WO2021129670A1 - 电子阻挡薄膜、量子点发光二极管及其制备方法 - Google Patents

电子阻挡薄膜、量子点发光二极管及其制备方法 Download PDF

Info

Publication number
WO2021129670A1
WO2021129670A1 PCT/CN2020/138653 CN2020138653W WO2021129670A1 WO 2021129670 A1 WO2021129670 A1 WO 2021129670A1 CN 2020138653 W CN2020138653 W CN 2020138653W WO 2021129670 A1 WO2021129670 A1 WO 2021129670A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum dot
dot light
blocking film
electron blocking
emitting layer
Prior art date
Application number
PCT/CN2020/138653
Other languages
English (en)
French (fr)
Inventor
李雪
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2021129670A1 publication Critical patent/WO2021129670A1/zh
Priority to US17/851,785 priority Critical patent/US20220328776A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • This application relates to the technical field of quantum dots, in particular to an electron blocking film for quantum dot light-emitting diodes, a quantum dot light-emitting diode and a preparation method thereof.
  • Quantum dots have the advantages of adjustable luminescence wavelength, narrow peak width, high luminous efficiency, long life, high thermal stability and excellent solution processability. And lighting, solar cells, biomarkers and other fields have broad application prospects.
  • Quantum dots (QD) luminescent materials play a great role in LED (light emitting diode) lighting, liquid crystal display and other fields. Quantum dots replace traditional phosphors and effectively improve the color gamut of LEDs and liquid crystal displays.
  • QLEDs Quantum Dot Light-Emitting Diodes
  • QLEDs Quantum Dot Light-Emitting Diodes
  • Quantum dot light-emitting diodes are formed by combining electrons and holes on both sides in the quantum dot layer to form exciton recombination light. Under the action of an electric field, the electrons in the cathode and the holes in the anode will move to the light-emitting layer of the device under the drive of an external driving voltage. In the process of moving to the light-emitting layer of the device, in order to facilitate the injection and migration of carriers , A hole injection layer, a hole transport layer, an electron injection layer and an electron transport layer are respectively arranged on both sides of the quantum dot light-emitting layer.
  • electrons and holes must first overcome the difference between the cathode and the electron injection layer, and the anode and the hole injection layer.
  • the barrier between the energy level and the electron injection layer and the hole injection layer move to the electron transport layer and the hole transport layer of the device.
  • the electron transport layer and the hole transport layer move the electrons and holes to the light emitting layer of the device, respectively. And recombine into excitons in the quantum dot light-emitting layer to emit light.
  • the current hole mobility is relatively low relative to the electron mobility, resulting in the unequal number of electrons and holes in the light-emitting layer of the quantum dots.
  • One of the objectives of the embodiments of the present application is to provide an electron blocking film for quantum dot light emitting diodes, quantum dot light emitting diodes and preparation methods thereof, aiming to solve the problem that the existing hole mobility is relatively low relative to the electron mobility.
  • the number of electrons and holes in the quantum dot light-emitting layer is not equal, and at the same time, it is easy to cause excitons to recombine in the hole transport layer instead of recombining in the desired quantum dot light-emitting layer.
  • an electron blocking film for quantum dot light-emitting diodes includes a compound with the general formula R 1 -Si(OR 2 ) 3 ; or, a raw material for forming the electron blocking film Including compounds with the general formula R 1 -Si(OR 2 ) 3 ; wherein, R 2 is selected from: one of H, CH 3 , and C 2 H 5 , and R 1 is selected from: (CH 2 ) n X, n Is an integer between 3-6, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , -COOH, R 3 is (CH 2 ) m CH 3 , m is an integer between 1-7.
  • a quantum dot light emitting diode in a second aspect, includes an anode and a cathode disposed oppositely; a quantum dot light emitting layer, the quantum dot light emitting layer is disposed between the anode and the cathode;
  • the electron blocking film is disposed between the quantum dot light-emitting layer and the cathode, or the electron blocking film is disposed between the quantum dot light-emitting layer and the Between the anodes.
  • a method for manufacturing a quantum dot light-emitting diode which includes the following steps:
  • R 2 is selected from: one of H, CH 3 , and C 2 H 5
  • R 1 is selected from: (CH 2 ) n X
  • n is an integer between 3 and 6
  • X is selected from: -P( OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , and -COOH
  • R 3 is (CH 2 ) m CH 3
  • m is an integer between 1-7.
  • a method for manufacturing a quantum dot light-emitting diode which includes the following steps:
  • R 2 is selected from: one of H, CH 3 , and C 2 H 5
  • R 1 is selected from: (CH 2 ) n X
  • n is an integer between 3 and 6
  • X is selected from: -P( OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , and -COOH
  • R 3 is (CH 2 ) m CH 3
  • m is an integer between 1-7.
  • the electron blocking film for quantum dot light emitting diodes includes a compound with the general formula R 1 -Si(OR 2 ) 3 ; or,
  • the raw materials for forming the electron blocking film include compounds with the general formula R 1 -Si(OR 2 ) 3 ; wherein, the organic functional group R 1 can interact with the dangling bonds on the quantum dot surface in the quantum dot light-emitting layer, so that silane
  • the coupling agent can be coordinated to the surface of the quantum dot, and can also undergo a coupling coordination reaction with ligands such as hydroxyl, amino, and carboxyl groups on the surface of the quantum dot.
  • R 2 is selected from: one of H, CH 3 , C 2 H 5 , and Si(OR 2 ) 3 siloxy group containing R 2 can interact with other functional layers coupling reaction.
  • the electron blocking film of the present application can not only adjust the injection rate of electrons into the light-emitting layer, make the number of holes and electrons in the quantum dot light-emitting layer equal, and improve the recombination efficiency of electrons and holes in the light-emitting layer; and it can also serve as a better interface
  • the modification effect reduces the surface roughness of the quantum dot light-emitting layer, so that the overall performance of the quantum dot light-emitting diode is more stable.
  • the quantum dot light-emitting diode includes an anode and a cathode disposed oppositely, and a quantum dot light-emitting layer disposed between the anode and the cathode is disposed on the quantum dot light-emitting diode.
  • the electron blocking film between the point light emitting layer and the cathode, or the electron blocking film disposed between the quantum dot light emitting layer and the anode, the electron blocking film includes the general formula R 1 -Si(OR 2 )
  • the compound of 3 wherein the organic functional group R 1 can interact with the dangling bonds on the surface of the quantum dot in the quantum dot light-emitting layer, so that the silane coupling agent can be coordinated to the surface of the quantum dot, and can also interact with the hydroxyl group on the surface of the quantum dot.
  • R 2 is selected from: H, One of CH 3 and C 2 H 5 , the Si(OR 2 ) 3 siloxy group containing R 2 can undergo a coupling reaction with the inorganic metal material of the cathode.
  • the silane coupling agent in the electron blocking film It is insulating, so that the number of electrons injected into the light-emitting layer is reduced to a certain extent, so that the number of holes and electrons in the quantum dot light-emitting layer is equal, reducing the accumulation of electrons in the device, allowing excitons to undergo radiation transitions, and reducing Auger recombination
  • the silane coupling agent in the electron blocking film can play a better interface modification effect, not only makes the connection between the quantum dot light-emitting layer and the cathode closer, but also reduces the surface roughness of the quantum dot light-emitting layer and spreads evenly The leveling is better, so that the overall performance of the quantum dot light-emitting diode is more stable;
  • the silane coupling agent in the electron blocking film can also absorb a small amount of water vapor, which can absorb the water absorbed in the later stage of the device, and reduce the impact of water vapor on the
  • the preparation method of the quantum dot light-emitting diode has the beneficial effect that the method includes the step of depositing a compound with the general formula R 1 -Si(OR 2 ) 3 between the quantum dot light-emitting layer and the cathode or anode to form electrons.
  • the barrier film has the beneficial effect that the method includes the step of depositing a compound with the general formula R 1 -Si(OR 2 ) 3 between the quantum dot light-emitting layer and the cathode or anode to form electrons.
  • the electron barrier film uses at least one R 1 -Si(OR 2 ) 3 compound as a raw material, wherein R 2 is selected from one of H, CH 3 , and C 2 H 5 , and R 1 is selected from: ( CH 2 ) n X, n is an integer between 3 and 6, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , and -COOH, R 3 is (CH 2 ) m CH 3 , and m is an integer between 1 and 7.
  • the electron blocking film is formed by coupling the compound in the electron blocking film with the adjacent quantum dot light-emitting layer and functional layers such as cathode or anode. .
  • the preparation method provided in this application firmly combines the electron blocking film between the quantum dot light-emitting layer and the cathode or anode through chemical reactions such as coupling and coordination, and is simple to operate, suitable for mass production and industrial applications, and at the same time, the prepared
  • the electron and hole recombination efficiency in the quantum dot light-emitting diode is high, and the light-emitting performance is good.
  • FIG. 1 is a schematic diagram of the structure of a quantum dot light-emitting diode provided in Example 1 of the present application.
  • FIG. 2 is a schematic diagram of the structure of a quantum dot light-emitting diode provided in Embodiment 2 of the present application.
  • FIG. 3 is a schematic flowchart of a method for manufacturing a quantum dot light-emitting diode provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of another method for manufacturing a quantum dot light-emitting diode provided by an embodiment of the present application.
  • first and second are only used for description purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, “multiple” means two or more than two, unless otherwise specifically defined.
  • the weight of the relevant components mentioned in the description of the embodiments of this application can not only refer to the specific content of each component, but also can indicate the proportion of weight between the components. Therefore, as long as it is in accordance with the relevant group of the description of the embodiments of this application, Enlargement or reduction of the content of the fennel in proportion is within the scope disclosed in the specification of the embodiments of the present application.
  • the weight described in the specification of the embodiments of the present application may be a mass unit well-known in the chemical industry, such as ⁇ g, mg, g, and kg.
  • the embodiment of the present application provides an electron blocking film for quantum dot light emitting diodes, the electron blocking film includes a compound with the general formula R 1 -Si(OR 2 ) 3 ; or, a raw material for forming the electron blocking film Including compounds with the general formula R 1 -Si(OR 2 ) 3 ; wherein, R 2 is selected from: one of H, CH 3 , and C 2 H 5 , and R 1 is selected from: (CH 2 ) n X, n Is an integer between 3-6, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , -COOH, R 3 is (CH 2 ) m CH 3 , m is an integer between 1-7.
  • the electron blocking film for quantum dot light-emitting diodes includes a compound with the general formula R 1 -Si(OR 2 ) 3 ; or, the raw material for forming the electron blocking film includes the general formula R 1- Si(OR 2 ) 3 compounds; among them, the organic functional group R 1 can interact with the dangling bonds on the quantum dot surface in the quantum dot light-emitting layer, so that the silane coupling agent can be coordinated to the quantum dot surface and can interact with the quantum dot surface.
  • R 2 is selected From: one of H, CH 3 , and C 2 H 5 , the Si(OR 2 ) 3 siloxy group containing R 2 can undergo a coupling reaction with other functional layers.
  • the electron blocking film provided by the embodiments of the present application can not only adjust the injection rate of electrons into the light-emitting layer, make the number of holes and electrons in the quantum dot light-emitting layer equal, and improve the recombination efficiency of electrons and holes in the light-emitting layer;
  • the better interface modification effect reduces the surface roughness of the quantum dot light-emitting layer, so that the overall performance of the quantum dot light-emitting diode is more stable.
  • the electron blocking film containing the compound of the general formula R 1 -Si(OR 2 ) 3 provided by the embodiments of the present application can be used to resist the insulating R 1 -Si(OR 2 ) 3 compound itself in the barrier layer.
  • the transmission rate and stability of electrons can be adjusted, and the electron can be transported by the coupling polymer formed after the R 1 -Si(OR 2 ) 3 compound in the barrier layer is combined with the quantum dot light-emitting layer and other functional layers.
  • the rate plays a regulatory role.
  • Adjustment can better ensure that the number of holes and electrons in the quantum dot light-emitting layer are equal, and improve the recombination efficiency of electrons and holes in the light-emitting layer.
  • the electron blocking film includes a compound having the general formula R 1 -Si(OR 2 ) 3 ; wherein, R 2 is selected from: one of H, CH 3 , and C 2 H 5 , R 1 Selected from: (CH 2 ) n X, n is 3 or 4, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , -COOH, R 3 is (CH 2 ) m CH 3 , and m is an integer between 2-5.
