WO2021129790A1 - 解决编码式主动光动捕系统同步通讯丢包方法及相关设备 - Google Patents

解决编码式主动光动捕系统同步通讯丢包方法及相关设备 Download PDF

Info

Publication number
WO2021129790A1
WO2021129790A1 PCT/CN2020/139277 CN2020139277W WO2021129790A1 WO 2021129790 A1 WO2021129790 A1 WO 2021129790A1 CN 2020139277 W CN2020139277 W CN 2020139277W WO 2021129790 A1 WO2021129790 A1 WO 2021129790A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
packet loss
trigger signal
timing
synchronization trigger
Prior art date
Application number
PCT/CN2020/139277
Other languages
English (en)
French (fr)
Inventor
姚劲
许秋子
Original Assignee
深圳市瑞立视多媒体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瑞立视多媒体科技有限公司 filed Critical 深圳市瑞立视多媒体科技有限公司
Publication of WO2021129790A1 publication Critical patent/WO2021129790A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0091Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location arrangements specific to receivers, e.g. format detection

Definitions

  • the invention relates to the technical field of computer vision, in particular to a method and related equipment for solving the synchronous communication packet loss of a coded active optical motion capture system.
  • Optical motion capture systems are divided into active and passive types.
  • the active type uses objects that emit light as the tracking target.
  • the active optical motion capture system is divided into coded and non-coded.
  • the coded active light capture system realizes binary coding by alternating the light and dark of the light-emitting target, that is, light represents "1" and dark represents "0", so that Each light-emitting object can be assigned an independent ID, and then the light-emitting object with the determined ID can be captured by the camera to form a specific rigid body, and the six-degree-of-freedom information of the rigid body can be calculated.
  • the coded active optical motion capture system broadcasts wireless pulses to light-emitting objects or rigid bodies through the base station, thereby synchronizing the light and dark state of the light-emitting objects with the shooting exposure state of the motion capture camera, and correcting the synchronization state of the camera and the light-emitting objects.
  • the motion capture camera will also perform exposure shooting simultaneously.
  • wireless communication will cause packet loss, that is, the illuminated object or rigid body cannot receive the pulse signal broadcast by the base station, and the illuminated object or rigid body cannot perform the correct encoding, which will greatly increase the packet loss.
  • the main purpose of the present invention is to provide a method and related equipment for solving the synchronous communication packet loss of the coded active optical motion capture system, aiming to solve the technical problem of packet loss in the synchronous communication process in the coded active optical motion capture system.
  • the present invention provides a method for solving the synchronization communication packet loss of an encoded active optical motion capture system.
  • the method includes the following steps:
  • the synchronization trigger signal is received within the interval time, according to the synchronization trigger signal, one bit of coded data is sequentially called from the coded information of each light-emitting object in the register, and the coded data is controlled according to the coded data.
  • the corresponding luminous target emits light;
  • one bit of coded data is automatically called from the coded information of each light-emitting object in the register in order, and the corresponding light-emitting object is controlled to emit light according to the coded data.
  • the determining whether a synchronization trigger signal is received within a preset interval time, where the interval time is a preset frame rate time plus a preset timeout time includes:
  • the step of starting timing by the timing software is performed according to the timeout time.
  • the step of starting timing by the timing software according to the timeout period includes:
  • the step of starting timing by the timing software is performed with the time-out time as the initial time.
  • the synchronization trigger signal is not received within the interval time, one bit of coded data is automatically called in order from the coded information of each light-emitting object in the register, and the coded data is controlled according to the coded data.
  • the corresponding luminous target emits light, including:
  • the packet loss notification is fed back to the base station, and the packet loss notification is transmitted to the rigid body through the base station;
  • the rigid body automatically calls one bit of coded data sequentially from the coded information of each light-emitting object in its own register, and controls the corresponding light-emitting object to emit light according to the coded data.
  • the present invention also provides a device for solving the synchronous communication packet loss of an encoded active optical motion capture system, which includes:
  • the judging module is used to judge whether the synchronization trigger signal is received within a preset interval time, where the interval time is a preset frame rate time plus a preset timeout time;
  • the trigger calling module is used to if the synchronization trigger signal is received within the interval time, according to the synchronization trigger signal, sequentially call one bit of coded data from the code information of each light-emitting object in the register, Controlling the corresponding light-emitting target to emit light according to the coded data;
  • the packet loss calling module is configured to automatically call one bit of coded data in sequence from the coded information of each light-emitting object in the register if the synchronization trigger signal is not received after the interval time has elapsed, and according to the coded data Control the corresponding luminous target to emit light.
  • the judgment module includes:
  • the timing unit is used to initialize the preset timing software, and start timing through the timing software
  • the reset timing unit is configured to, if the synchronization trigger signal is received within the interval time, after resetting the timing software to zero, jump to the timing unit to start timing through the timing software;
  • the delay timing unit is configured to delay jumping to the timing unit to start timing through the timing software in the timing unit according to the timeout time if the synchronization trigger signal is not received within the interval time.
  • the delay timing unit is further configured to read the timeout time, and after resetting the timing software to zero, jump to the timing unit through the timing software using the timeout time as the initial time start the timer.
  • it also includes a packet loss calling module:
  • the integrity judgment unit is configured to receive the total code information of all the light-emitting objects in a recognition period, and determine whether the length of the total code information is the product of the preset code length and the number of light-emitting objects;
  • a packet loss feedback unit configured to indicate that the length of the total encoded information is not the product of the preset encoding length and the number of light-emitting objects, and if it is determined that the synchronization trigger signal is not received within the interval time, then the packet loss is notified Feed back to the base station, and transmit the packet loss notification to the rigid body through the base station;
  • the automatic control unit is configured to, according to the packet loss prompt, the rigid body automatically calls one bit of coded data in sequence from the coded information of each light-emitting object in its own register, and controls the corresponding light-emitting object according to the coded data Glow.
  • a coded active optical motion capture system including a server, a base station, a camera, and a rigid body.
  • the server is used to generate unique coded information for each rigid body, and send it to the rigid body through the base station, and receive at the same time Image data from the camera, identifying the rigid body according to the image information;
  • the base station is configured to generate a synchronization trigger signal and send the synchronization trigger signal to the rigid body and the camera;
  • the camera is configured to perform exposure shooting of the rigid body after receiving the synchronization trigger signal, and send the image data obtained by shooting to the server;
  • the rigid body includes a plurality of light-emitting objects, and is used to control the light-emitting objects by adopting the method for solving the synchronous communication packet loss of the coded active optical motion capture system as described above.
  • the present invention also provides a device for solving the synchronous communication packet loss of an encoded active optical motion capture system.
  • the device includes: a memory, a processor, and stored in the memory and capable of running on the processor.
  • the program for solving the synchronous communication packet loss of the coded active optical motion capture system is implemented by the processor to solve the coded active optical motion capture system as described above when the program for solving the synchronous communication packet loss of the coded active optical motion capture system is executed by the processor Steps of the synchronous communication packet loss method.
  • the method for solving the synchronization communication packet loss of an encoded active optical motion capture system is used in an encoded active optical motion capture system.
  • a rigid body fails to receive a synchronization trigger signal sent by a base station and causes frame loss
  • the rigid body automatically follows a certain The frame rate actively obtains the coded data, and controls the light-dark state of the light-emitting object according to the coded data, so that the correct code for packet loss is automatically issued by the rigid body.
  • the base station continues to broadcast the pulse to correct the synchronization timing
  • the synchronization trigger signal sent by it is still used as the first basis for activating the light-emitting target and other devices, and the rigid body continues to activate the correct code according to the synchronization trigger signal sent by the base station.
  • the rigid body itself can still display the correct coded data in a relatively suitable time after the above-mentioned design, combined with the method of transmitting according to the synchronization trigger signal of the base station when the packet is not lost, thereby solving the problem.
  • Figure 1 is a schematic diagram of the signal connection of an encoded active optical motion capture system of the present invention
  • Fig. 2 is a schematic diagram of a signal timing diagram in the prior art
  • FIG. 3 is a flowchart of a method for solving synchronous communication packet loss of an encoded active optical motion capture system in an embodiment of the present invention
