 20.
  • the blade 21 is made of, for example, a strip-shaped member made of synthetic resin, and has a tapered shape on the front side in the rotation direction.
  • the four-way switching valve 4 is held in the state shown by the solid line in FIG.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 2 flows into the heat source-side heat exchanger 3 that functions as a condenser via the four-way switching valve 4, and heats and exchanges with air by the operation of the blower fan 10 to condense. Liquefaction.
  • the liquefied refrigerant flows into the utilization-side expansion valve 5 via the heat source-side expansion valve 6, the receiver 8, and the internal heat exchanger 7 in the fully open state.
  • the refrigerant is depressurized to a predetermined low pressure by the expansion valve 5 on the utilization side, and is supplied from the refrigerant inlet pipe 17 into the annular space 24 between the inner pipe 11 and the outer pipe 12 constituting the evaporator 13.
  • the refrigerant ejected into the annular space 24 exchanges heat with the seawater supplied into the inner pipe 11 and evaporates. Seawater containing fine ice generated by cooling by evaporation of the refrigerant flows out from the sherbet pipe 16 and returns to the ice storage tank T. The refrigerant evaporated and vaporized by the ice maker 1 is sucked into the compressor 2. At that time, if the refrigerant in a state of containing liquid that cannot be completely evaporated by the ice maker 1 enters the compressor 2, the compressor 2 fails due to a sudden increase in the internal pressure of the compressor cylinder (liquid compression) or a decrease in the viscosity of the refrigerating machine oil. It causes to.
  • the low-pressure refrigerant leaving the ice maker 1 to protect the compressor 2 exchanges heat with the high-pressure refrigerant that has passed through the receiver 8 in the internal heat exchanger 7, is heated, and returns to the compressor 2.
  • the internal heat exchanger 7 is a double-tube type, and the low-pressure refrigerant leaving the ice maker 1 heats between the high-pressure refrigerant while passing through the space between the inner and outer pipes of the internal heat exchanger 7. It is exchanged, heated and returned to the compressor 2.
  • the ice maker 1 cannot be operated. In this case, a defrost operation (heating operation) is performed to melt the ice in the inner pipe 11.
  • the four-way switching valve 4 is held in the state shown by the broken line in FIG.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 2 flows into the annular space between the inner pipe 11 and the outer pipe 12 of the ice maker 1 via the four-way switching valve 4 and the internal heat exchanger 7, and is inside. It condenses and liquefies by exchanging heat with seawater containing ice in the pipe 11.
  • the liquefied refrigerant flows into the heat source side expansion valve 6 via the utilization side expansion valve 5, the internal heat exchanger 7, and the receiver 8 in the fully open state, is depressurized to a predetermined low pressure by the heat source side expansion valve 6, and serves as an evaporator. It flows into the functioning heat source side heat exchanger 3.
  • the refrigerant flowing into the heat source side heat exchanger 3 that functions as an evaporator exchanges heat with air by the operation of the blower fan 10, vaporizes, and is sucked into the compressor 2.
  • the ice supply device C is a device that supplies the sherbet ice produced by the ice making device I to the user.
  • the ice supply device C includes an ice storage tank T for storing sherbet ice, a supply path 31, and a water flow path 80 through which water flows, which joins the supply path 31.
  • the supply path 31 has an on-off valve. By opening the on-off valve, sherbet ice is supplied to the user.
  • the on-off valve is the solenoid valve 37, but it may be a valve or the like that is manually opened by the user.
  • the ice supply device C includes a control device 25 which is a control unit. As shown in FIG.
  • the control device 25 includes a CPU 25a, a memory 25b such as a RAM and a ROM, and a transmission / reception unit 25c that transmits / receives to / from an external device, a sensor, or the like.
  • the control device 25 realizes various controls related to the operation of the ice making system S, including the operation control of the ice supply device C, by the CPU 25a executing the computer program stored in the memory 25b.
  • the control device 25 controls the drive of the drive units or actuators of the solenoid valves 37, 73, 91, the proportional control valve 83, and the pumps 32, 38, which will be described later.
  • control device 25 receives the detection signals from the temperature sensors 84 and 92 and the water level sensor 33 at the transmitting / receiving unit 25c. Further, the control device 25 is communicably connected to the control unit 27 of the ice making device I, controls the operation of the ice making device I via the control unit 27, and makes ice via the control unit 27. Receives a signal from the sensor of device I or the like.
  • the main control unit of the ice making system S can be attached to the ice making device I side.
  • the ice storage tank T is made of a metal material such as stainless steel or iron.
  • the ice storage tank T has a rectangular tube shape with a rectangular horizontal cross section.
  • the ice storage tank T is a closed container having a lid portion, but in FIGS. 1 and 3, the lid portion is not shown in order to make it easier to understand the structure of the upper part inside the ice storage tank T.
  • a pump 32 for transferring the seawater in the ice storage tank T into the inner pipe 11 of the ice maker 1 by the seawater pipe 15 is arranged.
  • the sherbet ice in the ice storage tank T can be provided with fluidity. ..
  • a water level sensor 33 is provided in the ice storage tank T. Based on the detection signal from the water level sensor 33, seawater is replenished or discharged, which will be described later.
  • the water level sensor 33 can detect a plurality of water levels in the ice storage tank T, for example, 90%, 70%, 45%, 30%, 25% from the bottom of the height of the ice storage tank T. It is arranged so that the position can be detected.
  • As the water level sensor 33 a generally known sensor can be used.
  • a discharge path 90 for discharging seawater in the ice storage tank T is connected near the bottom of the ice storage tank T.
  • the discharge path 90 has a solenoid valve 91.
  • the supply path 31 is a flow path or aisle for supplying the user with sherbet ice generated by the ice making device I and stored in the ice storage tank T.
  • the supply path 31 has a supply port 39 at the downstream end for discharging the sherbet ice taken out from the ice storage tank T.
  • a pipe, a hose, or a combination thereof can be used as the supply path 31, a pipe, a hose, or a combination thereof can be used.
  • a pump 38 is provided in the supply path 31, and by driving the pump 38, sherbet ice in the ice storage tank T can be sucked and taken out to the outside.
  • the float 40 is a member that floats in the ice storage tank T apart from the inner wall 30 of the ice storage tank T.
  • the float 40 in this embodiment is a hollow body and can be made of a synthetic resin such as vinyl chloride resin (PVC).
  • PVC vinyl chloride resin
  • the float 40 has a square shape in a plan view and a substantially rhombus shape in a side view. More specifically, the upper surface 40a of the float 40 has an upwardly inclined surface that inclines from the outer edge toward the center of the float 40 so as to move away from the liquid surface. Similarly, the bottom surface 40b of the float 40 has a downwardly sloping surface that slopes away from the liquid surface from the outer edge toward the center of the float 40.
  • the shape of the float 40 is not particularly limited in the present disclosure, and a float 40 having a circular shape, a triangular shape, or a polygonal shape having a pentagon or more can be used. Further, the upper surface and / or the bottom surface of the float 40 may be a flat surface instead of an inclined surface.
  • the size of the float 40 is not particularly limited in the present disclosure, but when the float 40 having a square inner wall is floated in the ice storage tank T having a rectangular inner wall in a plan view, the length of one side of the ice storage tank T (the shorter one).
  • the length of one side of the square float 40 can be, for example, 0.3 to 0.5 W.
  • the float 40 having a circular plan view is floated in the ice storage tank T having a circular plan view, if the inner diameter of the ice storage tank T is D, the outer diameter of the circular float 40 is, for example, 0.3 to 0.5 D. can do.
  • An opening 41 penetrating in the vertical direction is formed in the center of the float 40 (center in a plan view).
  • the opening 41 has a circular shape in a plan view.
  • the tip 34a of the hose 34 forming a part of the supply path 31 is inserted into the opening 41 and fixed to the float 40.
  • the hose 34 has a bellows portion 34b on the root side of the tip portion 34a.
  • the bellows portion 34b can be expanded and contracted by a predetermined distance along the longitudinal direction or the axial direction of the hose 34.
  • the end portion of the bellows portion 34b opposite to the tip portion 34a is connected to the diameter-expanded portion 35a of the end portion of the pipe 35 constituting the supply path 31.
  • the position of the pipe 35 is fixed by a fixture (not shown).
  • One end of the chain 36 is fixed to each of the four corners of the square float 40.
  • the other end of the chain 36 is locked to the inner wall 30 of the ice storage tank T.
  • the length of each chain 36 is set to a length that allows vertical movement and horizontal movement within a certain range of the float 40.
  • the float 40 can move up and down within a certain range due to the presence of the bellows portion 34b. Further, the float 40 is restricted from moving horizontally beyond a certain range due to the presence of the chain 36.
  • the supply path 31 is configured by the above-mentioned pipe 35, hose 34, and opening 41.
  • the tip (opening edge) of the opening 41 of the float 40 which is the tip of the supply path 31, functions as an outlet 42 for sucking and taking out the sherbet ice stored in the ice storage tank T.
  • the outlet 42 is located on the bottom surface 40b of the float 40. In other words, it is located below the surface of the sherbet ice stored in the tank body.
  • the vertical position of the outlet 42 is not particularly limited in the present disclosure, but for example, the size, shape, weight, etc. of the float 40 may be selected so as to be located about 10 to 40 cm below the liquid level L of the sherbet ice. it can.
  • the bottom surface 40b of the float 40 has a downwardly inclined surface that inclines from the outer edge of the float 40 toward the outlet 42 so as to move away from the liquid surface, the air in the liquid around the outlet 42 can be removed. It can escape upward along the inclined surface. As a result, the suction of air from the outlet 42 at the tip of the supply path 31 can be further suppressed.
  • the ice supply device C has a return path 50 that branches off from the supply path 31 on the downstream side of the pump 38 arranged in the supply path 31 and returns sherbet ice to the ice storage tank T.
  • the return passage 50 is connected to a sherbet pipe 16 that returns seawater containing ice generated by the ice maker 1 to the ice storage tank T.
  • a safety valve 51 is provided in the return passage 50. The safety valve 51 is opened when the pressure in the return passage 50 exceeds a predetermined pressure. Further, the safety valve 51 is used when the pump 38 is driven even though the solenoid valve 37 provided in the supply path 31 has failed and the sherbet ice cannot be supplied from the supply port 39.
  • a solenoid valve that can be opened and closed can be used instead of the safety valve 51.
  • the solenoid valve is controlled by the CPU 25a of the control device 25 so as to be closed when the sherbet ice is supplied to the user by the supply port 39 of the supply path 31, and the supply port of the supply path 31 is closed. From 39, it is controlled to open when the sherbet ice is not supplied.
  • the sherbet ice can be returned to the ice storage tank T by operating the pump 38 and controlling the solenoid valve to open. As a result, it is possible to impart fluidity to the sherbet ice stored in the ice storage tank T and prevent the sherbet ice from freezing.
  • the pump 38 arranged in the supply path 31 functions as a pump for supplying the sherbet ice in the ice storage tank T to the user from the supply port 39, and also stores ice via the reflux path 50 branching from the supply path 31. It can function as a pump for returning the sherbet ice taken out from the tank T to the ice storage tank T.
  • the sherbet ice supply pump and the reflux pump can be shared.
  • the opening / closing control of the solenoid valve capable of opening / closing control described above by the CPU 25a of the control device 25, it is possible to suppress freezing of the sherbet ice in the ice storage tank T. Specifically, by driving the pump 38 constantly or periodically while the ice making device I is operating, the sherbet ice in the ice storage tank T can be constantly or periodically flowed through the return path and circulated. As a result, it is possible to prevent the sherbet ice near the liquid surface from freezing during ice making.
  • the opening and closing of the solenoid valve is controlled by the CPU 25a of the control device 25 so as to be interlocked with the drive of the pump 38.
  • the sherbet ice in the ice storage tank T is prevented from freezing by constantly or periodically flowing the sherbet ice in the ice storage tank T through the reflux path and circulating the ice. You can also do it.
  • the downstream end of the sherbet pipe 16 is branched into four branch pipes 60 as shown in FIG.
  • a discharge pipe 61 is attached to the downstream end of each branch pipe 60.
  • a plurality of (six in the example shown in FIG. 5) discharge ports 62 are formed on the lower surface of the discharge pipe 61.
  • the branch pipe 60 and the discharge pipe 61 are arranged above the liquid level L of the sherbet ice stored in the ice storage tank T.
  • the downstream end of the seawater supply pipe 70 that supplies seawater to the ice storage tank T is connected to the sherbet pipe 16.
  • the seawater sucked from the seawater acquisition port by a pump (not shown) joins the sherbet pipe 16 via the sterilization / filtration device 72 and the solenoid valve 73, and is supplied to the ice storage tank T from the discharge port 62 of the discharge pipe 61 described above. Will be done.
  • the sterilization / filtration device 72 is a device for removing foreign substances contained in seawater and sterilizing bacteria contained in seawater.
  • the seawater can be replenished to the ice storage tank T using the seawater replenishment pipe 70 based on the detection signal of the water level sensor 33 described above.
  • the ice supply device C has a water flow path 80 through which water flows, which joins the supply path 31 for taking out sherbet ice from the ice storage tank T.
  • the water flow path 80 joins the supply path 31 on the upstream side in the flow direction of the sherbet ice with respect to the pump 38 for sucking and taking out the sherbet ice from the ice storage tank T.
  • the number of pumps required for two can be reduced to one.
  • salt water containing salt in water can also be used.
  • an input unit 26 (see FIG. 4) that is communicably connected to the control device 25 is provided.
  • the user can take out a desired amount of sherbet ice having a desired salt concentration from the supply port 39.
  • the water stored in the water tank 81 is sucked by the pump 38 and merges with the supply path 31 via the proportional control valve 83 which is a flow rate control valve.
  • a temperature sensor 84 which is a first temperature sensor, is provided on the downstream side of the confluence of the water flow path 80 and the supply path 31 and on the downstream side of the pump 38 to detect the temperature of sherbet ice. Since there is a correlation between the salt concentration of sherbet ice and the temperature, the salt concentration can be calculated from the detected temperature by detecting the temperature of the sherbet ice with the temperature sensor 84. This calculation can be performed by the CPU 25a of the control device 25.
  • the opening and / or opening time of the proportional control valve 83 is adjusted by the CPU 25a of the control device 25 so that the salt concentration becomes the target value, thereby adjusting the desired salt concentration.
