WO2021130857A1 - 靴の製造方法及び靴 - Google Patents

靴の製造方法及び靴 Download PDF

Info

Publication number
WO2021130857A1
WO2021130857A1 PCT/JP2019/050616 JP2019050616W WO2021130857A1 WO 2021130857 A1 WO2021130857 A1 WO 2021130857A1 JP 2019050616 W JP2019050616 W JP 2019050616W WO 2021130857 A1 WO2021130857 A1 WO 2021130857A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
adhesive sheet
shoe
resin
adhered
Prior art date
Application number
PCT/JP2019/050616
Other languages
English (en)
French (fr)
Inventor
竜朗 田邊
Original Assignee
株式会社アシックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アシックス filed Critical 株式会社アシックス
Priority to EP19938106.2A priority Critical patent/EP3864993B1/en
Priority to JP2020558636A priority patent/JP7018522B2/ja
Priority to US17/260,165 priority patent/US20220079297A1/en
Priority to CN201980034349.8A priority patent/CN113301826B/zh
Priority to PCT/JP2019/050616 priority patent/WO2021130857A1/ja
Publication of WO2021130857A1 publication Critical patent/WO2021130857A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D25/00Devices for gluing shoe parts
    • A43D25/20Arrangements for activating or for accelerating setting of adhesives, e.g. by using heat
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B9/00Footwear characterised by the assembling of the individual parts
    • A43B9/16Footwear with soles moulded on to uppers or welded on to uppers without adhesive
    • A43B9/20Footwear with soles moulded on to uppers or welded on to uppers without adhesive welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/06Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising
    • B29D35/065Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising by compression moulding, vulcanising or the like
    • B29D35/067Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising by compression moulding, vulcanising or the like using means to bond the moulding material to the preformed uppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/06Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising
    • B29D35/08Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising having multilayered parts
    • B29D35/085Producing footwear having soles or heels formed and joined on to preformed uppers using a moulding technique, e.g. by injection moulding, pressing and vulcanising having multilayered parts by compression moulding, vulcanising or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/10Producing footwear having preformed soles or heels joined on to preformed uppers using a moulding technique, e.g. by feeding or injecting plastics material between the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D35/00Producing footwear
    • B29D35/12Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
    • B29D35/122Soles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave

Definitions

  • the present invention relates to a method for manufacturing shoes using microwave irradiation, and shoes that can be manufactured by the manufacturing method.
  • the hot melt adhesive used for adhering the shoe members is irradiated with a microwave, thereby applying the hot melt adhesive.
  • a method of heating and melting may be used.
  • Such a microwave heating method has an advantage that only the hot melt adhesive, which is an adhesive element, can be selectively heated while suppressing the heating of the shoe member to be bonded at the time of bonding the shoe member.
  • a hot melt adhesive layer is provided between a plurality of foamed thermoplastic polyurethane particles and a surface of rubber or the like, and then the hot melt adhesive is microwave-heated by irradiating with microwaves. It discloses a method of manufacturing a shoe member by adhering the polyurethane particles and the surface thereof.
  • the hot melt adhesives that can be selected are limited to those composed of a thermoplastic resin that can absorb the irradiated microwaves and be heated and melted. Therefore, there is a problem that the shoe member that can be adhered by this method is limited to the one having a surface to be adhered that can be adhered well to such a thermoplastic resin.
  • the present invention provides a method capable of easily adhering a shoe member by microwave heating while using a thermoplastic resin which is normally difficult to heat by microwave as an adhesive element of the shoe member.
  • the purpose It is also an object of the present invention to provide shoes that can be easily manufactured by the above method.
  • the present invention An adhesive sheet containing at least a first thermoplastic resin and an energy absorbing material having a higher dielectric loss rate than the first thermoplastic resin, the first surface of the adhesive sheet and the first surface of the adhesive sheet.
  • the first adhered surface formed on the first shoe member is brought into contact with the first surface
  • the second adhered surface formed on the second shoe member is brought into contact with the second surface.
  • the adhesive sheet is heated and melted by irradiating the adhesive sheet with microwaves, and the first shoe member and the second shoe member are used for adhesion.
  • a method of manufacturing a shoe which comprises an gluing step of gluing through a sheet.
  • the shoes according to the present invention An adhesive sheet containing a first thermoplastic resin and an energy absorbing material having a higher dielectric loss with respect to microwave waves than the first thermoplastic resin, and the first surface of the adhesive sheet.
  • an adhesive sheet is used.
  • the first shoe member and the second shoe member are bonded by the adhesive sheet.
  • the adhesive sheet contains at least a first thermoplastic resin and an energy absorbing material having a higher dielectric loss rate than the first thermoplastic resin.
  • the adhesive sheet has the first thermoplastic resin exposed on at least the first surface of the first surface and the second surface opposite to the first surface.
  • a sheet preparation step for preparing such an adhesive sheet is carried out.
  • the first surface to be adhered to the first shoe member is brought into contact with the first surface of the adhesive sheet, and the first surface of the adhesive sheet is brought into contact with the first surface to be adhered.
  • a contact step is further carried out in which the second surface to be adhered formed on the second shoe member is brought into contact with the surface of 2.
  • the adhesive sheet is heated and melted by irradiating the adhesive sheet with microwaves to heat and melt the adhesive sheet, and the first shoe member and the first shoe member.
  • An adhesive step of adhering the shoe member of 2 to the adhesive sheet via the adhesive sheet is further carried out.
  • microwave means the microwave irradiated in the bonding step of irradiating the microwave, unless otherwise specified.
  • dielectric loss rate means the dielectric loss rate with respect to the frequency of the microwave. This dielectric loss rate can be obtained by measurement with an LCR meter or measurement with a cavity resonator perturbation method, although it depends on the frequency of the microwave.
  • thermoplastic resin contained in the adhesive sheet can be heated and melted by the heat of the energy absorbing material heated by the microwave. Therefore, it is possible to easily bond the shoe member by microwave heating while using a thermoplastic resin which is normally difficult to heat by microwave as an adhesive element of the shoe member.
  • Adhesive sheet First, the adhesive sheet used in the method for manufacturing shoes of the present embodiment will be described with reference to the examples of FIGS. 1 to 4.
  • the adhesive sheet contains at least a first thermoplastic resin and an energy absorbing material having a higher dielectric loss rate than the first thermoplastic resin, and the first thermoplastic resin is the first thermoplastic resin of the adhesive sheet.
  • the first thermoplastic resin is exposed on at least the first surface of the surface of 1 and the second surface opposite to the first surface.
  • the first thermoplastic resin is a resin that is at least adhered to the adhered surface (hereinafter, also referred to as the first adhered surface) of the first shoe member on the first surface of the adhesive sheet.
  • the first thermoplastic resin is, for example, a polyolefin resin such as a polyethylene (PE) resin or a polypropylene (PP) resin, a thermoplastic polyurethane (TPU) resin, a polystyrene (PS) resin, an ethylene-propylene rubber (EPDM), or a polyether.
  • thermoplastic resin that can be bonded to the first surface to be bonded from any thermoplastic resin including blockamide (PEBA) resin, polyester (PEs) resin, ethylene vinyl acetate (EVA) resin, polyamide (PA) resin, and the like. ..
  • a resin having a melting point or a softening point in the range of 70 ° C. to 140 ° C. and functioning as a hot melt adhesive is selected. By using such a resin, it becomes possible to easily and efficiently heat and melt the first thermoplastic resin in a later bonding step.
  • the first thermoplastic resin is preferably a resin of the same type as the resin exposed on the first surface to be adhered, from the viewpoint of adhesiveness to the first shoe member.
  • the first thermoplastic resin may also be an EVA resin.
  • the energy absorbing material can be any material that has a higher dielectric loss rate than the first thermoplastic resin and can absorb microwaves to generate heat.
  • the energy absorber is appropriately selected according to the frequency of the irradiated microwave, and may be a thermoplastic resin such as a thermoplastic polyurethane (TPU) resin or a polyamide (PA) resin, and may be a thermosetting polyurethane. It may be a thermosetting resin such as a thermoplastic elastomer, an acrylic elastomer, a crosslinked rubber, a silicone elastomer or a fluorine elastomer, or may be a material other than a resin such as water, magnesium oxide or titanium oxide.
  • the energy absorber can be a different type of thermoplastic resin than the first thermoplastic.
  • the energy absorbing material may be a TPU resin.
  • a resin having a melting point or a softening point in the range of 70 ° C. to 140 ° C. and functioning as a hot melt adhesive is more preferably selected.
  • the dielectric loss rate of the energy absorbing material is preferably 0.01 ( ⁇ r ⁇ tan ⁇ ) or more. In that case, the energy absorbing material can be efficiently heated by irradiation with microwaves. More preferably, the dielectric loss rate of the energy absorbing material is 0.1 ( ⁇ r ⁇ tan ⁇ ) or more.
  • the dielectric loss rate of the first thermoplastic resin may be a value 0.01 or more lower than the dielectric loss rate between the first thermoplastic resin and the energy absorbing material, or may be 0.1 or more lower.
  • the adhesive sheet may contain any component other than the above-mentioned first thermoplastic resin and energy absorbing material.
  • the adhesive sheet may contain an additional thermoplastic resin different from the first thermoplastic resin and the energy absorbing material described above.
  • the adhesive sheet may further contain chemicals such as a dye, an antioxidant, and an ultraviolet absorber.
  • the first surface of the adhesive sheet is the surface to be adhered to the surface to be adhered to the first shoe member, and is the surface on which the first thermoplastic resin is exposed.
  • the first thermoplastic resin is exposed on the second surface of the adhesive sheet, which is the surface to be adhered to the adhered surface of the second shoe member (hereinafter, also referred to as the second adhered surface).
  • a second resin different from the first thermoplastic resin preferably a second thermoplastic resin, may be exposed.
  • the first surface of the adhesive sheet can be adhered to the first thermoplastic resin. It is possible to bond the first shoe member having the first surface to be adhered to the second surface, which may not be able to adhere to the first thermoplastic resin. A second shoe member having a second surface to be adhered can be adhered. That is, by using such an adhesive sheet, it becomes possible to bond two shoe members having different adhesiveness to the resin via the adhesive sheet.
  • the abundance ratio of the first thermoplastic resin is larger than the abundance ratio of the second resin different from the first resin, and on the second surface, the said The abundance ratio of the second resin is larger than the abundance ratio of the first thermoplastic resin.
  • the adhesiveness of the first thermoplastic resin on the first surface and the adhesiveness of the second resin on the second surface can be more effectively exhibited.
  • the abundance ratio of each resin on the first and second surfaces can be measured by, for example, Fourier transform infrared spectroscopy (FT-IR) by the diamond ATR method.
  • FT-IR Fourier transform infrared spectroscopy
  • the second resin exposed on the second surface may be the above-mentioned energy absorbing material. That is, the adhesive sheet contains a first thermoplastic resin and a second resin having a higher dielectric loss rate than the first thermoplastic resin, and a first surface of the adhesive sheet has a first surface.
  • the adhesive sheet may be an adhesive sheet in which the thermoplastic resin is exposed and the second thermoplastic resin is exposed on the second surface of the adhesive sheet.
  • the second resin that controls the adhesiveness of the second adhesive surface also serves as an energy absorber, it can be easily heated by microwaves while reducing the use of materials that do not contribute to the adhesive function.
  • An adhesive sheet can be prepared.
  • the second resin may be another material different from the first thermoplastic resin and the above-mentioned energy absorbing material. That is, even if the adhesive sheet separately contains the first thermoplastic resin exposed on the first surface, the second resin exposed on the second surface, and the energy absorber. Good.
  • the thickness of the adhesive sheet is not particularly limited, but is preferably 100 ⁇ m or more in order to secure the amount of the thermoplastic resin contained in the adhesive sheet. Further, it is preferably 1,500 ⁇ m or less in consideration of the influence on the flexibility of the shoe. Further, in order to facilitate the transfer of the heat of the energy absorbing material to the first thermoplastic resin when the energy absorbing material is microwave-heated, the distance between the first thermoplastic resin and the energy absorbing material in the adhesive sheet. Is preferably within 50 ⁇ m. When the adhesive sheet contains a material heated by an energy absorbing material (for example, a second thermoplastic resin) in addition to the first thermoplastic resin, such a material and the energy absorbing material Similarly, the distance from and is preferably within 50 ⁇ m.
  • an energy absorbing material for example, a second thermoplastic resin
  • the thickness of the adhesive sheet may be changed according to the part in consideration of the flexibility required for the adhesive sheet and the like.
  • the thickness of the adhesive sheet can be reduced in a portion of the sole member corresponding to a portion (flexibility imparting portion) that supports the MP joint of a standard human foot and its vicinity.