  • Figure 4 is a schematic diagram of a signal timing diagram of the present invention.
  • FIG. 5 is a structural diagram of a device for solving synchronous communication packet loss of an encoded active optical motion capture system in an embodiment of the present invention.
  • the coded active optical motion capture system includes: a base station 11, a rigid body 12 (active optical rigid body), a camera 13 (active optical camera), a server 14 and a switch 15.
  • a base station 11 a rigid body 12 (active optical rigid body), a camera 13 (active optical camera), a server 14 and a switch 15.
  • rigid body 12 active optical rigid body
  • camera 13 active optical camera
  • server 14 a switch 15
  • switch 15 there are three rigid bodies, namely rigid body 12, rigid body A and rigid body B.
  • the coded active optical motion capture system may not be limited to the number of rigid bodies; the camera 13 receives the active light emitted by the active light rigid body.
  • the signals are transmitted to the server 14 through the switch 15, and the tracking software running on the server 14 preprocesses these signals, so as to output the 2D coordinate information, gray value information and area information of the LED lamp.
  • FIG. 1 it includes two cameras, namely camera 13 and camera A; the function of switch 15 is to supply power to camera 13 and base station 11 and to transmit information between camera 13 and base station 11; base station 11 can communicate with rigid body 12 , Configure the rigid body 12 according to the coding information.
  • the server 14 may generate unique coding information for each rigid body 12, and transmit it to the base station 11 through the switch 15, and the base station 11 sends it to each rigid body 12; at the same time, it receives the rigid body 12 image data taken by the camera 13. And obtain the coding information of the corresponding rigid body 12 according to the image data in a recognition cycle, and recognize the rigid body 12 according to the coding information and the preset rigid body coding information.
  • the identified rigid body 12 pose information represents the corresponding key point of motion capture Sports information.
  • the base station 11 can generate a synchronization trigger signal according to a predetermined interval period, and transmit the generated synchronization trigger signal to the rigid body 12 and the camera 13 at the same time, so that the rigid body 12 can control the brightness of the light-emitting target on the rigid body 12 according to the synchronization trigger signal.
  • the camera 13 can capture the image data of the light-emitting target on the rigid body 12 according to the synchronization trigger signal.
  • the base station 11 randomly allocates the multiple coded information received from the server 14 to the multiple rigid bodies 12, and each rigid body 12 registers the coded information in the rigid body 12 after receiving the coded information. In the register.
  • the rigid body 12 includes multiple light-emitting objects. On the one hand, it receives the coded information of the rigid body 12 sent from the base station 11 and stores it in the register; on the other hand, it receives the coded information stored by itself after receiving the synchronization trigger signal from the base station 11
  • the coded data is periodically called in and assigned to each light-emitting object, so that each light-emitting object can control its luminous brightness according to the coded data.
  • the coded information of the rigid body 12 includes the coded information of all light-emitting objects on the rigid body 12, and the coded information of a light-emitting object stores the coded data of a light-emitting object in one recognition period.
  • a recognition period includes consecutive designated frames of image data, and the designated number of consecutive image data in a recognition period (or the number of camera exposure shots) is the same as the code length of the coded information of a light-emitting object.
  • the server 14 generates different m*n binary code tables according to preset coding rules.
  • m represents the code length of each light-emitting object
  • n represents the number of light-emitting objects constituting the rigid body
  • the total code information length corresponding to the rigid body is the code length of each light-emitting object and the number of light-emitting objects. Number product m*n.
  • the base station 11 broadcasts a synchronization trigger signal to the rigid body 12 through wireless transmission technologies, such as wireless communication technologies such as wireless wifi and ZigBee.
  • wireless transmission technologies such as wireless communication technologies such as wireless wifi and ZigBee.
  • the rigid body 12 sequentially calls 1*n bytes of coded data from the code table in the register to allocate to the corresponding light-emitting objects, and each light-emitting object receives 1 byte. And show that the corresponding coded data is 1 or 0 through the light or dark of the illuminated object.
  • the camera 13 After sending m synchronization trigger signals, the camera 13 records the entire section of coded information displayed by different light-emitting objects in bright or dark form, so that different light-emitting objects can be distinguished by different coded information, thereby distinguishing different Rigid body 12.
  • the rigid body 12 does not receive the synchronization trigger signal within the preset time interval, it is likely that the total coded information length of the rigid body does not match m*n, that is, the total coded information length of the rigid body may be less than m*n. That is to say, because the synchronization trigger signal is not received, the communication data packet is lost. Even if the total code information length of the rigid body matches m*n, there will be some wrong coded data. At this time, it is necessary to avoid the packet loss phenomenon to ensure the accuracy of rigid body recognition.
  • the synchronization trigger signal sent to the camera 13 is transmitted through a gigabit network cable and the switch 15.
  • the transmission signal is relatively stable, and generally there is no serious packet loss or error.
  • wireless communication will cause packet loss, that is, the rigid body 12 cannot receive the pulse signal broadcast by the base station 11.
  • the packet loss will greatly increase the probability of incorrectly identifying the coded data and failing to identify the correct ID of the light-emitting object. .
  • the lighting of the light-emitting object depends entirely on the pulse signal of the base station 11, that is, the synchronization trigger signal to activate.
  • the correct code information of a light-emitting object is 01010 ⁇
  • the number 1 code data "0" is extracted from the preset code information of the light-emitting object.
  • the light-emitting object luminous brightness is "dark” for a preset period of time
  • the camera 13 The exposure window is set within a preset time, and the gray scale obtained after exposure sampling determines that the encoded data is "0"; when the rigid body 12 receives the pulse number 2 of the base station 11, the encoded information preset from the light-emitting target The coded data “1” of No.
  • the brightness of the cursor’s object is “bright” for a preset period of time
  • the exposure window of the camera 13 is set within the preset time
  • the grayscale obtained after exposure sampling It is determined that the encoded data is "1".
  • the pulse number 4 is lost, the rigid body 12 is not activated, and the coded data is not extracted from the preset coded information.
  • the original "1” is finally recognized as "0", which causes the coded data recognition error, resulting in loss Packet phenomenon.
  • the present invention adopts the method of displaying correct sequence coding from the rigid body 12 self-circulating and correcting the synchronization sequence of the base station 11 broadcast pulse, which greatly improves the robustness of the system.
  • a method for solving synchronous communication packet loss of an encoded active optical motion capture system includes the following steps:
  • Step S1 determining the interval time: determining whether the synchronization trigger signal is received within the preset interval time, the interval time being the preset frame rate time plus the preset timeout time.
  • the rigid body displays the light and dark state according to a certain frame rate. If the frame rate is 100fps, it means that the rigid body emits light at an interval of 10ms (the synchronization trigger signal is received at an interval of 10ms). For example, when the interval time exceeds (10+x)ms without receiving a signal, It is determined that packet loss has occurred. Where x is the timeout period.
  • step S1 includes:
  • Step S101 initialize the preset timing software, and start timing through the timing software.
  • the interval time is timed by the timing software.
  • the timing software can be set in the rigid body in advance.
  • the rigid body can give start, end, return to zero and other signals to control the timing software to perform timing work.
  • step S102 if the synchronization trigger signal is received within the interval time, after resetting the timing software to zero, continue the step of starting timing through the timing software.
  • the rigid body Under the condition of no packet loss, the rigid body receives the synchronization trigger signal from the base station within an interval. At this time, the synchronization trigger signal sent by the base station is used as the first basis for activating the light-emitting object and the timing sequence of other devices. After receiving the synchronization trigger signal sent by the base station, after resetting the timing software to zero, the control timing software restarts timing from zero to determine whether the synchronization trigger signal can be received within the interval time for the next frame.
  • step S103 if the synchronization trigger signal is not received after the interval time has elapsed, according to the time-out time, a step of starting timing through the timing software is performed.
  • the interval time includes frame rate time + timeout time, where the timeout time is generally a positive number.
  • the timeout time is a positive number, it is considered that the synchronization trigger signal has not been received after a period of time exceeding the frame rate, and it is judged as a packet loss phenomenon.
  • the timeout time is a positive number, the following methods can be specifically adopted for the timing initial time of the control timing software:
  • the timing software after controlling the timing software in the above manner, even if the rigid body has packet loss, the timing software records the interval time based on the corrected frame rate time.
  • the corrected frame rate time mentioned here is the initial frame rate. Time + timeout.
  • Step S2 control during normal triggering: If a synchronization trigger signal is received within the interval, then according to the synchronization trigger signal, one bit of coded data is sequentially called from the coded information of each light-emitting object in the register, and according to the The coded data controls the corresponding light-emitting target to emit light.