  • the number of methylene groups selected is different, and the length of the flexible segment is also different, which makes the interaction between the silane coupling agent and the quantum dot ligand also occur.
  • the strength of the silane coupling agent is different. As the value of n and m increase, the flexible segment grows, and the exchange effect between the quantum dots and the silane coupling agent is enhanced. When the solubility of the silane coupling agent is constant, the thickness of the silane coupling agent will also increase. The increase of, the ability to block electrons is enhanced.
  • n in R 1 is 3 or 4
  • m is an integer between 2 and 5.
  • the R 1 group of the compound of the electron blocking film R 1 -Si(OR 2 ) 3 When X is selected from different groups such as -P(OR 3 ) 2 , -P(R 3 ) 2 , -SH, -NH 2 , -COOH, etc., the order of the strength of the coordination interaction with the quantum dot is -NH 2. -SH, -P(OR 3 ) 2 , -P(R 3 ) 2 , -COOH.
  • the binding force of the electron blocking film R 1 -Si(OR 2 ) 3 to the surface of the quantum dot is in the order of -NH 2 , -SH, -P(OR 3 ) 2 , -P(R 3 ) 2 , -COOH.
  • the electron blocking film includes a compound with the general formula NH 2 (CH 2 ) n -Si(OR 2 ) 3 , wherein R 2 is selected from the group consisting of H, CH 3 , and C 2 H 5 One kind, n is 3 or 4.
  • the electron blocking film used in the quantum dot light-emitting diode of the embodiment of the application is tightly combined with the quantum dot layer, and the device has the best stability.
  • the electron blocking film includes a compound with the general formula SH(CH 2 ) n -Si(OR 2 ) 3 , wherein R 2 is selected from the group consisting of H, CH 3 , and C 2 H 5 One kind, n is 3 or 4.
  • R 2 is selected from the group consisting of H, CH 3 , and C 2 H 5
  • n is 3 or 4.
  • the electron blocking film of the quantum dot light-emitting diode of the embodiment of the present application is tightly combined with the quantum dot layer, and the device has good stability.
  • the electron blocking film includes ⁇ -mercaptopropyltrimethoxysilane. In some embodiments, the electron blocking film includes 3-aminopropyltriethoxysilane. In some embodiments, the electron blocking film includes ⁇ -mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • the electron blocking film in the embodiment of the present application includes ⁇ -mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, or both -mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane. Silane and the resulting electron blocking film can be tightly combined with the quantum dot light-emitting layer and other functional layers, improve the compactness of the device interface layer, and help improve the stability of electron transport and the stability of the device.
  • the thickness of the electron blocking film is 2-30 nm.
  • the electron blocking film with a thickness of 2-30nm in the quantum dot light-emitting diode of the embodiment of the present application has the most suitable control effect on the injection rate of electrons, so that the electrons and holes injected into the quantum dot light-emitting layer have the best matching logarithm At this time, the recombination efficiency of electrons and holes is the highest.
  • the electron blocking film is selected from materials such as ⁇ -mercaptopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, etc.; the thickness of the electron blocking film is 2-30 nm.
  • an embodiment of the present application provides a quantum dot light emitting diode
  • the quantum dot light emitting diode includes an anode and a cathode disposed oppositely,
  • a quantum dot light-emitting layer is disposed between the anode and the cathode;
  • the electron blocking film is disposed between the quantum dot light-emitting layer and the cathode, or the electron blocking film is disposed between the quantum dot light-emitting layer and the Between the anodes.
  • the quantum dot light-emitting diode provided by the embodiment of the present application includes an anode and a cathode disposed oppositely, a quantum dot light-emitting layer disposed between the anode and the cathode, and a quantum dot light-emitting layer disposed between the quantum dot light-emitting layer and the cathode or anode
  • the electron blocking film includes a compound with the general formula R 1 -Si(OR 2 ) 3 , wherein the organic functional group R 1 can interact with the dangling bonds on the surface of the quantum dot in the quantum dot light-emitting layer.
  • the silane coupling agent can be coordinated to the surface of the quantum dot, and it can also undergo a coupling coordination reaction with ligands such as hydroxyl, amino, and carboxyl groups on the surface of the quantum dot, further making the quantum dot and the silane coupling agent interact closely.
  • the interface layer is dense, which is conducive to improving the stability of electron transport and device;
  • R 2 is selected from one of H, CH 3 , C 2 H 5 , and Si(OR 2 ) 3 siloxy group containing R 2 can interact with The metal material of the cathode undergoes a coupling reaction.
  • the silane coupling agent in the electron blocking film has insulation It can reduce the number of electrons injected into the light-emitting layer to a certain extent, so that the number of holes and electrons in the quantum dot light-emitting layer is equal, reducing the electron accumulation phenomenon of the device, allowing excitons to undergo radiation transitions and reducing Auger recombination;
  • the silane coupling agent in the electron blocking film can play a better interface modification effect, not only makes the connection between the quantum dot light-emitting layer and the cathode closer, but also reduces the surface roughness of the quantum dot light-emitting layer, and spreads evenly and smoothly.
  • the silane coupling agent in the electron blocking film can also absorb a small amount of water vapor, which can absorb the water absorbed in the later stage of the device, and reduce the damage of the water vapor to the quantum dot light-emitting diode device. Make the overall performance of the device more stable and longer life.
  • the electron blocking film containing the compound of the general formula R 1 -Si(OR 2 ) 3 provided by the embodiments of the present application can be used to resist the insulating R 1 -Si(OR 2 ) 3 compound itself in the barrier layer.
  • the transmission rate and stability of electrons can be adjusted, and the electron can be transported by the coupling polymer formed after the R 1 -Si(OR 2 ) 3 compound in the barrier layer is combined with the quantum dot light-emitting layer and other functional layers.
  • the rate plays a regulatory role.
  • the interaction between the R 1 -Si(OR 2 ) 3 compound and the R 1 -Si(OR 2 ) 3 compound in the electron blocking film and the adjacent functional layer after polymerization is realized to achieve the duality of the electron transmission rate and the transmission stability Adjustment can better ensure that the number of holes and electrons in the quantum dot light-emitting layer are equal, and improve the recombination efficiency of electrons and holes in the light-emitting layer.
  • the electron blocking film includes a compound having the general formula R 1 -Si(OR 2 ) 3 ; wherein, R 2 is selected from: one of H, CH 3 , and C 2 H 5 , R 1 Selected from: (CH 2 ) n X, n is 3 or 4, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , -COOH, R 3 is (CH 2 ) m CH 3 , and m is an integer between 2-5.
  • the number of methylene groups selected is different, and the length of the flexible segment is also different, which makes the interaction between the silane coupling agent and the quantum dot ligand also occur.
  • the strength of the silane coupling agent is different. As the value of n and m increase, the flexible segment grows, and the exchange effect between the quantum dots and the silane coupling agent is enhanced. When the solubility of the silane coupling agent is constant, the thickness of the silane coupling agent will also increase. The increase of, the ability to block electrons is enhanced.
  • n in R 1 is 3 or 4
  • m is an integer between 2 and 5.
  • the R 1 group of the compound of the electron blocking film R 1 -Si(OR 2 ) 3 When X is selected from different groups such as -P(OR 3 ) 2 , -P(R 3 ) 2 , -SH, -NH 2 , -COOH, etc., the order of the strength of the coordination interaction with the quantum dot is -NH 2. -SH, -P(OR 3 ) 2 , -P(R 3 ) 2 , -COOH.
  • the binding force of the electron blocking film R 1 -Si(OR 2 ) 3 to the surface of the quantum dot is in the order of -NH 2 , -SH, -P(OR 3 ) 2 , -P(R 3 ) 2 , -COOH.
  • the electron blocking film includes a compound with the general formula NH 2 (CH 2 ) n -Si(OR 2 ) 3 , wherein R 2 is selected from the group consisting of H, CH 3 , and C 2 H 5 One kind, n is 3 or 4.
  • the electron blocking film of the quantum dot light-emitting diode of the embodiment of the present application is tightly combined with the quantum dot layer, and the device has the best stability.
  • the electron blocking film includes a compound with the general formula SH(CH 2 ) n -Si(OR 2 ) 3 , wherein R 2 is selected from the group consisting of H, CH 3 , and C 2 H 5 One kind, n is 3 or 4.
  • R 2 is selected from the group consisting of H, CH 3 , and C 2 H 5
  • n is 3 or 4.
  • the electron blocking film of the quantum dot light-emitting diode of the embodiment of the present application is tightly combined with the quantum dot layer, and the device has good stability.
  • the electron blocking film includes: at least one of ⁇ -mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane, or the raw material for forming the electron blocking film includes ⁇ - At least one of mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane.
  • Materials such as ⁇ -mercaptopropyltrimethoxysilane and 3-aminopropyltriethoxysilane in the electron blocking film in the examples of this application can be tightly combined with the quantum dot light-emitting layer and the cathode to improve the compactness of the device interface layer. It is beneficial to improve the stability of electron transmission and the stability of the device.
  • the thickness of the electron blocking film is 2-30 nm.
  • the electron blocking film with a thickness of 2-30nm in the quantum dot light-emitting diode of the embodiment of the present application has the most suitable control effect on the injection rate of electrons, so that the electrons and holes injected into the quantum dot light-emitting layer have the best matching logarithm At this time, the recombination efficiency of electrons and holes is the highest.
  • the thickness of the electron blocking film is too thin, the effect of controlling the injection rate of electrons is not obvious; if the thickness of the electron blocking film is too thick, the blocking effect on electrons will be excessive, resulting in the number of electrons in the quantum dot light-emitting layer being less than the number of holes, thus The luminous efficiency of the quantum dot light-emitting diode is reduced.
  • the material of the quantum dot light-emitting layer is selected from the group consisting of: Group II-IV, Group II-VI, Group II-V, Group III-V, Group III-VI, Group IV-VI, Periodic Table of Elements, At least one of I-III-VI group, II-IV-VI group, II-IV-V group semiconductor compound, or a core-shell structure semiconductor compound composed of at least two of the above-mentioned semiconductor compounds, wherein the II-IV group semiconductor compound Compound refers to a semiconductor compound composed of group II and group IV elements. The same applies to other semiconductor compounds.
  • the material of the quantum dot light-emitting layer is selected from at least one semiconductor nanocrystalline compound selected from CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, or At least two types of semiconductor nanocrystalline compounds composed of mixed type, gradient mixed type, core-shell structure type, or combined type.
  • the quantum dot material is selected from at least one of InAs, InP, InN, GaN, InSb, InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe A semiconductor nanocrystalline compound, or a semiconductor nanocrystalline compound of at least two types of composition, a mixed type, a gradient mixed type, a core-shell structure type, or a combined type.
  • the aforementioned quantum dot materials have the characteristics of quantum dots and have good photoelectric properties.
  • the material of the quantum dot light-emitting layer in the embodiments of this application can be any semiconductor quantum dot material, as long as it can undergo a coordination coupling reaction with the organic functional group in the silane coupling agent in the electron blocking film, so that the electron blocking film can be better combined in One side surface of the quantum dot light-emitting layer can adjust the injection rate of electrons and modify the interface.
  • the material of the quantum dot light-emitting layer is selected from at least one of perovskite nanoparticle materials (especially luminescent perovskite nanoparticle materials), metal nanoparticle materials, and metal oxide nanoparticle materials.
  • perovskite nanoparticle materials especially luminescent perovskite nanoparticle materials
  • metal nanoparticle materials especially metal nanoparticle materials
  • metal oxide nanoparticle materials kind.
  • the aforementioned quantum dot materials have the characteristics of quantum dots and have good photoelectric properties.
  • a ligand is bound to the material surface of the quantum dot light-emitting layer, and the ligand is selected from the group consisting of acid ligands, thiol ligands, amine ligands, phosphine oxide ligands, phosphine ligands, and phospholipids. , At least one of soft phospholipid and polyvinylpyridine.
  • the material surface of the quantum dot light-emitting layer of the embodiments of the present application is combined with at least one of acid ligands, thiol ligands, amine ligands, phosphine oxide ligands, phosphine ligands, phospholipids, soft phospholipids, and polyvinylpyridine.