  • the opening degree of the proportional control valve 83 is fully opened, the flow rate of sherbet ice flowing through the supply path 31 and the flow rate flowing through the water flow path 80 are configured to be substantially equal to each other.
  • the concentration of sherbet ice taken out from the solenoid valve 37 can be set to about half the concentration of sherbet ice stored in the ice storage tank T.
  • the opening degree of the proportional control valve 83 when the opening degree of the proportional control valve 83 is set to 50%, the ratio of the flow rate of sherbet ice flowing through the supply path 31 to the flow rate flowing through the water flow path 80 is 2: 1.
  • the concentration of sherbet ice taken out from the solenoid valve 37 can be reduced to about two-thirds of the concentration of sherbet ice stored in the ice storage tank T.
  • the time for fully opening the proportional control valve 83 is set to about half the time during which the pump 38 is operated, the concentration of sherbet ice taken out from the electromagnetic valve 37 is stored in the ice storage tank T. It can be about two-thirds of the concentration of sherbet ice.
  • a concentration sensor 84 (first concentration sensor) that detects the salt concentration may be used.
  • the opening degree and / or opening time of the proportional control valve 83 can be adjusted by the control device 25 so that the salt concentration becomes a target value based on the detected salt concentration.
  • a temperature sensor 92 which is a second temperature sensor, is provided in the ice storage tank T to detect the temperature of the sherbet ice in the ice storage tank T. Based on the temperature of seawater before operation and the temperature of sherbet ice after the start of operation detected by the temperature sensor 92, the salt concentration of the sherbet ice can be determined by the CPU 25a of the control device 25. Then, the CPU 25a of the control device 25 adjusts the flow rate of water merging from the water flow path 80 to the supply path 31 by changing the opening degree and / or opening time of the proportional control valve 83 based on the salinity. This makes it possible to adjust the salt concentration of the sherbet ice supplied to the user.
  • the concentration sensor 92 which is the second concentration sensor
  • the temperature sensor 92 which is the second temperature sensor
  • the CPU 25a of the control device 25 can obtain the concentration of sherbet ice in the ice storage tank T by the concentration sensor 92.
  • the temperature of the sherbet ice is detected by the temperature sensor 92, and the salt concentration is calculated by the CPU 25a of the control device 25 from the detected temperature. can do. Then, the CPU 25a of the control device 25 prohibits the operation of taking out the sherbet ice in the ice storage tank T when the calculated salt concentration is not within the predetermined range. If the salt concentration of the sherbet ice in the ice storage tank T is too low, the IPF of the sherbet ice is also low, and the use as sherbet ice is insufficient.
  • the concentration sensor 92 which is the second concentration sensor
  • the temperature sensor 92 which is the second temperature sensor
  • the CPU 25a of the control device 25 has a predetermined range of the salt concentration of the sherbet ice detected by the concentration sensor 92. If not, the operation of taking out the sherbet ice in the ice storage tank T is prohibited.
  • the CPU 25a of the control device 25 controls the solenoid valve 91 and the solenoid valve 73 when it is determined that the salt concentration calculated based on the temperature detected by the temperature sensor 92 exceeds a predetermined value. Specifically, the CPU 25a of the control device 25 opens the solenoid valve 91 when the calculated salt concentration exceeds a predetermined value. As a result, the seawater in the ice storage tank T is discharged to the outside via the discharge path 90. Then, when the first predetermined condition is satisfied, the CPU 25a closes the solenoid valve 91, then opens the solenoid valve 73 to supply seawater to the ice storage tank T. Then, when the second predetermined condition is satisfied, the CPU 25a closes the solenoid valve 73.
  • the salt concentration of the seawater in the ice storage tank T can be increased.
  • the value can be lowered below a predetermined value, and as a result, the ice making device I can be continuously operated. Thereby, the ice making efficiency of the ice making system S can be improved.
  • a salinity sensor can also be used as a means for detecting the concentration of seawater in the ice storage tank T.
  • predetermined value is not particularly limited in the present disclosure, but can be, for example, 7%. If the salt concentration of the sherbet ice in the ice storage tank T exceeds 7%, it becomes difficult to make ice in the ice making machine 1, and the ice making efficiency may decrease.
  • the predetermined value can be appropriately set via an input unit of a control device 25 (not shown). The set predetermined value is stored in the memory 25b. Further, the "first predetermined condition" and the "second predetermined condition” can be, for example, when the water level as a dividing line between water and ice drops to a certain position.
  • the CPU 25a of the control device 25 detects that the water level has dropped to the first position by the water level sensor 33.
  • the first position for example, a position 45% from the bottom of the tank height can be selected from the plurality of water levels detected by the water level sensor 33 described above. Since the pump may be damaged if only ice is handled, the pump is configured to stop drainage and start water supply when the water level described above drops to the first position.
  • the CPU 25a of the control device 25 detects that the water level has risen to the second position by the water level sensor 33.
  • the second position for example, 90% of the positions of the plurality of water levels detected by the water level sensor 33 described above can be selected from the bottom of the tank height.
  • the first position and the second position can be appropriately set via an input unit of a control device 25 (not shown).
  • the set first position and second position are stored in the memory 25b.
  • the following control flow is executed.
  • the CPU 25a of the control device 25 detects the salt concentration of the sherbet ice in the ice storage tank T by the temperature sensor 92 arranged in the ice storage tank T (step S1).
  • the CPU 25a of the control device 25 determines whether or not the salt concentration exceeds 7% (step S2), and if it determines that the salt concentration exceeds 7%, proceeds to step S3.
  • the CPU 25a transmits a command to the control unit 27 of the ice making device I to stop the operation of the ice making device I.
  • the CPU 25a opens the solenoid valve 91 provided in the discharge path 90 connected to the ice storage tank T (step S4). As a result, seawater near the bottom surface of the ice storage tank T is discharged.
  • the discharged seawater may contain some sherbet ice.
  • step S5 the CPU 25a determines whether or not the water level detected by the water level sensor 33 has dropped to a water level lower than the first predetermined condition.
  • the CPU 25a determines in step S5 that the water level has dropped to a water level lower than the first predetermined condition
  • the CPU 25a proceeds to step S6 and closes the solenoid valve 91 in step S6.
  • the CPU 25a opens the solenoid valve 73 (step S7).
  • seawater salt concentration of about 3.5%) is supplied into the ice storage tank T.
  • step S8 the CPU 25a determines whether or not the water level detected by the water level sensor 33 has risen to a water level higher than the second predetermined condition.
  • step S8 When the CPU 25a determines in step S8 that the water level has risen to a level higher than the second predetermined condition, the CPU 25a proceeds to step S9 and closes the solenoid valve 73 in step S9. After that, in step S10, the CPU 25a transmits a command to start the operation of the ice making device I to the control unit of the ice making device I. After performing step S10, the process returns to step S1, and the CPU 25a of the control device 25 detects the salt concentration of the sherbet ice in the ice storage tank T by the temperature sensor 92 arranged in the ice storage tank T. By repeating such steps S1 to S10, the ice making device I can be continuously operated.
  • the target salt concentration in the ice storage tank T can be, for example, 3.5 to 7%. By performing such control, the ice making device I can be continuously operated.
  • the CPU 25a of the control device 25 sets the salt concentration of the seawater in the ice storage tank T to the target salt concentration.
  • the solenoid valve 91 of the discharge path 90 and the solenoid valve 73 of the seawater supply pipe 70 may be controlled.
  • the control in this case can be controlled as follows.
  • the CPU 25a of the control device 25 recognizes the salt concentration of the seawater supplied from the seawater supply pipe 70.
  • the CPU 25a of the control device 25 calculates the amount of seawater discharged from the ice storage tank T and the amount of seawater supplied from the seawater supply pipe 70 when the salt concentration of the seawater in the ice storage tank T reaches a predetermined value. Therefore, the electromagnetic valve 91 and the electromagnetic valve 73 can be controlled so that the salt concentration when different concentrations of salt water are mixed in the ice storage tank T becomes the target salt concentration.
  • the first predetermined condition can be the amount of seawater discharged from the ice storage tank T
  • the second predetermined condition can be the amount of seawater supplied from the seawater supply pipe 70.
  • Water is supplied to the water tank 81 via the control valve 86.
  • a float switch 87 is arranged in the water tank 81, and the control valve 86 is controlled to open and close based on the detection signal from the float switch 87, and the water supply to the water tank 81 is started and stopped. ..
  • the water flow path 80 through which water flows joins the supply path 31 for taking out sherbet ice from the ice storage tank T.
  • the salt concentration of the sherbet ice supplied to the user can be easily adjusted by adjusting the flow rate of the water merging into the supply path 31.
  • the flow rate of water from the water flow path 80 to be merged with the supply path 31 is adjusted. Since the salt concentration of the sherbet ice can be adjusted simply by doing so, the usability of the ice supply device C is improved.
  • the pump 38 is arranged on the downstream side in the flow direction of the sherbet ice from the confluence portion where the water flow path 80 merges with the supply path 31.
  • the pump 38 By disposing the pump 38 on the downstream side in the flow direction of the sherbet ice from the confluence portion, the sherbet ice and water can be flowed by one pump.
  • the proportional control valve 83 is arranged in the water flow path 80, and the proportional control valve 83 is provided by the CPU 25a of the control device 25 so that the salt concentration of the sherbet ice after merging becomes a target value.
  • the opening and / or opening time is controlled.
  • the salt concentration of the sherbet ice after merging can be adjusted only by controlling the opening degree and / or opening time of the proportional control valve 83 provided in the water flow path 80.
  • the temperature sensor 84 for detecting the temperature of the sherbet ice is provided on the downstream side in the flow direction of the sherbet ice from the confluence of the supply path 31 and the water flow path 80, and the detected temperature is measured.
  • the CPU 25a of the control device 25 controls the opening degree and / or the opening time of the proportional control valve 83 so as to reach the target value.
  • the proportional control valve 83 By controlling the proportional control valve 83 using the temperature detected by the temperature sensor 84, the salt concentration of the sherbet ice after merging can be adjusted. In this case, since there is a correlation between the salt concentration of sherbet ice and the temperature, the salt concentration of sherbet ice can be calculated from the temperature detected by the temperature sensor 84.
  • the temperature sensor 92 is arranged in the ice storage tank T, and the temperature of the seawater before the operation and the temperature of the sherbet ice after the start of the operation are detected by the temperature sensor 92.
  • the salt concentration of the sherbet ice is calculated by the CPU 25a of the control device 25. Then, the salt concentration of the sherbet ice supplied to the user can be adjusted by adjusting the flow rate of the water merging from the water flow path 80 to the supply path 31 based on the calculated salt concentration.
  • the temperature of the sherbet ice is detected by the temperature sensor 92, and the salt concentration is calculated by the CPU 25a of the control device 25 from the detected temperature. Then, the CPU 25a of the control device 25 prohibits the operation of taking out the sherbet ice in the ice storage tank T when the calculated salt concentration is not within the predetermined range. If the salt concentration of the sherbet ice in the ice storage tank T is too low, the IPF of the sherbet ice is also low, and the use as sherbet ice is insufficient. By prohibiting the operation of taking out the sherbet ice in the ice storage tank when the detected salt concentration is not within the predetermined range, it is possible to suppress the supply of the sherbet ice in an insufficient state to the user.
  • control device 25 is provided with an input unit 26 communicatively connected, and the user can input the salt concentration and amount of sherbet ice taken out from the ice storage tank T to obtain a desired value.
  • a desired amount of sherbet ice having a salt concentration can be taken out from the supply port 39.
  • the supply path 31 has an outlet 42 for taking out the sherbet ice in the ice storage tank T, and this outlet 42 is predetermined from the liquid level L of the sherbet ice in the ice storage tank T. It is located below by the distance. Since the fine ice that constitutes sherbet ice has a lower specific density than seawater, it moves upward due to buoyancy. Therefore, the sherbet ice near the liquid surface in the ice storage tank T has a higher IPF than the sherbet ice near the bottom surface. .. High IPF sherbet ice can be supplied to the user by taking out the sherbet ice near the liquid level through the outlet 42 arranged below the liquid level L of the sherbet ice in the ice storage tank T by a predetermined distance.
  • the water flow path 80 through which water flows joins the supply path 31 for taking out sherbet ice from the ice storage tank T.
  • the salt concentration of the sherbet ice supplied to the user can be easily adjusted by adjusting the flow rate of the water merging into the supply path 31.
  • the flow rate of water from the water flow path 80 to be merged with the supply path 31 is adjusted. Since the salt concentration of sherbet ice can be easily adjusted just by doing so, the usability of the ice making system S is improved.
  • the ice storage tank has a rectangular tube shape having a rectangular horizontal cross section, but the present disclosure is not limited to this.
  • the ice storage tank may be a tank having a cylindrical shape with a circular horizontal cross section, or a tank having a polygonal shape with a horizontal cross section.
  • a type of evaporator that ejects the refrigerant with a nozzle in the annular space between the inner pipe and the outer pipe can be used.
  • a horizontal double-tube ice maker in which the inner pipe and the outer pipe are arranged so that the axes are horizontal has been exemplified.
  • the present disclosure is not particularly limited to ice makers having various shapes and structures, such as a vertical double-tube ice maker in which the axes of the inner tube and the outer tube are arranged to be vertical. Can be adopted.
  • the adjustment of the salt concentration and the amount of sherbet ice supplied to the user, which is input to the input unit 26, is not exemplified, but for example, the value detected by the first temperature sensor 84 is used.
  • the salt concentration of the sherbet ice can be adjusted by controlling the opening degree of the proportional control valve 83 so that the temperature corresponds to the target salt concentration.
  • a sensor (not shown) capable of measuring the flow rate is provided in the vicinity of the solenoid valve 37, and the sherbet ice is opened by opening the solenoid valve 37 until the target amount of sherbet ice is supplied. Supply amount can be adjusted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