  • the rigid body When the synchronization trigger signal sent by the base station is normally received, based on the synchronization trigger signal, the rigid body sequentially calls one bit of coded data from the code information of each light-emitting object stored in the register, and there are several light-emitting objects.
  • the object calls several corresponding coded data, and controls the corresponding light-emitting object to turn on and off according to the coded data.
  • the light-off here refers to the brightness of the light-emitting object.
  • Code data 1 represents "bright", and the code Data 0 represents "dark”.
  • the rigid body received the synchronization trigger signal at the frame rate time three times before, and normally controlled the light-emitting target.
  • Step S3 control when the packet is lost: If the synchronization trigger signal is not received after the interval time, the coded information of each light-emitting object in the register is automatically called one bit of coded data in sequence, and the corresponding coded data is controlled according to the coded data.
  • the luminous subject emits light.
  • the rigid body actively reads it from the register.
  • the pre-stored encoding information of each light-emitting object one bit of coded data is sequentially called.
  • Several light-emitting objects call several corresponding coded data without receiving a trigger signal.
  • each light-emitting object in a recognition cycle When the object does not receive the trigger signal several times, it also actively calls the corresponding coded data several times. Therefore, each light-emitting object can still control its light and dark state according to the coded data.
  • the rigid body actively controls the light-emitting object, instead of controlling the light-emitting object to emit light according to the synchronization trigger signal given by the base station.
  • the rigid body automatically displays the correct sequence. , which greatly improves the robustness of the coded active optical motion capture system.
  • step S3 specifically includes:
  • Step S301 Receive the total code information of all light-emitting objects in a recognition period, and determine whether the length of the total code information is the product of the preset code length and the number of light-emitting objects; Perform completeness judgment to determine whether the rigid body receives the synchronization trigger signal sent by the base station.
  • the server generates unique code information for each light-emitting object, and the server sends the preset code information through the switch to each light-emitting object through the base station.
  • the total code information length of a rigid body with multiple light-emitting objects should be the product of the code length of each light-emitting object (ie, the preset code length) and the number of light-emitting objects,
  • the rigid body After the rigid body receives its own total code information, it compares whether the total code information length is consistent with the product of the preset code length and the number of light-emitting objects to determine whether the total code information has received errors or has not been received. .
  • Step S302 If it does not match, it is determined that the synchronization trigger signal has not been received for more than the interval time, that is, a packet loss phenomenon has occurred, and a packet loss reminder will be generated at the same time. Prompt to be sent to the rigid body;
  • the coded data may be missing or the coded information may not be actually received. In this case, it needs to report to the active optical motion capture system to generate a packet loss notification.
  • the base station receives the packet loss notification and transmits it. Give the rigid body so that the rigid body can control the luminous target to emit light correctly.
  • Step S303 According to the aforementioned packet loss prompt, the rigid body automatically calls one bit of coded data from the coded information of each light-emitting object in its own register in sequence, and controls the corresponding light-emitting object to emit light according to the coded data;
  • the rigid body no longer controls the light-emitting object according to the trigger signal sent by the base station, but automatically calls one bit of coded data in order from the code information of each light-emitting object in its own register.
  • each light-emitting object can still correctly display the coded data representing the degree of brightness, avoiding the problem of lack of trigger signal transmission caused by wireless network or other reasons.
  • the original "1" when the fourth pulse is lost is finally recognized as "0", resulting in a code recognition error.
  • the rigid body actively acquires the correct encoded data, so that even if the synchronization trigger signal is lost, packet loss occurs, and the illuminated object can still display the correct encoded data.
  • the corresponding camera It can also capture the correct coded data, avoiding the generation of code recognition errors.
  • This embodiment solves the method for synchronous communication packet loss of the coded active optical motion capture system.
  • the rigid body When a packet loss occurs in the synchronization trigger signal of the base station, the rigid body automatically obtains the correct encoded data according to the preset time interval, that is, when the packet loss occurs, the rigid body automatically obtains the correct encoded data.
  • the light and dark state is automatically displayed according to a certain frame rate, and the correct encoded data of the lost packet is automatically sent by the rigid body.
  • the synchronization trigger signal sent by the base station is still used as the first basis for activating the target and synchronizing the timing of each device. The two are organically combined.
  • the transmission does not lose packets, it is still transmitted according to the synchronization trigger signal of the base station through the synchronization trigger signal. Activate the correct encoding to solve the problem of identifying incorrectly encoded data caused by packet loss.
  • a device for solving synchronous communication packet loss of an encoded active optical motion capture system includes:
  • the judgment module is used to judge whether the synchronization trigger signal is received within the preset interval time, the interval time is the preset frame rate time plus the preset timeout time; the trigger calling module is used to if the synchronization trigger signal is received within the interval time Trigger signal, according to the synchronization trigger signal, one bit of coded data is called in order from the coded information of each light-emitting object in the register, and the corresponding light-emitting object is controlled to emit light according to the coded data; the packet loss calling module is used if it exceeds If the synchronization trigger signal is not received in the interval time, one bit of coded data is automatically called from the coded information of each light-emitting object in the register in order, and the corresponding light-emitting object is controlled to emit light according to the coded data.
  • the above judgment module includes: a timing unit, used to initialize preset timing software, and start timing through the timing software; a reset timing unit, used to check the timing if the synchronization trigger signal is received within the interval time After the software is reset to zero, it jumps to the passing timing software in the timing unit to start timing; the delay timing unit is used to delay the jump to the passing timing software in the timing unit if the synchronization trigger signal is not received after the interval time has expired. start the timer.
  • the delay timing unit is also used to read the timeout time, and after resetting the timing software to zero, it jumps to the timing software in the timing unit to start timing with the timeout time as the initial time.
  • the packet loss invocation module further includes:
  • the integrity judgment unit is used to receive the total code information of all the light-emitting objects in a recognition period, and judge whether the length of the total code information is the product of the preset code length and the number of light-emitting objects;
  • the packet loss feedback unit is used for the length of the total encoded information that is not the product of the preset encoding length and the number of light-emitting objects, and it is determined that the synchronization trigger signal is not received after the interval time, and the packet loss notification is fed back to the base station, And send the packet loss notification to the rigid body through the base station;
  • the automatic control unit is used for, according to the packet loss prompt, the rigid body automatically calls one bit of coded data from the coded information of each light-emitting object in its own register in sequence, and controls the corresponding light-emitting object to emit light according to the coded data.
  • a coded active optical motion capture system including a server, a base station, a camera, and a rigid body.
  • the server is used to generate unique total coding information for each rigid body and send it to the rigid body through the base station. At the same time, it receives image data from the camera.
  • the image information identifies the rigid body; the base station is used to generate a synchronization trigger signal and send a synchronization trigger signal to the rigid body and the camera; the camera is used to expose and shoot the rigid body after receiving the synchronization trigger signal, and send the captured image data to The server; the rigid body includes a plurality of light-emitting objects, which are used to control the light-emitting brightness of the light-emitting objects by using the method for solving the synchronous communication packet loss of the coded active optical motion capture system of the foregoing embodiments.
  • a device for solving synchronous communication packet loss of an encoded active optical motion capture system includes: a memory, a processor, and an encoded active optical device that is stored in the memory and can run on the processor.
  • the synchronous communication packet loss program of the motion capture system realizes the steps in the method for solving the synchronous communication packet loss of the encoded active optical motion capture system when the program is executed by the processor.
  • the program can be stored in a computer-readable storage medium, and the storage medium can include: Read only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明涉及计算机视觉技术领域,尤其涉及一种解决编码式主动光动捕系统同步通讯丢包方法及相关设备。该方法包括:判断在间隔时间内是否收到同步触发信号;若在间隔时间内接收到同步触发信号,则从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据编码数据控制对应的发光标的物发光;若超过间隔时间未收到同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据编码数据控制对应的发光标的物发光。当出现丢包时,本发明刚体自身依然可以在比较合适的时间内自行显示正确的编码数据,结合不丢包时按照基站的同步触发信号来传输的方式进行,从而解决由丢包造成的识别错误编码的问题。