  • FIG. 1 shows an example of an adhesive sheet.
  • the adhesive sheet 10 contains a first spare sheet 11 containing the first thermoplastic resin 111 as a main component and a second thermoplastic resin 121 of a type different from that of the first thermoplastic resin 111 as a main component.
  • a second spare sheet 12 is provided, and the first spare sheet 11 and the second spare sheet 12 are laminated. That is, in this example, the first thermoplastic resin 111 is exposed on one surface (first surface 10A) of the adhesive sheet, and the second surface (second surface 10B) is exposed.
  • the thermoplastic resin 121 is exposed.
  • the second thermoplastic resin 121 functions as an energy absorber.
  • the first spare sheet 11 and the second spare sheet 12 are adhered by an arbitrary method.
  • the adhesive sheet 10 can be easily handled.
  • the first spare sheet 11 and the second spare sheet 12 may be adhered to each other via a primer.
  • the primer used for adhering the spare sheets 11 and 12 to each other include an EVA-based primer containing EVA.
  • Primers include water-based primes such as polyolefin-based emulsions, EVA-based emulsions, acrylic-based emulsions, and urethane-based emulsions, acrylic resin-based primes, polyamide-based primes, olefin-based primes, phenol-resin-based primes, polyester-based primers, and polyurethane-based primers. It may be a chloroprene rubber-based primer or the like.
  • the first spare sheet 11 and the second spare sheet 12 may be adhered only by the adhesive force of the resins 111 and 121 exposed on the surfaces where the spare sheets 11 and 12 are in contact with each other. The resins 111 and 121 may be adhered by being heated and melted.
  • first spare sheet 11 and the second spare sheet 12 may be integrated by any method other than adhesion. Further, the first spare sheet 11 and the second spare sheet 12 do not necessarily have to be integrated, and an aggregate in which the two separated spare sheets 11 and 12 are laminated is used as the adhesive sheet 10. It may be defined. In this case, the two spare sheets 11 and 12 are integrated at the time of microwave irradiation.
  • the thicknesses of the first and second spare sheets 11 and 12 are appropriately selected according to the thickness of the adhesive sheet 10, and may be in the range of, for example, 150 ⁇ m to 1,000 ⁇ m.
  • the thickness of the first spare sheet 11 and the thickness of the second spare sheet 12 may be the same or different. These thicknesses may be changed depending on the site in consideration of the flexibility required for the adhesive sheet 10 and the like. For example, the thickness of the first and second spare sheets 11 and 12 can be reduced in the portion of the sole member corresponding to the flexibility-imparting portion.
  • FIG. 2 shows another example of the adhesive sheet.
  • the adhesive sheet 20 is different from the first thermoplastic resin 211 between the first and second spare sheets 21 and 22 containing the first and second thermoplastic resins 211 and 221 as main components, respectively.
  • a third spare sheet 23 containing a third type of thermoplastic resin 231 as a main component is provided, and these three spare sheets are the first spare sheet 21, the third spare sheet 23, and the third from the bottom.
  • the spare sheets 22 of 2 are laminated in this order.
  • the third thermoplastic resin 231 functions as an energy absorber.
  • the second thermoplastic resin 221 is made of a different kind of resin from the first thermoplastic resin 211, but may be made of the same kind of resin instead. That is, the types of the resins 211 and 221 exposed on the first and second surfaces 20A and 20B of the adhesive sheet 20 are different types, but they may be the same type.
  • spare sheets 21 to 23 are also preferably bonded by any method as in the example of the bonding sheet 10 shown in FIG. 1, but may be integrated by a method other than bonding. , It does not have to be integrated.
  • the adhesive sheet 10 can be easily handled.
  • the adhesive sheet 10 is integrated by microwave irradiation in the bonding step.
  • the thicknesses of these spare sheets 21 to 23 are appropriately selected according to the thickness of the adhesive sheet 20, and may be in the range of, for example, 150 ⁇ m to 1,000 ⁇ m.
  • the thicknesses of the first, second and third spare sheets 21 to 23 may be the same or different from each other. These thicknesses may be changed depending on the site in consideration of the flexibility required for the adhesive sheet 10 and the like. For example, the thickness of the spare sheets 21 to 23 can be reduced in the portion of the sole member corresponding to the flexibility-imparting portion.
  • FIG. 3 shows yet another example of the adhesive sheet.
  • the adhesive sheet 30 is a single polymer blend made of a first thermoplastic resin 311 and a second thermoplastic resin 321 of a type different from the first thermoplastic resin 311. It is composed of sheets.
  • the second thermoplastic resin 321 functions as an energy absorber.
  • the polymer blend in the single sheet has a structure in which the first thermoplastic resin 311 and the second thermoplastic resin 321 are phase-separated, and is the first surface of the adhesive sheet.
  • the abundance ratio of the first thermoplastic resin 311 is larger than the abundance ratio of the second thermoplastic resin 321.
  • the abundance ratio of the second thermoplastic resin 321 is the above. It is larger than the abundance ratio of the first thermoplastic resin 311.
  • FIG. 4 shows yet another example of the adhesive sheet.
  • the adhesive sheet 40 contains a first resin fiber 41 containing the first thermoplastic resin 411 as a main component and a second thermoplastic resin 421 of a type different from the first thermoplastic resin 411 as a main component. It has a structure in which the second resin fiber 42 is woven.
  • the second thermoplastic resin 421 functions as an energy absorber.
  • the first and second resin fibers 41 and 42 are exposed on both the first and second surfaces 40A and 40B of the adhesive sheet 40, but on the first surface 40A, the first The abundance ratio of the resin fiber 41 is larger than the abundance ratio of the second resin fiber 42, and on the second surface 40B, the abundance ratio of the second resin fiber 42 is the abundance ratio of the first resin fiber 41. Is bigger than.
  • the adhesive sheet of the present embodiment has a first thermoplastic resin different from the energy absorbing material as long as it is exposed on at least one surface.
  • the thermoplastic resin and the energy absorbing material of 1 may have a configuration in which they are present in the adhesive sheet in any manner.
  • an energy absorbing material in an arbitrary form for example, a powdery form, a fibrous form, a flaky form, or the like, is dispersed inside a single sheet containing a first thermoplastic resin as a main component. It may have a configuration.
  • the energy absorbing material is a thermoplastic resin, but the energy absorbing material may be a thermosetting resin or an inorganic material.
  • an energy absorbing material made of a thermosetting resin or an inorganic material may be sandwiched between the first and second spare sheets containing the first and second thermoplastic resins as main components, respectively, and is inorganic.
  • the energy absorbing material made of fibers may be woven with the resin fibers containing the first thermoplastic resin as a main component.
  • any shoe member used for shoes is selected.
  • a shoe member for example, as the first and second shoe members, other sole members such as a midsole, an outsole, and a sockliner, and a shoe reinforcement member such as a heel counter and a shank. , Upper material, decorative material, etc.
  • the combination of the first shoe member and the second shoe member is not particularly limited, and any combination of the shoe members to be adhered in the manufacture of shoes is selected.
  • the combination of the first shoe member and the second shoe member includes a combination of a midsole and an upper material, a combination of a midsole and an outsole, a combination of a midsole and a shank, and an upper. And a combination with a heel counter.
  • the combination of the midsole and the upper material is selected as the combination of the first shoe member and the second shoe member.
  • the first shoe member and the second shoe member may each be a part of a specific member that can be generally recognized as one shoe member.
  • the first shoe member and the second shoe member may be the first component and the second component of the midsole that are adhered to form one midsole.
  • the first and second shoe members are formed with first and second surfaces to be adhered to the first and second surfaces of the adhesive sheet, respectively.
  • the first surface to be adhered to the first shoe member is made capable of adhering to the first thermoplastic resin exposed on the first surface of the adhesive sheet.
  • a resin of the same type as the first thermoplastic resin is exposed on the first surface to be adhered.
  • the first thermoplastic resin is an EVA resin
  • the EVA resin may also be exposed on the first surface to be adhered.
  • the second surface to be adhered to the second shoe member is one of the resins exposed on the second surface of the adhesive sheet, preferably the abundance ratio on the second surface is compared with any other resin.
  • the second surface to be adhered can be adhered to the second thermoplastic resin. It is said that. From the viewpoint of adhesiveness to the second surface, it is preferable that a resin of the same type as the resin exposed on the second surface is also exposed on the second surface to be adhered.
  • the first and second shoe members are made of any material such as foam, rubber, cloth, metal, resin, and fiber. It may include one or more members.
  • the first or second shoe member may be a sole member made of foam.
  • the shoe according to the embodiment of the present invention uses the adhesive sheet 10 shown in FIG. 1 as the adhesive sheet, the first shoe member as the midsole 2, and the second shoe member as the upper material 3.
  • the manufacturing method of No. 1 will be described.
  • the following embodiments are merely examples.
  • the present invention is not limited to the following embodiments.
  • a sheet preparation step for preparing the adhesive sheet 10 shown in FIG. 1 is performed.
  • the step may include making the adhesive sheet 10 from the spare members of the adhesive sheet 10 (in this embodiment, the first and second spare sheets 11, 12). For example, in the step, after applying the above-mentioned primer for adhering them to at least one side of the first and second spare sheets 11 and 12, they are adhered through the surface to which the primer is applied. , The adhesive sheet 10 may be produced accordingly.
  • the first surface 10A of the adhesive sheet 10 is brought into contact with the first adhesive surface 2A of the midsole 2 which is the first shoe member, and for adhesion.
  • a contact step is performed in which the second surface 10B of the sheet 10 is brought into contact with the second adhered surface 3B of the upper material 3 which is a second shoe member.
  • the adhered surface 2A of the midsole 2 and the adhered surface 3B of the upper material 3 are in close contact with the entire surfaces of the first and second surfaces 10A and 10B of the adhesive sheet 10, respectively. Be touched.
  • the first surface 10A, the second surface 10B, before the first and second surfaces 10A, 10B and the first and second adherent surfaces 2A, 3B are brought into contact with each other in the step.
  • a primer application step may be performed in which a primer is applied to at least one of the first surface to be adhered 2A and the second surface to be adhered 3B. In that case, it becomes possible to perform surface modification treatment of the first surface to be adhered 2A and the second surface to be adhered 3B. Further, by using an aqueous primer, the heating characteristics to the interface are improved due to the water contained inside.
  • the process proceeds to the bonding step and microwave irradiation is performed before the water is completely lost by drying.
  • Microwave irradiation is preferably carried out in a state where the coating film of the primer contains 0.1% or more of water.
  • the water-based primer may be applied to the first and second spare sheets 11 and 12 in the step.