氷供給装置(C)は、シャーベット氷を貯留する貯氷タンク(T)と、前記貯氷タンク(T)からシャーベット氷を取り出す供給路(31)と、前記供給路(31)に合流する、水が流れる水流路(80)と、を備えている。

Description

氷供給装置及び製氷システム
 本開示は氷供給装置及び製氷システムに関する。
 海水魚等を冷蔵するために海水等の塩水から生成されるシャーベット氷を用いる場合がある。製氷装置で生成されたシャーベット氷は貯氷タンクに貯留され、随時、ポンプによりユーザに供給される。
 シャーベット氷を用いて海水魚を冷蔵する場合、魚種や大きさによって、保冷に適した温度が異なることが知られている。保冷対象の海水魚に適した温度未満の低温で当該海水魚を保冷すると、海水魚の魚体が凍結して、その商品価値が大きく損なわれる恐れがある。
 そこで、製氷装置で生成されたシャーベット氷を使用箇所に供給するに際し、当該シャーベット氷の塩分濃度を調製することが提案されている(例えば、特許文献1参照)。なお、シャーベット氷の温度と塩分濃度との間には相関関係が存在しており、塩分濃度を調整することで間接的に温度を調整することができる。
 特許文献1記載の塩水混合シャーベット状アイスの製造装置では、貯氷タンクに真水を注水することで当該貯氷タンク内の塩水混合シャーベット状アイスの塩分濃度を調整し、調整後のシャーベット状のアイスを貯氷タンクから取り出している。
特開2008-281293号公報
 しかし、特許文献1記載の製造装置では、生成後のシャーベット氷が貯留されている貯氷タンクに真水を注水することで当該シャーベット氷の塩分濃度を調整しているので、或る特定の塩分濃度を有するシャーベット氷しか得ることができない。このため、種類が異なる海水魚を冷蔵したい場合、シャーベット氷を当該海水魚に適した塩分濃度に調整することが難しい。
 本開示は、ユーザに供給されるシャーベット氷の塩分濃度を調整することができる氷供給装置及び製氷システムを提供することを目的としている。
 本開示の氷供給装置は、
(1)シャーベット氷を貯留する貯氷タンクと、前記貯氷タンクからシャーベット氷を取り出す供給路と、前記供給路に合流する、水が流れる水流路と、を備えている。
 本開示の氷供給装置では、貯氷タンクからシャーベット氷を取り出す供給路に、水が流れる水流路が合流している。これにより、ユーザに供給されるシャーベット氷の塩分濃度を調整することができる。
(2)前記(1)の氷供給装置において、前記水流路が前記供給路に合流する合流部よりも、シャーベット氷の流れ方向下流側に配設されるポンプを更に備えていることが望ましい。合流部よりも、シャーベット氷の流れ方向下流側にポンプを配設することで、1台のポンプでシャーベット氷と水を流動させることができる。
(3)前記(1)又は(2)の氷供給装置において、前記水流路に設けられた流量調整弁と、合流後のシャーベット氷の塩分濃度が目標値となるように前流量調整弁を制御する制御部とを更に備えていることが望ましい。水流路に設けられた流量調整弁を制御部で制御することにより合流後のシャーベット氷の塩分濃度を調整することができる。
(4)前記(3)の氷供給装置において、前記合流部よりもシャーベット氷の流れ方向下流側に、シャーベット氷の温度を検出する第1温度センサ又は当該シャーベット氷の塩分濃度を検出する第1濃度センサを更に備え、
 前記制御部は、前記第1温度センサにより検出された温度又は前記第1濃度センサにより検出された濃度が目標値になるように前記流量調整弁を制御することが望ましい。第1温度センサ又は第1濃度センサで検出された温度又は濃度を用いて流量調整弁を制御することで合流後のシャーベット氷の塩分濃度を調整することができる。
(5)前記(3)の氷供給装置において、前記合流部よりもシャーベット氷の流れ方向下流側に、シャーベット氷の温度を検出する第1温度センサを更に備え、
 前記制御部は、前記第1温度センサにより検出された温度から塩分濃度を演算し、演算された前記塩分濃度が目標値となるように前記流量調整弁を制御することが望ましい。シャーベット氷の塩分濃度と温度の間には相関関係が存在するので、第1温度センサによりシャーベット氷の温度を検出することで、当該検出した温度から塩分濃度を演算することができる。そして、制御部が、演算された塩分濃度が目標値となるように流量調整弁を制御して供給路に合流する水の流量を調整することで、合流後のシャーベット氷の塩分濃度を調整することができる。
(6)前記(3)~(5)の氷供給装置において、前記制御部は、前記流量調整弁の開度及び/又は開時間を制御することが望ましい。制御部は、流量調整弁の開度及び/又は開時間を制御することで、供給路に合流する水の流量を調製することができる。
(7)前記(3)~(6)の氷供給装置において、前記貯氷タンク内のシャーベット氷の塩分濃度を検出する第2濃度センサを更に備え、
 前記制御部は、前記第2濃度センサにより検出された塩分濃度が所定範囲内でない場合、前記貯氷タンク内のシャーベット氷の取出操作を禁止することが望ましい。検出された塩分濃度が所定範囲内でない場合に、貯氷タンク内のシャーベット氷の取出操作を禁止することで、ユーザに不十分な状態のシャーベット氷が供給されるのを抑制することができる。
(8)前記(1)~(7)の氷供給装置において、前記貯氷タンク内のシャーベット氷の温度を検出する第2温度センサと、
 製氷装置の運転前に前記貯氷タンクに供給され前記第2温度センサにより検出された被冷却媒体の温度と、製氷装置の運転開始後に前記貯氷タンク内に貯留され前記第2温度センサにより検出されたシャーベット氷の温度とに基づいて当該シャーベット氷の塩分濃度を演算する塩分濃度演算部とを更に備えていることが望ましい。第2センサにより検出される運転前の被冷却媒体の温度及び運転開始後のシャーベット氷の温度に基づいて、塩分濃度演算部によって当該シャーベット氷の塩分濃度を演算することができる。
(9)前記(1)~(8)の氷供給装置において、貯氷タンクから取り出すシャーベット氷の塩分濃度及び量を受け付ける入力部を更に備えることが望ましい。ユーザは、入力部でシャーベット氷の塩分濃度及び量を入力することによって、所望の塩分濃度を有するシャーベット氷を所望の量だけ取り出すことができる。
(10)前記(1)~(9)の氷供給装置において、前記供給路は、前記貯氷タンク内に配設され、当該貯氷タンク内のシャーベット氷を取り出す取出口を有し、
 前記取出口は、前記貯氷タンク内のシャーベット氷の液面から所定距離だけ下方に配置されていることが望ましい。貯氷タンク内のシャーベット氷の液面から所定距離だけ下方に配置されている取出口により液面付近のシャーベット氷を取り出すことで、高IPF(Ice Packing Factor:全体の重量に対する氷の重量の割合(氷重量/(氷重量+水重量))を示す)のシャーベット氷をユーザに供給することができる。
 本開示の製氷システムは、
(11)製氷装置と、
 前記(1)~(10)のいずれの氷供給装置と
 を備えている。
 本開示の製氷システムでは、貯氷タンクからシャーベット氷を取り出す供給路に、水が流れる水流路が合流している。これにより、ユーザに供給されるシャーベット氷の塩分濃度を調整することができる。
本開示の製氷システムの一実施形態の説明図である。 図1に示される製氷システムにおける製氷機の説明図である。 図1に示される製氷システムにおける貯氷タンクを含む氷供給装置の説明図である。 図3に示される氷供給装置の制御装置の説明図である。 貯氷タンク内の平面説明図である。 貯氷タンク内の海水の塩分濃度を調整する制御の一例のフローチャートである。
 以下、添付図面を参照しつつ、本開示の氷供給装置及び製氷システムを詳細に説明する。なお、本開示はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 図1は、本開示の一実施形態に係る製氷システムSの説明図であり、図2は、図1に示される製氷システムSにおける製氷機1の説明図であり、図3は、図1に示される製氷システムSにおける貯氷タンクTを含む氷供給装置Cの説明図である。
 製氷システムSは、製氷装置Iと、氷供給装置Cとを備えている。製氷装置Iと、氷供給装置Cの構成要素である貯氷タンクTとは配管により接続されている。
 〔製氷装置I〕
 製氷装置Iは、冷媒との熱交換により被冷却媒体からシャーベット氷を生成する。本実施形態では、被冷却媒体として海水が用いられており、製氷装置Iは、海水を原料として微細な氷を生成し、生成した微細な氷と海水が混合した海水混合のシャーベット氷を貯氷タンクTに戻す。シャーベット氷は、スラリー氷、アイススラリー、スラリーアイス、スラッフアイス、リキッドアイスとも呼ばれる。なお、被冷却媒体としては、海水以外に、例えば水に塩分を含有させた塩水を用いることもできる。本明細書における「水」には、実質的に塩分を含まない工業用水、水道水、真水が含まれる。
 製氷装置Iは、利用側熱交換器を構成する製氷機1以外に、圧縮機2、熱源側熱交換器3、四路切換弁4、利用側膨張弁5、熱源側膨張弁6、内部熱交換器7、及びレシーバ8を備えている。
 製氷機1は、図1~2に示されるように、内管11と外管12とからなる蒸発器13と、氷掻き取り部14とを備えている。製氷機1は、内管11及び外管12の各軸が水平になるように配置された横置き型の二重管式製製氷機である。蒸発器13は、内管11と外管12との間の環状スペース24の大部分を液冷媒が通過する。
 内管11は、内部を被冷却媒体である海水が通過する要素であり、ステンレスや鉄等の金属材料で作製されている。内管11は円筒形状を呈しており、外管12内に配設される。内管11の両端は閉止されている。内管11の内部には、当該内管11の内周面に生成された氷を掻き上げて内管11内の海水中に分散させる氷掻き取り部14が配設されている。内管11の軸方向一端側に貯氷タンクT内の海水を当該内管11内に供給する海水配管15が接続されている。また、内管11の軸方向他端側に内管11からの海水を貯氷タンクTに戻すシャーベット配管16が接続されている。
 外管12は円筒形状を呈しており、内管11と同様にステンレスや鉄等の金属材料で作製されている。外管12の下部には、利用側膨張弁5の下流側で分岐した複数(図示例では3つ)の冷媒入口管17が接続されている。また、外管12の上部には内部熱交換器7に至る冷媒出口管18が接続されている。本実施形態では、3つの冷媒入口管17が設けられているが、冷媒入口管17の数は2以下でもよいし、4以上であってもよい。また、冷媒出口管18の数は1であるが、2以上であってもよい。
 氷掻き取り部14は、回転軸19と、支持バー20と、ブレード21と、モータ22とを備えている。回転軸19の軸方向の他端は内管11の軸方向他端に設けられたフランジ23から外部に延びて設けられ、回転軸19を駆動させるモータ22に接続されている。回転軸19の周面には所定間隔で支持バー20が立設されており、この支持バー20の先端にブレード21が取り付けられている。ブレード21は、例えば合成樹脂で作製された帯状の部材からなり、回転方向の前方側は先細形状とされている。