Description

解决编码式主动光动捕系统同步通讯丢包方法及相关设备 技术领域
本发明涉及计算机视觉技术领域,尤其涉及一种解决编码式主动光动捕系统同步通讯丢包方法及相关设备。
背景技术
光学动作捕捉系统分成主动和被动式,主动式采用自身会发光的物体作为跟踪标的物。而主动式光学动捕系统又分成编码式和非编码式,编码式主动光捕捉系统通过发光标的物的明与暗交替实现二进制编码,即明代表“1”,暗代表“0”,从而使每个发光标的物都可被赋予独立的ID,进而可通过相机捕捉确定ID的发光标的物组成特定刚体,并计算该刚体的六自由度信息。
编码式主动光学动捕系统通过基站对发光标的物或刚体进行无线脉冲广播,从而使发光标的物的明暗状态与动捕相机的拍摄曝光状态同步,校正相机与发光标的物的同步状态。发光标的物每接收到一个广播脉冲,就会以明或暗的形式显示一位二进制编码,与此同时,动捕相机也会同步进行曝光拍摄。
但是在在复杂的通讯环境下,无线通讯会产生丢包的现象,即发光标的物或刚体接收不到基站广播的脉冲信号,发光标的物或刚体无法执行正确的编码,致使丢包会大大增加错误识别编码从而不能识别到发光标的物正确ID的概率。
发明内容
本发明的主要目的在于提供一种解决编码式主动光动捕系统同步通讯丢包方法及相关设备,旨在解决编码式主动光动捕系统中,在同步通讯过程产生丢包现象的技术问题。
为实现上述目的,本发明提供一种解决编码式主动光动捕系统同步通讯丢 包方法,所述方法包括以下步骤:
判断在预设的间隔时间内是否收到同步触发信号,所述间隔时间为预设的帧率时间加预设的超时时间;
若在所述间隔时间内接收到所述同步触发信号,则根据所述同步触发信号,从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光;
若超过所述间隔时间未收到所述同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
可选地,所述判断在预设的间隔时间内是否收到同步触发信号,所述间隔时间为预设的帧率时间加预设的超时时间,包括:
初始化预设的计时软件,通过所述计时软件开始计时;
若在所述间隔时间内接收到所述同步触发信号,对所述计时软件归零后,继续进行通过所述计时软件开始计时步骤;
若超过所述间隔时间未收到所述同步触发信号,根据所述超时时间,进行通过所述计时软件开始计时步骤。
可选地,所述若超过所述间隔时间未收到所述同步触发信号,根据所述超时时间,进行通过所述计时软件开始计时步骤,包括:
读取所述超时时间,对所述计时软件归零后,则以所述超时时间为初始时间进行通过所述计时软件开始计时步骤。
可选地,所述若超过所述间隔时间未收到所述同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光,包括:
接收一个识别周期内所有发光标的物的总编码信息,判断所述总编码信息 的长度是否为预设的编码长度与发光标的物个数的乘积;
若不是,判定为超过所述间隔时间未收到所述同步触发信号,则将丢包提示反馈给所述基站,并通过所述基站将丢包提示传送给刚体;
根据所述丢包提示,所述刚体自动从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
进一步地,为实现上述目的,本发明还提供一种解决编码式主动光动捕系统同步通讯丢包装置,包括:
判断模块,用于判断在预设的间隔时间内是否收到同步触发信号,所述间隔时间为预设的帧率时间加预设的超时时间;
触发调用模块,用于若在所述间隔时间内接收到所述同步触发信号,则根据所述同步触发信号,从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光;
丢包调用模块,用于若超过所述间隔时间未收到所述同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
可选地,所述判断模块,包括:
计时单元,用于初始化预设的计时软件,通过所述计时软件开始计时;
归零计时单元,用于若在所述间隔时间内接收到所述同步触发信号,对所述计时软件归零后,跳转到计时单元中的通过所述计时软件开始计时;
延迟计时单元,用于若超过所述间隔时间未收到所述同步触发信号,根据所述超时时间,延迟跳转到计时单元中的通过所述计时软件开始计时。
可选地,所述延迟计时单元,还用于读取所述超时时间,对所述计时软件归零后,则以所述超时时间为初始时间跳转到计时单元中的通过所述计时软件 开始计时。
可选地,还包括丢包调用模块:
判断完整性单元,用于接收一个识别周期内所有发光标的物的总编码信息,判断所述总编码信息的长度是否为预设的编码长度与发光标的物个数的乘积;
丢包反馈单元,用于所述总编码信息的长度不是预设的编码长度与发光标的物个数的乘积,判定为超过所述间隔时间未收到所述同步触发信号,则将丢包提示反馈给所述基站,并通过所述基站将丢包提示传送给刚体;
自动控制单元,用于根据所述丢包提示,所述刚体自动从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
一种编码式主动光动捕系统,包括服务器、基站、相机及刚体,所述服务器用于为每个所述刚体生成唯一的编码信息,并通过所述基站下发至所述刚体,同时接收来自所述相机的图像数据,根据所述图像信息对所述刚体进行识别;
所述基站用于生成同步触发信号并向所述刚体和所述相机发送所述同步触发信号;
所述相机用于在接收到所述同步触发信号之后,对所述刚体进行曝光拍摄,以及将拍摄得到的图像数据发送至所述服务器;
所述刚体包括多个发光标的物,用于采用上述所述的解决编码式主动光动捕系统同步通讯丢包方法对所述发光标的物进行控制。
为实现上述目的,本发明还提供一种解决编码式主动光动捕系统同步通讯丢包设备,所述设备包括:存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的解决编码式主动光动捕系统同步通讯丢包程序,所述解决编码式主动光动捕系统同步通讯丢包程序被所述处理器执行时实现如上所述的解决编码式主动光动捕系统同步通讯丢包方法的步骤。
本发明提供的解决编码式主动光动捕系统同步通讯丢包方法,用于编码式主动光动捕系统中,在刚体接收不到基站发送的同步触发信号而导致丢帧时, 刚体自动按照一定帧率主动获取编码数据,根据编码数据对发光标的物控制显示明暗状态,致使丢包的正确编码由刚体自动发出。而基站继续广播脉冲校正同步时序,其发出的同步触发信号依然作为激活发光标的物和同步其他器件的第一依据,刚体继续根据基站发出的同步触发信号激活正确的编码。本发明通过上述设计后,当出现丢包时,刚体自身依然可以在比较合适的时间内自行显示正确的编码数据,结合不丢包时按照基站的同步触发信号来传输的方式进行,从而解决由丢包造成的识别错误编码数据的问题。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。
图1为本发明一种编码式主动光动捕系统的信号连接示意图;
图2为现有技术中的一种信号时序图的示意图;