  • These ligands can not only further improve the coordination and coupling effect of the silane coupling agent and quantum dots in the electron blocking film, make the electron blocking film more stably bind to the surface of the quantum dot light-emitting layer, but also better modify the quantum
  • the interface of the point light-emitting layer reduces the surface roughness of the light-emitting layer, and at the same time improves the tightness of the connection between the light-emitting layer and other functional layers, thereby improving the stability of the quantum dot light-emitting diode.
  • the acid ligand is selected from one or more of decaic acid, undecylenic acid, myristic acid, oleic acid and stearic acid.
  • the thiol ligand is selected from one or more of octaalkyl mercaptan, dodecyl mercaptan, and octadecyl mercaptan.
  • the amine ligand is selected from one or more of oleylamine, stearylamine and octaamine.
  • the phosphine ligand is selected from trioctylphosphine.
  • the phosphine oxide ligand is selected from: trioctyl phosphine oxide.
  • these ligands and the silane coupling agent in the electron blocking film have a good coordination coupling effect.
  • the particle size of the quantum dot material in the quantum dot light-emitting layer is 1-20 nanometers.
  • the quantum dot material may be a quantum dot material in any configuration such as a hybrid type, a gradient hybrid type, a core-shell structure type, or a combined type.
  • the quantum dot material may be an oil-soluble quantum dot material, or a self-doped or undoped quantum dot material.
  • the embodiments of this application do not specifically limit the type and configuration of quantum dots in the quantum dot light-emitting layer, and can be selected from corresponding quantum dot materials according to specific application requirements, as long as it can be combined with the organic functional groups in the silane coupling agent in the electron blocking film. Coordination and coupling reaction occurs, so that the electron blocking film is better bound to the surface of one side of the quantum dot light-emitting layer, which can adjust the injection rate of electrons and modify the interface.
  • the quantum dot light emitting diode further includes: an electron transport layer provided between the electron blocking film and the cathode, and an empty space provided between the quantum dot light emitting layer and the anode.
  • Hole transport layer In some embodiments, the electron transport layer includes a metal oxide. In some specific embodiments, the electron transport layer includes a metal oxide selected from: ZnO, ZnMgO, ZnMgLiO, ZnInO, TiO 2 , ZrO 2 , Alq 3 , TAZ, TPBI, PBD, BCP, At least one of Bphen and HfO 2.
  • the embodiment of the application includes the metal oxide in the electron transport layer of the metal oxide.
  • the metal oxide can not only better transport the electrons released from the cathode, but also can react with the silane coupling agent in the electron blocking film to bind the electron blocking film to Between the electron transport layer and the quantum dot light-emitting layer, the insulating silane coupling agent reduces the speed of electron injection into the quantum dot light-emitting layer to a certain extent, so that the number of holes and electrons in the quantum dot light-emitting layer is equal, and the device electrons are reduced.
  • the accumulation phenomenon allows excitons to undergo radiation transitions and reduces Auger recombination.
  • the electron blocking film is combined with the coupling coordination between the silane coupling agent and the electron transport layer and the quantum dot light-emitting layer, which can modify the interface, so that the quantum dot light-emitting layer and the electron transport layer are closely connected, so that the quantum dot The surface roughness of the light-emitting layer is reduced, and the electron transport layer is spread evenly and smoothly, thereby improving the stability of the device.
  • the quantum dot light emitting diode further includes: a hole transport layer provided between the quantum dot light emitting layer and the anode, and a hole transport layer provided between the hole transport layer and the anode The hole injection layer.
  • the quantum dot light emitting diode of the embodiment of the present application further includes a hole transport layer arranged between the quantum dot light emitting layer and the anode, and a hole injection layer arranged between the hole transport layer and the anode.
  • the hole transport layer improves hole injection efficiency, thereby further ensuring that the number of holes and electrons in the quantum dot light-emitting layer is equal, and improving the recombination efficiency of electrons and holes in the quantum dot light-emitting layer, thereby improving the luminous efficiency of the device.
  • the quantum dot light-emitting diodes described in the embodiments of the present application are divided into a positive type structure and an inverted type structure.
  • the positive structure quantum dot light-emitting diode includes a laminated structure of an anode and a cathode disposed oppositely, a quantum dot light-emitting layer disposed between the anode and the cathode, and the anode is disposed on a substrate. on.
  • a hole function layer such as a hole injection layer and a hole transport layer may be further provided between the anode and the quantum dot light-emitting layer; and between the cathode and the quantum dot light-emitting layer
  • Electronic functional layers such as an electron transport layer, an electron injection layer, and an electron blocking film can be provided.
  • the quantum dot light-emitting diode includes a substrate, an anode disposed on the surface of the substrate, the hole injection layer disposed on the surface of the anode, and the hole injection layer is disposed on the hole injection layer.
  • the hole transport layer on the surface of the layer, the quantum dot light emitting layer provided on the surface of the hole transport layer, the electron blocking film provided on the surface of the quantum dot light emitting layer, the electron transport layer provided on the surface of the electron barrier film and the electron transport layer The cathode on the surface of the layer.
  • the inversion structure quantum dot light-emitting diode includes a laminated structure of an anode and a cathode disposed oppositely, a quantum dot light-emitting layer disposed between the anode and the cathode, and the cathode is disposed on the lining. Bottom.
  • a hole function layer such as a hole injection layer and a hole transport layer may be further provided between the anode and the quantum dot light-emitting layer; and between the cathode and the quantum dot light-emitting layer
  • Electronic functional layers such as an electron transport layer, an electron injection layer, and an electron blocking film can be provided.
  • the quantum dot light emitting diode includes a substrate, a cathode disposed on the surface of the substrate, the electron transport layer disposed on the surface of the cathode, and the electron transport layer is disposed on the surface of the electron transport layer.
  • the anode on the surface of the hole injection layer.
  • the substrate layer includes a rigid, flexible substrate, etc.
  • the anode includes ITO, FTO or ZTO, etc.
  • the hole injection layer includes: PEODT: PSS (poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)), WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN (2,3, 6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene), CuS, etc.;
  • PEODT PSS (poly(3,4-ethylenedioxythiophene): poly(styrene sulfonic acid)), WoO 3 , MoO 3 , NiO, V 2 O 5 , HATCN (2,3, 6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene), CuS, etc.;
  • the hole transport layer can be either a small molecule organic substance or a high molecular conductive polymer, including: TFB (poly[(9,9-di-n-octylfluorenyl-2,7-diyl) -alt- (4 ,4'-(N-(4-n-butyl)phenyl)-diphenylamine)]), PVK (polyvinylcarbazole), TCTA (4,4',4''-tris(carbazole-9- Group) triphenylamine), TAPC (4,4'-cyclohexyl bis[N,N-bis(4-methylphenyl)aniline]), Poly-TBP, Poly-TPD, NPB(N,N'-two Phenyl-N,N'-(1-naphthyl)-1,1'-biphenyl-4,4'-diamine), CBP (4,4'-bis(9-carbazole)biphenyl),
  • the quantum dot light-emitting layer includes: at least one or a combination of at least two of CdSe, CdS, CdTe, ZnO, ZnSe, ZnS, ZnTe, HgS, HgSe, HgTe, CdZnSe, or InAs, InP, InN, GaN, InSb , InAsP, InGaAs, GaAs, GaP, GaSb, AlP, AlN, AlAs, AlSb, CdSeTe, ZnCdSe at least one or a combination of at least two;
  • the electron blocking film includes: a compound with the general formula R 1 -Si(OR 2 ) 3 ; wherein, R 2 is selected from: one of H, CH 3 , and C 2 H 5 , and R 1 is selected from: (CH 2 ) n X, n is an integer between 3 and 6, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , and -COOH, R 3 is (CH 2 ) m CH 3 , where m is an integer between 1-7.
  • the electron transport layer includes: ZnO, ZnMgO, ZnMgLiO, ZnInO, TiO 2 , ZrO 2 , Alq 3 , TAZ (3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-benzene Group-4H-1,2,4-triazole), TPBI (1,3,5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene), PBD(2-(4'- Tert-butylphenyl)-5-(4'-biphenyl)-1,3,4-oxadiazole), BCP (2,9-dimethyl-4,7-diphenyl-1,10- One or more of phenanthroline), Bphen (4,7-diphenyl-1,10-phenanthroline), HfO 2;
  • the cathode includes: Al, Ag, Au, Cu, Mo, or their alloys.
  • the quantum dot light-emitting diode provided in the embodiments of the present application can be prepared by the following method.
  • an embodiment of the present application also provides a method for manufacturing a quantum dot light-emitting diode, which includes the following steps:
  • R 2 is selected from: one of H, CH 3 , and C 2 H 5
  • R 1 is selected from: (CH 2 ) n X
  • n is an integer between 3 and 6
  • X is selected from: -P( OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , and -COOH
  • R 3 is (CH 2 ) m CH 3
  • m is an integer between 1-7.
  • an embodiment of the present application also provides a method for manufacturing a quantum dot light-emitting diode, which includes the following steps:
  • a compound with the general formula R 1 -Si(OR 2 ) 3 is deposited between the quantum dot light-emitting layer and the anode to form an electron blocking film;
  • R 2 is selected from: one of H, CH 3 , and C 2 H 5
  • R 1 is selected from: (CH 2 ) n X
  • n is an integer between 3 and 6
  • X is selected from: -P( OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , and -COOH
  • R 3 is (CH 2 ) m CH 3
  • m is an integer between 1-7.
  • the method for preparing the aforementioned quantum dot light-emitting diode includes the step of depositing a compound with the general formula R 1 -Si(OR 2 ) 3 between the quantum dot light-emitting layer and the cathode or anode to form an electron blocking film.
  • the film uses at least one R 1 -Si(OR 2 ) 3 compound as a raw material, wherein R 2 is selected from: one of H, CH 3 , and C 2 H 5 , and R 1 is selected from: (CH 2 ) n X , N is an integer between 3 and 6, X is selected from: -P(OR 3 ) 2 , -P(R 3 ) 2 , one of -SH, -NH 2 , -COOH, R 3 is (CH 2 ) m CH 3 , where m is an integer between 1 and 7, the electron blocking film is formed by coupling the compound in the electron blocking film with the adjacent quantum dot light-emitting layer and functional layers such as the cathode or anode.
  • the preparation method provided in this application firmly combines the electron blocking film between the quantum dot light-emitting layer and the cathode or anode through chemical reactions such as coupling and coordination, and is simple to operate, suitable for mass production and industrial applications, and at the same time, the prepared
  • the electron and hole recombination efficiency in the quantum dot light-emitting diode is high, and the light-emitting performance is good.
  • the step of depositing a compound with the general formula R 1 -Si(OR 2 ) 3 between the quantum dot light-emitting layer and the cathode to form an electron blocking film includes: in an upright device, the quantum dot emits light The surface of the layer away from the anode is deposited with a compound of the general formula R 1 -Si(OR 2 ) 3 , and then the electron transport layer or the cathode is deposited, and the quantum dot light-emitting layer and the electron transport layer or the The electron blocking film is formed between the cathodes.
  • the electron blocking film material is spin-coated or printed on the surface of the quantum dot light-emitting layer, so that the general formula in the electron blocking film is R 1 -Si(OR 2 ) 3 , the organic group R 1 and the quantum dot in the silane coupling agent Coordination groups such as hydroxyl, amino, and carboxyl groups on the surface of the quantum dots in the light-emitting layer, as well as the dangling bonds on the surface of the quantum dots, fully undergo coupling coordination reactions, so that the silane coupling agent is firmly bound to the surface of the quantum dot light-emitting layer.
  • the general formula in the electron blocking film is R 1 -Si(OR 2 ) 3
  • the organic group R 1 and the quantum dot in the silane coupling agent Coordination groups such as hydroxyl, amino, and carboxyl groups on the surface of the quantum dots in the light-emitting layer, as well as the dangling bonds on the surface of the quantum dots, fully undergo coupling coordination reactions, so that the si
  • the subsequent coupling and combination of the cathode and the silane coupling agent in the electron blocking film does not require complete drying of the electron blocking film.
  • the electron blocking film needs to be dried and shaped to facilitate subsequent deposition of the electron transport layer or The cathode.
  • after the material of the electron blocking film spin-coated on the surface of the quantum dot light-emitting layer far away from the anode is completely reacted, for example, 20 to 60 minutes, it is volatilized and dried under a vacuum of 1 ⁇ 10 -6 Torr for 30 minutes, An electron blocking film is obtained.