  • the primer applied in the primer application step is an aqueous primer.
  • examples of such an aqueous primer include polyolefin-based emulsions, EVA-based emulsions, acrylic-based emulsions, urethane-based emulsions, and the like.
  • the contact state of these surfaces may be preliminarily fixed by any method.
  • these surfaces may be preliminarily adhered to each other by the adhesive force of the resin itself exposed on the abutted surfaces, or by a double-sided tape, an adhesive tape, or the like.
  • the contact surfaces between the first and second surfaces 10A and 10B are pressed by using a jig such as a clamp from the outside of the surfaces 2A and 3B to be adhered.
  • a method of holding the pinched state a method of inserting a foot mold into the upper material 3, and a method of holding a state in which the contact surface is pressed toward the midsole 2 arranged below by the foot mold, etc.
  • the contact surface may be physically fixed. A plurality of these fixing methods may be performed in combination.
  • a bonding step is performed in which the bonding sheet 10 is heated and melted by irradiating the bonding sheet 10 with microwaves.
  • the second thermoplastic resin 121 which is an energy absorbing material contained in the second spare sheet 12 forming a part of the adhesive sheet 10 emits the microwaves. It absorbs, which causes the second spare sheet 12 to generate heat.
  • the heat of the second spare sheet 12 that has generated heat is transferred to the adjacent first spare sheet 11, and as a result, the heat is transferred to the entire adhesive sheet 10 and the entire adhesive sheet 10 is heated and melted.
  • the first thermoplastic resin 111 exposed on the first surface 10A is in contact with the first surface 10A
  • the first cover of the midsole 2 is in contact with the first surface 10A
  • the second thermoplastic resin 121 which is adhered to the adhesive surface 2A and exposed on the second surface 10B, adheres to the second adhered surface 3B of the upper material 3 which is in contact with the second surface 10B. Will be done.
  • the midsole 2 and the upper material 3 are adhered to each other via the adhesive sheet 10.
  • the frequency of the microwave irradiated in the step is a frequency at which the energy absorbing material contained in the adhesive sheet 10 can be heated.
  • the frequency is determined according to the type of the energy absorbing material, and is, for example, in the range of 300 MHz to 300 GHz, preferably in the range of 600 MHz to 10 GHz, and more preferably in the range of 1,000 MHz to 3 GHz. Yes, for example, 2.4 GHz.
  • the irradiation intensity and irradiation time of microwaves are not particularly limited, and the intensity and time can be set so that the energy absorbing material can be sufficiently heated to heat and melt the adhesive sheet 10.
  • the contact surfaces between the first and second surfaces 10A and 10B and the first and second bonded surfaces 2A and 3B may be pressed. By crimping the midsole 2 and the upper material 3 in this way, these can be more reliably bonded. A plurality of these crimping methods may be performed in combination.
  • the adhesion between the midsole 2 and the upper material 3 is usually performed by heating and melting the adhesive sheet 10 and then cooling the first and second thermoplastic resins 111 and 121 contained in the adhesive sheet 10. Is completed by solidifying.
  • the method for cooling the heat-melted adhesive sheet 10 is not particularly limited, and for example, it is performed by simply leaving it in a room temperature environment.
  • the midsole 2 which is the first shoe member and the upper material 3 which is the second shoe member, as shown in FIG. 7, are connected to each other via the adhesive sheet 10.
  • the bonded shoe 1 can be manufactured.
  • the second thermoplastic resin 121 which is an energy absorbing material contained in the adhesive sheet 10
  • the heat generated heats the entire adhesive sheet 10 including the first thermoplastic resin 111.
  • It can be used as an adhesive element for the second shoe members 2 and 3. Therefore, according to the manufacturing method of the shoe 1 of the present embodiment, it is possible to easily bond the shoe member by microwave heating while using a thermoplastic resin that is difficult to heat by microwave as an adhesive element of the shoe member.
  • the first and second surfaces 10A and 10B of the adhesive sheet 10 are different.
  • the adhesiveness of the surfaces 10A and 10B is different from each other. Therefore, the first and second shoe members 2 and 3 provided with the surfaces 2A and 3B to be adhered, which have different adhesiveness to the resin and are difficult to be directly adhered to each other, can be easily attached to each other via the adhesive sheet 10. It becomes possible to adhere to.
  • the shoe of the present embodiment is a shoe that can be manufactured by the above-mentioned shoe manufacturing method, for example, the shoe 1 shown in FIG.
  • the shoe of the present embodiment is an adhesive sheet containing a first thermoplastic resin and an energy absorbing material having a higher dielectric loss with respect to microwave waves than the first thermoplastic resin, and is used for the adhesion.
  • the adhesive sheet, the first shoe member, and the second shoe member those described with respect to the above-described shoe manufacturing method can be adopted.
  • the “microwave” refers to an arbitrary electromagnetic wave having a frequency of 300 MHz to 300 GHz.
  • the first shoe member and the second shoe member can be firmly adhered to each other via the adhesive sheet.
  • the adhesive strength between the first shoe member and the second shoe member is 6.25 kgf / 25 mm (180 degree peel strength in JIS K 6854) or more.
  • the method for manufacturing shoes according to the present embodiment is an adhesive sheet containing at least a first thermoplastic resin and an energy absorbing material having a higher dielectric loss rate than the first thermoplastic resin. Therefore, the first thermoplastic resin is exposed on at least the first surface of the first surface of the adhesive sheet and the second surface opposite to the first surface.
  • a sheet preparation step for preparing a sheet for use and a second surface formed on the first shoe member to be adhered to the first surface and a second surface formed on the second shoe member are brought into contact with the first surface. After the contact step of bringing the surface to be adhered to the second surface and the contact step, the adhesive sheet is heated and melted by irradiating the adhesive sheet with microwaves to heat and melt the adhesive sheet.
  • the shoe members can be easily bonded to each other by microwave heating while using the first thermoplastic resin, which is normally difficult to heat by microwaves, as an adhesive element of the shoe members. ..
  • the adhesive sheet contains a second thermoplastic resin of a type different from that of the first thermoplastic resin, and on the first surface, the first thermoplastic resin.
  • the abundance ratio of the second thermoplastic resin is larger than the abundance ratio of the second thermoplastic resin
  • the abundance ratio of the second thermoplastic resin is larger than the abundance ratio of the first thermoplastic resin on the second surface.
  • the energy absorbing material is a thermoplastic resin, and may be the second thermoplastic resin.
  • the second thermoplastic resin that controls the adhesiveness of the second adhesive surface also serves as an energy absorber, it can be easily heated by microwaves while reducing the use of materials that do not contribute to the adhesive function.
  • Adhesive sheets can be used.
  • the energy absorbing material may be a TPU resin.
  • the adhesive sheet may include two or more laminated spare sheets. In that case, the adhesive sheet can be easily produced by laminating a plurality of spare sheets containing different materials.
  • the first thermoplastic resin may be, for example, an EVA resin.
  • the EVA resin is a resin that is relatively difficult to heat by microwaves, but according to the shoe manufacturing method of the present embodiment, even an adhesive sheet containing EVA resin is heated by microwaves. Therefore, EVA resin can be used as an adhesive element for shoe members. In this case, from the viewpoint of adhesiveness to the first shoe member, it is preferable that EVA resin or polyethylene resin is exposed on the first adhered surface of the first shoe member. ..
  • At least one of the first surface, the second surface, the first bonded surface, and the second bonded surface is used before the contact step as described above.
  • One surface may further be provided with a primer application step in which the aqueous primer is applied.
  • the use of an aqueous primer is also advantageous in improving the working environment as compared with the case of using a primer in which an organic solvent is used as a solvent. This makes it easy to carry out the above manufacturing method even in a place other than a place such as a shoe manufacturing factory having an exhaust treatment facility.
  • the shoe manufacturing method of the present embodiment does not need to use a large-scale device, it can be easily carried out at a factory other than the shoe manufacturing factory.
  • a water-based primer when used, the adhesiveness between shoe members in the bonding step is improved, so that the equipment for irradiating microwaves can be miniaturized. Since this method can also reduce the environmental load, it can be carried out, for example, at a shoe store.
  • the shoe manufacturing method of the present embodiment it is possible to manufacture shoes customized according to the user's preference by selecting a combination such as an upper and a midsole at a store. ..
  • the shoe according to the present embodiment is an adhesive sheet containing a first thermoplastic resin and an energy absorbing material having a higher dielectric loss with respect to microwave waves than the first thermoplastic resin.
  • the adhesive sheet contains a second thermoplastic resin of a different type than the first thermoplastic, and on the first surface, the first thermoplastic resin.
  • the abundance ratio of the second thermoplastic resin is larger than the abundance ratio of the second thermoplastic resin
  • the abundance ratio of the second thermoplastic resin is larger than the abundance ratio of the first thermoplastic resin on the second surface.
  • the energy absorbing material is a thermoplastic resin, and may be the second thermoplastic resin.
  • the second thermoplastic resin that controls the adhesiveness of the second adhesive surface also serves as an energy absorber, it can be easily heated by microwaves while reducing the use of materials that do not contribute to the adhesive function.
  • Adhesive sheets can be used.
  • the energy absorbing material may be a TPU resin.
  • the first thermoplastic resin may be, for example, an EVA resin.
  • the EVA resin is a resin that is relatively difficult to heat by microwaves, but according to the shoe manufacturing method of the present embodiment, even an adhesive sheet containing EVA resin is heated by microwaves. Therefore, EVA resin can be used as an adhesive element for shoe members. In this case, from the viewpoint of adhesiveness to the first shoe member, EVA resin or polyethylene resin is exposed on the surface of the first shoe member to be adhered to the first surface. Is preferable.
  • the shoe manufacturing method and shoes according to the present invention are not limited to the configuration of the above embodiment. Further, the manufacturing method and shoes according to the present invention are not limited by the above-mentioned effects. The manufacturing method and shoes according to the present invention can be variously modified without departing from the gist of the present invention.
  • the present invention relates to technical matters conventionally known for manufacturing methods and shoes, even if the matters are not directly described above. It can also be adopted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりも誘電損失率の高いエネルギー吸収材とを少なくとも含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートを用意するシート準備ステップと、第1の靴用部材に形成された第1の被接着面を前記第1の表面に当接させると共に、第2の靴用部材に形成された第2の被接着面を前記第2の表面に当接させる当接ステップと、前記当接ステップの後に、前記接着用シートに対してマイクロ波を照射することによって前記接着用シートを加熱溶融させ、前記第1の靴用部材と前記第2の靴用部材とを前記接着用シートを介して接着させる接着ステップとを備えている、靴の製造方法、及び、該製造方法により製造可能な靴を提供する。