图3为本发明一个实施例中解决编码式主动光动捕系统同步通讯丢包方法的流程图;
图4为本发明的一种信号时序图的示意图;
图5为本发明一个实施例中解决编码式主动光动捕系统同步通讯丢包装置的结构图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、正数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、正数、步骤、操作、元件、组件和/或它们的组。
参照图1,为本发明实施例方案涉及的解决编码式主动光动捕系统同步通讯丢包设备涉及的编码式主动光动捕系统的信号连接示意图。
如图1所示,该编码式主动光动捕系统包括:基站11、刚体12(主动光刚体)、相机13(主动光相机)及服务器14和交换机15。如图1中所示,包括有3个刚体,分别是刚体12、刚体A和刚体B,编码式主动光动捕系统可以不限于设置刚体的个数;相机13接收主动光刚体发出的主动光信号,并通过交换机15传输给服务器14,运行于服务器14上的跟踪软件便对这些信号进行预处理,从而输出LED灯的2D坐标信息、灰度值信息以及面积信息等。如图1中所示,包括有2个相机,分别为相机13和相机A;交换机15的作用是给相机13和基站11供电并传输相机13与基站11的信息;基站11可与刚体12通信,依据编码信息配置刚体12。
具体的,服务器14可以为每个刚体12生成唯一的编码信息,并通过交换机15传输给基站11,由基站11下发至每个刚体12;同时接收来相机13所拍摄的刚体12图像数据,并根据一个识别周期内的图像数据获取对应刚体12的编码信息,以及根据编码信息和预设的刚体编码信息对刚体12进行识别,识别出的刚体12位姿信息便代表对应的动作捕捉关键点运动信息。
基站11可以按照预定的间隔周期生成同步触发信号,并把生成的同步触发信号同时传输给刚体12和相机13,以使得刚体12能够根据同步触发信号,控制刚体12上发光标的物的亮度,同时又使得相机13能够根据同步触发信号,捕捉到刚体12上发光标的物的图像数据。在进行部件间信息的传输时,基站11将接收到的来自服务器14的多个编码信息随机分配给多个刚体12,每个刚体 12在收到编码信息之后,将编码信息寄存在刚体12的寄存器中。
刚体12包括多个发光标的物,其一方面接收来自基站11下发的刚体12的编码信息并寄存在寄存器中;另一方面接收到来自基站11的同步触发信号之后,从自身存储的编码信息中周期性调用编码数据并分配给每个发光标的物,以使每个发光标的物能够根据编码数据控制其发光亮度。
刚体12的编码信息包括刚体12上所有发光标的物的编码信息,一个发光标的物的编码信息存储有一个发光标的物一个识别周期内的编码数据。同时,一个识别周期包括连续的指定帧图像数据,并且一个识别周期内连续图像数据的指定帧数(或者相机曝光拍摄次数)与一个发光标的物的编码信息的编码长度取值相同。
服务器14根据预设置的编码规则,生成的不同的m*n二进制编码表。其中,m代表每个发光标的物的编码长度,n代表构成刚体的发光标的物的个数,则刚体对应的总的编码信息长度即为每个发光标的物的编码长度与发光标的物的个数乘积m*n。
基站11通过无线传输技术,比如无线wifi、ZigBee等无线通讯技术,向刚体12广播同步触发信号。每接收到一个同步触发信号,刚体12就从寄存器里的编码表中按顺序调用1*n个字节的编码数据分别分配给相应发光标的物,每个发光标的物收到1个字节,并通过发光标的物的明或暗来展示相应编码数据为1或为0。通过发送完m次同步触发信号,相机13记录到不同发光标的物通过明或暗的形式展现的整段编码信息,这样可通过不同的编码信息区分出不同的发光标的物,从而区分出不同的刚体12。
可以理解的是,若刚体12在预设时间间隔内未接收到同步触发信号,那么很可能导致刚体的总编码信息长度与m*n不符,即刚体的总编码信息长度可能小于m*n,也就是说由于未接收到同步触发信号从而产生通讯数据丢包。即便刚体的总编码信息长度与m*n相符,也会存在一些错误的编码数据,此时便需要避免该丢包现象,保证刚体识别的精准度。
如图1所示,发给相机13的同步触发信号是通过通过千兆网线和交换机15传输的,传输信号较为稳定,一般不存在严重丢包或错误现象。但是在复杂的通讯环境下,无线通讯会产生丢包的现象,即刚体12接收不到基站11广播的脉冲信号,丢包会大大增加错误识别编码数据从而不能识别到发光标的物正确ID的概率。发光标的物的亮灭完全依赖基站11的脉冲信号,也就是同步触发信号来激活,如图2所示,假设某一发光标的物的正确编码信息为01010····,当刚体12接收到基站11的①号脉冲时,从发光标的物预设的编码信息中提取出①号编码数据“0”,相应地,发光标的物发光亮度在一段预设的时间内为“暗”,相机13的曝光窗口设置在预设时间内,经过曝光采样后得到的灰度判断出该编码数据为“0”;当刚体12接收到基站11的②号脉冲时,从发光标的物预设的编码信息中提取出②号编码数据“1”,相应地,光标的物发光亮度在一段预设的时间内为“亮”,相机13的曝光窗口设置在预设时间内,经过曝光采样后得到的灰度判断出该编码数据为“1”。当④号脉冲丢失时,刚体12并未激活,也不向预设的编码信息中提取编码数据,本来的“1”被最终识别成了“0”,导致编码数据识别错误,致使产生了丢包现象。
为了弥补因无线传输丢包而带来的编码识别错误,本发明采用从刚体12自循环显示正确序列编码结合基站11广播脉冲校正同步时序的方式,大大提升了系统的鲁棒性。
参照图3,为本发明一个实施例中的解决编码式主动光动捕系统同步通讯丢包方法的流程图,一种解决编码式主动光动捕系统同步通讯丢包方法,包括以下步骤:
步骤S1,判断间隔时间:判断在预设的间隔时间内是否收到同步触发信号,间隔时间为预设的帧率时间加预设的超时时间。
刚体是按照一定帧率显示明暗状态的,如帧率为100fps,则表示刚体间隔10ms发光(间隔10ms接收同步触发信号),如当间隔时间超过(10+x)ms还未接收到信号时,就判定发生了丢包。其中x即为超时时间。
在一个实施例中,步骤S1,包括:
步骤S101,初始化预设的计时软件,通过该计时软件开始计时。
本步骤通过计时软件来对间隔时间进行计时,此计时软件可以预先设置在刚体中,刚体可以给出开始、结束、归零等信号,控制计时软件进行计时工作。
步骤S102,若在间隔时间内接收到同步触发信号,对计时软件归零后,继续进行通过计时软件开始计时步骤。
在正常不丢包的情况下,一个间隔时间内刚体接收到来自基站的同步触发信号,此时以基站发出的同步触发信号为激活发光标的物和同步其他器件时序的第一依据,每次正常接收到基站发出的同步触发信号后,对计时软件归零处理后,控制计时软件重新从零开始计时,判断下一帧是否在间隔时间内能接收到同步触发信号。
步骤S103,若超过间隔时间未收到同步触发信号,根据超时时间,进行通过计时软件开始计时步骤。
具体的,间隔时间包括帧率时间+超时时间,其中超时时间一般为正数。当超时时间为正数时,认为超过帧率时间一段时间后,还未收到同步触发信号,则判断为丢包现象。对于超时时间为正数情况下,关于控制计时软件的计时初始时间,具体可以采用如下方式:
读取超时时间,对计时软件归零后,则以超时时间为初始时间进行通过计时软件开始计时步骤。
本实施例通过上述方式控制计时软件后,即使刚体出现了丢包现象,计时软件记录间隔时间还是以修正后的帧率时间来计时,这里所说的修正后的帧率时间即为初始帧率时间+超时时间。刚体提前或延后自动获取正确的编码数据时,也依然默认为刚体是按修正后帧率时间来获取编码数据的,并且,每帧计时完成后都归零,以便于为下一帧正确计时间隔时间,判断是否在间隔时间内收到同步触发信号提供准确的时间数据,不影响在不丢包情况下,以基站出的同步 触发信号为激活依据。
步骤S2,正常触发时的控制:若在间隔时间内接收到同步触发信号,则根据该同步触发信号,从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据该编码数据控制对应的发光标的物发光。
在正常接收到基站发送的同步触发信号时,以此同步触发信号为激活依据,刚体从寄存器中预先存储的每个发光标的物的编码信息中顺位调用一位编码数据,有几个发光标的物就调用几个对应的编码数据,分别根据编码数据控制对应的发光标的物的亮灭,其中,这里的亮灭指的是发光标的物的亮度明暗程度,编码数据1代表“明”,编码数据0代表“暗”。如图2中所示,刚体前三次以帧率时间分别收到了同步触发信号,正常对发光标的物进行控制。
步骤S3,丢包时的控制:若超过间隔时间未收到同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据该编码数据控制对应的发光标的物发光。
若超过间隔时间未收到同步触发信号,则可以认为产生了丢包现象,此时以步骤S1判断间隔时间内是否收到同步触发信号的判断为否的结果为依据,刚体主动的从寄存器中预先存储的每个发光标的物的编码信息中顺位调用一位编码数据,有几个发光标的物未收到触发信号就调用几个对应的编码数据,同时,一个识别周期内每个发光标的物有几次未接收到触发信号,同样也主动调用几次对应的编码数据,由此,每个发光标的物仍然能够分别根据编码数据控制其明暗状态。需要说明的是,刚体是主动控制发光标的物的,而不是根据基站给出的同步触发信号来控制发光标的物发光,在基站发出的信号出现丢包时,实现了刚体自动显示正确序列的目的,大大提升了编码式主动光动捕系统的鲁棒性。
一种可能的实施例中,上述步骤S3,具体包括:
步骤S301:接收一个识别周期内所有发光标的物的总编码信息,判断该总编码信息的长度是否为预设的编码长度与发光标的物个数的乘积;本步骤通过 对接收到的总编码信息进行完整性判断,以便确定刚体是否接收到基站发出的同步触发信号。
如前所述,服务器为每个发光标的物生成唯一的编码信息,服务器通过交换机将预设的编码信息,经过基站发送至每个发光标的物。按照步骤S2的正常触发时的控制状态,具有多个发光标的物的刚体总编码信息长度应该为每个发光标的物的编码长度(即预设的编码长度)与发光标的物的个数乘积,此时刚体在接收到自己的总编码信息后,通过比较总编码信息长度是否和预设的编码长度与发光标的物的个数乘积相符,判断此总编码信息是否出现接收错误或未接收到现象。
步骤S302:若不相符,判定为超过间隔时间未收到同步触发信号,即发生了丢包现象,同时会生成丢包提示,则将该丢包提示反馈给基站,并通过该基站将丢包提示传送给刚体;
若总编码信息的长度出现错误,可能缺漏编码数据或实际未能收到编码信息,此时需要向该主动光动捕系统报备,从而生成丢包提示,由基站接收该丢包提示后传给刚体,以使刚体能控制发光标的物正确发光。
步骤S303:根据上述丢包提示,刚体自动从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据该编码数据控制对应的发光标的物发光;
此时由于未接收到触发信号,刚体不再根据基站发出的触发信号来控制发光标的物,而是自动的从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,从而使得每个发光标的物仍然能够正确展示代表明暗程度的编码数据,避免了因无线网络或者其他原因造成的触发信号传输缺失的问题。
如图2所示,第④脉冲丢失时本来的“1”被最终识别成了“0”,导致编码识别错误。通过本发明后,如图4所示,刚体主动获取了正确的编码数据,使得即使丢失同步触发信号的情况下,产生了丢包现象,发光标的物依然能显 示正确的编码数据,对应的相机也能捕获正确的编码数据,避免了编码识别错误的产生。
本实施例解决编码式主动光动捕系统同步通讯丢包方法,在基站的同步触发信号出现丢包情况时,刚体自动按照预设的时间间隔获取正确的编码数据,即发生丢包时,刚体自动按照一定帧率显示明暗状态,丢包的正确编码数据由刚体自动发出。基站发出的同步触发信号依然作为激活标的物和同步各器件时序的第一依据,两者进行有机的结合起来,当传输不丢包时,依然按照基站的同步触发信号来传输,通过同步触发信号激活正确的编码,从而解决由丢包造成的识别错误编码数据的问题。
在一个实施例中,提出了一种解决编码式主动光动捕系统同步通讯丢包装置,如图5所示,该装置包括:
判断模块,用于判断在预设的间隔时间内是否收到同步触发信号,间隔时间为预设的帧率时间加预设的超时时间;触发调用模块,用于若在间隔时间内接收到同步触发信号,则根据该同步触发信号从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据编码数据控制对应的发光标的物发光;丢包调用模块,用于若超过间隔时间未收到同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据编码数据控制对应的发光标的物发光。
在一个实施例中,上述判断模块,包括:计时单元,用于初始化预设的计时软件,通过计时软件开始计时;归零计时单元,用于若在间隔时间内接收到同步触发信号,对计时软件归零后,跳转到计时单元中的通过计时软件开始计时;延迟计时单元,用于若超过间隔时间未收到同步触发信号,根据超时时间,延迟跳转到计时单元中的通过计时软件开始计时。
在一个实施例中,延迟计时单元,还用于读取超时时间,对计时软件归零后,则以超时时间为初始时间跳转到计时单元中的通过计时软件开始计时。
在一个实施例中,丢包调用模块还包括:
判断完整性单元,用于接收一个识别周期内所有发光标的物的总编码信息,判断该总编码信息的长度是否为预设的编码长度与发光标的物个数的乘积;
丢包反馈单元,用于该总编码信息的长度不是预设的编码长度与发光标的物个数的乘积,判定为超过该间隔时间未收到同步触发信号,则将丢包提示反馈给基站,并通过基站将丢包提示传送给刚体;
自动控制单元,用于根据丢包提示,刚体自动从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据该编码数据控制对应的发光标的物发光。
一种编码式主动光动捕系统,包括服务器、基站、相机及刚体,服务器用于为每个刚体生成唯一的总编码信息,并通过基站下发至刚体,同时接收来自相机的图像数据,根据图像信息对刚体进行识别;基站用于生成同步触发信号并向刚体和相机发送同步触发信号;相机用于在接收到同步触发信号之后,对刚体进行曝光拍摄,以及将拍摄得到的图像数据发送至服务器;刚体包括多个发光标的物,用于采用上述各实施例的解决编码式主动光动捕系统同步通讯丢包方法对发光标的物的发光亮度进行控制。
在一个实施例中,提出了一种解决编码式主动光动捕系统同步通讯丢包设备,该设备包括:存储器、处理器以及存储在存储器上并可在处理器上运行的解决编码式主动光动捕系统同步通讯丢包程序,解决编码式主动光动捕系统同步通讯丢包程序被处理器执行时实现上述各实施例的解决编码式主动光动捕系统同步通讯丢包方法中的步骤。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对 上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明一些示例性实施例,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种解决编码式主动光动捕系统同步通讯丢包方法,其特征在于,所述方法包括以下步骤:
    判断在预设的间隔时间内是否收到同步触发信号,所述间隔时间为预设的帧率时间加预设的超时时间;
    若在所述间隔时间内接收到所述同步触发信号,则根据所述同步触发信号,从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光;
    若超过所述间隔时间未收到所述同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
  2. 根据权利要求1所述的解决编码式主动光动捕系统同步通讯丢包方法,其特征在于,所述判断在预设的间隔时间内是否收到同步触发信号,所述间隔时间为预设的帧率时间加预设的超时时间,包括:
    初始化预设的计时软件,通过所述计时软件开始计时;
    若在所述间隔时间内接收到所述同步触发信号,对所述计时软件归零后,继续进行通过所述计时软件开始计时步骤;
    若超过所述间隔时间未收到所述同步触发信号,根据所述超时时间,进行通过所述计时软件开始计时步骤。
  3. 根据权利要求2所述的解决编码式主动光动捕系统同步通讯丢包方法,其特征在于,所述若超过所述间隔时间未收到所述同步触发信号,根据所述超时时间,进行通过所述计时软件开始计时步骤,包括:
    读取所述超时时间,对所述计时软件归零后,则以所述超时时间为初始时间进行通过所述计时软件开始计时步骤。
  4. 根据权利要求1所述的解决编码式主动光动捕系统同步通讯丢包方法, 其特征在于,所述若超过所述间隔时间未收到所述同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光,包括:
    接收一个识别周期内所有发光标的物的总编码信息,判断所述总编码信息的长度是否为预设的编码长度与发光标的物个数的乘积;
    若不是,判定为超过所述间隔时间未收到所述同步触发信号,则将丢包提示反馈给所述基站,并通过所述基站将丢包提示传送给刚体;
    根据所述丢包提示,所述刚体自动从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
  5. 一种解决编码式主动光动捕系统同步通讯丢包装置,其特征在于,所述装置包括:
    判断模块,用于判断在预设的间隔时间内是否收到同步触发信号,所述间隔时间为预设的帧率时间加预设的超时时间;
    触发调用模块,用于若在所述间隔时间内接收到所述同步触发信号,则根据所述同步触发信号,从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光;
    丢包调用模块,用于若超过所述间隔时间未收到所述同步触发信号,则自动从寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
  6. 根据权利要求5所述的解决编码式主动光动捕系统同步通讯丢包装置,其特征在于,所述判断模块,包括:
    计时单元,用于初始化预设的计时软件,通过所述计时软件开始计时;
    归零计时单元,用于若在所述间隔时间内接收到所述同步触发信号,对所述计时软件归零后,跳转到计时单元中的通过所述计时软件开始计时;
    延迟计时单元,用于若超过所述间隔时间未收到所述同步触发信号,根据所述超时时间,延迟跳转到计时单元中的通过所述计时软件开始计时。
  7. 根据权利要求6所述的解决编码式主动光动捕系统同步通讯丢包装置,其特征在于,所述延迟计时单元,还用于读取所述超时时间,对所述计时软件归零后,则以所述超时时间为初始时间跳转到计时单元中的通过所述计时软件开始计时。
  8. 根据权利要求5所述的解决编码式主动光动捕系统同步通讯丢包装置,其特征在于,所述丢包调用模块还包括:
    判断完整性单元,用于接收一个识别周期内所有发光标的物的总编码信息,判断所述总编码信息的长度是否为预设的编码长度与发光标的物个数的乘积;
    丢包反馈单元,用于所述总编码信息的长度不是预设的编码长度与发光标的物个数的乘积,判定为超过所述间隔时间未收到所述同步触发信号,则将丢包提示反馈给所述基站,并通过所述基站将丢包提示传送给刚体;
    自动控制单元,用于根据所述丢包提示,所述刚体自动从自身寄存器的每个发光标的物的编码信息中按顺序分别调用一位编码数据,根据所述编码数据控制对应的发光标的物发光。
  9. 一种编码式主动光动捕系统,包括服务器、基站、相机及刚体,其特征在于,所述服务器用于为每个刚体生成唯一的编码信息,并通过所述基站下发至所述刚体,同时接收来自所述相机的图像数据,根据所述图像信息对所述刚体进行识别;
    所述基站用于生成同步触发信号并向所述刚体和所述相机发送所述同步触发信号;
    所述相机用于在接收到所述同步触发信号之后,对所述刚体进行曝光拍摄,以及将拍摄得到的图像数据发送至所述服务器;
    所述刚体包括多个发光标的物,用于采用权利要求1-4中任一项所述的方法对所述发光标的物的发光亮度进行控制。
  10. 一种解决编码式主动光动捕系统同步通讯丢包设备,其特征在于,所述设备包括:
    存储器、处理器以及存储在所述存储器上并可在所述处理器上运行的解决编码式主动光动捕系统同步通讯丢包程序,所述解决编码式主动光动捕系统同步通讯丢包程序被所述处理器执行时实现如权利要求1至4中任一项所述的解决编码式主动光动捕系统同步通讯丢包方法的步骤。
PCT/CN2020/139277 2019-12-26 2020-12-25 解决编码式主动光动捕系统同步通讯丢包方法及相关设备 WO2021129790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911364306.4 2019-12-26
CN201911364306.4A CN111082897B (zh) 2019-12-26 2019-12-26 解决编码式主动光动捕系统同步通讯丢包方法及相关设备

Publications (1)

Publication Number Publication Date
WO2021129790A1 true WO2021129790A1 (zh) 2021-07-01

Family

ID=70317925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139277 WO2021129790A1 (zh) 2019-12-26 2020-12-25 解决编码式主动光动捕系统同步通讯丢包方法及相关设备

Country Status (2)

Country Link
CN (2) CN113037434B (zh)
WO (1) WO2021129790A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113037434B (zh) * 2019-12-26 2022-04-15 深圳市瑞立视多媒体科技有限公司 解决编码式主动光动捕系统同步通讯丢包方法及相关设备
CN111931614B (zh) * 2020-07-24 2024-04-19 深圳市瑞立视多媒体科技有限公司 主动光刚体识别方法、装置、设备及存储介质
CN114461093B (zh) * 2021-08-19 2023-01-20 荣耀终端有限公司 一种环境光的检测方法、电子设备、芯片系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160140930A1 (en) * 2014-11-13 2016-05-19 WorldViz LLC Methods and systems for virtual and augmented reality
CN107390448A (zh) * 2017-09-06 2017-11-24 成都豪宇韬鹰科技有限公司 一种主动式光学动作捕捉系统
CN107767394A (zh) * 2016-08-16 2018-03-06 蒋博 一种运动目标的定位和姿态估计方法、装置及系统
US20180091720A1 (en) * 2015-03-04 2018-03-29 Cineo Lighting Inc. Synchronized lighting and video active lighting tracks (valt) with synchronized camera to enable multi-scheme motion picture capture
CN109067403A (zh) * 2018-08-02 2018-12-21 北京轻威科技有限责任公司 一种主动光标识球编解码方法及系统
CN111082897A (zh) * 2019-12-26 2020-04-28 深圳市瑞立视多媒体科技有限公司 解决编码式主动光动捕系统同步通讯丢包方法及相关设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU8754982A (en) * 1981-08-25 1983-03-03 Allflex International Limited Electronic identification method
US6324296B1 (en) * 1997-12-04 2001-11-27 Phasespace, Inc. Distributed-processing motion tracking system for tracking individually modulated light points
CN101719809B (zh) * 2009-11-25 2012-10-10 中兴通讯股份有限公司 一种媒体数据包丢包恢复的方法及系统
US8944939B2 (en) * 2012-02-07 2015-02-03 University of Pittsburgh—of the Commonwealth System of Higher Education Inertial measurement of sports motion
JP7051107B2 (ja) * 2016-07-22 2022-04-11 国立大学法人 東京大学 送信装置、受信装置及びプログラム
CN107743054A (zh) * 2017-08-25 2018-02-27 杭州德泽机器人科技有限公司 一种多传感器同步对时系统
CN207148496U (zh) * 2017-09-06 2018-03-27 成都豪宇韬鹰科技有限公司 一种主动式光学动作捕捉系统
KR102056064B1 (ko) * 2017-10-27 2019-12-16 (주)유양디앤유 광학 카메라 통신 장치 및 방법
CN108709497B (zh) * 2018-04-11 2024-04-12 中国铁道科学研究院集团有限公司 一种接触网几何参数检测装置
US10284752B1 (en) * 2018-05-22 2019-05-07 BioForce Analytics LLC Method for determining a start offset between a video recording device and an inertial measurement unit for use in synchronizing motion data of an object collected by the inertial measurement unit attached to the object with video frames captured by an image sensor of the video recording device of the object in motion
CN110568923A (zh) * 2019-07-09 2019-12-13 深圳市瑞立视多媒体科技有限公司 基于Unity3D的虚拟现实交互方法、装置、设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160140930A1 (en) * 2014-11-13 2016-05-19 WorldViz LLC Methods and systems for virtual and augmented reality
US20180091720A1 (en) * 2015-03-04 2018-03-29 Cineo Lighting Inc. Synchronized lighting and video active lighting tracks (valt) with synchronized camera to enable multi-scheme motion picture capture
CN107767394A (zh) * 2016-08-16 2018-03-06 蒋博 一种运动目标的定位和姿态估计方法、装置及系统
CN107390448A (zh) * 2017-09-06 2017-11-24 成都豪宇韬鹰科技有限公司 一种主动式光学动作捕捉系统
CN109067403A (zh) * 2018-08-02 2018-12-21 北京轻威科技有限责任公司 一种主动光标识球编解码方法及系统
CN111082897A (zh) * 2019-12-26 2020-04-28 深圳市瑞立视多媒体科技有限公司 解决编码式主动光动捕系统同步通讯丢包方法及相关设备

Also Published As

Publication number Publication date
CN113037434A (zh) 2021-06-25
CN113037434B (zh) 2022-04-15
CN111082897B (zh) 2021-05-18
CN111082897A (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2021129790A1 (zh) 解决编码式主动光动捕系统同步通讯丢包方法及相关设备
TWI404370B (zh) 通訊裝置
EP1790938A2 (en) Shooting range simulator system and method
CN101040520A (zh) 用于同步音频/视频信号的播放的方法和系统
CN102006120A (zh) 可见光通信装置及方法
US20110035174A1 (en) Time synchronization in an image processing circuit
RU2015114435A (ru) Интерактивная система, способ управления для интерактивной системы и проектор
WO2016031359A1 (ja) 制御装置、制御方法、及びプログラム
US3732541A (en) Method and apparatus for evaluating repetitively transmitted signals
CN111213368B (zh) 刚体识别方法、装置、系统及终端设备
CN1630889A (zh) 在双向目标中定义组的方法
CN103117802B (zh) 可见光通信系统中基于自适应速率适配的通信方法
CN103323029A (zh) 一种卫星遥感相机起始成像时刻误差测试方法
WO2018205115A1 (zh) 检测装置和方法
JP7051107B2 (ja) 送信装置、受信装置及びプログラム
US20150131428A1 (en) Method and apparatus for recovering error in rdm protocol
CN115457154A (zh) 三维扫描仪的标定方法、装置、计算机设备和存储介质
CN113125109B (zh) 一种图像曝光时间量测系统及标板设备
WO2010087496A1 (ja) ネットワークシステム
JP2020012615A (ja) 訓練システム及び射撃判定方法
JP2004214899A (ja) 多光軸光電センサ
US20110141936A1 (en) Transmission apparatus and transmission method
KR101456653B1 (ko) 단일 와이어 신호재생 전송장치 및 방법과 직렬 연결된 단일 와이어 신호재생 전송장치들
JP5490048B2 (ja) レーザ光を利用した訓練システム
WO2014136244A1 (ja) 制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908004

Country of ref document: EP

Kind code of ref document: A1