  • the material for printing the electron blocking film on the surface of the quantum dot light-emitting layer away from the anode is completely reacted, for example, 20 to 60 minutes, it is volatilized and dried under a vacuum of 1 ⁇ 10 -6 Torr for 30 minutes to obtain Electron blocking film.
  • the material for spin-coating and printing the electron blocking film on the surface of the quantum dot light-emitting layer far away from the anode has reacted completely, for example, 20 to 60 minutes, the material is volatilized and dried under a vacuum of 1 ⁇ 10 -6 Torr. In 30 minutes, an electron blocking film was obtained.
  • the cathode is directly deposited by sputtering on the surface of the electron blocking film on the side of the electron blocking film away from the quantum dot light-emitting layer, and the cathode metal material is activated to a certain extent during the sputtering deposition process.
  • the activated metal material has active functional groups such as hydroxyl groups on the surface, which is more conducive to the coupling reaction with the compounds in the electron blocking film, so that the electron blocking film is better combined between the quantum dot light-emitting layer and the cathode.
  • the electron transport layer is first deposited on the surface of the electron blocking film away from the quantum dot light-emitting layer, and the step includes: spin-coating the electron transport layer on the surface of the electron blocking film.
  • the electron transport layer is obtained by drying.
  • the electron transport layer is first deposited on the surface of the electron blocking film away from the quantum dot light-emitting layer, and the steps include: printing the electron transport layer on the surface of the electron blocking film, reacting, and drying Obtain the electron transport layer.
  • the electron transport layer is first deposited on the surface of the electron blocking film away from the quantum dot light-emitting layer, and the steps include: spin coating and printing the electron transport layer material on the surface of the electron blocking film React and dry to obtain an electron transport layer.
  • the material of the electron transport layer is formed on the surface of the electron blocking film by spin coating, printing, etc., so that the organic group R 1 and the siloxane group Si(OR 2 ) 3 of the silane coupling agent in the electron blocking film are combined with The electron transport layer materials are fully coupled and combined, and then dried to obtain an electron blocking film and an electron transport layer stacked in sequence on the surface of the quantum dot light-emitting layer away from the anode.
  • the material of the electron transport layer spin-coated on the surface of the electron blocking film reacts completely, such as 20 to 60 minutes, at a temperature of 80 to 200° C. and a vacuum of 1 ⁇ 10 -6 Torr, and evaporates for 30 minutes. ⁇ 60 minutes to obtain the electron transport layer.
  • the material for printing the electron transport layer on the surface of the electron blocking film reacts completely, such as 20 to 60 minutes, at a temperature of 80 to 200°C and a vacuum of 1 ⁇ 10 -6 Torr, and evaporates for 30 to 60 minutes. In 60 minutes, the electron transport layer was obtained.
  • the material for spin-coating and printing the electron transport layer on the surface of the electron blocking film reacts completely, such as 20 to 60 minutes at a temperature of 80 to 200° C. and a vacuum of 1 ⁇ 10 -6 Torr. Dry for 30-60 minutes to obtain an electron transport layer.
  • the step of depositing a compound with the general formula R 1 -Si(OR 2 ) 3 between the quantum dot light-emitting layer and the cathode to form an electron blocking film includes: in an inverted device, the step of depositing the cathode away from the substrate Deposit a compound with the general formula R 1 -Si(OR 2 ) 3 on one surface or the side of the electron transport layer away from the cathode, and then deposit the quantum dot light-emitting layer on the cathode or the electron transport layer An electron blocking film is formed between the quantum dot light-emitting layer and the quantum dot light-emitting layer.
  • the step of depositing and forming an electron blocking film on the surface of the cathode includes pre-carrying out plasma activation treatment on the surface of the cathode to make the surface of the cathode carry active functional groups such as hydroxyl groups.
  • the material is deposited on the surface of the cathode, so that the silane coupling agent in the electron blocking film is fully coupled and combined with the active functional groups on the cathode surface, such as reacting for 20 to 60 minutes, and then volatilizing and drying for 30 minutes under a vacuum of 1 ⁇ 10 -6 Torr. An electron blocking film is obtained.
  • a method for preparing a quantum dot light emitting diode includes: providing a substrate containing a cathode, depositing an electron transport layer on the surface of the cathode, and depositing electrons on the surface of the electron transport layer away from the cathode.
  • a barrier film is deposited to form a quantum dot light emitting layer on the surface of the electron barrier film away from the electron transport layer, and a hole transport layer is deposited on the surface of the quantum dot light emitting layer away from the electron barrier film.
  • the step of depositing and forming an electron blocking film on the surface of the electron transport layer away from the cathode includes: spin coating, printing, or spin coating and printing on the surface of the electron transport layer away from the cathode.
  • the material of the film reacts, it is dried to obtain an electron blocking film.
  • the material of the electron blocking film is formed on the surface of the electron transport layer away from the cathode, so that the silane coupling agent in the electron blocking film and the material of the electron transport layer are fully coupled and combined.
  • the reaction is complete, such as 20 to 60 minutes, and vacuum 1 ⁇ 10 -6 Volatilize and dry under Torr for 30 minutes to obtain an electron blocking film.
  • the step of depositing a quantum dot light-emitting layer on the surface of the electron blocking film away from the electron transport layer includes: spin-coating, printing, or spin-coating and printing the material of the quantum dot light-emitting layer on the surface of the electron blocking film, reacting and drying to obtain Quantum dot light-emitting layer.
  • the reaction is completed, such as 20 to 60 minutes, at a temperature of 80 to 200° C., and a vacuum of 1 ⁇ 10 Under the condition of -6 Torr, evaporate and dry for 30-60 minutes to obtain the quantum dot light-emitting layer.
  • the step of depositing and forming a quantum dot light-emitting layer on the surface of the anode away from the substrate further includes: depositing and forming a hole injection layer on the surface of the anode away from the substrate.
  • a hole transport layer is deposited on the surface of the hole injection layer away from the anode, and a quantum dot light-emitting layer is deposited on the surface of the hole transport layer away from the hole injection layer.
  • This embodiment provides a quantum dot light-emitting diode, the structure of which is shown in FIG. 1, including a substrate (including the first electrode ITO) and a hole injection layer (PEODT:PSS) laminated on the substrate, which is laminated on the hole
  • the hole transport layer (TFB) on the surface of the injection layer, the quantum dot light emitting layer (CdSe/ZnS) laminated on the surface of the hole transport layer, and the silane coupling layer laminated on the surface of the quantum dot light emitting layer are laminated on the surface of the silane coupling layer
  • the preparation process of the electron blocking film and the electron transport layer includes: preparing 3-mercaptopropyltriethoxysilane into a solution, spin-coating or printing on the quantum dot light-emitting layer, reacting for 30 minutes, stop the reaction, and vacuum 1 ⁇ Volatilize and dry at 10 -6 Torr for 30 minutes to prepare the silane coupling layer; then spin-coating or print the tetraisopropyl titanate isopropanol solution on the silane coupling layer material. After reacting for 20 minutes, stop the reaction and heat to 100°C TiO 2 electron transport layer was prepared by volatilizing and drying under a vacuum of 1 ⁇ 10 -6 Torr for 30 min.
  • This embodiment provides a quantum dot light-emitting diode, the structure of which is shown in FIG. 2, which includes a substrate (including a first electrode ITO) and an electron transport layer (ZnO) laminated on the substrate, and a quantum dot light emitting diode laminated on the surface of the electron transport layer.
  • a substrate including a first electrode ITO
  • an electron transport layer ZnO
  • Silane coupling layer quantum dot light emitting layer (CdSe/ZnSe/ZnS) laminated on the surface of the silane coupling layer, hole transport layer (TFB) laminated on the quantum dot light emitting layer, and holes laminated on the surface of the hole transport layer
  • the injection layer LiF and the second electrode (Al) arranged on the hole injection layer; the material of the silane coupling layer is 3-aminopropyltriethoxysilane.
  • the preparation process of the electron blocking film and the quantum dot light-emitting layer includes: preparing 3-aminopropyltriethoxysilane into a solution, spin coating or printing on the electron transport layer, reacting for 20 minutes, stop the reaction, and vacuum 1 ⁇ Volatilize and dry at 10 -6 Torr for 30 minutes to prepare a silane coupling layer; then spin-coating or print the quantum dot light-emitting layer solution on the silane coupling layer material. After reacting for 20 minutes, stop the reaction, heat 120°C, vacuum 1 ⁇ 10 Volatilize and dry at -6 Torr for 30 minutes to prepare a quantum dot light-emitting layer.