Description

靴の製造方法及び靴
 本発明は、マイクロ波照射を用いた靴の製造方法、及び、該製造方法により製造され得る靴に関する。
 靴の製造工程では、複数の靴用部材同士を接着するに際し、靴用部材同士を接着するために使用されるホットメルト接着剤に対してマイクロ波を照射し、それによって該ホットメルト接着剤を加熱溶融させる方法が用いられることがある。
 このようなマイクロ波加熱方法は、靴用部材の接着時に、接着対象の靴用部材が加熱されることを抑制しつつ、接着要素であるホットメルト接着剤のみを選択的に加熱できるという利点を有する。
 例えば、特許文献1は、複数の発泡熱可塑性ポリウレタン粒子とゴム等の表面との間にホットメルト接着剤層を設けた後、マイクロ波を照射して該ホットメルト接着剤をマイクロ波加熱し、それによって該ポリウレタン粒子と該表面とを接着させることにより、靴用部材を製造する方法を開示している。
 しかしながら、従来の方法では、選択可能なホットメルト接着剤は、照射されるマイクロ波を吸収して加熱溶融されることが可能な熱可塑性樹脂によって構成されたものに限られていた。そのため、この方法により接着可能な靴用部材が、そのような熱可塑性樹脂と良好に接着可能な被接着面を備えたものに限られるという問題があった。
 そのため、マイクロ波加熱方法を用いた靴の製造工程において使用可能な接着要素を拡張する方法が求められている。
特開2017-061143号公報
 本発明は、通常はマイクロ波により加熱することが困難な熱可塑性樹脂を靴用部材の接着要素として用いつつ、マイクロ波加熱により靴用部材を簡便に接着することができる方法を提供することを目的とする。
 本発明はまた、上記の方法において簡便に製造可能な靴を提供することも目的とする。
 本発明は、
 第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりも誘電損失率の高いエネルギー吸収材とを少なくとも含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートを用意するシート準備ステップと、
 第1の靴用部材に形成された第1の被接着面を前記第1の表面に当接させると共に、第2の靴用部材に形成された第2の被接着面を前記第2の表面に当接させる当接ステップと、
 前記当接ステップの後に、前記接着用シートに対してマイクロ波を照射することによって前記接着用シートを加熱溶融させ、前記第1の靴用部材と前記第2の靴用部材とを前記接着用シートを介して接着させる接着ステップと
を備えている、靴の製造方法を提供する。
 また、本発明に係る靴は、
 第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりもマイクロ波に対する損失誘電率の高いエネルギー吸収材と、を含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートと、
 前記第1の表面に接着された第1の靴用部材と、
 前記第2の表面に接着された第2の靴用部材と、を備えている。
一実施形態の靴の製造方法及び靴に使用され得る接着用シートの一例を示した側面図。 本開示の靴の製造方法及び靴に使用され得る接着用シートの別の例を示した側面図。 一実施形態の靴の製造方法及び靴に使用され得る接着用シートのさらに別の例を示した側面図。 一実施形態の靴の製造方法及び靴に使用され得る接着用シートのさらに他の例を示した側面図。 靴の製造方法の一実施形態における当接ステップを表した概略図。 靴の製造方法の一実施形態における接着ステップを表した概略図。 靴の製造方法及び靴の一実施形態における靴を表した側面図。
(靴の製造方法)
 本発明の一実施形態について以下に説明する。
 本実施形態の靴の製造方法では、接着用シートが用いられる。
 本実施形態の靴の製造方法では、第1の靴用部材と第2の靴用部材とが該接着用シートで接着される。
 前記接着用シートは、第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりも誘電損失率の高いエネルギー吸収材とを少なくとも含む。
 該接着用シートは、第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している。
 本実施形態の靴の製造方法では、このような接着用シートを用意するシート準備ステップが実施される。
 本実施形態の靴の製造方法では、前記接着用シートの第1の表面に、第1の靴用部材に形成された第1の被接着面を当接させると共に、前記接着用シートの前記第2の表面に、第2の靴用部材に形成された第2の被接着面を当接させる当接ステップをさらに実施する。
 本実施形態の靴の製造方法では、前記当接ステップの後に、前記接着用シートに対してマイクロ波を照射することによって前記接着用シートを加熱溶融させ、前記第1の靴用部材と前記第2の靴用部材とを前記接着用シートを介して接着させる接着ステップがさらに実施される。
 なお、本明細書の靴の製造方法に関する説明において、単に「マイクロ波」と記載した場合には、別段の記載がない限り、マイクロ波を照射する接着ステップにて照射されるマイクロ波のことをいう。
 同様に、当該各実施形態に関する説明において、「誘電損失率」と記載した場合には、該マイクロ波の周波数に対する誘電損失率のことをいう。この誘電損失率は、マイクロ波の周波数にもよるが、LCRメーターによる測定や空洞共振器摂動法による測定によって求めることができる。
 この方法によれば、マイクロ波によって加熱されたエネルギー吸収材の熱によって接着用シートに含まれる熱可塑性樹脂を加熱溶融することができる。そのため、通常はマイクロ波により加熱することが困難な熱可塑性樹脂を靴用部材の接着要素として用いつつ、マイクロ波加熱により靴用部材を簡便に接着することができる。
(接着用シート)
 まず、本実施形態の靴の製造方法にて使用される接着用シートについて、図1~図4の例を参照しつつ説明する。
 接着用シートは、第1の熱可塑性樹脂と、第1の熱可塑性樹脂よりも誘電損失率の高いエネルギー吸収材とを少なくとも含んでおり、第1の熱可塑性樹脂は、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に、第1の熱可塑性樹脂が露出している。
 第1の熱可塑性樹脂は、接着用シートの第1の表面において、第1の靴用部材の被接着面(以下、第1の被接着面とも称する)と少なくとも接着される樹脂である。
 第1の熱可塑性樹脂は、例えば、ポリエチレン(PE)樹脂、ポリプロピレン(PP)樹脂等のポリオレフィン樹脂、熱可塑性ポリウレタン(TPU)樹脂、ポリスチレン(PS)樹脂、エチレン-プロピレンゴム(EPDM)、ポリエーテルブロックアミド(PEBA)樹脂、ポリエステル(PEs)樹脂、エチレン酢酸ビニル(EVA)樹脂、ポリアミド(PA)樹脂等を含む任意の熱可塑性樹脂から、第1の被接着面と接着可能な樹脂であり得る。
 好ましくは、第1の熱可塑性樹脂としては、その融点又は軟化点が70℃~140℃の範囲にある、ホットメルト接着剤として機能する樹脂が選択される。このような樹脂を使用することにより、後の接着ステップにおいて第1の熱可塑性樹脂を容易かつ効率的に加熱溶融することが可能になる。
 さらに、第1の熱可塑性樹脂は、第1の靴用部材との接着性の観点から、第1の被接着面に露出している樹脂と同種の樹脂であることが好ましい。例えば、第1の被接着面にEVA樹脂が露出している場合には、第1の熱可塑性樹脂もまた、EVA樹脂であってもよい。
 エネルギー吸収材は、第1の熱可塑性樹脂よりも誘電損失率が高く、マイクロ波を吸収して発熱可能な任意の材料であり得る。エネルギー吸収材は、照射されるマイクロ波の周波数に応じて適宜選択され、例えば、熱可塑性ポリウレタン(TPU)樹脂又はポリアミド(PA)樹脂のような熱可塑性樹脂であってもよく、熱硬化性ポリウレタン系エラストマー、アクリル系エラストマー、架橋ゴム、シリコーン系エラストマー又はフッ素系エラストマー等の熱硬化性樹脂であってもよく、水、酸化マグネシウム,酸化チタン等の樹脂以外の材料であってもよい。
 好ましくは、エネルギー吸収材は、第1の熱可塑性樹脂とは異なる種類の熱可塑性樹脂であり得る。例えば、第1の熱可塑性樹脂がEVA樹脂である場合には、エネルギー吸収材は、TPU樹脂であってもよい。
 また、エネルギー吸収材が熱可塑性樹脂である場合には、より好ましくは、その融点又は軟化点が70℃~140℃の範囲にある、ホットメルト接着剤として機能する樹脂が選択される。このような樹脂を使用することにより、後の接着ステップにおいてエネルギー吸収材を容易かつ効率的に加熱溶融することが可能になる。
 エネルギー吸収材の誘電損失率は、0.01(εr・tanδ)以上であることが好ましい。その場合には、マイクロ波の照射によってエネルギー吸収材を効率的に加熱することができる。より好ましくは、エネルギー吸収材の誘電損失率は0.1(εr・tanδ)以上である。第1の熱可塑性樹脂の誘電損失率は、前記エネルギー吸収材との間の誘電損失率よりも0.01以上低い値であってもよく、0.1以上低い値であってもよい。
 接着用シートは、上記の第1の熱可塑性樹脂及びエネルギー吸収材とは別の任意の成分を含んでいてもよい。例えば、接着用シートは、上記の第1の熱可塑性樹脂及びエネルギー吸収材とは異なる追加の熱可塑性樹脂を含んでいてもよい。また、接着用シートは、色素、酸化防止剤、紫外線吸収剤などの薬品をさらに含んでいてもよい。
 上述した通り、接着用シートの第1の表面は、第1の靴用部材の被接着面に接着する面であって、第1の熱可塑性樹脂が露出している面である。
 一方で、第2の靴用部材の被接着面(以下、第2の被接着面とも称する)に接着する面である接着用シートの第2の表面には、第1の熱可塑性樹脂が露出していてもよく、それに加えて又は代えて、第1の熱可塑性樹脂とは異なる第2の樹脂、好ましくは、第2の熱可塑性樹脂が露出していてもよい。
 接着用シートの第2の表面に、第1の熱可塑性樹脂とは異なる第2の樹脂が露出している場合、該接着用シートの第1の表面に、第1の熱可塑性樹脂と接着可能な第1の被接着面を備えた第1の靴用部材を接着しつつ、第2の表面に、第1の熱可塑性樹脂に接着できない可能性のある、該第2の樹脂と接着可能な第2の被接着面を備えた第2の靴用部材を接着することができる。すなわち、そのような接着用シートを用いることにより、樹脂に対する接着性の異なる2つの靴用部材同士を、該接着用シートを介して接着することが可能になる。
 好ましくは、接着用シートの第1の表面では、第1の熱可塑性樹脂の存在割合が該第1の樹脂とは異なる第2の樹脂の存在割合よりも大きく、前記第2の表面では、前記第2の樹脂の存在割合が前記第1の熱可塑性樹脂の存在割合よりも大きい。そのような場合には、第1の表面では第1の熱可塑性樹脂の、第2の表面では第2の樹脂の接着性をより効果的に発揮することができる。
 なお、第1及び第2の表面における各樹脂の存在割合は、例えば、ダイヤモンドATR法によるフーリエ変換赤外分光分析(FT-IR)にて測定され得る。
 第2の表面に露出している第2の樹脂は、上述のエネルギー吸収材であってもよい。すなわち、接着用シートは、第1の熱可塑性樹脂と、第1の熱可塑性樹脂よりも誘電損失率の高い第2の樹脂とを含み、該接着用シートの第1の表面には第1の熱可塑性樹脂が露出しており、該接着用シートの第2の表面には第2の熱可塑性樹脂が露出している接着用シートであってもよい。そのような場合には、第2の接着面の接着性を制御する第2の樹脂がエネルギー吸収材を兼ねるため、接着機能に寄与しない材料の使用を減らしつつ、マイクロ波により容易に加熱可能な接着用シートを用意することができる。
 もっとも、第2の樹脂は、第1の熱可塑性樹脂とも上述のエネルギー吸収材とも異なるさらに別の材料であってもよい。すなわち、接着用シートは、第1の表面に露出している第1の熱可塑性樹脂と、第2の表面に露出している第2の樹脂と、エネルギー吸収材とを別々に含んでいてもよい。
 接着用シートの厚みは、特に限定されないが、接着用シートに含まれる熱可塑性樹脂量を確保するため、100μm以上であることが好ましい。また、シューズの屈曲性への影響を考慮し1,500μm以下であることが好ましい。
 また、エネルギー吸収材がマイクロ波加熱された際にエネルギー吸収材の熱を第1の熱可塑性樹脂に伝達し易くするため、接着用シート内における第1の熱可塑性樹脂とエネルギー吸収材との距離が50μm以内にあることが好ましい。なお、接着用シートが、第1の熱可塑性樹脂の他にエネルギー吸収材により加熱される材料(例えば、第2の熱可塑性樹脂)を含んでいる場合には、そのような材料とエネルギー吸収材との距離も同様に50μm以内にあることが好ましい。
 なお、接着用シートの厚みは、接着用シートに求められる屈曲性等を考慮して、部位に応じて変更されてもよい。例えば、靴底用部材のうち、標準的な人の足のMP関節及びその近傍等を支持する部位(屈曲性付与部)に対応する部位において、接着用シートの厚みを薄くすることができる。