 通常の製氷運転時には、四路切換弁4が、図1において実線で示される状態に保持される。圧縮機2から吐出された高温高圧のガス状冷媒は四路切換弁4を経て凝縮器として機能する熱源側熱交換器3に流入し、送風ファン10の作動により空気と熱交換して凝縮・液化する。液化した冷媒は、全開状態の熱源側膨張弁6、レシーバ8及び内部熱交換器7を経て利用側膨張弁5に流入する。冷媒は、利用側膨張弁5により所定の低圧に減圧され、冷媒入口管17から蒸発器13を構成する内管11と外管12との間の環状スペース24内に供給される。
 環状スペース24内に噴出された冷媒は、内管11内に供給された海水と熱交換して蒸発する。冷媒の蒸発による冷却で生成された微細な氷を含む海水は、シャーベット配管16から流出して貯氷タンクTに戻る。製氷機1で蒸発して気化した冷媒は圧縮機2に吸い込まれる。その際、製氷機1で蒸発しきれずに液体を含んだ状態の冷媒が圧縮機2に入ると、急激な圧縮機シリンダー内部圧力上昇(液圧縮)や冷凍機油の粘度低下により圧縮機2が故障する原因となる。そこで、圧縮機2を保護するために製氷機1を出た低圧冷媒は、レシーバ8を通過した高圧冷媒と、内部熱交換器7において熱交換し、加熱されて圧縮機2に戻る。内部熱交換器7は二重管式であり、製氷機1を出た低圧冷媒は、内部熱交換器7の内管と外管との間のスペースを通る間に高圧冷媒との間で熱交換され、加熱されて、圧縮機2に戻る。
 また、製氷機1の内管11内の海水の流れが滞り、内管11内に氷が蓄積される(アイスアキュームレーション)と、当該製氷機1の運転ができなくなる。この場合、内管11内の氷を溶かすためにデフロスト運転(暖房運転)が行われる。このとき、四路切換弁4は、図1において破線で示される状態に保持される。圧縮機2から吐出された高温高圧のガス状冷媒は四路切換弁4及び内部熱交換器7を経て製氷機1の内管11と外管12との間の環状スペース内に流入し、内管11内の氷を含む海水と熱交換して凝縮・液化する。液化した冷媒は、全開状態の利用側膨張弁5、内部熱交換器7及びレシーバ8を経て熱源側膨張弁6に流入し、当該熱源側膨張弁6により所定の低圧に減圧され、蒸発器として機能する熱源側熱交換器3に流入する。デフロスト運転時には蒸発器として機能する熱源側熱交換器3に流入した冷媒は、送風ファン10の作動により空気と熱交換して気化し、圧縮機2に吸い込まれる。
 〔氷供給装置C〕
 氷供給装置Cは、図3に示されるように、製氷装置Iにより生成されたシャーベット氷をユーザに供給する装置である。氷供給装置Cは、シャーベット氷を貯留する貯氷タンクTと、供給路31と、この供給路31に合流する、水が流れる水流路80とを備えている。供給路31は開閉弁を有している。開閉弁を開放することにより、ユーザにシャーベット氷が供給される。本実施形態では、開閉弁は電磁弁37であるが、ユーザが手動で開放する弁等であってもよい。また、氷供給装置Cは、制御部である制御装置25を備えている。制御装置25は、図4に示されるように、CPU25aと、RAM、ROM等のメモリ25bと、外部の機器やセンサ等との受発信を行う受発信部25cとを備えている。制御装置25は、メモリ25bに格納されたコンピュータプログラムをCPU25aが実行することにより、氷供給装置Cの運転制御を含む、製氷システムSの運転に関する種々の制御を実現する。制御装置25は、後述する電磁弁37、73、91、比例制御弁83、及びポンプ32、38等の駆動部ないしアクチュエータの駆動を制御する。また、制御装置25は、温度センサ84、92や水位センサ33からの検知信号を受発信部25cで受信する。また、制御装置25は、製氷装置Iの制御部27と通信可能に接続されており、当該制御部27を経由して製氷装置Iの運転を制御するとともに、当該制御部27を経由して製氷装置Iのセンサ等からの信号を受信する。なお、製氷システムSのメインの制御部を製氷装置I側に付設することもできる。
 貯氷タンクTは、ステンレスや鉄等の金属材料で作製されている。貯氷タンクTは水平断面が矩形の角筒形状を呈している。貯氷タンクTは、蓋部を有する密閉された容器であるが、図1及び図3においては、貯氷タンクT内上部の構成を分かり易くするために、当該蓋部の図示は省略している。
 貯氷タンクT内の底部近傍には、当該貯氷タンクT内の海水を海水配管15により製氷機1の内管11内に移送するポンプ32が配設されている。底面付近に配置されたポンプ32を駆動して、貯氷タンクT内の海水を製氷機1の内管11内に移送することで、当該貯氷タンクT内のシャーベット氷に流動性を与えることができる。
 貯氷タンクT内には水位センサ33が設けられている。この水位センサ33からの検知信号に基づいて、後述する海水の補充や排出が行われる。水位センサ33は、貯氷タンクT内の複数の水位を検知することが可能となっており、例えば、貯氷タンクTの高さの下から90%、70%、45%、30%、25%の位置を検知することができるように配置されている。水位センサ33は、一般的に知られているセンサを用いることができる。また、貯氷タンクTの底部近傍に、当該貯氷タンクT内の海水を排出する排出路90が接続されている。排出路90は電磁弁91を有している。
 供給路31は、製氷装置Iで生成され、貯氷タンクT内に貯留されているシャーベット氷をユーザに供給するための流路又は通路である。供給路31は、下流側端部に、貯氷タンクTから取り出したシャーベット氷を放出する供給口39を有している。供給路31としては、配管、ホース、又はそれらを組み合わせたものを用いることができる。供給路31にはポンプ38が配設されており、このポンプ38を駆動させることで貯氷タンクT内のシャーベット氷を吸引して外部に取り出すことができる。
 フロート40は、貯氷タンクTの内壁30から離間して当該貯氷タンクT内に浮遊する部材である。本実施形態におけるフロート40は中空体であり、塩化ビニル樹脂(PVC)等の合成樹脂で作製することができる。フロート40は、平面視で正方形状を呈しており、側面視でほぼひし形形状を呈している。より詳細には、フロート40の上面40aは外縁から当該フロート40の中央に向かって液面から遠ざかるように傾斜する上傾斜面を有している。同様に、フロート40の底面40bは外縁から当該フロート40の中央に向かって液面から遠ざかるように傾斜する下傾斜面を有している。なお、フロート40の形状は、本開示において特に限定されず、平面視で円形状を呈するものや、三角形状を呈するものや、五角形以上の多角形状を呈するものを用いることもできる。また、フロート40の上面及び/又は底面を傾斜面とせずに、平坦な面とすることもできる。
 フロート40のサイズは、本開示において特に限定されないが、平面視で内壁が矩形状の貯氷タンクT内に平面視が正方形のフロート40を浮かべる場合、貯氷タンクTの1辺の長さ(短い方の長さ)をWとすると、正方形のフロート40の1辺の長さを例えば0.3~0.5Wとすることができる。また、平面視が円形の貯氷タンクT内に平面視が円形のフロート40を浮かべる場合、貯氷タンクTの内径をDとすると、円形のフロート40の外径を例えば0.3~0.5Dとすることができる。
 フロート40の中央(平面視における中央)には上下方向に貫通する開口41が形成されている。この開口41は平面視で円形状である。本実施形態では、供給路31の一部を構成するホース34の先端部34aが開口41内に挿入されてフロート40に固定されている。ホース34は、先端部34aの根元側に蛇腹部34bを有している。この蛇腹部34bは、ホース34の長手方向又は軸方向に沿って所定距離だけ伸縮自在である。また、蛇腹部34bの先端部34aと反対側の端部は供給路31を構成する配管35の端部の拡径部35aに接続されている。この配管35は、図示しない固定具によってその位置が固定されている。
 正方形状のフロート40の4つの角部にはそれぞれチェーン36の一端が固定されている。チェーン36の他端は貯氷タンクTの内壁30に係止されている。各チェーン36の長さは、フロート40一定範囲内の上下動及び水平移動を許容する長さに設定されている。フロート40は、蛇腹部34bの存在により一定の範囲内で上下動が可能である。また、フロート40は、チェーン36の存在により一定の範囲を超える水平移動が規制される。
 本実施形態では、前述した配管35、ホース34及び開口41により供給路31が構成されている。供給路31の先端部であるフロート40の開口41の先端(開口縁)が、貯氷タンクT内に貯留されているシャーベット氷を吸引して取り出すための取出口42として機能する。この取出口42は、フロート40の底面40bに位置している。換言すれば、タンク本体内に貯留されているシャーベット氷の液面下に位置している。取出口42の上下方向の位置は、本開示において特に限定されないが、例えばシャーベット氷の液面Lより10~40cm程度下方に位置するようにフロート40のサイズ、形状及び重量等を選定することができる。
 氷は海水よりも比重が小さいことから浮力により上方に移動するので、貯氷タンクT内において液面付近のシャーベット氷は底面付近のシャーベット氷よりも高いIPFを有している。本実施形態では、供給路31の先端部の取出口42が、貯氷タンクTの上下方向において下部や中央部ではなく、その上部に配置されているので、IPFが高いシャーベット氷をユーザに供給することができる。その際、供給路31の先端部の取出口42がシャーベット氷の液面下に配置されているので、取出口42からシャーベット氷を吸引するに際し当該取出口42から空気が吸い込まれるのを抑制することができる。そして、吸い込まれた空気によってポンプ38が破損するのを抑制することができる。
 また、フロート40の底面40bは、当該フロート40の外縁から取出口42に向かって液面から遠ざかるように傾斜する下傾斜面を有しているので、当該取出口42周辺の液中の空気を前記傾斜面に沿って上方に逃がすことができる。これにより、供給路31の先端部の取出口42からの空気の吸い込みをさらに抑制することができる。
 本実施形態に係る氷供給装置Cは、供給路31に配設されたポンプ38の下流側において当該供給路31から分岐しており、貯氷タンクTにシャーベット氷を戻す還流路50を有している。還流路50は、製氷機1で生成された氷を含む海水を貯氷タンクTに戻すシャーベット配管16に接続されている。また、還流路50には安全弁51が配設されている。この安全弁51は、還流路50内の圧力が所定圧を超えて大きくなったときに、開放する。また、安全弁51は、供給路31に設けられた電磁弁37が故障し、供給口39からシャーベット氷の供給ができなくなったにもかかわらずポンプ38が駆動している場合に、当該供給路31から分岐している還流路50内の圧力が所定圧を超えて大きくなったときに、開放して、シャーベット氷を貯氷タンクT内に戻す役割も果たしている。このシャーベット氷は、貯氷タンクT内に貯留されているシャーベット氷の液面Lの上方に配設されている、後述する放出管の放出口から落下するので、液面付近のシャーベット氷を乱すことができる。また、シャーベット氷が凍結するのを抑制することができる。また、安全弁51が開放してシャーベット氷の流路内の圧力を下げることで、過大圧力によりポンプ38が故障するのを回避することができる。