  • This comparative example provides a quantum dot light-emitting diode, including a substrate (including a first electrode ITO), a hole injection layer (PEODT:PSS) laminated on the substrate, and a hole transport layer (PEODT:PSS) laminated on the surface of the hole injection layer ( TFB), a quantum dot light-emitting layer (CdSe/ZnS) laminated on the surface of the hole transport layer, an electron transport layer (TiO 2 ) laminated on the surface of the quantum dot light-emitting layer, and a second electrode ( Al).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种用于量子点发光二极管的电子阻挡薄膜,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物;或者,形成所述电子阻挡薄膜的原料包括通式为R 1-Si(OR 2) 3的化合物;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。不但可以调节电子注入到发光层的速率,使量子点发光层内部空穴与电子数目对等,提高电子和空穴在发光层的复合效率;而且可以起到较好的界面修饰作用,降低量子点发光层表面粗糙度,从而使量子点发光二极管整体性能更稳定。

Description

电子阻挡薄膜、量子点发光二极管及其制备方法
本申请要求于2019年12月28日在中国专利局提交的、申请号为201911384428.X、发明名称为“电子阻挡薄膜,量子点发光二极管及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及量子点技术领域,具体涉及一种用于量子点发光二极管的电子阻挡薄膜,一种量子点发光二极管及其制备方法。
背景技术
近年来,量子点由于具有显著的量子点限域效应,使得其具有发光波长可调、峰宽窄、发光效率高、寿命长、热稳定性高和优良的可溶液加工性等优点,在新型显示和照明、太阳能电池、生物标记等领域具有广泛地应用前景。量子点(QD)发光材料在LED(发光二极管)照明、液晶显示等领域发挥了很大的作用,量子点替代传统的荧光粉,有效地提高了LED以及液晶显示的色域。最近,发光材料作为发光层的量子点发光二极管(QLED)在固态照明、平板显示等领域具有广泛的应用前景,受到了学术界以及产业界的广泛关注。
量子点发光二极管是两侧电子和空穴在量子点层中汇聚后形成激子复合发光。在电场作用下,处于阴极中的电子和阳极中的空穴在外加驱动电压的驱动下会向器件的发光层移动,在向器件发光层移动的过程中,为了便于载流子的注入和迁移,在量子点发光层两侧分别设置空穴注入层、空穴传输层、电子注入层和电子传输层,此时电子和空穴首先需要克服阴极与电子注入层及阳极与空穴注入层之间的能级势垒,然后经由电子注入层和空穴注入层向器件的电子传输层和空穴传输层移动,电子传输层和空穴传输层会分别将电子和空穴移动到器件发光层的界面处,并在量子点发光层内复合成激子进行发光。
然而,目前空穴迁移率相对于电子迁移率较低,造成了量子点发光层内部电子和空穴数目不对等,同时也容易使激子在空穴传输层内复合,而并非在期望的量子点发光层内复合,影响其发光性能。
技术问题
本申请实施例的目的之一在于:提供一种用于量子点发光二极管的电子阻挡薄膜、量子点发光二极管及其制备方法,旨在解决现有空穴迁移率相对于电子迁移率较低,造成了量子点发光层内部电子和空穴数目不对等,同时也容易使激子在空穴传输层内复合,而并非在期望的量子点发光层内复合的问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种用于量子点发光二极管的电子阻挡薄膜,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物;或者,形成所述电子阻挡薄膜的原料包括通式为R 1-Si(OR 2) 3的化合物;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
第二方面,提供了一种量子点发光二极管,所述量子点发光二极管包括相对设置的阳极和阴极;量子点发光层,所述量子点发光层设置在所述阳极和所述阴极之间;上述用于量子点发光二极管的电子阻挡薄膜,所述电子阻挡薄膜设置在所述量子点发光层和所述阴极之间,或者,所述电子阻挡薄膜设置在所述量子点发光层和所述阳极之间。
第三方面,提供一种量子点发光二极管的制备方法,包括以下步骤:
在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜;
其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
第四方面,提供一种量子点发光二极管的制备方法,包括以下步骤:
在量子点发光层与阳极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜;
其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
有益效果
本申请实施例提供的用于量子点发光二极管的电子阻挡薄膜的有益效果在于:用于量子点发光二极管的电子阻挡薄膜,包括通式为R 1-Si(OR 2) 3的化合物;或者,形成所述电子阻挡薄膜的原料包括通式为R 1-Si(OR 2) 3的化合物;其中,有机官能团R 1既能够与量子点发光层中量子点表面的悬键发生相互作用,使得硅烷偶联剂可以配位到量子点表面,又能够与量子点表面的羟基、氨基、羧基等配体发生偶联配位反应,进一步使得量子点与硅烷偶联剂相互作用紧密,界面层致密,有利于提高电子传输稳定性及器件稳定性;R 2选自:H、CH 3、C 2H 5中的一种,含有R 2的Si(OR 2) 3硅烷氧基能够与其他功能层发生偶联反应。本申请电子阻挡薄膜不但可以调节电子注入到发光层的速率,使量子点发光层内部空穴与电子数目对等,提高电子和空穴在发光层的复合效率;而且可以起到较好的界面修饰作用,降低量子点发光层表面粗糙度,从而使量子点发光二极管整体性能更稳定。
本申请实施例提供的量子点发光二极管的有益效果在于:量子点发光二极管,包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层,设置在所述量子点发光层和所述阴极之间的电子阻挡薄膜,或者设置在所述量子点发光层和所述阳极之间的电子阻挡薄膜,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物,其中,有机官能团R 1既能够与量子点发光层中量子点表面的悬键发生相互作用,使得硅烷偶联剂可以配位到量子点表面,又能够与量子点表面的羟基、氨基、羧基等配体发生偶联配位反应,进一步使得量子点与硅烷偶联剂相互作用紧密,界面层致密,有利于提高电子传输稳定性及器件稳定性;R 2选自:H、CH 3、C 2H 5中的一种,含有R 2的Si(OR 2) 3硅烷氧基能够与阴极的无机金属材料发生偶联反应。通过电子阻挡薄膜在量子点发光层与阳极或阴极等其他功能层之间的相互作用,在量子点发光层与阴极或阳极之间形成电子阻挡薄膜,一方面,电子阻挡薄膜中硅烷偶联剂具有绝缘性,使电子注入到发光层的数目一定程度上降低,从而使量子点发光层内部空穴与电子数目对等,减少器件电子堆积现象,使得激子能够发生辐射跃迁,减少俄歇复合;另一方面,电子阻挡薄膜中硅烷偶联剂可以起到较好的界面修饰作用,不但使得量子点发光层与阴极之间连接更紧密,而且使得量子点发光层表面粗糙度降低,铺展均匀平整更好,从而使量子点发光二极管整体性能更稳定;再一方面,电子阻挡薄膜中硅烷偶联剂还可以吸附少量水汽,可以吸收器件后期吸收的水分,减少水汽对量子点发光二极管器件的破坏,使器件整体性能更稳定,寿命更长。
本申请实施例提供的量子点发光二极管的制备方法的有益效果在于:该方法包括步骤在量子点发光层与阴极或者阳极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜,电子阻挡薄膜以至少一种R 1-Si(OR 2) 3化合物为原料,其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数,通过电子阻挡薄膜中化合物与相邻的量子点发光层和阴极或阳极等功能层的偶联配合形成电子阻挡薄膜。本申请提供的制备方法,将电子阻挡薄膜通过偶联配合等化学反应牢固的结合在量子点发光层与阴极或者阳极之间,且操作简单,适用于量产和工业应用,同时,制得的量子点发光二极管中电子与空穴复合效率高,发光性能好。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请实施例1提供的量子点发光二极管的结构示意图。
图2是本申请实施例2提供的量子点发光二极管的结构示意图。
图3是本申请实施例提供的一种量子点发光二极管的制备方法的流程示意图。
图4是本申请实施例提供的另一种量子点发光二极管的制备方法的流程示意图。
本发明的实施方式
为使本申请实施例的目的、技术方案和技术效果更加清楚,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。结合本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请实施例说明书中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请实施例说明书公开的范围之内。具体地,本申请实施例说明书中所述的重量可以是µg、mg、g、kg等化工领域公知的质量单位。
本申请实施例提供了一种用于量子点发光二极管的电子阻挡薄膜,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物;或者,形成所述电子阻挡薄膜的原料包括通式为R 1-Si(OR 2) 3的化合物;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
本申请实施例提供的用于量子点发光二极管的电子阻挡薄膜,包括通式为R 1-Si(OR 2) 3的化合物;或者,形成所述电子阻挡薄膜的原料包括通式为R 1-Si(OR 2) 3的化合物;其中,有机官能团R 1既能够与量子点发光层中量子点表面的悬键发生相互作用,使得硅烷偶联剂可以配位到量子点表面,又能够与量子点表面的羟基、氨基、羧基等配体发生偶联配位反应,进一步使得量子点与硅烷偶联剂相互作用紧密,界面层致密,有利于提高电子传输稳定性及器件稳定性;R 2选自:H、CH 3、C 2H 5中的一种,含有R 2的Si(OR 2) 3硅烷氧基能够与其他功能层发生偶联反应。本申请实施例提供的电子阻挡薄膜不但可以调节电子注入到发光层的速率,使量子点发光层内部空穴与电子数目对等,提高电子和空穴在发光层的复合效率;而且可以起到较好的界面修饰作用,降低量子点发光层表面粗糙度,从而使量子点发光二极管整体性能更稳定。
具体地,本申请实施例提供的含有通式为R 1-Si(OR 2) 3化合物的电子阻挡薄膜,既可以通过阻挡层中具有绝缘性的R 1-Si(OR 2) 3化合物本身对电子的传输速率和传输稳定性起到调节作用,又可以通过阻挡层中R 1-Si(OR 2) 3化合物与量子点发光层及其他功能层结合后形成的偶联聚合物对电子的传输速率起到调节作用。通过电子阻挡薄膜中R 1-Si(OR 2) 3化合物本申请及R 1-Si(OR 2) 3化合物与相邻功能层聚合后的相互作用,实现对电子传输速率和传输稳定性的双重调节,更好地确保量子点发光层内部空穴与电子数目对等,提高电子和空穴在发光层的复合效率。
在一些实施例中,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3或4,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为2~5之间的整数。本申请实施例电子阻挡薄膜中R 1和R 3基团中,选择的亚甲基数目不同,柔性链段的长度也不同,使得硅烷偶联剂与量子点配体之间也会发生相互作用的强度不同,当随着n和m值增加,柔性链段增长,量子点与硅烷偶联剂的交换作用增强,在硅烷偶联剂溶度一定时,硅烷偶联剂的厚度也会发生一定的增加,阻挡电子能力增强。本申请实施例中电子阻挡薄膜R 1-Si(OR 2) 3的化合物中R 1中n为3或4,m为2~5之间的整数,该长度的支链使电子阻挡薄膜,既确保了阻挡层化合物与量子点配体及其他功能层之间的相互作用强度,又使形成的电子阻挡薄膜对电子的阻挡效果适中,不会对电子造成过渡阻挡,反而降低了电子与空穴的复合效率。
由于C、N、P、S原素的非金属性由强到弱的顺序是N、S、P、C,因此,电子阻挡薄膜R 1-Si(OR 2) 3的化合物的R 1基团中X选自-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH等不同基团时,其与量子点配位相互作用的强弱顺序为-NH 2、-SH、-P(OR 3) 2、-P(R 3) 2、-COOH。因此,其电子阻挡薄膜R 1-Si(OR 2) 3的化合物与量子点表面结合力由强到弱的顺序为-NH 2、-SH、-P(OR 3) 2、-P(R 3) 2、-COOH。在一些实施例中,所述电子阻挡薄膜包括通式为NH 2(CH 2) n-Si(OR 2) 3的化合物,其中,R 2选自:H、CH 3、C 2H 5中的一种,n为3或4。本申请实施例用于量子点发光二极管的电子阻挡薄膜与量子点层结合紧密程度最佳,器件稳定性最好。在一些具体实施例中,所述电子阻挡薄膜包括通式为SH(CH 2) n-Si(OR 2) 3的化合物,其中,R 2选自:H、CH 3、C 2H 5中的一种,n为3或4。本申请实施例量子点发光二极管的电子阻挡薄膜与量子点层结合紧密程度高,器件稳定性好。