 図1は、接着用シートの一例を示す。この接着用シート10は、第1の熱可塑性樹脂111を主成分とする第1の予備シート11と、第1の熱可塑性樹脂111とは異なる種類の第2の熱可塑性樹脂121を主成分とする第2の予備シート12とを備えており、第1の予備シート11と第2の予備シート12とが積層されている。すなわち、この例では、接着用シートの一方の表面(第1の表面10A)には第1の熱可塑性樹脂111が露出しており、他方の表面(第2の表面10B)には第2の熱可塑性樹脂121が露出している。この例では、第2の熱可塑性樹脂121が、エネルギー吸収材として機能する。
 第1の予備シート11と第2の予備シート12とは、任意の方法で接着されているのが好ましい。この場合、接着シート10の取扱いが容易になる。例えば、第1の予備シート11と第2の予備シート12とは、プライマを介して接着されていてもよい。これらの予備シート11,12同士を接着するために使用されるプライマとしては、例えば、EVAを含有するEVA系プライマが挙げられる。プライマは、ポリオレフィン系エマルジョン、EVA系エマルジョン、アクリル系エマルジョン、ウレタン系エマルジョン等の水系プライマや、アクリル樹脂系プライマ、ポリアミド系プライマ、オレフィン系プライマ、フェノール樹脂系プライマ、ポリエステル系プライマ、ポリウレタン系プライマ、クロロプレンゴム系プライマ等であってもよい。あるいは、第1の予備シート11と第2の予備シート12とは、これらの予備シート11,12が互いに接する面に露出した樹脂111,121自体の粘着力のみによって接着されていてもよく、該樹脂111,121が加熱溶融されることによって接着されていてもよい。
 もっとも、第1の予備シート11と第2の予備シート12とは、接着以外の任意の方法で一体化されていてもよい。さらに、第1の予備シート11と第2の予備シート12とは必ずしも一体化されていなくてもよく、分離した2つの予備シート11,12が積層されている集合体が、接着用シート10として定義されていてもよい。この場合、マイクロ波照射時に2つの予備シート11,12が一体化される。
 第1及び第2の予備シート11,12の厚みは、接着用シート10の厚みに応じて適宜選択され、例えば、150μm~1,000μmの範囲であってもよい。第1の予備シート11の厚みと第2の予備シート12の厚みとは、同じであってもよく、異なっていてもよい。
 これらの厚みは、接着用シート10に求められる屈曲性等を考慮して、部位に応じて変更されてもよい。例えば、靴底用部材のうち、屈曲性付与部に対応する部位において、第1及び第2の予備シート11,12の厚みを薄くすることができる。
 図2は、接着用シートの別の例を示す。この接着用シート20は、第1及び第2の熱可塑性樹脂211,221をそれぞれ主成分とする第1及び第2の予備シート21,22の間に、第1の熱可塑性樹脂211とは異なる種類の第3の熱可塑性樹脂231を主成分とする第3の予備シート23を備えており、これらの3つの予備シートが、下から第1の予備シート21、第3の予備シート23、第2の予備シート22の順で積層されている。この例では、第3の熱可塑性樹脂231が、エネルギー吸収材として機能する。
 この例では、第2の熱可塑性樹脂221は、第1の熱可塑性樹脂211と異なる種類の樹脂で構成されているが、これに代えて同じ種類の樹脂で構成されてもよい。すなわち、この接着用シート20の第1及び第2の表面20A,20Bに露出している樹脂211,221の種類は異なる種類であるが、同じ種類であってもよい。
 これらの予備シート21~23もまた、図1に示される接着用シート10の例と同様に、任意の方法で接着されているのが好ましいが、接着以外の方法で一体化されていてもよく、一体化されていなくてもよい。予備シート21~23が一体化されている場合、接着シート10の取扱いが容易になる。一方、予備シート21~23が一体化されていない場合、接着ステップにおけるマイクロ波照射によって接着シート10が一体化される。
 これらの予備シート21~23の厚みも同様に、接着用シート20の厚みに応じて適宜選択され、例えば、150μm~1,000μmの範囲であってもよい。第1、第2及び第3の予備シート21~23の厚みは、同じであってもよく、それぞれ異なっていてもよい。これらの厚みは、接着用シート10に求められる屈曲性等を考慮して、部位に応じて変更されてもよい。例えば、靴底用部材のうち、屈曲性付与部に対応する部位において、予備シート21~23の厚みを薄くすることができる。
 図3は、接着用シートのさらに別の例を示す。この接着用シート30は、第1の熱可塑性樹脂311と、第1の熱可塑性樹脂311とは異なる種類の第2の熱可塑性樹脂321とが複合されたポリマーブレンドにより作製された、単一のシートにより構成されている。この例では、第2の熱可塑性樹脂321が、エネルギー吸収材として機能する。
 この例では、該単一のシート内のポリマーブレンドは、第1の熱可塑性樹脂311と第2の熱可塑性樹脂321とが相分離した構造を有しており、接着用シートの第1の表面30Aでは、第1の熱可塑性樹脂311の存在割合が第2の熱可塑性樹脂321の存在割合よりも大きくなっており、第2の表面30Bでは、第2の熱可塑性樹脂321の存在割合が前記第1の熱可塑性樹脂311の存在割合よりも大きくなっている。
 図4は、接着用シートのさらに他の例を示す。この接着用シート40は、第1の熱可塑性樹脂411を主成分とする第1の樹脂繊維41と、第1の熱可塑性樹脂411とは異なる種類の第2の熱可塑性樹脂421を主成分とする第2の樹脂繊維42とが編み込まれた構成を有する。この例では、第2の熱可塑性樹脂421が、エネルギー吸収材として機能する。
 この例では、接着用シート40の第1及び第2の表面40A,40Bの両方に第1及び第2の樹脂繊維41,42が露出しているが、第1の表面40Aでは、第1の樹脂繊維41の存在割合が第2の樹脂繊維42の存在割合よりも大きくなっており、第2の表面40Bでは、第2の樹脂繊維42の存在割合が前記第1の樹脂繊維41の存在割合よりも大きくなっている。
 なお、本実施形態の接着用シートは、図1~図4に示される構成の他にも、少なくとも一方の表面にエネルギー吸収材とは異なる第1の熱可塑性樹脂が露出している限り、第1の熱可塑性樹脂及びエネルギー吸収材が任意の様式で該接着用シート内に存在している構成を備えていてもよい。例えば、接着用シートは、第1の熱可塑性樹脂を主成分とする単一のシート内部に、任意の形態、例えば、粉末状、繊維状、薄片状等の形態のエネルギー吸収材が分散された構成を有していてもよい。
 また、図1~図4に示される接着用シートでは、エネルギー吸収材は熱可塑性樹脂であったが、エネルギー吸収材は熱硬化性樹脂であってもよく、無機材料であってもよい。例えば、第1及び第2の熱可塑性樹脂をそれぞれ主成分とする第1及び第2の予備シートの間に、熱硬化性樹脂又は無機材料からなるエネルギー吸収材が挟み込まれていてもよく、無機繊維からなるエネルギー吸収材が、第1の熱可塑性樹脂を主成分とする樹脂繊維と編み込まれていてもよい。
(靴用部材)
 本実施形態の靴の製造法において接着される第1及び第2の靴用部材は、靴に使用される任意の靴用部材が選択される。そのような靴用部材としては、例えば、第1及び第2の靴用部材としては、ミッドソール、アウトソール、ソックライナー等の他の靴底用部材、ヒールカウンター、シャンク等の靴用補強部材、アッパー材、装飾材等が挙げられる。
 第1の靴用部材と第2の靴用部材との組み合わせは特に限定されず、靴の製造において接着される靴用部材の任意の組み合わせが選択される。例えば、第1の靴用部材と第2の靴用部材との組み合わせとしては、ミッドソールとアッパー材との組み合わせ、ミッドソールとアウトソールとの組み合わせ、ミッドソールとシャンクとの組み合わせ、及び、アッパーとヒールカウンターとの組み合わせ等が挙げられる。好ましくは、第1の靴用部材と第2の靴用部材との組み合わせとして、ミッドソールとアッパー材との組み合わせが選択される。
 また、第1の靴用部材と第2の靴用部材とはそれぞれ、一般に1つの靴用部材として認識され得る特定の部材の一部であってもよい。例えば、第1の靴用部材と第2の靴用部材は、接着されることによって1つのミッドソールを形成することとなるミッドソールの第1構成部品及び第2構成部品であってもよい。
 第1及び第2の靴用部材にはそれぞれ、接着用シートの第1及び第2の表面と接着される第1及び第2の被接着面が形成されている。
 第1の靴用部材の第1の被接着面は、上述の通り、接着用シートの第1の表面に露出した第1の熱可塑性樹脂と接着可能とされる。第1の被接着面には、第1の表面との接着性の観点から、第1の熱可塑性樹脂と同種の樹脂が露出していることが好ましい。例えば、第1の熱可塑性樹脂がEVA樹脂である場合には、第1の被接着面にもまた、EVA樹脂が露出していてもよい。
 第2の靴用部材の第2の被接着面は、接着用シートの第2の表面に露出した樹脂のいずれか、好ましくは第2の表面における存在割合が他の任意の樹脂と比較して大きい樹脂と接着可能とされる。例えば、第2の表面において、第2の熱可塑性樹脂の存在割合が他の任意の樹脂の存在割合よりも大きい場合には、第2の被接着面は、第2の熱可塑性樹脂と接着可能とされる。第2の被接着面にもまた、第2の表面との接着性の観点から、第2の表面に露出した該樹脂と同種の樹脂が露出していることが好ましい。
 上述のような第1及び第2被接着面を備えている限り、第1及び第2の靴用部材は、発泡体、ゴム、布、金属、樹脂、繊維等の任意の材料により構成された1つ以上の部材を含んでいてもよい。例えば、第1又は第2の靴用部材は、発泡体により構成された靴底用部材であってもよい。
(製造方法の実施形態)
 次に、接着用シートとして図1に示される接着用シート10を、第1の靴用部材をミッドソール2、第2の靴用部材をアッパー材3として、本発明の一実施形態である靴1の製造方法について説明する。ただし、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 まず、図1に示される接着用シート10を用意するシート準備ステップを行う。
 当該ステップは、接着用シート10の予備部材(本実施形態では、第1及び第2の予備シート11,12)から接着用シート10を作製することを含んでいてもよい。
 例えば、当該ステップにおいて、第1及び第2の予備シート11,12の少なくとも一方の片面に、これらを接着するための上述のプライマを塗布した後、プライマを塗布した面を介してこれらを接着し、それによって接着用シート10を作製してもよい。
 次に、図5に示されるように、接着用シート10の第1の表面10Aに、第1の靴用部材であるミッドソール2の第1の被接着面2Aを当接させると共に、接着用シート10の第2の表面10Bに、第2の靴用部材であるアッパー材3の第2の被接着面3Bを当接させる当接ステップを行う。
 本実施形態では、ミッドソール2の被接着面2A及びアッパー材3の被接着面3Bはそれぞれ、接着用シート10の第1及び第2の表面10A,10Bの全面に対して密着するように当接される。
 任意には、当該ステップにおいて第1及び第2の表面10A,10Bと第1及び第2の被接着面2A,3Bとを当接させる前に、第1の表面10A、第2の表面10B、第1の被接着面2A及び第2の被接着面3Bのうち少なくともいずれか1つの面に、プライマが塗布されるプライマ塗布ステップを行ってもよい。その場合には、第1の被接着面2A、第2の被接着面3Bの表面改質処理を行なうことが可能になる。また、水系プライマを用いることにより、内部に含まれる水に起因して界面への加熱特性が向上する。加熱特性が向上する効果を発揮させる上で、水系プライマを塗布した後は、乾燥によって水が完全に失われない内に接着ステップへと移行してマイクロ波の照射を実施することが好ましい。マイクロ波の照射は、プライマの塗膜に水が0.1%以上含まれる状態で実施されることが好ましい。同様に、接着用シート10が一体化されていない場合、当該ステップにおいて第1及び第2の予備シート11,12に水系プライマを塗布してもよい。
 好ましくは、プライマ塗布ステップにて塗布されるプライマは、水系プライマであることが好ましい。そのような水系プライマとしては、例えば、ポリオレフィン系エマルジョン、EVA系エマルジョン、アクリル系エマルジョン、ウレタン系エマルジョン等が挙げられる。
 当接ステップでは、任意の方法によりこれらの面の当接状態を予備的に固定してもよい。例えば、当接された面上に露出している樹脂自体の粘着力によって、もしくは両面テープや粘着テープ等によってこれらの面同士が予備的に接着されてもよい。
 加えて又はこれに代えて、被接着面2A,3Bの外側からクランプ等の治具を用いること等により、これらと第1及び第2の表面10A,10Bとの当接面を押圧するように挟持した状態を保持する方法や、アッパー材3に足型を挿入し、該足型により下方に配置されたミッドソール2に向かって当接面が押圧された状態を保持する方法等によって、当接面を物理的に固定してもよい。これらの固定方法は、複数組み合わされて行われてもよい。