 なお、安全弁51に代えて開閉制御可能な電磁弁を用いることもできる。この場合、電磁弁は、制御装置25のCPU25aにより、供給路31の供給口39によってシャーベット氷のユーザへの供給が行われている場合に閉となるように制御され、供給路31の供給口39からシャーベット氷の供給が行われていない場合に開となるように制御される。シャーベット氷の供給が行われていない場合に、ポンプ38を作動させるとともに電磁弁が開となるように制御することで、シャーベット氷を貯氷タンクT内に戻すことができる。これにより、貯氷タンクT内に貯留されているシャーベット氷に流動性を与え、当該シャーベット氷が凍結するのを抑制することができる。
 供給路31に配設されたポンプ38は、貯氷タンクT内のシャーベット氷を供給口39よりユーザに供給するためのポンプとして機能するとともに、当該供給路31から分岐する還流路50を介して貯氷タンクTから取り出したシャーベット氷を当該貯氷タンクTに戻すためのポンプとして機能することができる。シャーベット氷の供給用ポンプと還流用ポンプを共用化することができる。
 制御装置25のCPU25aにより、ポンプ38の運転と、前述した開閉制御可能な電磁弁の開閉制御とを、連動させることで、貯氷タンクT内のシャーベット氷が凍結するのを抑制することができる。具体的に、製氷装置Iが運転している間、常時又は定期的にポンプ38を駆動させることで、常に又は定期的に貯氷タンクT内のシャーベット氷を還流路に流して循環させることができ、これにより製氷中に液面付近のシャーベット氷が凍結するのを抑制することができる。電磁弁の開閉は、ポンプ38の駆動と連動するように制御装置25のCPU25aにより制御される。なお、製氷装置Iが運転していないときに、常に又は定期的に貯氷タンクT内のシャーベット氷を還流路に流して循環させることにより、貯氷タンクT内のシャーベット氷が凍結することを抑制することもできる。
 シャーベット配管16の下流側の端部は、図5に示されるように、4本の枝管60に分岐している。各枝管60の下流側の端部には放出管61が取り付けられている。放出管61の下面には複数(図5に示される例では6個)の放出口62が形成されている。枝管60及び放出管61は、貯氷タンクT内に貯留されているシャーベット氷の液面Lよりも上方に配置されている。シャーベット氷の液面Lより上方に位置する放出口62からシャーベット氷を落下させることで、液面付近のシャーベット氷に流動性を与えることができる。これにより、液面付近のシャーベット氷が凍結するのを抑制することができる。
 本実施形態では、貯氷タンクTに海水を補給する海水補給管70の下流側の端部がシャーベット配管16に接続されている。図示しないポンプにより海水取得口から吸引された海水は、殺菌・ろ過装置72、及び電磁弁73を経由してシャーベット配管16に合流し、前述した放出管61の放出口62から貯氷タンクTに供給される。殺菌・ろ過装置72は、海水に含まれている異物を除去したり、海水中に含まれる菌を滅菌したりするための装置である。海水補給管70を用いた海水の貯氷タンクTへの補給は、前述した水位センサ33の検知信号に基づいて行うことができる。
 また、本実施形態に係る氷供給装置Cは、貯氷タンクTからシャーベット氷を取り出す供給路31に合流する、水が流れる水流路80を有している。この水流路80は、貯氷タンクTからシャーベット氷を吸引して取り出すためのポンプ38よりもシャーベット氷の流れ方向上流側において供給路31に合流している。これにより、2台必要であったポンプの数を1台に減らすことができる。なお、水に代えて、水に塩分を含有した塩水を用いることもできる。
 本実施形態では、制御装置25に通信可能に接続された入力部26(図4参照)が設けられている。ユーザは、貯氷タンクTから取り出すシャーベット氷の塩分濃度及び量を入力することで、所望の塩分濃度を有するシャーベット氷を所望の量だけ供給口39から取り出すことができる。
 本実施形態では、水タンク81に貯留されている水はポンプ38により吸引され、流量制御弁である比例制御弁83を経由して供給路31に合流する。また、水流路80と供給路31との合流部よりも下流側であり且つポンプ38の下流側にシャーベット氷の温度を検知する、第1温度センサである温度センサ84が設けられている。シャーベット氷の塩分濃度と温度の間には相関関係が存在するので、温度センサ84によりシャーベット氷の温度を検出することで、検出した温度から塩分濃度を演算することができる。この演算は、制御装置25のCPU25aで行うことができる。そして、演算された塩分濃度に基づいて、当該塩分濃度が目標値となるように制御装置25のCPU25aによって比例制御弁83の開度及び/又は開時間を調整することで、所望の塩分濃度を有するシャーベット氷を得ることができる。例えば、比例制御弁83の開度を全開とした場合、供給路31を流れるシャーベット氷の流量と水流路80を流れる流量がほぼ等しくなるように構成されている。これにより、電磁弁37から取り出すシャーベット氷の濃度を、貯氷タンクT内に貯留されているシャーベット氷の濃度の約半分の濃度とすることができる。また、例えば、比例制御弁83の開度を50%とした場合、供給路31を流れるシャーベット氷の流量と水流路80を流れる流量の比が、2対1となる。これにより、電磁弁37から取り出すシャーベット氷の濃度を、貯氷タンクT内に貯留されているシャーベット氷の濃度の約3分の2とすることができる。また、比例制御弁83を全開とする時間を、ポンプ38を運転している時間のうちの約半分の時間とした場合、電磁弁37から取り出すシャーベット氷の濃度を、貯氷タンクT内に貯留されているシャーベット氷の濃度の約3分の2とすることができる。なお、温度センサ84に代えて塩分濃度を検出する濃度センサ84(第1濃度センサ)を用いてもよい。この場合、検出された塩分濃度に基づいて、当該塩分濃度が目標値となるように制御装置25によって比例制御弁83の開度及び/又は開時間を調整することができる。
 また、本実施形態では、貯氷タンクT内に当該貯氷タンクT内のシャーベット氷の温度を検出する、第2温度センサである温度センサ92が配設されている。この温度センサ92により検出される運転前の海水の温度及び運転開始後のシャーベット氷の温度に基づいて、制御装置25のCPU25aによって当該シャーベット氷の塩分濃度を求めることができる。そして、制御装置25のCPU25aは、塩分濃度に基づいて、比例制御弁83の開度及び/又は開時間を変化させることにより、水流路80から供給路31に合流させる水の流量を調整する。これにより、ユーザに供給されるシャーベット氷の塩分濃度を調整することができる。なお、第2温度センサである温度センサ92の代わりに、第2濃度センサである濃度センサ92を用いることも可能である。この場合、制御装置25のCPU25aは、当該貯氷タンクT内のシャーベット氷の濃度を、濃度センサ92により得ることができる。
 また、シャーベット氷の塩分濃度と温度との間には相関関係が存在するので、温度センサ92でシャーベット氷の温度を検出することで、当該検出した温度から制御装置25のCPU25aで塩分濃度を演算することができる。そして、制御装置25のCPU25aは、演算された塩分濃度が所定範囲内でない場合、貯氷タンクT内のシャーベット氷の取出操作を禁止する。貯氷タンクT内のシャーベット氷の塩分濃度が低すぎる場合、当該シャーベット氷のIPFも低く、シャーベット氷としての利用が不十分である。検出された塩分濃度が所定範囲内でない場合に、貯氷タンク内のシャーベット氷の取出操作を禁止することで、ユーザに不十分な状態のシャーベット氷が供給されるのを抑制することができる。なお、第2温度センサである温度センサ92の代わりに、第2濃度センサである濃度センサ92を用いる場合、制御装置25のCPU25aは、濃度センサ92により検出されたシャーベット氷の塩分濃度が所定範囲でない場合、貯氷タンクT内のシャーベット氷の取出操作を禁止する。
 本実施形態では、制御装置25のCPU25aは、温度センサ92により検出された温度に基づいて算出された塩分濃度が所定値を超えていると判断すると、電磁弁91と電磁弁73を制御する。具体的に、制御装置25のCPU25aは、算出された塩分濃度が所定値を超えた場合、電磁弁91を開放する。これにより、貯氷タンクT内の海水を排出路90を経由して外部に排出する。そして、第1所定条件が満たされると、CPU25aは電磁弁91を閉止し、その後電磁弁73を開放して貯氷タンクTに海水を供給する。そして、第2所定条件が満たされると、CPU25aは、電磁弁73を閉止する。このように、貯氷タンクT内の海水の塩分濃度に基づいて当該貯氷タンクT内の海水の排出及び当該貯氷タンクTへの海水の供給を行うことで、貯氷タンクT内の海水の塩分濃度を所定値未満に下げることができ、その結果、製氷装置Iを連続して運転することができる。これにより、製氷システムSの製氷効率を向上させることができる。なお、貯氷タンクT内の海水の濃度を検出する手段として、塩分濃度センサを用いることもできる。
 前述した「所定値」は、本開示において特に限定されないが、例えば7%とすることができる。貯氷タンクT内のシャーベット氷の塩分濃度が7%を超えると、製氷機1における製氷が難しくなり製氷効率が低下する恐れがある。所定値は、図示しない制御装置25の入力部を介して、適宜設定することが可能である。設定された所定値は、メモリ25bに記憶される。また、「第1所定条件」及び「第2所定条件」としては、例えば水と氷との分かれ目としての水位が一定位置まで下がったときとすることができる。第1所定条件では、制御装置25のCPU25aは、水位が第1位置まで下がったことを、水位センサ33により検知する。第1位置としては、例えば、前述した水位センサ33により検知される複数の水位のうち、タンク高さの下から45%の位置を選択することができる。氷だけを扱うとポンプが破損する可能性があることから、前述した水位が第1位置まで下がると、排水を止めて給水を始めるように構成されている。また、第2所定条件では、制御装置25のCPU25aは、水位が第2位置まで上がったことを、水位センサ33により検知する。第2位置としては、例えば、前述した水位センサ33により検知される複数の水位のうち、タンク高さの下から90%の位置を選択することができる。第1位置および第2位置は、図示しない制御装置25の入力部を介して、適宜設定することが可能である。設定された第1位置および第2位置は、メモリ25bに記憶される。本実施形態では、図6に示されるように、以下の様な制御フローが実行されている。制御装置25のCPU25aは、貯氷タンクT内に配設された温度センサ92により当該貯氷タンクT内のシャーベット氷の塩分濃度を検知する(ステップS1)。制御装置25のCPU25aは、当該塩分濃度が7%を超えているか否かを判断し(ステップS2)、塩分濃度が7%を超えていると判断するとステップS3に処理を進める。ステップS3で、CPU25aは、製氷装置Iの制御部27に対して、製氷装置Iの運転を停止するよう指令を送信する。CPU25aは、貯氷タンクTに接続されている排出路90に設けられた電磁弁91を開放する(ステップS4)。これにより、貯氷タンクTの底面付近の海水が排出される。なお、排出される海水は、多少シャーベット氷を含有していることもある。