在一些实施例中,所述电子阻挡薄膜包括γ-巯丙基三甲氧基硅烷。在一些实施例中,所述电子阻挡薄膜包括3-氨基丙基三乙氧基硅烷。在一些实施例中,所述电子阻挡薄膜包括γ-巯丙基三甲氧基硅烷和3-氨基丙基三乙氧基硅烷。本申请实施例电子阻挡薄膜包括γ-巯丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷,或同时包含-巯丙基三甲氧基硅烷和3-氨基丙基三乙氧基硅烷,由此得到的电子阻挡薄膜均能够与量子点发光层和其他功能层紧密结合,提高器件界面层致密性,有利于提高电子传输稳定性,及器件的稳定性。
在一些实施例中,所述电子阻挡薄膜的厚度为2~30nm。本申请实施例量子点发光二极管中厚度为2~30nm的电子阻挡薄膜对电子的注入速率有最合适的调控效果,使注入到量子点发光层中的电子与空穴有最佳的匹配对数,此时,电子与空穴的复合效率最高。若电子阻挡薄膜厚度太薄,则对电子的注入速率调控效果不明显;若电子阻挡薄膜厚度过厚,则对电子的阻挡效果过度,导致量子点发光层中电子数量少于空穴数量,从而降低了量子点发光二极管的发光效率。在一些实施例中,所述电子阻挡薄膜选自:γ-巯丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷等材料;所述电子阻挡薄膜的厚度为2~30nm。
相应地,本申请实施例提供了一种量子点发光二极管,所述量子点发光二极管包括相对设置的阳极和阴极,
量子点发光层,所述量子点发光层设置在所述阳极和所述阴极之间;
上述用于量子点发光二极管的电子阻挡薄膜,所述电子阻挡薄膜设置在所述量子点发光层和所述阴极之间,或者,所述电子阻挡薄膜设置在所述量子点发光层和所述阳极之间。
本申请实施例提供的量子点发光二极管,包括相对设置的阳极和阴极,设置在所述阳极和所述阴极之间的量子点发光层,设置在所述量子点发光层和所述阴极或者阳极之间的电子阻挡薄膜,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物,其中,有机官能团R 1既能够与量子点发光层中量子点表面的悬键发生相互作用,使得硅烷偶联剂可以配位到量子点表面,又能够与量子点表面的羟基、氨基、羧基等配体发生偶联配位反应,进一步使得量子点与硅烷偶联剂相互作用紧密,界面层致密,有利于提高电子传输稳定性及器件稳定性;R 2选自:H、CH 3、C 2H 5中的一种,含有R 2的Si(OR 2) 3硅烷氧基能够与阴极的金属材料发生偶联反应。通过电子阻挡薄膜在量子点发光层与阳极或阴极等其他功能层之间的相互作用,在量子点发光层与阴极之间形成电子阻挡薄膜,一方面,电子阻挡薄膜中硅烷偶联剂具有绝缘性,使电子注入到发光层的数目一定程度上降低,从而使量子点发光层内部空穴与电子数目对等,减少器件电子堆积现象,使得激子能够发生辐射跃迁,减少俄歇复合;另一方面,电子阻挡薄膜中硅烷偶联剂可以起到较好的界面修饰作用,不但使得量子点发光层与阴极之间连接更紧密,而且使得量子点发光层表面粗糙度降低,铺展均匀平整更好,从而使量子点发光二极管整体性能更稳定;再一方面,电子阻挡薄膜中硅烷偶联剂还可以吸附少量水汽,可以吸收器件后期吸收的水分,减少水汽对量子点发光二极管器件的破坏,使器件整体性能更稳定,寿命更长。
具体地,本申请实施例提供的含有通式为R 1-Si(OR 2) 3化合物的电子阻挡薄膜,既可以通过阻挡层中具有绝缘性的R 1-Si(OR 2) 3化合物本身对电子的传输速率和传输稳定性起到调节作用,又可以通过阻挡层中R 1-Si(OR 2) 3化合物与量子点发光层及其他功能层结合后形成的偶联聚合物对电子的传输速率起到调节作用。本申请通过电子阻挡薄膜中R 1-Si(OR 2) 3化合物及R 1-Si(OR 2) 3化合物与相邻功能层聚合后的相互作用,实现对电子传输速率和传输稳定性的双重调节,更好地确保量子点发光层内部空穴与电子数目对等,提高电子和空穴在发光层的复合效率。
在一些实施例中,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3或4,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为2~5之间的整数。本申请实施例电子阻挡薄膜中R 1和R 3基团中,选择的亚甲基数目不同,柔性链段的长度也不同,使得硅烷偶联剂与量子点配体之间也会发生相互作用的强度不同,当随着n和m值增加,柔性链段增长,量子点与硅烷偶联剂的交换作用增强,在硅烷偶联剂溶度一定时,硅烷偶联剂的厚度也会发生一定的增加,阻挡电子能力增强。本申请实施例中电子阻挡薄膜R 1-Si(OR 2) 3的化合物中R 1中n为3或4,m为2~5之间的整数,该长度的支链使电子阻挡薄膜,既确保了阻挡层化合物与量子点配体及阴极之间的相互作用强度,又使形成的电子阻挡薄膜对电子的阻挡效果适中,不会对电子造成过渡阻挡,反而降低了电子与空穴的复合效率。
由于C、N、P、S原素的非金属性由强到弱的顺序是N、S、P、C,因此,电子阻挡薄膜R 1-Si(OR 2) 3的化合物的R 1基团中X选自-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH等不同基团时,其与量子点配位相互作用的强弱顺序为-NH 2、-SH、-P(OR 3) 2、-P(R 3) 2、-COOH。因此,其电子阻挡薄膜R 1-Si(OR 2) 3的化合物与量子点表面结合力由强到弱的顺序为-NH 2、-SH、-P(OR 3) 2、-P(R 3) 2、-COOH。在一些实施例中,所述电子阻挡薄膜包括通式为NH 2(CH 2) n-Si(OR 2) 3的化合物,其中,R 2选自:H、CH 3、C 2H 5中的一种,n为3或4。本申请实施例量子点发光二极管的电子阻挡薄膜与量子点层结合紧密程度最佳,器件稳定性最好。在一些具体实施例中,所述电子阻挡薄膜包括通式为SH(CH 2) n-Si(OR 2) 3的化合物,其中,R 2选自:H、CH 3、C 2H 5中的一种,n为3或4。本申请实施例量子点发光二极管的电子阻挡薄膜与量子点层结合紧密程度高,器件稳定性好。
在一些实施例中,所述电子阻挡薄膜包括:γ-巯丙基三甲氧基硅烷以及3-氨基丙基三乙氧基硅烷至少一种,或者,形成所述电子阻挡薄膜的原料包括γ-巯丙基三甲氧基硅烷以及3-氨基丙基三乙氧基硅烷的至少之一。本申请实施例电子阻挡薄膜中γ-巯丙基三甲氧基硅烷、3-氨基丙基三乙氧基硅烷等材料,均能够与量子点发光层和阴极紧密结合,提高器件界面层致密性,有利于提高电子传输稳定性,及器件的稳定性。
在一些实施例中,所述电子阻挡薄膜的厚度为2~30nm。本申请实施例量子点发光二极管中厚度为2~30nm的电子阻挡薄膜对电子的注入速率有最合适的调控效果,使注入到量子点发光层中的电子与空穴有最佳的匹配对数,此时,电子与空穴的复合效率最高。若电子阻挡薄膜厚度太薄,则对电子的注入速率调控效果不明显;若电子阻挡薄膜厚度过厚,则对电子的阻挡效果过度,导致量子点发光层中电子数量少于空穴数量,从而降低了量子点发光二极管的发光效率。
在一些实施例中,所述量子点发光层的材料选自:元素周期表II-IV族、II-VI族、II-V族、III-V族、III-VI族、IV-VI族、I-III-VI族、II-IV-VI族、II-IV-V族半导体化合物中的至少一种,或至少两种上述半导体化合物组成的核壳结构半导体化合物,其中,II-IV族半导体化合物是指由II族和IV族元素组成的半导体化合物,其他半导体化合物同理。在一些具体实施例中,所述量子点发光层的材料选自:CdSe、CdS、CdTe、ZnO、ZnSe、ZnS、ZnTe、HgS、HgSe、HgTe、CdZnSe中的至少一种半导体纳米晶化合物,或至少两种组成的混合类型、梯度混合类型、核壳结构类型或联合类型等结构的半导体纳米晶化合物。在另一些实施例中,所述量子点材料选自:InAs、InP、InN、GaN、InSb、InAsP、InGaAs、GaAs、GaP、GaSb、AlP、AlN、AlAs、AlSb、CdSeTe、ZnCdSe中的至少一种半导体纳米晶化合物,或至少两种组成的混合类型、梯度混合类型、核壳结构类型或联合类型等结构的半导体纳米晶化合物。上述各量子点材料具有量子点的特性,光电性能好。本申请实施例量子点发光层的材料可以是任一半导体量子点材料,只要能够与电子阻挡薄膜中硅烷偶联剂中的有机官能团发生配位偶联反应,使电子阻挡薄膜较好的结合在量子点发光层的一侧表面,起到调节电子的注入速率和修饰界面的作用即可。
在一些实施例中,所述量子点发光层的材料选自:钙钛矿纳米粒子材料(特别是发光钙钛矿纳米粒子材料)、金属纳米粒子材料、金属氧化物纳米粒子材料中的至少一种。上述各量子点材料具有量子点的特性,光电性能好。
在一些实施例中,所述量子点发光层的材料表面结合有配体,所述配体选自:酸配体、硫醇配体、胺配体、氧膦配体、膦配体、磷脂、软磷脂、聚乙烯基吡啶中的至少一种。本申请实施例量子点发光层的材料表面结合有酸配体、硫醇配体、胺配体、氧膦配体、膦配体、磷脂、软磷脂、聚乙烯基吡啶中的至少一种配体,这些配体,不但能进一步提高电子阻挡薄膜中硅烷偶联剂与量子点的配位偶联效果,使电子阻挡薄膜更稳定的结合在量子点发光层表面,而且能更好的修饰量子点发光层的界面,降低发光层表面的粗糙度,同时提高发光层与其他功能层之间的连接紧密性,从而提升量子点发光二极管的稳定性。
在一些具体实施例中,所述酸配体选自:十酸、十一烯酸、十四酸、油酸和硬脂酸中的一种或多种。在另一些具体实施例中,所述硫醇配体选自:八烷基硫醇、十二烷基硫醇和十八烷基硫醇中的一种或多种。在另一些具体实施例中,所述胺配体选自:油胺、十八胺和八胺中的一种或多种。在另一些具体实施例中,所述膦配体选自三辛基膦。在另一些具体实施例中,所述氧膦配体选自:三辛基氧膦。本申请实施例这些配体与电子阻挡薄膜中硅烷偶联剂均有较好的配位偶联作用。
在一些实施例中,所述量子点发光层中量子点材料的粒径为1~20纳米。在一些实施例中,量子点材料可以是均以混合类型、梯度混合类型、核壳结构类型或联合类型等任意构型的量子点材料。在一些实施例中,量子点材料可以是油溶性量子点材料,还可以是自掺杂或非掺杂的量子点材料。本申请实施例对量子点发光层中量子点的类型和构型不作具体限定,可根据具体应用需求选自对应的量子点材料,只要能实现与电子阻挡薄膜中硅烷偶联剂中的有机官能团发生配位偶联反应,使电子阻挡薄膜较好的结合在量子点发光层的一侧表面,起到调节电子的注入速率和修饰界面的作用即可。
在一些实施例中,所述量子点发光二极管还包括:设置在所述电子阻挡薄膜与所述阴极之间的电子传输层,以及设置在所述量子点发光层与所述阳极之间的空穴传输层。在一些实施例中,所述电子传输层包括金属氧化物。在一些具体实施例中,所述电子传输层包括金属氧化物,所述金属氧化物选自:ZnO、ZnMgO、ZnMgLiO、ZnInO、TiO 2、ZrO 2、Alq 3、TAZ、TPBI、PBD、BCP、Bphen、HfO 2中的至少一种。本申请实施例包括金属氧化物的电子传输层中金属氧化物既能够较好的传输从阴极释放的电子,又能够与电子阻挡薄膜中硅烷偶联剂发生偶联反应,使电子阻挡薄膜结合在电子传输层与量子点发光层之间,绝缘性的硅烷偶联剂在一定程度上降低电子注入到量子点发光层的速度,从而使量子点发光层内部空穴电子数目对等,减少器件电子堆积现象,使得激子能够发生辐射跃迁,减少俄歇复合。并且电子阻挡薄膜通过硅烷偶联剂与电子传输层与量子点发光层的偶联配位结合,能起到修饰界面的作用,使得量子点发光层与电子传输层之间连接紧密,使得量子点发光层表面粗糙度降低,电子传输层铺展均匀平整,从而提高器件的稳定性。
在一些实施例中,所述量子点发光二极管还包括:设置在所述量子点发光层与所述阳极之间的空穴传输层,以及设置在所述空穴传输层与所述阳极之间的空穴注入层。本申请实施例量子点发光二极管还包括设置在量子点发光层与阳极之间的空穴传输层,以及设置在空穴传输层与阳极之间的空穴注入层,通过空穴注入层与空穴传输层提高空穴的注入效率,从而进一步保证量子点发光层内部空穴电子数目对等,提高量子点发光层中电子与空穴的复合效率,从而提高器件的发光效率。
在一些实施例中,本申请实施例所述量子点发光二极管分正型结构和反型结构。
在一种实施例中,正型结构量子点发光二极管包括相对设置的阳极和阴极的层叠结构,设置在所述阳极和所述阴极之间的量子点发光层,且所述阳极设置在衬底上。在一些实施例中,所述阳极和所述量子点发光层之间还可以设置空穴注入层、空穴传输层等空穴功能层;在所述阴极和所述量子点发光层之间还可以设置电子传输层、电子注入层和电子阻挡薄膜等电子功能层。在一些正型结构器件的实施例中,所述量子点发光二极管包括衬底,设置在所述衬底表面的阳极,设置在阳极表面的所述空穴注入层,设置在所述空穴注入层表面的空穴传输层,设置在所述空穴传输层表面的量子点发光层,设置在量子点发光层表面的电子阻挡薄膜,设置在电子阻挡薄膜表面的电子传输层和设置在电子传输层表面的阴极。
在一种实施方式中,反型结构量子点发光二极管包括相对设置的阳极和阴极的叠层结构,设置在所述阳极和所述阴极之间的量子点发光层,且所述阴极设置在衬底上。在一些实施例中,所述阳极和所述量子点发光层之间还可以设置空穴注入层、空穴传输层等空穴功能层;在所述阴极和所述量子点发光层之间还可以设置电子传输层、电子注入层和电子阻挡薄膜等电子功能层。在一些反型结构器件的实施例中,所述量子点发光二极管包括衬底,设置在所述衬底表面的阴极,设置在阴极表面的所述电子传输层,设置在所述电子传输层表面的电子阻挡薄膜,设置在所述电子阻挡薄膜表面的量子点发光层,设置在所述量子点发光层表面的空穴传输层,设置在空穴传输层表面的空穴注入层和设置在空穴注入层表面的阳极。
在一些实施例中,衬底层包括钢性、柔性衬底等;
阳极包括ITO、FTO或ZTO等;
空穴注入层包括:PEODT:PSS(聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸))、WoO 3、MoO 3、NiO、V 2O 5、HATCN(2,3,6,7,10,11-六氰基-1,4,5,8,9,12-六氮杂苯并菲)、CuS等;
空穴传输层既可以是小分子有机物,也可以是高分子导电聚合物,包括:TFB(聚[(9,9-二正辛基芴基-2,7-二基) -alt- (4,4'-(N-(4-正丁基)苯基)-二苯胺)])、PVK(聚乙烯咔唑)、TCTA(4,4',4''-三(咔唑-9-基)三苯胺)、TAPC(4,4′-环己基二[N,N-二(4-甲基苯基)苯胺])、Poly-TBP、Poly-TPD、NPB(N,N'-二苯基-N,N'-(1-萘基)-1,1'-联苯-4,4'-二胺)、CBP(4,4'-二(9-咔唑)联苯)、PEODT:PSS、MoO 3、WoO 3、NiO、CuO、V 2O 5、CuS等;