 この当接ステップの後、図6に示されるように、接着用シート10に対してマイクロ波を照射することによって接着用シート10を加熱溶融させる接着ステップを行う。
 接着用シート10にマイクロ波が照射されると、接着用シート10の一部を構成する第2の予備シート12に含まれたエネルギー吸収材である第2の熱可塑性樹脂121が該マイクロ波を吸収し、それによって第2の予備シート12が発熱する。この発熱した第2の予備シート12の熱は、隣接する第1の予備シート11に伝達されるため、結果的に接着用シート10全体に熱が伝わって、接着用シート10全体が加熱溶融される。
 このようにして加熱溶融された接着用シート10において、第1の表面10Aに露出した第1の熱可塑性樹脂111が、第1の表面10Aに当接されていたミッドソール2の第1の被接着面2Aに接着されると共に、第2の表面10Bに露出した第2の熱可塑性樹脂121が、第2の表面10Bに当接されていたアッパー材3の第2の被接着面3Bに接着される。これにより、ミッドソール2とアッパー材3とが接着用シート10を介して接着される。
 当該ステップにおいて照射されるマイクロ波の周波数は、接着用シート10に含まれるエネルギー吸収材を加熱可能な周波数である。該周波数は、該エネルギー吸収材の種類に応じて決定されるが、例えば、300MHz~300GHzの範囲であり、好ましくは、600MHz~10GHzの範囲であり、より好ましくは1,000MHz~3GHzの範囲であり、例えば、2.4GHzである。
 また、マイクロ波の照射強度及び照射時間は特に限定されず、該エネルギー吸収材を十分に加熱して接着用シート10を加熱溶融することが可能な強度及び時間とすることができる。
 当該ステップでは、図6に示されるように、接着用シート10に対してマイクロ波を照射するに際し、接着用シート10に当接するミッドソール2及びアッパー材3にもまたマイクロ波が照射されてもよい。もっとも、ミッドソール2又はアッパー材3に、マイクロ波により加熱され得る接着に関係しない部分が含まれている場合には、当該部分が加熱されることによって悪影響が生じることを避けるため、可能な限り当該部分を避けてマイクロ波を照射するのが好ましい。また、当該部分にマイクロ波が照射されないように遮蔽部材を使用してもよい。
 当該ステップでは、接着用シート10に対してマイクロ波が照射されている間、又は、加熱された接着用シート10が溶融状態にある間に、クランプや足型等を上述したように用いる方法等によって、第1及び第2の表面10A,10Bと第1及び第2の被接着面2A,3Bとの当接面を押圧してもよい。このようにしてミッドソール2とアッパー材3とを圧着することにより、これらの接着をより確実に行うことができる。これらの圧着方法は、複数組み合わされて行われてもよい。
 なお、ミッドソール2とアッパー材3の接着は、通常、接着用シート10が加熱溶融された後、冷却されて接着用シート10に含まれていた第1及び第2の熱可塑性樹脂111,121が固化されることによって完了する。加熱溶融された接着用シート10の冷却方法は特に限定されず、例えば、常温環境下において単に放置することによって行われる。
 以上の各ステップを行うことにより、図7に示されるような、第1の靴用部材であるミッドソール2と第2の靴用部材であるアッパー材3とが、接着用シート10を介して接着された靴1を製造することができる。
 この方法では、接着用シート10に含まれるエネルギー吸収材である第2の熱可塑性樹脂121をマイクロ波加熱されるため、その発熱によって第1の熱可塑性樹脂111を含む接着用シート10全体を加熱溶融することができる。そのため、接着用シートの第1の表面10Aに露出した第1の熱可塑性樹脂111がマイクロ波加熱困難な樹脂であったとしても、マイクロ波を用いることによりこれを加熱溶融して、第1及び第2の靴用部材2,3の接着要素として用いることができる。したがって、本実施形態の靴1の製造方法によれば、マイクロ波加熱困難な熱可塑性樹脂を靴用部材の接着要素として用いつつ、マイクロ波加熱により靴用部材を簡便に接着することができる。
 また、本実施形態では、接着用シート10の第1及び第2の表面10A,10Bに露出している第1及び第2の熱可塑性樹脂111,121の種類が異なるため、第1及び第2の表面10A,10Bの接着性がそれぞれ異なっている。したがって、樹脂に対する接着性が異なっており、直接接着することが困難な被接着面2A,3Bを備えた第1及び第2の靴用部材2,3同士を、接着用シート10を介して容易に接着することが可能になる。
 (靴)
 本実施形態の靴は、例えば、図7に示される靴1のような、上述の靴の製造方法により製造され得る靴である。
 本実施形態の靴は、第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりもマイクロ波に対する損失誘電率の高いエネルギー吸収材と、を含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートと、前記第1の表面に接着された第1の靴用部材と、前記第2の表面に接着された第2の靴用部材と、を備えている。
 接着用シート、第1の靴用部材及び第2の靴用部材としては、上述の靴の製造方法に関して説明したものが採用され得る。
 なお、本明細書の靴に関する説明では、「マイクロ波」とは、300MHz~300GHzの周波数を備えた任意の電磁波のことをいう。
 本実施形態の靴では、第1の靴用部材と第2の靴用部材とが、上記接着用シートを介して、強固に接着され得る。好ましくは、第1の靴用部材と第2の靴用部材との接着強度は、6.25kgf/25mm(JIS K 6854での180度はく離強度)以上である。
 以上のように、本実施形態に係る靴の製造方法は、第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりも誘電損失率の高いエネルギー吸収材とを少なくとも含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートを用意するシート準備ステップと、第1の靴用部材に形成された第1の被接着面を前記第1の表面に当接させると共に、第2の靴用部材に形成された第2の被接着面を前記第2の表面に当接させる当接ステップと、前記当接ステップの後に、前記接着用シートに対してマイクロ波を照射することによって前記接着用シートを加熱溶融させ、前記第1の靴用部材と前記第2の靴用部材とを前記接着用シートを介して接着させる接着ステップとを備えている。
 上記発明によれば、通常はマイクロ波により加熱することが困難な第1の熱可塑性樹脂を靴用部材の接着要素として用いつつ、マイクロ波加熱により靴用部材同士を簡便に接着することができる。
 上記製造方法の一態様では、前記接着用シートが、前記第1の熱可塑性樹脂とは異なる種類の第2の熱可塑性樹脂を含んでおり、第1の表面では、前記第1の熱可塑性樹脂の存在割合が前記第2の熱可塑性樹脂の存在割合よりも大きく、前記第2の表面では、前記第2の熱可塑性樹脂の存在割合が前記第1の熱可塑性樹脂の存在割合よりも大きい。その場合には、樹脂に対する接着性が異なっており、直接接着することが困難な第1及び第2の被接着面を備えた第1及び第2の靴用部材同士を、第1及び第2の表面における第1及び第2の熱可塑性樹脂の存在割合がそれぞれ異なる接着用シートを介して容易に接着することが可能になる。
 好ましくは、前記エネルギー吸収材が、熱可塑性樹脂であり、前記第2の熱可塑性樹脂であってもよい。その場合には、第2の接着面の接着性を制御する第2の熱可塑性樹脂がエネルギー吸収材を兼ねるため、接着機能に寄与しない材料の使用を減らしつつ、マイクロ波により容易に加熱可能な接着用シートを使用することができる。例えば、エネルギー吸収材は、TPU樹脂であってもよい。
 前記接着用シートは、2つ以上の積層された予備シートを備えていてもよい。その場合には、上記接着用シートが、含まれる材料の異なる複数の予備シートを積層することにより、容易に作製され得る。
 前記第1の熱可塑性樹脂は、例えば、EVA樹脂であってもよい。EVA樹脂は、マイクロ波により加熱することが比較的困難な樹脂であるが、本実施形態の靴の製造方法によれば、EVA樹脂を含む接着用シートであってもマイクロ波を用いて加熱することができるため、EVA樹脂を靴用部材の接着要素として用いることが可能になる。この場合には、第1の靴用部材との接着性の観点から、前記第1の靴用部材の前記第1の被接着面には、EVA樹脂又はポリエチレン樹脂が露出していることが好ましい。
 上記製造方法は、前記のように前記当接ステップの前に、前記第1の表面、前記第2の表面、前記第1の被接着面及び前記第2の被接着面のうち少なくともいずれか1つの面に、水系プライマが塗布されるプライマ塗布ステップをさらに備えていてもよい。水系プライマの利用は、有機溶剤が溶媒に用いられたプライマを用いる場合と比べて作業環境を良好にする上でも有利である。このことにより上記製造方法は、排気処理設備を有している靴の製造工場のような場所以外でも実施することが容易になる。
 本実施形態の靴の製造方法は、大掛かりな装置を用いる必要がないため、靴の製造工場以外での実施が容易となる。特に水系プライマを利用すると接着ステップでの靴用部材同士の接着性が向上されるためマイクロ波を照射するための設備を小型化することも可能になる。この方法はまた、環境負荷も低減できるため、例えば、靴の販売店などにおいて実施することもできる。さらに、本実施形態の靴の製造方法によれば、店舗にてアッパーやミッドソールなどの組合せの選定を行うことによって、ユーザーの好みに応じたカスタマイズがされた靴を製造することが可能となる。
 また、本実施形態に係る靴は、第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりもマイクロ波に対する損失誘電率の高いエネルギー吸収材と、を含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートと、前記第1の表面に接着された第1の靴用部材と、前記第2の表面に接着された第2の靴用部材と、を備えている。
 上記発明によれば、通常はマイクロ波により加熱することが困難な第1の熱可塑性樹脂を靴用部材の接着要素として用いつつ、マイクロ波加熱により靴用部材同士が接着された靴を提供することができる。
 上記靴の一態様では、前記接着用シートが、前記第1の熱可塑性樹脂とは異なる種類の第2の熱可塑性樹脂を含んでおり、前記第1の表面では、前記第1の熱可塑性樹脂の存在割合が前記第2の熱可塑性樹脂の存在割合よりも大きく、前記第2の表面では、前記第2の熱可塑性樹脂の存在割合が前記第1の熱可塑性樹脂の存在割合よりも大きい。その場合には、樹脂に対する接着性が異なっており、直接接着することが困難な第1及び第2の被接着面を備えた第1及び第2の靴用部材同士が、接着用シートを介して接着された靴を提供することが可能になる。
 好ましくは、前記エネルギー吸収材が、熱可塑性樹脂であり、前記第2の熱可塑性樹脂であってもよい。その場合には、第2の接着面の接着性を制御する第2の熱可塑性樹脂がエネルギー吸収材を兼ねるため、接着機能に寄与しない材料の使用を減らしつつ、マイクロ波により容易に加熱可能な接着用シートを使用することができる。例えば、エネルギー吸収材は、TPU樹脂であってもよい。
 前記第1の熱可塑性樹脂は、例えば、EVA樹脂であってもよい。EVA樹脂は、マイクロ波により加熱することが比較的困難な樹脂であるが、本実施形態の靴の製造方法によれば、EVA樹脂を含む接着用シートであってもマイクロ波を用いて加熱することができるため、EVA樹脂を靴用部材の接着要素として用いることが可能になる。この場合には、第1の靴用部材との接着性の観点から、前記第1の靴用部材における前記第1の表面との被接着面には、EVA樹脂又はポリエチレン樹脂が露出していることが好ましい。
 なお、本発明に係る靴の製造方法及び靴は、上記の実施形態の構成に限定されるものではない。また、本発明に係る製造方法及び靴は、上記した作用効果によって限定されるものでもない。本発明に係る製造方法及び靴は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 また、ここではこれ以上の詳細な説明を繰り返して行うことをしないが、上記に直接的に記載がされていない事項であっても、製造方法及び靴について従来公知の技術事項については、本発明においても適宜採用可能である。
1:靴
2:第1の靴用部材(ミッドソール)、2A:第1の被接着面
3:第2の靴用部材(アッパー材)、3B:第2の被接着面
10,20,30,40:接着シート、10A,20A,30A,40A:第1の表面、10B,20B,30B,40B:第2の表面
11,21:第1の予備シート、12,22:第2の予備シート、23:第3の予備シート、41:第1の樹脂繊維、42:第2の樹脂繊維
111,211,311,411:第1の熱可塑性樹脂、121,221,321,421:第2の熱可塑性樹脂