 ついでCPU25aは、ステップS5において、水位センサ33により検知される水位が、第1所定条件より低い水位まで下がったか否かを判断する。CPU25aは、ステップS5において、水位が、第1所定条件より低い水位まで下がったと判断すると、ステップS6に処理を進め、当該ステップS6において電磁弁91を閉止する。次に、CPU25aは、電磁弁73を開放する(ステップS7)。これにより、海水(塩分濃度約3.5%)が貯氷タンクT内に供給される。ついでCPU25aは、ステップS8において、水位センサ33により検知される水位が、第2所定条件より高い水位まで上がったか否かを判断する。CPU25aは、ステップS8において、水位が、第2所定条件より高い水位まで上がったと判断すると、ステップS9に処理を進め、当該ステップS9において電磁弁73を閉止する。その後、CPU25aは、ステップS10において、製氷装置Iの制御部に対して、製氷装置Iの運転を開始させる指令を送信する。ステップS10を行った後、ステップS1へ戻り、制御装置25のCPU25aは、貯氷タンクT内に配設された温度センサ92により当該貯氷タンクT内のシャーベット氷の塩分濃度の検知を行う。このようなステップS1からステップS10を繰り返すことによって、製氷装置Iを連続して運転することができる。貯氷タンクT内の目標塩分濃度としては、例えば3.5~7%とすることができる。このような制御を行うことにより、製氷装置Iを連続して運転することができる。
 なお、温度センサ92により検出された貯氷タンクTの海水の塩分濃度が所定値を超えた場合、制御装置25のCPU25aは、当該貯氷タンクT内の海水の塩分濃度が目標塩分濃度となるように、排出路90の電磁弁91及び海水補給管70の電磁弁73を制御するようにしてもよい。この場合の制御としては、以下のように制御することができる。制御装置25のCPU25aは、海水補給管70より供給される海水の塩分濃度を認識している。制御装置25のCPU25aは、貯氷タンクT内の海水の塩分濃度が所定値となったときに、貯氷タンクTから排出する海水の量および海水補給管70から供給される海水の量を演算することによって、貯氷タンクT内で異なる濃度の塩水が混ざったときの塩分濃度が目標塩分濃度となるように、電磁弁91及び電磁弁73を制御することができる。この場合、第1所定条件は、貯氷タンクTから排出する海水の量とすることができ、第2所定条件は、海水補給管70から供給される海水の量とすることができる。
 水タンク81には制御弁86を経由して水が供給される。水タンク81内にはフロートスイッチ87が配置されており、このフロートスイッチ87からの検知信号に基づいて制御弁86が開閉制御され、水タンク81への水の供給の開始及び停止操作が行われる。
〔実施形態の作用効果〕
 前述した実施形態(氷供給装置の実施形態)では、貯氷タンクTからシャーベット氷を取り出す供給路31に、水が流れる水流路80が合流している。これにより、供給路31に合流させる水の流量を調整することでユーザに供給されるシャーベット氷の塩分濃度を容易に調整することができる。所定量のシャーベット氷をユーザに供給した後に、例えば、種類が異なる海水魚を保冷するためのシャーベット氷が必要になったときでも、供給路31に合流させる水流路80からの水の流量を調整するだけでシャーベット氷の塩分濃度を調整することができるので、氷供給装置Cの使い勝手がよくなる。
 また、前述した実施形態では、水流路80が供給路31に合流する合流部よりも、シャーベット氷の流れ方向下流側にポンプ38が配設されている。合流部よりも、シャーベット氷の流れ方向下流側にポンプ38を配設することで、1台のポンプでシャーベット氷と水を流動させることができる。
 また、前述した実施形態では、水流路80に比例制御弁83が配設されており、合流後のシャーベット氷の塩分濃度が目標値となるように、制御装置25のCPU25aによって比例制御弁83の開度及び/又は開時間が制御される。水流路80に設けられた比例制御弁83の開度及び/又は開時間を制御するだけで合流後のシャーベット氷の塩分濃度を調整することができる。
 また、前述した実施形態では、供給路31と水流路80の合流部よりもシャーベット氷の流れ方向下流側に、シャーベット氷の温度を検出する温度センサ84が設けられており、検出された温度が目標値になるように制御装置25のCPU25aが比例制御弁83の開度及び/又は開時間を制御する。温度センサ84で検出された温度を用いて比例制御弁83を制御することで合流後のシャーベット氷の塩分濃度を調整することができる。この場合、シャーベット氷の塩分濃度と温度との間には相関関係が存在するので、温度センサ84により検出された温度からシャーベット氷の塩分濃度を演算することができる。
 また、前述した実施形態では、貯氷タンクT内に温度センサ92が配設されており、この温度センサ92により検出される運転前の海水の温度及び運転開始後のシャーベット氷の温度に基づいて、制御装置25のCPU25aによって当該シャーベット氷の塩分濃度を演算している。そして、演算された塩分濃度に基づいて、水流路80から供給路31に合流させる水の流量を調整することでユーザに供給されるシャーベット氷の塩分濃度を調整することができる。
 また、前述した実施形態では、温度センサ92でシャーベット氷の温度を検出することで、当該検出した温度から制御装置25のCPU25aで塩分濃度を演算している。そして、制御装置25のCPU25aは、演算された塩分濃度が所定範囲内でない場合、貯氷タンクT内のシャーベット氷の取出操作を禁止する。貯氷タンクT内のシャーベット氷の塩分濃度が低すぎる場合、当該シャーベット氷のIPFも低く、シャーベット氷としての利用が不十分である。検出された塩分濃度が所定範囲内でない場合に、貯氷タンク内のシャーベット氷の取出操作を禁止することで、ユーザに不十分な状態のシャーベット氷が供給されるのを抑制することができる。
 また、前述した実施形態では、制御装置25に通信可能に接続された入力部26が設けられており、ユーザは、貯氷タンクTから取り出すシャーベット氷の塩分濃度及び量を入力することで、所望の塩分濃度を有するシャーベット氷を所望の量だけ供給口39から取り出すことができる。
 また、前述した実施形態では、供給路31は、貯氷タンクT内のシャーベット氷を取り出す取出口42を有しており、この取出口42は、貯氷タンクT内のシャーベット氷の液面Lから所定距離だけ下方に配置されている。シャーベット氷を構成する微細氷は海水よりも比重が小さいことから浮力により上方に移動するので、貯氷タンクT内において液面付近のシャーベット氷は底面付近のシャーベット氷よりも高いIPFを有している。貯氷タンクT内のシャーベット氷の液面Lから所定距離だけ下方に配置されている取出口42により液面付近のシャーベット氷を取り出すことで、高IPFのシャーベット氷をユーザに供給することができる。
 また、前述した実施形態(製氷システムの実施形態)では、貯氷タンクTからシャーベット氷を取り出す供給路31に、水が流れる水流路80が合流している。これにより、供給路31に合流させる水の流量を調整することでユーザに供給されるシャーベット氷の塩分濃度を容易に調整することができる。所定量のシャーベット氷をユーザに供給した後に、例えば、種類が異なる海水魚を保冷するためのシャーベット氷が必要になったときでも、供給路31に合流させる水流路80からの水の流量を調整するだけで容易にシャーベット氷の塩分濃度を調整することができるので、製氷システムSの使い勝手がよくなる。
〔その他の変形例〕
 本開示は前述した実施形態に限定されるものではなく、特許請求の範囲内において種々の変更が可能である。
 例えば、前述した実施形態では、貯氷タンクは、水平断面が矩形の角筒形状を呈しているが、本開示はこれに限定されない。貯氷タンクは、水平断面が円形の円筒形状を呈するタンクとしてもよいし、水平断面が多角形状を呈するタンクとしてもよい。
 また、前述した実施形態の蒸発器の代わりに、例えば、内管と外管との間の環状スペース内にノズルで冷媒を噴出するタイプの蒸発器を用いることもできる。
 また、前述した実施形態では、製氷機として、内管及び外管の各軸が水平になるように配置された横置き型の二重管式製製氷機を例示したが、製氷機の構成は本開示において特に限定されるものではなく、内管及び外管の各軸が垂直になるように配置された縦置き型の二重管式製製氷機等、種々の形状及び構造の製氷機を採用することができる。
 また、前述した実施形態では、入力部26に入力された、ユーザに供給されるシャーベット氷の塩分濃度及び量の調整について例示されていないが、例えば、第1温度センサ84により検知される値が目標塩分濃度に対応した温度になるように比例制御弁83の開度を制御することで当該シャーベット氷の塩分濃度を調整することができる。また、電磁弁37の近傍に流量を測定することができるセンサ(図示せず)を設け、目標とする量のシャーベット氷が供給されるまでの時間、当該電磁弁37を開放することでシャーベット氷の供給量を調整することができる。
 1 : 製氷機
 2 : 圧縮機
 3 : 熱源側熱交換器
 4 : 四路切換弁
 5 : 利用側膨張弁
 6 : 熱源側膨張弁
 7 : 内部熱交換器
 8 : レシーバ
10 : 送風ファン
11 : 内管
12 : 外管
13 : 蒸発器
14 : 氷掻き取り部
15 : 海水配管
16 : シャーベット配管
17 : 冷媒入口管
18 : 冷媒出口管
19 : 回転軸
20 : 支持バー
21 : ブレード
22 : モータ
23 : フランジ
24 : 環状スペース
25 : 制御装置
26 : 入力部
27 : 制御部
30 : 内壁
31 : 供給路
32 : ポンプ
33 : 水位センサ
34 : ホース
34a: 先端部
34b: 蛇腹部
35 : 配管
36 : チェーン
37 : 電磁弁
38 : ポンプ
40 : フロート
40a: 上面
40b: 底面
41 : 開口
42 : 取出口
50 : 還流路
51 : 安全弁
60 : 枝管
61 : 放出管
62 : 放出口
70 : 海水補給管
72 : 殺菌・ろ過装置
73 : 電磁弁
80 : 水流路
81 : 水タンク
83 : 比例制御弁
84 : 第1温度(濃度)センサ
86 : 制御弁
87 : フロートスイッチ
90 : 排出路
91 : 電磁弁
92 : 第2温度(濃度)センサ
 C : 氷供給装置
 I : 製氷装置
 L : 液面
 S : 製氷システム
 T : 貯氷タンク
 

Claims (11)

  1.  シャーベット氷を貯留する貯氷タンク(T)と、前記貯氷タンク(T)からシャーベット氷を取り出す供給路(31)と、前記供給路(31)に合流する、水が流れる水流路(80)と、を備えた氷供給装置(C)。
  2.  前記水流路(80)が前記供給路(31)に合流する合流部よりも、シャーベット氷の流れ方向下流側に配設されるポンプ(38)を更に備えた、請求項1に記載の氷供給装置(C)。
  3.  前記水流路(80)に設けられた流量調整弁(83)と、合流後のシャーベット氷の塩分濃度が目標値となるように前記流量調整弁(83)を制御する制御部(25)とを更に備えた、請求項1又は請求項2に記載された氷供給装置(C)。
  4.  前記合流部よりもシャーベット氷の流れ方向下流側に、シャーベット氷の温度を検出する第1温度センサ(84)又は当該シャーベット氷の塩分濃度を検出する第1濃度センサ(84)を更に備え、
     前記制御部(25)は、前記第1温度センサ(84)により検出された温度又は前記第1濃度センサ(84)により検出された濃度が目標値になるように前記流量調整弁(83)を制御する、請求項3に記載の氷供給装置(C)。
  5.  前記合流部よりもシャーベット氷の流れ方向下流側に、シャーベット氷の温度を検出する第1温度センサ(84)を更に備え、
     前記制御部(25)は、前記第1温度センサ(84)により検出された温度から塩分濃度を演算し、演算された前記塩分濃度が目標値となるように前記流量調整弁(83)を制御する、請求項3に記載の氷供給装置(C)。
  6.  前記制御部(25)は、前記流量調整弁(83)の開度及び/又は開時間を制御する、請求項3から請求項5のいずれか一項に記載の氷供給装置(C)。
  7.  前記貯氷タンク(T)内のシャーベット氷の塩分濃度を検出する第2濃度センサ(92)を更に備え、
     前記制御部(25)は、前記第2濃度センサ(92)により検出された塩分濃度が所定範囲内でない場合、前記貯氷タンク(T)内のシャーベット氷の取出操作を禁止する、請求項3から請求項6のいずれか一項に記載の氷供給装置(C)。
  8.  前記貯氷タンク(T)内のシャーベット氷の温度を検出する第2温度センサ(92)と、
     製氷装置の運転前に前記貯氷タンク(T)に供給され前記第2温度センサ(92)により検出された被冷却媒体の温度と、製氷装置(I)の運転開始後に前記貯氷タンク(T)内に貯留され前記第2温度センサ(92)により検出されたシャーベット氷の温度とに基づいて当該シャーベット氷の塩分濃度を演算する塩分濃度演算部(25a)と
     を更に備えた、請求項1から請求項7のいずれか一項に記載の氷供給装置(C)。
  9.  前記貯氷タンク(T)から取り出すシャーベット氷の塩分濃度及び量を受け付ける入力部(26)を更に備えた、請求項1から請求項8のいずれか一項に記載の氷供給装置(C)。
  10.  前記供給路(31)は、前記貯氷タンク(T)内に配設され、当該貯氷タンク(T)内のシャーベット氷を取り出す取出口(42)を有し、
     前記取出口(42)は、前記貯氷タンク(T)内のシャーベット氷の液面(L)から所定距離だけ下方に配置されている、請求項1から請求項9のいずれか一項に記載の氷供給装置(C)。
  11.  製氷装置(I)と、
     請求項1から請求項10のいずれの一項に記載の氷供給装置(C)と
     を備えた、製氷システム(S)。
PCT/JP2020/035080 2019-12-27 2020-09-16 氷供給装置及び製氷システム WO2021131179A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020216205A JP7231848B2 (ja) 2019-12-27 2020-12-25 氷供給装置及び製氷システム
CN202080089740.0A CN114867975B (zh) 2019-12-27 2020-12-25 冰供给装置以及制冰系统
PCT/JP2020/048749 WO2021132570A1 (ja) 2019-12-27 2020-12-25 氷供給装置及び製氷システム
EP20905869.2A EP4083542B1 (en) 2019-12-27 2020-12-25 Ice supply device and ice making system
US17/849,063 US20220325933A1 (en) 2019-12-27 2022-06-24 Ice supply device and ice making system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019237824 2019-12-27
JP2019-237824 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021131179A1 true WO2021131179A1 (ja) 2021-07-01

Family

ID=76575878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/035080 WO2021131179A1 (ja) 2019-12-27 2020-09-16 氷供給装置及び製氷システム

Country Status (2)

Country Link
JP (1) JP7231848B2 (ja)
WO (1) WO2021131179A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673673U (ja) * 1993-03-31 1994-10-18 ホシザキ電機株式会社 自動製氷機用排水装置
JP2006189226A (ja) * 2005-01-07 2006-07-20 Reinetsu Giken:Kk シャーベット氷収納タンク
JP2008281294A (ja) * 2007-05-11 2008-11-20 Mitsubishi Electric Corp 塩水混合シャーベット状アイスの製造装置
JP2009162392A (ja) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp シャーベット氷生成装置およびシャーベット氷生成方法
JP3161921U (ja) * 2010-06-03 2010-08-12 株式会社タガワ シャーベットアイス製造装置
JP2015152249A (ja) * 2014-02-14 2015-08-24 高砂熱学工業株式会社 貯氷タンク、及び製氷システム
JP2018179402A (ja) * 2017-04-12 2018-11-15 三菱重工冷熱株式会社 シャーベットの生成方法およびシャーベット生成用破砕ポンプ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219501A (ja) * 1995-02-08 1996-08-30 Toshiba Corp 氷蓄熱装置
JP2004245485A (ja) * 2003-02-13 2004-09-02 Ishikawajima Harima Heavy Ind Co Ltd 蓄熱システム
JP4347740B2 (ja) * 2004-04-09 2009-10-21 株式会社ナンカイ冷熱設備 シャーベット氷製造・貯氷・輸送システム及び貯氷庫
JP3205095U (ja) * 2016-03-31 2016-07-07 佐藤 一雄 シャーベット状氷製造装置
JP6575669B2 (ja) * 2018-01-15 2019-09-18 ダイキン工業株式会社 製氷システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0673673U (ja) * 1993-03-31 1994-10-18 ホシザキ電機株式会社 自動製氷機用排水装置
JP2006189226A (ja) * 2005-01-07 2006-07-20 Reinetsu Giken:Kk シャーベット氷収納タンク
JP2008281294A (ja) * 2007-05-11 2008-11-20 Mitsubishi Electric Corp 塩水混合シャーベット状アイスの製造装置
JP2009162392A (ja) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp シャーベット氷生成装置およびシャーベット氷生成方法
JP3161921U (ja) * 2010-06-03 2010-08-12 株式会社タガワ シャーベットアイス製造装置
JP2015152249A (ja) * 2014-02-14 2015-08-24 高砂熱学工業株式会社 貯氷タンク、及び製氷システム
JP2018179402A (ja) * 2017-04-12 2018-11-15 三菱重工冷熱株式会社 シャーベットの生成方法およびシャーベット生成用破砕ポンプ

Also Published As

Publication number Publication date
JP7231848B2 (ja) 2023-03-02
JP2021107763A (ja) 2021-07-29

Similar Documents

Publication Publication Date Title
US10107540B2 (en) Refrigerant system with liquid line to harvest line bypass
US7406837B2 (en) Ammonia/Co2 refrigeration system
CN104285111B (zh) 制冷装置
CN111602011B (zh) 制冰系统
EP3491306A1 (en) Refrigerant system with liquid line to harvest line bypass
JP6627959B1 (ja) 製氷システム、及び、製氷方法
JP2021105499A (ja) 製氷システム
WO2021131179A1 (ja) 氷供給装置及び製氷システム
CN104757879A (zh) 供水设备
WO2021132570A1 (ja) 氷供給装置及び製氷システム
JP2021105495A (ja) 氷供給装置及び製氷システム
JP2021105501A (ja) 氷供給装置及び製氷システム
JP2021105500A (ja) 氷供給装置及び製氷システム
TWI539127B (zh) Fishing equipment for fishing vessels
CN204520338U (zh) 供水设备
KR100868068B1 (ko) 해수 내지 오존수 제빙기
JP6760361B2 (ja) 製氷機の運転制御方法
JP6614250B2 (ja) 製氷システム
WO2019138765A1 (ja) 製氷システム
KR100893812B1 (ko) 어선의 냉각장치
JP2005061720A (ja) 含塩氷製造装置
EP4365518A1 (en) Drain pipe-free clear ice making machine for recycling water for use in making clear ice
JP2022068959A (ja) 冷菓製造装置
JP2023161661A (ja) 冷菓製造装置
JP2023161662A (ja) 冷菓製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904784

Country of ref document: EP

Kind code of ref document: A1