量子点发光层包括:CdSe、CdS、CdTe、ZnO、ZnSe、ZnS、ZnTe、HgS、HgSe、HgTe、CdZnSe中的至少一种或至少两种的组合物,或者InAs、InP、InN、GaN、InSb、InAsP、InGaAs、GaAs、GaP、GaSb、AlP、AlN、AlAs、AlSb、CdSeTe、ZnCdSe中的至少一种或至少两种的组合物;
电子阻挡薄膜包括:通式为R 1-Si(OR 2) 3的化合物;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
电子传输层包括:ZnO、ZnMgO、ZnMgLiO、ZnInO、TiO 2、ZrO 2、Alq 3、TAZ(3-(联苯-4-基)-5-(4-叔丁基苯基)-4-苯基-4H-1,2,4-三唑)、TPBI(1,3,5-三(1-苯基-1H-苯并咪唑-2-基)苯)、PBD(2-(4'-叔丁苯基)-5-(4'-联苯基)-1,3,4-恶二唑)、BCP(2,9-二甲基-4,7-二苯基-1,10-菲咯啉)、Bphen(4,7-二苯基-1,10-菲咯啉)、HfO 2的一种或多种;
阴极包括:Al、Ag、Au、Cu、Mo、或它们的合金。
本申请实施例提供的量子点发光二极管可以通过下述方法制备获得。
在一些实施例中,如附图3所示,本申请实施例还提供了一种量子点发光二极管的制备方法,包括以下步骤:
S10. 在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜;
其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
在一些实施例中,如附图4所示,本申请实施例还提供了一种量子点发光二极管的制备方法,包括以下步骤:
E10. 在量子点发光层与阳极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜;
其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
本申请实施例提供的上述量子点发光二极管的制备方法,包括步骤在量子点发光层与阴极或者阳极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜,电子阻挡薄膜以至少一种R 1-Si(OR 2) 3化合物为原料,其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数,通过电子阻挡薄膜中化合物与相邻的量子点发光层和阴极或阳极等功能层的偶联配合形成电子阻挡薄膜。本申请提供的制备方法,将电子阻挡薄膜通过偶联配合等化学反应牢固的结合在量子点发光层与阴极或者阳极之间,且操作简单,适用于量产和工业应用,同时,制得的量子点发光二极管中电子与空穴复合效率高,发光性能好。
在一些实施例中,在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜的步骤包括:在正置器件中,在所述量子点发光层远离所述阳极的一侧表面沉积通式为R 1-Si(OR 2) 3的化合物,然后沉积电子传输层或者所述阴极,在所述量子点发光层与所述电子传输层或者所述阴极之间形成所述电子阻挡薄膜。本申请实施例将电子阻挡薄膜材料旋涂或打印到量子点发光层表面,使电子阻挡薄膜中通式为R 1-Si(OR 2) 3硅烷偶联剂中有机基团R 1与量子点发光层中量子点表面的羟基、氨基、羧基等配位基团,以及量子点表面的悬键充分发生偶联配位反应,使硅烷偶联剂牢固的结合在量子点发光层表面,为便于后续阴极与电子阻挡薄膜中硅烷偶联剂的偶联结合,此时不需要对电子阻挡薄膜进行完全彻底干燥,如辅助高温干燥,只需要将电子阻挡薄膜干燥赋形便于后续沉积电子传输层或者所述阴极。在一些实施例中,在所述量子点发光层远离所述阳极的一侧表面旋涂电子阻挡薄膜的材料反应完全后,如20~60分钟,真空1×10 -6Torr下挥发干燥30min,得到电子阻挡薄膜。在一些实施例中,在所述量子点发光层远离所述阳极的一侧表面打印电子阻挡薄膜的材料反应完全后,如20~60分钟,真空1×10 -6Torr下挥发干燥30min,得到电子阻挡薄膜。在一些实施例中,在所述量子点发光层远离所述阳极的一侧表面旋涂并打印电子阻挡薄膜的材料反应完全后,如20~60分钟,真空1×10 -6Torr下挥发干燥30min,得到电子阻挡薄膜。
在一些实施例中,在所述电子阻挡薄膜远离所述量子点发光层的一侧表面采用溅射的方式直接沉积形成阴极,阴极金属材料在溅射沉积过程中金属材料被一定程度的活化,活化的金属材料表面带有羟基等活性官能团,能更有利于与电子阻挡薄膜中化合物进行偶联反应,使电子阻挡薄膜更好的结合在量子点发光层与阴极之间。
在一些实施例中,在所述电子阻挡薄膜远离所述量子点发光层的一侧表面先沉积形成电子传输层,其步骤包括:在所述电子阻挡薄膜表面旋涂电子传输层的材料反应,干燥得到电子传输层。在一些实施例中,在所述电子阻挡薄膜远离所述量子点发光层的一侧表面先沉积形成电子传输层,其步骤包括:在所述电子阻挡薄膜表面打印电子传输层的材料反应,干燥得到电子传输层。在一些实施例中,在所述电子阻挡薄膜远离所述量子点发光层的一侧表面先沉积形成电子传输层,其步骤包括:在所述电子阻挡薄膜表面旋涂并打印电子传输层的材料反应,干燥得到电子传输层。本申请实施例通过旋涂、打印等方式在电子阻挡薄膜表面形成电子传输层的材料,使电子阻挡薄膜中硅烷偶联剂的有机基团R 1和硅氧烷基Si(OR 2) 3与电子传输层材料充分偶联结合,再通过干燥,在所述量子点发光层远离所述阳极的一侧表面得到依次层叠设置的电子阻挡薄膜和电子传输层。在一些实施例中,在所述电子阻挡薄膜表面旋涂电子传输层的材料反应完全,如20~60分钟,在温度为80~200℃,真空1×10 -6Torr条件下,挥发干燥30~60分钟,得到电子传输层。在一些实施例中,在所述电子阻挡薄膜表面打印电子传输层的材料反应完全,如20~60分钟,在温度为80~200℃,真空1×10 -6Torr条件下,挥发干燥30~60分钟,得到电子传输层。在一些实施例中,在所述电子阻挡薄膜表面旋涂并打印电子传输层的材料反应完全,如20~60分钟,在温度为80~200℃,真空1×10 -6Torr条件下,挥发干燥30~60分钟,得到电子传输层。
在一些实施例中,在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜的步骤包括:在倒置器件中,在所述阴极远离基板的一侧表面或者电子传输层远离所述阴极的一侧表面沉积通式为R 1-Si(OR 2) 3的化合物,然后沉积所述量子点发光层,在所述阴极或者所述电子传输层与所述量子点发光层之间所述形成电子阻挡薄膜。在所述阴极的表面沉积形成电子阻挡薄膜的步骤包括,对所述阴极表面预先进行等离子体活化处理,使阴极表面带有羟基等活性官能团,再通过旋涂、打印等方式将电子阻挡薄膜的材料沉积到阴极表面,使电子阻挡薄膜中硅烷偶联剂与阴极表面的活性官能团充分偶联结合,如反应20~60分钟,再在真空1×10 -6Torr下挥发干燥30min,在阴极表面得到电子阻挡薄膜。
在一些实施例中,量子点发光二极管的制备方法包括:提供含阴极的基板,在所述阴极的表面沉积形成电子传输层,在所述电子传输层远离所述阴极的一侧表面沉积形成电子阻挡薄膜,在所述电子阻挡薄膜远离所述电子传输层的一侧表面沉积形成量子点发光层,在所述量子点发光层远离所述电子阻挡薄膜的一侧表面沉积形成空穴传输层。其中,在所述电子传输层远离所述阴极的一侧表面沉积形成电子阻挡薄膜的步骤包括:在所述电子传输层远离所述阴极的一侧表面旋涂、打印或旋涂并打印电子阻挡薄膜的材料反应后,干燥得到电子阻挡薄膜。通过旋涂、打印等方式,在所述电子传输层远离所述阴极的一侧表面形成电子阻挡薄膜的材料,使电子阻挡薄膜中硅烷偶联剂与电子传输层材料充分偶联结合。
在一些实施例中,在所述电子传输层远离所述阴极的一侧表面旋涂、打印或旋涂并打印电子阻挡薄膜的材料反应完全后,如20~60分钟,真空1×10 -6Torr下挥发干燥30min,得到电子阻挡薄膜。所述电子阻挡薄膜远离所述电子传输层的一侧表面沉积量子点发光层的步骤包括:在所述电子阻挡薄膜表面旋涂、打印或旋涂并打印量子点发光层的材料反应,干燥得到量子点发光层。本申请实施例在所述电子阻挡薄膜表面旋涂、打印或旋涂并打印量子点发光层的材料,使硅烷偶联剂与量子点发光层中量子点表面的羟基或者氨基、羧基等配位基团充分发生偶联配位反应,再通过干燥,得到量子点发光层。在一些实施例中,在所述电子阻挡薄膜表面旋涂、打印或旋涂并打印量子点发光层的材料反应完全后,如20~60分钟,在温度为80~200℃,真空1×10 -6Torr条件下,挥发干燥30~60分钟,得到量子点发光层。
在一些实施例中,在所述阳极远离所述基板的一侧表面沉积形成量子点发光层的步骤还包括:在所述阳极远离所述基板的一侧表面沉积形成空穴注入层,在所述空穴注入层远离所述阳极的一侧表面沉积形成空穴传输层,在所述空穴传输层远离所述空穴注入层的一侧表面沉积形成量子点发光层。
为使本申请上述实施细节和操作能清楚地被本领域技术人员理解,以及本申请实施例量子点发光二极管及其制备方法的进步性能显著的体现,以下通过多个实施例来举例说明上述技术方案。
实施例1
本实施例提供一种量子点发光二极管,其结构如附图1所示,包括基板(包括第一电极ITO)以及层叠于基板之上的空穴注入层(PEODT:PSS)、层叠于空穴注入层表面的空穴传输层(TFB)、层叠于空穴传输层表面的量子点发光层(CdSe/ZnS)、层叠于量子点发光层表面的硅烷偶联层,层叠于硅烷偶联层表面的电子传输层(TiO 2),以及设置于电子传输层之上的第二电极(Al);所述硅烷偶联层材料是3-巯丙基三乙氧基硅烷。
其中,电子阻挡薄膜和电子传输层的制备过程包括:将3-巯丙基三乙氧基硅烷配置成溶液,旋涂或者打印在量子点发光层上,反应30min后,停止反应,真空1×10 -6Torr下挥发干燥30min,制备得到硅烷偶联层;再将钛酸四异丙酯异丙醇溶液旋涂或者打印在硅烷偶联层材料上,反应20min后,停止反应,加热100℃,真空1×10 -6Torr下挥发干燥30min,制备得到TiO 2电子传输层。
实施例2
本实施例提供一种量子点发光二极管,其结构如附图2所示,包括基板(包括第一电极ITO)以及层叠于基板之上的电子传输层(ZnO)、层叠于电子传输层表面的硅烷偶联层、层叠于硅烷偶联层表面的量子点发光层(CdSe/ZnSe/ZnS)、层叠于量子点发光层的空穴传输层(TFB)、层叠于空穴传输层表面的空穴注入层LiF以及设置于空穴注入层之上的第二电极(Al);所述硅烷偶联层材料是3-氨基丙基三乙氧基硅烷。
其中,电子阻挡薄膜和量子点发光层的制备过程包括:将3-氨基丙基三乙氧基硅烷配置成溶液,旋涂或者打印在电子传输层上,反应20min后,停止反应,真空1×10 -6Torr下挥发干燥30min,制备得到硅烷偶联层;再将量子点发光层溶液旋涂或者打印在硅烷偶联层材料上,反应20min后,停止反应,加热120℃,真空1×10 -6Torr下挥发干燥30min,制备得到量子点发光层。
对比例1
本对比例提供一种量子点发光二极管,包括基板(包括第一电极ITO)以及层叠于基板之上的空穴注入层(PEODT:PSS)、层叠于空穴注入层表面的空穴传输层(TFB)、层叠于空穴传输层表面的量子点发光层(CdSe/ZnS)、层叠于量子点发光层表面的电子传输层(TiO 2),以及设置于电子传输层之上的第二电极(Al)。
本申请实施例中,为了验证本申请实施例提供的量子点发光二极管进步性,本申请对实施例1、2和对比例1的量子点发光二极管进行了光电性能测试,测试结果如下表1所示:
表1
测试项目 实施例1 实施例2 对比例1
外量子效率(EQE)/(%) 13.8 12.6 8.3
由上述测试结果可知,本申请实施例1~2提供的量子点发光二极管的外量子效率显著高于对比例1量子点发光二极管的外量子效率,发光性能更好。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种用于量子点发光二极管的电子阻挡薄膜,其特征在于,所述电子阻挡薄膜包括通式为R 1-Si(OR 2) 3的化合物;或者,形成所述电子阻挡薄膜的原料包括通式为R 1-Si(OR 2) 3的化合物;
    其中,R 2选自:H、CH 3、C 2H 5中的一种;
    R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
  2. 如权利要求1所述用于量子点发光二极管的电子阻挡薄膜,其特征在于,n为3或4;m为2~5之间的整数。
  3. 如权利要求2所述用于量子点发光二极管的电子阻挡薄膜,其特征在于,X为-SH或-NH 2
  4. 如权利要求1所述的电子阻挡薄膜,其特征在于,所述化合物R 1-Si(OR 2) 3中的官能团X用于与所述量子点发光二极管中功能层表面的配体发生偶联。
  5. 如权利要求1~4任一所述用于量子点发光二极管的电子阻挡薄膜,其特征在于,所述电子阻挡薄膜包括γ-巯丙基三甲氧基硅烷以及3-氨基丙基三乙氧基硅烷的至少之一;或者,形成所述电子阻挡薄膜的原料包括γ-巯丙基三甲氧基硅烷以及3-氨基丙基三乙氧基硅烷的至少之一。
  6. 如权利要求1~4任一所述用于量子点发光二极管的电子阻挡薄膜,其特征在于,所述电子阻挡薄膜的厚度为2~30nm。
  7. 一种量子点发光二极管,其特征在于,所述量子点发光二极管包括:
    相对设置的阳极和阴极;
    量子点发光层,所述量子点发光层设置在所述阳极和所述阴极之间;
    如权利要求1~6任一项所述用于量子点发光二极管的电子阻挡薄膜,所述电子阻挡薄膜设置在所述量子点发光层和所述阴极之间,或者,所述电子阻挡薄膜设置在所述量子点发光层和所述阳极之间。
  8. 如权利要求7所述的量子点发光二极管,其特征在于,所述化合物R 1-Si(OR 2) 3中的官能团X用于与所述量子点发光层表面的配体发生偶联;
    其中,所述量子点发光层表面的配体选自:酸配体、硫醇配体、胺配体、氧膦配体、膦配体、磷脂、软磷脂、聚乙烯基吡啶中的至少一种。
  9. 如权利要求8所述的量子点发光二极管,其特征在于,所述电子阻挡薄膜设置在所述量子点发光层和所述阴极之间,所述量子点发光二极管还包括:
    电子传输层,所述电子传输层设置在所述电子阻挡薄膜与所述阴极之间;
    其中,所述化合物R 1-Si(OR 2) 3中的官能团X用于与所述电子传输层表面的配体发生偶联,所述电子传输层表面的配体选自:羟基、氨基、羧基中的至少一种。
  10. 如权利要求9所述的量子点发光二极管,其特征在于,所述酸配体选自:十酸、十一烯酸、十四酸、油酸和硬脂酸中的一种或多种。
  11. 如权利要求9所述的量子点发光二极管,其特征在于,所述硫醇配体选自:八烷基硫醇、十二烷基硫醇和十八烷基硫醇中的一种或多种。
  12. 如权利要求9所述的量子点发光二极管,其特征在于,所述胺配体选自:油胺、十八胺和八胺中的一种或多种。
  13. 如权利要求9所述的量子点发光二极管,其特征在于,所述膦配体选自:三辛基膦;所述氧膦配体选自:三辛基氧膦。
  14. 如权利要求7至13任一项所述的量子点发光二极管,其特征在于,所述量子点发光二极管还包括:设置在所述电子阻挡薄膜与所述阴极之间的电子传输层,以及设置在所述量子点发光层与所述阳极之间的空穴传输层。
  15. 如权利要求14所述的量子点发光二极管,其特征在于,所述电子传输层包括金属氧化物。
  16. 如权利要求15所述的量子点发光二极管,其特征在于,所述金属氧化物选自:ZnO、ZnMgO、ZnMgLiO、ZnInO、TiO 2、ZrO 2、Alq 3、TAZ、TPBI、PBD、BCP、Bphen、HfO 2中的至少一种。
  17. 一种量子点发光二极管的制备方法,其特征在于,包括以下步骤:
    在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜;其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
  18. 如权利要求17所述的量子点发光二极管的制备方法,其特征在于,所述在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜的步骤包括:在正置器件中,在所述量子点发光层远离所述阳极的一侧表面沉积通式为R 1-Si(OR 2) 3的化合物,然后沉积电子传输层或者所述阴极,在所述量子点发光层与所述电子传输层或者所述阴极之间形成所述电子阻挡薄膜。
  19. 一种量子点发光二极管的制备方法,其特征在于,包括以下步骤:
    在量子点发光层与阳极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜;
    其中,R 2选自:H、CH 3、C 2H 5中的一种,R 1选自:(CH 2) nX,n为3~6之间的整数,X选自:-P(OR 3) 2,-P(R 3) 2,-SH、-NH 2、-COOH中的一种,R 3为(CH 2) mCH 3,m为1~7之间的整数。
  20. 如权利要求19所述的量子点发光二极管的制备方法,其特征在于,所述在量子点发光层与阴极之间沉积通式为R 1-Si(OR 2) 3的化合物形成电子阻挡薄膜的步骤包括:在正置器件中,在所述量子点发光层远离所述阳极的一侧表面沉积通式为R 1-Si(OR 2) 3的化合物,然后沉积电子传输层或者所述阴极,在所述量子点发光层与所述电子传输层或者所述阴极之间形成所述电子阻挡薄膜。
PCT/CN2020/138653 2019-12-28 2020-12-23 电子阻挡薄膜、量子点发光二极管及其制备方法 WO2021129670A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/851,785 US20220328776A1 (en) 2019-12-28 2022-06-28 Electron barrier film, quantum dot light-emitting diode and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911384428.X 2019-12-28
CN201911384428.XA CN113054120B (zh) 2019-12-28 2019-12-28 电子阻挡薄膜,量子点发光二极管及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/851,785 Continuation US20220328776A1 (en) 2019-12-28 2022-06-28 Electron barrier film, quantum dot light-emitting diode and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2021129670A1 true WO2021129670A1 (zh) 2021-07-01

Family

ID=76507682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138653 WO2021129670A1 (zh) 2019-12-28 2020-12-23 电子阻挡薄膜、量子点发光二极管及其制备方法

Country Status (3)

Country Link
US (1) US20220328776A1 (zh)
CN (1) CN113054120B (zh)
WO (1) WO2021129670A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111785843A (zh) * 2020-08-25 2020-10-16 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078893A (zh) * 2006-05-22 2007-11-28 富士施乐株式会社 电子照相感光体及其制造方法、处理盒和成像装置
US20140054442A1 (en) * 2012-07-20 2014-02-27 Board Of Regents Of The University Of Nebraska Nanocomposite Photodetector
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN106566318A (zh) * 2016-11-08 2017-04-19 厦门世纳芯科技有限公司 一种量子点油墨及其制备方法
WO2018009712A2 (en) * 2016-07-06 2018-01-11 Nutech Ventures Monolithic integration of hybrid perovskite single crystals with silicon for highly sensitive x-ray detectors
CN108767129A (zh) * 2018-05-31 2018-11-06 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板
CN108807720A (zh) * 2017-04-26 2018-11-13 Tcl集团股份有限公司 功能化阴极、qled及制备方法、发光模组与显示装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0550161B1 (en) * 1991-12-30 2000-06-07 Xerox Corporation Single layer photoreceptor
JP6006732B2 (ja) * 2011-12-12 2016-10-12 新日鉄住金化学株式会社 有機電界発光素子用材料及びそれを用いた有機電界発光素子
JP2015172001A (ja) * 2014-03-11 2015-10-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. シラン化合物、および有機エレクトロルミネッセンス素子
EP4109573A1 (en) * 2015-03-17 2022-12-28 Nissan Chemical Corporation Photosensor element
CN108886099B (zh) * 2016-02-03 2022-05-10 日产化学株式会社 电荷传输性清漆
KR20180053140A (ko) * 2016-11-11 2018-05-21 엘지디스플레이 주식회사 유기발광다이오드와 이를 포함하는 유기발광다이오드 표시장치
KR102440766B1 (ko) * 2016-11-16 2022-09-05 호도가야 가가쿠 고교 가부시키가이샤 유기 일렉트로루미네센스 소자
EP3726596A4 (en) * 2017-12-15 2021-09-29 Nissan Chemical Corporation HOLE COLLECTION LAYER COMPOSITION FOR ORGANIC PHOTOELECTRIC CONVERSION ELEMENT
CN111868171A (zh) * 2018-03-15 2020-10-30 日产化学株式会社 电荷传输性组合物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078893A (zh) * 2006-05-22 2007-11-28 富士施乐株式会社 电子照相感光体及其制造方法、处理盒和成像装置
US20140054442A1 (en) * 2012-07-20 2014-02-27 Board Of Regents Of The University Of Nebraska Nanocomposite Photodetector
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
WO2018009712A2 (en) * 2016-07-06 2018-01-11 Nutech Ventures Monolithic integration of hybrid perovskite single crystals with silicon for highly sensitive x-ray detectors
CN106566318A (zh) * 2016-11-08 2017-04-19 厦门世纳芯科技有限公司 一种量子点油墨及其制备方法
CN108807720A (zh) * 2017-04-26 2018-11-13 Tcl集团股份有限公司 功能化阴极、qled及制备方法、发光模组与显示装置
CN108767129A (zh) * 2018-05-31 2018-11-06 京东方科技集团股份有限公司 量子点发光二极管及其制备方法、显示面板

Also Published As

Publication number Publication date
US20220328776A1 (en) 2022-10-13
CN113054120A (zh) 2021-06-29
CN113054120B (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
KR102540847B1 (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR102452648B1 (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR102649297B1 (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
JP2019165006A (ja) 電界発光素子及びこれを含む表示装置
KR20190110046A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
EP2452372A2 (en) Stable and all solution processable quantum dot light-emitting diodes
CN113809271B (zh) 复合材料及其制备方法和量子点发光二极管
WO2021129670A1 (zh) 电子阻挡薄膜、量子点发光二极管及其制备方法
KR20200028657A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
KR20200059723A (ko) 전계 발광 소자 및 이를 포함하는 표시 장치
CN113801648A (zh) 复合材料及其制备方法和量子点发光二极管
CN113809246A (zh) 复合材料及其制备方法和量子点发光二极管
CN113937227B (zh) 发光器件及其制备方法
CN113130788B (zh) 复合材料、薄膜、量子点发光二极管
CN113948667B (zh) 发光器件及其制备方法
Zheng et al. Regulation of hole transport layer for perovskite quantum dot light-emitting diodes
WO2023051461A1 (zh) 氧化钼纳米材料及制备方法、光电器件
CN113122228B (zh) 量子点及其改性方法和量子点发光二极管
WO2024033997A1 (ja) 発光素子およびその製造方法
WO2023082967A1 (zh) 一种量子点薄膜、量子点发光二极管及其制备方法
WO2023051317A1 (zh) 氧化钨纳米材料及其制备方法、光电器件
CN113968960A (zh) 空穴传输材料的修饰方法、发光器件及其制备方法
WO2023125072A1 (zh) 一种发光二极管及其制备方法
CN116615044A (zh) 一种掺杂材料及其制备方法、发光二极管和显示装置
CN116437694A (zh) 电致发光器件及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20904515

Country of ref document: EP

Kind code of ref document: A1