Claims (16)

  1.  第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりも誘電損失率の高いエネルギー吸収材とを少なくとも含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートを用意するシート準備ステップと、
     第1の靴用部材に形成された第1の被接着面を前記第1の表面に当接させると共に、第2の靴用部材に形成された第2の被接着面を前記第2の表面に当接させる当接ステップと、
     前記当接ステップの後に、前記接着用シートに対してマイクロ波を照射することによって前記接着用シートを加熱溶融させ、前記第1の靴用部材と前記第2の靴用部材とを前記接着用シートを介して接着させる接着ステップと
    を備えている、靴の製造方法。
  2.  前記接着用シートが、前記第1の熱可塑性樹脂とは異なる種類の第2の熱可塑性樹脂を含んでおり、
     前記第1の表面では、前記第1の熱可塑性樹脂の存在割合が前記第2の熱可塑性樹脂の存在割合よりも大きく、前記第2の表面では、前記第2の熱可塑性樹脂の存在割合が前記第1の熱可塑性樹脂の存在割合よりも大きい、請求項1に記載の靴の製造方法。
  3.  前記エネルギー吸収材が、熱可塑性樹脂である、請求項1又は2に記載の靴の製造方法。
  4.  前記エネルギー吸収材が、前記第2の熱可塑性樹脂である、請求項2に記載の靴の製造方法。
  5.  前記エネルギー吸収材が、TPU樹脂である、請求項3又は4に記載の靴の製造方法。
  6.  前記接着用シートが、2つ以上の積層された予備シートを備えている、請求項1~5のいずれか1項に記載の靴の製造方法。
  7.  前記第1の熱可塑性樹脂が、EVA樹脂である、請求項1~6のいずれか1項に記載の靴の製造方法。
  8.  前記第1の靴用部材の前記第1の被接着面には、EVA樹脂又はポリエチレン樹脂が露出している、請求項7に記載の靴の製造方法。
  9.  前記当接ステップの前に、前記第1の表面、前記第2の表面、前記第1の被接着面及び前記第2の被接着面のうち少なくともいずれか1つの面に、水系プライマが塗布されるプライマ塗布ステップをさらに備えている、請求項1~8のいずれか1項に記載の靴の製造方法。
  10.  第1の熱可塑性樹脂と、前記第1の熱可塑性樹脂よりもマイクロ波に対する損失誘電率の高いエネルギー吸収材と、を含んだ接着用シートであって、該接着用シートの第1の表面と該第1の表面の反対側の第2の表面とのうち少なくとも該第1の表面に前記第1の熱可塑性樹脂が露出している、接着用シートと、
     前記第1の表面に接着された第1の靴用部材と、
     前記第2の表面に接着された第2の靴用部材と、を備えている、靴。
  11.  前記接着用シートが、前記第1の熱可塑性樹脂とは異なる種類の第2の熱可塑性樹脂を含んでおり、前記第1の表面では、前記第1の熱可塑性樹脂の存在割合が前記第2の熱可塑性樹脂の存在割合よりも大きく、前記第2の表面では、前記第2の熱可塑性樹脂の存在割合が前記第1の熱可塑性樹脂の存在割合よりも大きい、請求項10に記載の靴。
  12.  前記エネルギー吸収材が、熱可塑性樹脂である、請求項10又は11に記載の靴。
  13.  前記エネルギー吸収材が、前記第2の熱可塑性樹脂である、請求項11に記載の靴。
  14.  前記エネルギー吸収材が、TPU樹脂である、請求項12又は13に記載の靴。
  15.  前記第1の熱可塑性樹脂が、EVA樹脂である、請求項10~14のいずれか1項に記載の靴。
  16.  前記第1の靴用部材における前記第1の表面との被接着面には、EVA樹脂又はポリエチレン樹脂が露出している、請求項15に記載の靴。
PCT/JP2019/050616 2019-12-24 2019-12-24 靴の製造方法及び靴 WO2021130857A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19938106.2A EP3864993B1 (en) 2019-12-24 2019-12-24 Method for manufacture of shoe and shoe
JP2020558636A JP7018522B2 (ja) 2019-12-24 2019-12-24 靴の製造方法及び靴
US17/260,165 US20220079297A1 (en) 2019-12-24 2019-12-24 Method for producing shoe, and shoe
CN201980034349.8A CN113301826B (zh) 2019-12-24 2019-12-24 鞋的制造方法和鞋
PCT/JP2019/050616 WO2021130857A1 (ja) 2019-12-24 2019-12-24 靴の製造方法及び靴

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/050616 WO2021130857A1 (ja) 2019-12-24 2019-12-24 靴の製造方法及び靴

Publications (1)

Publication Number Publication Date
WO2021130857A1 true WO2021130857A1 (ja) 2021-07-01

Family

ID=76575779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050616 WO2021130857A1 (ja) 2019-12-24 2019-12-24 靴の製造方法及び靴

Country Status (5)

Country Link
US (1) US20220079297A1 (ja)
EP (1) EP3864993B1 (ja)
JP (1) JP7018522B2 (ja)
CN (1) CN113301826B (ja)
WO (1) WO2021130857A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113607A (ja) * 1997-10-16 1999-04-27 Techno Star:Kk 新規な靴底
JP2017061143A (ja) 2015-09-11 2017-03-30 サンコ・インク・カンパニー・リミテッドSunko Ink Co., Ltd. マイクロ波成形品およびその製造方法
JP2018089971A (ja) * 2016-12-01 2018-06-14 アディダス アーゲー プラスチック部品を製造する方法、プラスチック部品、および靴

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497786B1 (en) * 1997-11-06 2002-12-24 Nike, Inc. Methods and apparatus for bonding deformable materials having low deformation temperatures
KR100348554B1 (ko) * 2000-02-16 2002-08-14 주식회사 영창스포츠 신발 보강용 시트
JP2004222990A (ja) * 2003-01-23 2004-08-12 Nooteepu Kogyo Kk 履物の接着方法及び履物
JP5042390B2 (ja) * 2009-10-15 2012-10-03 株式会社アシックス レーザー接着用積層体、シューズ、及びシューズの製造方法
DE102015202013B4 (de) 2015-02-05 2019-05-09 Adidas Ag Verfahren zur Herstellung eines Kunststoffformteils, Kunststoffformteil und Schuh
DE102015202014B4 (de) * 2015-02-05 2020-02-06 Adidas Ag Verfahren und Vorrichtung zur Herstellung eines Schuhs und damit hergestellter Schuh
GB2550116B (en) * 2016-05-04 2018-05-16 Texon Man Limited A method and apparatus for footwear moulding
TW201906556A (zh) * 2017-07-06 2019-02-16 捷欣企業股份有限公司 鞋材的製備方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11113607A (ja) * 1997-10-16 1999-04-27 Techno Star:Kk 新規な靴底
JP2017061143A (ja) 2015-09-11 2017-03-30 サンコ・インク・カンパニー・リミテッドSunko Ink Co., Ltd. マイクロ波成形品およびその製造方法
JP2018089971A (ja) * 2016-12-01 2018-06-14 アディダス アーゲー プラスチック部品を製造する方法、プラスチック部品、および靴

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3864993A4

Also Published As

Publication number Publication date
EP3864993A1 (en) 2021-08-18
CN113301826B (zh) 2022-07-01
JP7018522B2 (ja) 2022-02-10
JPWO2021130857A1 (ja) 2021-12-23
EP3864993A4 (en) 2021-11-03
EP3864993B1 (en) 2023-06-14
US20220079297A1 (en) 2022-03-17
CN113301826A (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US10750814B2 (en) Method and device for the manufacture of sporting goods and sporting goods manufactured thereby
JP6408465B2 (ja) 薄い接着層を用いる接着方法
JPS58132068A (ja) 補強用の接着性シ−ト
US20160361896A1 (en) Multilayered assembly, production thereof and use thereof
US20210127796A1 (en) Method for assisting joining of vamp and sole by vacuum positioning
US10137676B2 (en) Method and apparatus for forming and adhering panel and bracket structures
JP2020073808A (ja) シーリングされた折り畳み接合の形成方法
JP5958610B1 (ja) ホットメルト接着シート、それを用いた接着構造物の製造方法、並びに剥がす方法
JP7018522B2 (ja) 靴の製造方法及び靴
Paiva et al. Importance of the surface treatment in the peeling strength of joints for the shoes industry
US20170028681A1 (en) Laminar Composite and Method of Producing Same
JP6556140B2 (ja) ハイブリッド部品の製造方法
CN105736536B (zh) 通过直接加热胶合剂胶合机动车辆零件的方法
WO2013166499A2 (en) Method of curing and adhesive between two or more panels
CN108624241B (zh) 通过坯料用于全表面连接第一和第二接合部件的反向平行的接触表面的方法
JP2017528583A (ja) エッジストリップ
US20180301355A1 (en) Control warpage in a semiconductor chip package
JP6378665B2 (ja) プリプレグ製造方法
EP3841910B1 (en) Method for producing shoe, shoe, and induction heating bonding apparatus
JP6690416B2 (ja) 電磁誘導加熱用ホットメルト接着剤層を有する積層物、それを用いた接着構造物及び剥離方法
JP4252836B2 (ja) 放熱シート及びpdp、並びに放熱シートの製造方法
US10487246B2 (en) Adhesive sheet
WO2022113234A1 (ja) 靴用部材の製造方法及び靴用部材
GB2537395A (en) Adhesive tape
JP2010194762A (ja) 金属製被着体と熱可塑性樹脂との接合方法および住宅部材の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020558636

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019938106

Country of ref document: EP

Effective date: 20210125

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE