WO2021129509A1 - 一种大中型企业技术标准体系化实施效益评价方法 - Google Patents

一种大中型企业技术标准体系化实施效益评价方法 Download PDF

Info

Publication number
WO2021129509A1
WO2021129509A1 PCT/CN2020/137158 CN2020137158W WO2021129509A1 WO 2021129509 A1 WO2021129509 A1 WO 2021129509A1 CN 2020137158 W CN2020137158 W CN 2020137158W WO 2021129509 A1 WO2021129509 A1 WO 2021129509A1
Authority
WO
WIPO (PCT)
Prior art keywords
business
implementation
evaluation
comprehensive
benefit
Prior art date
Application number
PCT/CN2020/137158
Other languages
English (en)
French (fr)
Inventor
胡源
唐程辉
马莉
赵海翔
李刚
田士君
冯昕欣
高国伟
张红宪
Original Assignee
国网能源研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网能源研究院有限公司, 国家电网有限公司 filed Critical 国网能源研究院有限公司
Priority to JP2021537217A priority Critical patent/JP2022518887A/ja
Publication of WO2021129509A1 publication Critical patent/WO2021129509A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0637Strategic management or analysis, e.g. setting a goal or target of an organisation; Planning actions based on goals; Analysis or evaluation of effectiveness of goals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Definitions

  • This application relates to the technical field of benefit evaluation for large and medium-sized enterprises, for example, a method for systematically implementing benefit evaluation for large and medium-sized enterprises.
  • This application provides a method for evaluating the benefits of the systematic implementation of technical standards for large and medium-sized enterprises. It adopts the bottom-up principle to construct a comprehensive benefit index system for the enterprise as a whole and the technical standards of each main business. It is based on scientific and advanced models and methods from multiple The factors that affect the comprehensive benefits are stripped of the comprehensive benefits generated by the systematic implementation of technical standards, which is convenient for company management and avoids the situation that occurs in the above-mentioned background technology.
  • the comprehensive benefit evaluation index system and the calculation model of the technical standard contribution degree of the underlying business are implemented.
  • This method can check the consistency of the influence of factors, and can make reasonable estimates for a large number of factors that are difficult to use technical methods for quantitative analysis, avoiding the data deviation caused by the subjective guidance of individual experts, and making it easier to obtain more stable and reliable results.
  • Objective results For the calculation of weights, comprehensive expert experience forms the order of importance of factors, calculate the weights and check consistency. It has a certain reference significance for the development of benefit evaluation methods for the systematic implementation of technical standards.
  • Fig. 1 is a flow chart of a method for systematically implementing benefit evaluation of technical standards for large and medium-sized enterprises provided by an embodiment of this application;
  • Fig. 2 is a block diagram of the subdivision flow of the main business grid business of the State Grid Corporation of China provided by an embodiment of the application;
  • Fig. 3 is a flow chart of the main business hierarchical structure of the power grid provided by an embodiment of the application;
  • FIG. 4 is a block diagram of the weighting process of the main business hierarchical structure diagram of the power grid provided by an embodiment of the application;
  • Fig. 5 is a flow chart of the Delphi AHP combined weighting method provided by an embodiment of the application.
  • this application provides a technical solution: a large and medium-sized enterprise technical standard systematic implementation benefit evaluation method, as shown in Figure 1, including steps S1 to S4.
  • the evaluation index system should not only be scientifically formulated according to the rules and characteristics of the implementation of the technical standards of the power grid company, but also conform to objective reality, practicality, and easy operation;
  • Dynamic development The construction of the evaluation index system is a process of gradual improvement. On the one hand, the index system should be continuously improved with the requirements of standardization work; on the other hand, it should be gradually adjusted with the development of the company.
  • This application proposes a "1+5" technical standard to systematically implement a comprehensive benefit evaluation index system.
  • the main business of the State Grid Corporation of China's power grid mainly includes planning, construction, operation, maintenance and marketing.
  • the company is implementing a total of more than 10884 technical standards.
  • an evaluation index system in this application is to first establish an overall evaluation dimension "from top to bottom” , And then "bottom-up” to establish a detailed bottom-level evaluation dimension, and finally through the "combination and matching” to form a comprehensive benefit evaluation index system for the implementation of the company's standard system, and finally form a "1+5" evaluation index system, that is, a follow-up
  • the evaluation index system based on the company's overall efficiency and the special efficiency evaluation index system for the main business of the power grid.
  • the bottom-level evaluation index is the foundation of the evaluation index system, which must be strictly checked when constructing the index system.
  • this application sorts out and screens the underlying indicators according to the principles of comprehensiveness, independence, and feasibility of the indicator system.
  • the final underlying indicators must reflect the systematic implementation of technical standards to the company. For the benefits of this business, it is also necessary to ensure that the data of the underlying indicators can be obtained qualitatively or quantitatively.
  • the first application of this application is to divide the evaluation objects for the systematic implementation of the company's standards according to business, and obtain the construction plan of the benefit evaluation index system for the systematic implementation of technical standards, which can achieve the purpose of simplifying the complexity and handle the situation of excessive evaluation scale.
  • the second is that the evaluation index system established in accordance with the closed-loop thinking of "top-down, bottom-up" has strong practicality, and front-line business personnel can quickly understand the index system, and can easily collect the requirements of the underlying indicators. data.
  • the third is that the indicator system is highly flexible. Through the “flexible matching” of the underlying indicators, the evaluation results of the company's internal or external economic benefits, social benefits, professional level and other standards can be obtained.
  • This application proposes the "whole chain value decomposition method" for the implementation of benefit evaluation for the systematic implementation of technical standards for large and medium-sized enterprises.
  • the technical standards and implementation benefits are accurate through the "business chain” Therefore, it avoids the situation that traditional evaluation methods such as the International Organization for Standardization (ISO) value chain method cannot evaluate the large-scale business system of large and medium-sized enterprises, and considers the time lag effect of technical standards, and quantitatively analyzes the company’s technical standard system Benefits of optimizing implementation.
  • ISO International Organization for Standardization
  • This evaluation method can be replicated and promoted, laying a solid foundation for the advancement of national standardization work.
  • first-level indicators under each dimension, and the indicator attributes that characterize the benefits of this dimension are mainly qualitative descriptions, including 25 items in total, such as ensuring local economic development and promoting clean energy development.
  • Each first-level indicator includes multiple second-level indicators, which fully support the corresponding first-level indicators, that is, the specific quantitative or qualitative indicators at the bottom generated during the planning and design business process, including the electricity consumption of the whole society, the highest load of the whole society, etc., a total of 57 item.
  • the engineering construction business has established a set of construction business benefit evaluation index system from six dimensions: cost, construction period, quality, safety, power transmission and transformation capacity, and environment.
  • the entire index system includes three layers.
  • the first-level indicators are the above-mentioned six benefit evaluation dimensions of the engineering construction business, and the second-level indicators are the benefit influencing factors of each benefit evaluation dimension. Then, the second-level indicators are further refined through the three-level indicators, and then the performance can be obtained. Operational performance indicators for quantitative or qualitative analysis.
  • the operational benefits of dispatching operations are evaluated from five dimensions: power grid efficiency, power grid safety improvement, power grid quality improvement, energy saving and environmental protection benefits, and meeting development needs.
  • Each first-level indicator includes multiple second-level indicators, which fully supports the corresponding first-level indicators, that is, specific quantitative or qualitative indicators at the bottom level generated during the dispatch and operation of the business.
  • Operation and maintenance business benefits are evaluated from four dimensions: the improvement of lean management of operation and maintenance, the improvement of equipment safety operation level, the improvement of intelligent operation and inspection capabilities, and the reduction of operation and maintenance costs.
  • Each first-level indicator includes multiple second-level indicators, which fully support the corresponding first-level indicators, that is, the underlying specific quantitative or qualitative indicators generated during the operation and maintenance business process.
  • the business benefits of marketing services are evaluated in six dimensions: power market development, measurement and verification, safe and regulated power usage, high-quality marketing services, smart power usage, and energy management.
  • Each first-level indicator includes multiple second-level indicators to fully support the corresponding first-level indicators, that is, the underlying specific quantitative or qualitative indicators generated in the marketing service business process.
  • this application is finally selected from the three dimensions of economic benefit, social benefit and professional level based on the company's overall perspective Important, representative evaluation indicators that can significantly reflect the company's operating results, and ultimately form the company's technical standard system implementation of the overall benefit evaluation index system, as shown in Table 1.
  • Table 1 The overall benefit evaluation index system for the implementation of the company's technical standards
  • the comprehensive benefit index system and the calculation model of the contribution of the underlying business technology standards are implemented based on the main business technical standards of the enterprise, and the technical standard system is obtained through the weight distribution of the sub-business at all levels of the main business and the layer-by-layer collection and transfer. Apply the contribution rate to the main business to calculate the comprehensive benefits of each main business during the implementation period of the technical standards.
  • step 11 the comprehensive benefits are refined, that is, quantitative or qualitative comprehensive benefit indicators are determined, and the State Grid Corporation’s business technology standards are established to systematically implement a comprehensive benefit indicator system.
  • the easy-to-quantify indicators are convenient for provincial grid companies to provide or collect data.
  • step 12 each main business of the power grid is independently analyzed, and the method of scoring by experts is used to determine the contribution of each main business of the power grid to the comprehensive benefit index system in the systematic implementation of technical standards.
  • step 13 the major businesses of each main business of the power grid are subdivided into specific businesses such as secondary business and tertiary business, and the "lowest level business" is determined during the subdivision process, and the specific The contribution of the sub-business to the main business of the upper level is calculated to calculate the contribution of the "bottom business” to the main business of the power grid.
  • methods such as time quota theory and judgment matrix method can be adopted.
  • step 14 determine the contribution of company standards (or standard clusters) to the "lowest level of business", that is, "the degree to which technical standards support this sub-business".
  • company standards or standard clusters
  • the main business of the power grid of large and medium-sized enterprises is often composed of complex processes.
  • the composition is difficult to directly correspond to the corresponding technical standards. Therefore, this application proposes a technical standard classification method based on the main business of the power grid. This method is used to refine the degree of support of the technical standards to the main business of the power grid.
  • FIG 3 for each main business of the power grid, it can be refined step by step, that is, it can be subdivided into its secondary, tertiary, and four-level business systems.
  • the business breakdown diagram is shown in Figure 3.
  • the planning and design business can be subdivided into planning and design secondary business A, planning and design secondary business B...planning and design secondary business n , Until the planning and design of secondary business N.
  • each secondary business such as planning and design secondary business n
  • it can be subdivided into planning and design tertiary business A, planning and design tertiary business B...planning and design tertiary business n, up to planning and design tertiary business N.
  • planning and designing three-level business such as planning and designing three-level business n
  • it can be subdivided into planning and designing four-level business A, planning and designing four-level business B...planning and designing four-level business n, until planning and designing four-level business N, business details
  • the divided minimum business (or business set) unit is called the bottom business (or bottom business set) in this article.
  • the determination principle of the bottom business is consistent with the corresponding business (or business set) of the corresponding technical standard cluster. For example, when a business is refined to a third-level business, it can already correspond to a certain technical standard (cluster), and there is no need to continue to subdivide it into a fourth-level business.
  • the third-level business is the underlying business.
  • the planning and design services are all subdivided into four-level services, that is, the underlying services are all four-level services.
  • a set of technical standards (clusters) corresponding to the underlying business (bottom business set) unit and the corresponding business can be obtained.
  • a technical standard (or standard cluster) can be found to correspond to it.
  • step 15 For the calculation method of the contribution degree of the technical standards (or standard clusters) involved in each underlying business (underlying business set) unit, see step 15.
  • step 15 the contributions corresponding to the same quantified comprehensive benefit index with the same dimension can be summed, and the overall contribution of the technical standard systemization to the same quantified comprehensive benefit index with the same dimension can be obtained.
  • the indicators for creating economic profits can be added and summed to obtain the contribution of the standard system to the total economic profits.
  • the Analytic Hierarchy Process is a typical and practical mathematical method for processing hierarchical weight decision-making problems. It decomposes the elements related to decision-making into goals, criteria, and plans. On this basis, the decision-making method of qualitative and quantitative analysis.
  • the analytic hierarchy process is an American operations researcher Professor Satie of the University of Pittsburgh in the early 1970s, when he was invented by the US Department of Defense to study "electricity distribution based on the contribution of various industrial sectors to national welfare", and applied the network system.
  • Theory and multi-objective comprehensive evaluation method which is a method to deal with the decision-making problem of hierarchical weight.
  • the Analytic Hierarchy Process is not only suitable for situations where there is uncertainty and subjective information, it also allows the use of experience, insight, and intuition in a logical way.
  • the biggest advantage of Analytic Hierarchy Process is that it allows decision-making parties to seriously consider and measure the relative importance of indicators.
  • the weight distribution in this application uses a combination of the analytic hierarchy process and the Delphi method The method is determined, based on the analytic hierarchy process, the Delphi method is introduced in the process of forming the judgment matrix.
  • the analytic hierarchy process includes steps 21 to 24.
  • step 21 a hierarchical structure model is established.
  • the highest level is the goal level (O): the goal or ideal result of the problem decision, which has only one element.
  • the middle layer is the criterion layer (C): It includes various factors involved in the intermediate links to achieve the goal. Each factor is a criterion. When there are more than 9 criteria, it can be divided into multiple sub-layers.
  • the lowest level is the program level (P): the program level is a variety of measures to choose from to achieve the goal, that is, the decision-making program.
  • P program level
  • some of the factors between various levels are related, and some are not necessarily related; the number of factors at each level may not necessarily be the same. In practice, it is mainly based on the nature of the problem and the type of related factors to make sure.
  • the analysis object of the analytic hierarchy process is the weight distribution between the main business of the power grid. Therefore, the constructed hierarchical structure diagram is actually the hierarchical structure diagram of the main business of the major power grids.
  • step 22 a judgment (comparison) matrix is constructed.
  • the construction of the comparison matrix is mainly to compare the influence of various factors at the same level on the related factors of the previous level. It is not to compare all factors together, but to compare the factors at the same level. When comparing, adopt relative yardsticks to measure, and avoid the difficulty of comparing different factors with each other as much as possible. At the same time, it is necessary to try to reduce the impact of the decision-maker's subjective factors on the results based on the specific circumstances of the actual problem.
  • n factors C 1 , C 2 ,..., C n on the upper layer (such as the target layer) O that is, determine its proportion in O.
  • the judgment matrix is also called a reciprocal matrix.
  • a ij takes 9 grades from 1-9
  • a ji takes the reciprocal of a ij
  • the 1-9 scale is determined as follows:
  • A is called the consensus matrix, which is referred to as the consensus matrix for short.
  • step 23 the consistency check of the judgment matrix is performed.
  • Consistency ratio index When CR ⁇ 0.10, the consistency of the judgment matrix is considered acceptable, the eigenvector corresponding to ⁇ max can be used as the weight vector for sorting, where ⁇ max is the maximum eigenvalue of the judgment matrix, and RI is the random consistency index. The value of RI is preset. at this time,
  • W is the eigenvector corresponding to the largest eigenvalue of matrix A
  • (A ⁇ W) i represents the i-th component of A ⁇ W.
  • step 24 the combined weights of the factors on the top layer other than the highest layer are calculated, and the combination consistency check of the judgment matrices on the other layers except the top layer is performed.
  • Combination weight vector Let n k-1 elements on the k-1 layer (ie n k-1 factors related to the problem on the k-1 layer) to the total target (the highest layer) sort the weight vector as The weight vector of n k elements on the kth layer to the jth element on the previous layer (k-1 layer) is Matrix It is a matrix of order n k ⁇ n k-1 , which represents the sorting weight vector of the elements on the k-th layer to the elements of the k-1 layer. Then the total sorting weight vector of the elements on the k-th layer to the target layer (the highest layer) is
  • W (4) is the total ranking weight vector of each element on the fourth layer of business to the target layer.
  • Combination consistency index verification set the consistency index of the k layer as The random consistency index is Then the combination consistency index of the k-th layer to the target layer (the highest layer) is The combined random consistency index is The combination consistency ratio indicator is When CR (k) ⁇ 0.10, the comparison judgment matrix of the entire level is considered to pass the consistency test.
  • the Delphi method is essentially a feedback anonymous inquiry method. It first selects multiple evaluation methods according to the specific requirements of the evaluation object, and then formulates evaluation standards based on the evaluation methods. Solicit opinions from relevant experts on the evaluation criteria in an anonymous way, conduct statistics, processing, analysis and summarization of expert opinions, objectively integrate the experience and subjective judgments of most experts, and make reasonable estimates for a large number of factors that are difficult to use technical methods for quantitative analysis. After multiple rounds of opinion consultation, feedback and adjustments, the method of analyzing the value of the creditor's rights and the degree of value achievable. Therefore, expert scoring based on the Delphi method can guarantee the impartiality and independence of the scoring process and results to the greatest extent.
  • This application uses a combination of analytic hierarchy process and Delphi method.
  • the Delphi method is introduced in the process of forming the judgment matrix, so as to avoid the subjective guidance of individual experts and facilitate more stable and objective results. Then comprehensive expert experience to form factor importance ranking, calculate the weight and check the consistency.
  • the operation based on the Delphi method includes steps 31 to 36.
  • step 31 an expert is selected.
  • step 32 the factors that affect the weight judgment are determined, and the weight judgment consultation opinion form is designed.
  • step 33 background information is provided to the experts, and expert opinions are sought anonymously.
  • step 34 the expert opinions are analyzed and summarized, and the statistical results are fed back to the experts.
  • step 35 the expert corrects his opinion based on the feedback result.
  • step 36 after multiple rounds of anonymous consultation and feedback, the final analysis conclusion is formed.
  • the final analysis conclusion is that the weight distribution of the above factors influencing the weight judgment by the experts, that is, the weight distribution of the sub-business at all levels of the main business.
  • the calculation method of the expert score is an additive evaluation type. The scores of the evaluation indicators are added and summed, and the evaluation result (ie expert opinion) is expressed by the total score.
  • the time lag effect of technical standards refers to the degree of contribution of the systematic implementation of technical standards to the overall benefits, which will change according to the different stages of the systematic life cycle of the standards.
  • the life cycle of a standard refers to the time from when a standard is compiled and released and adopted by an enterprise (organization) until the standard loses its effectiveness and is abolished.
  • the standard's life cycle is mainly divided into the first half (research incubation period) and the second half (using the implementation period).
  • the economic benefits of the standard are mainly generated in the second half of the standard, that is, the implementation of the standard enters the mature stage. .
  • Standard replacement occurs when the life cycle of the standard enters a recession period.
  • the reasons for entering the replacement phase can be that the use of the standard does not meet the expected effect, the standard itself and other existing standards lack coordination, there are problems in the content of the standard, and the standard and the current economy The social environment is not compatible and so on.
  • the main standards adopted by the State Grid Corporation of China are international standards (International Electrotechnical Commission (IEC), International Organization for Standardization (ISO), etc.), national standards (GB), power industry standards (DL Etc.) and corporate standards (Q/GDW).
  • IEC International Electrotechnical Commission
  • ISO International Organization for Standardization
  • GB national standards
  • DL Etc. power industry standards
  • Q/GDW corporate standards
  • the compulsory review includes three criteria, namely the contribution to international trade and production, the contribution to the national economy, health, safety or environmental protection, and the extent to which the standard is directly used or transformed by the country. Each criterion is divided into 5 If the total score is less than 9 points, the standard will be abolished. Therefore, the replacement cycle of international standards is 5 years.
  • my country's standardization law refers to international standard life regulations.
  • the review cycle of domestic standards (including national standards, industry standards, local standards, etc.) generally does not exceed 5 years. The standard life cycle will go through the life course of introduction, growth, maturity and even decline. .
  • the standards involved in each subdivided business system into a single business standard cluster, and realize the technology separation of the standard cluster.
  • the standards in the standard cluster correspond to each technical business. Since each standard generates benefits in business activities in a different cycle, it is passed Comprehensively analyze the average life span of each standard in the standard field, and obtain the average life cycle of the benefits of the standard cluster.
  • N i is the standard (cluster) I cycle life (years)
  • the contribution of the systematic implementation of the technical standard to the main business of the power grid can be obtained.
  • the systematic implementation of the technical standard has an impact on the main business.
  • the contribution rate of is multiplied by the time lag effect coefficient of the technical standard, and the contribution rate of the systematic implementation of the technical standard considering the time lag effect to the comprehensive benefit can be obtained, as shown in the following formula:
  • the time correction coefficient ⁇ i can be calculated by equation (4.7).
  • the technical standards are systematically implemented to implement a comprehensive benefit evaluation model, which is verified and revised in different application scenarios, and the final technical standard systemized implementation benefit evaluation model is obtained.
  • the final technical standard is systematically implemented
  • the benefit evaluation model is set to calculate the comprehensive benefits produced by the implementation of technical standards.
  • a questionnaire on the contribution of technical standards was designed.
  • the questionnaire is filled out by actual operators who are familiar with the business.
  • the fill-in person chooses according to the business and position to avoid the difference between the business and the position.
  • the questionnaire fills in the questionnaire in charge of multiple businesses, fill in the number according to the number of business types covered.
  • Questionnaires; the questionnaire adopts a scoring method.
  • the fill-in person scores multiple factors that affect the development of the business.
  • the scoring of each influencing factor is the same among the divisions.
  • the fill-in person freely scores each influencing factor based on his business experience.
  • the score ratio reflects the intensity ratio of its influence on comprehensive benefits.
  • the factors that affect business development include the systematic implementation of technical standards, the improvement of production efficiency, the improvement of personnel quality, and the improvement of equipment.
  • the proportion of the benefits of the underlying business from the systematic implementation of technical standards can be obtained, that is, the benefits of the underlying business resulting from the systematic implementation of standards are weighted by the weights of the sub-businesses at all levels , Layers of upward transmission, you can finally get the benefits generated by the systematic implementation of technical standards.
  • the most relevant influencing factors are selected from the influencing factor pool for questionnaire scoring.
  • the weight score of the contribution of the systematic implementation of technical standards to the fourth-level segmented business can be obtained.
  • the questionnaire interface design and filling process are as follows:
  • the questionnaire survey participants fill out the electronic questionnaire online based on their own work experience and cognition;
  • the person who fills in the questionnaire should clearly fill in personal information, select the name of the unit, fill in the name of the department, and select the business directory level by level to ensure that the selected business name is consistent with the content of the individual responsible for the business.
  • the filling should be based on the actual situation of the individual responsible for the business. Fill in the information truthfully.
  • the following is a detailed introduction to the pilot implementation plan of the comprehensive benefit evaluation of the systematic implementation of technical standards.
  • the plan mainly includes 6 steps: initiation of deployment, publicity and training, data investigation, data recovery, analysis and evaluation, and closed-loop improvement.
  • the Invention Group of the Ministry of Science and Technology of the State Grid Corporation of China carried out publicity and implementation training on the comprehensive benefit evaluation of the company’s systematic implementation of technical standards, explained the expected goals and working principles of the pilot work to the participating provincial power grid companies, and distributed relevant materials; the provincial power grid company arranged Deploy the publicity and implementation training work for each unit and professional, and each unit selects appropriate scoring experts according to the requirements of the pilot work, and establishes a contact mechanism; conducts publicity and implementation training for the scoring experts for questionnaire filling and data recovery, explains the requirements of the pilot work, and clarifies the scoring experts Responsibility to ensure the reliability and scientificity of the scoring results.
  • the provincial power grid company issued a comprehensive benefit evaluation questionnaire for systematic implementation of technical standards and a statistical template for the main business benefit index of the power grid; units at all levels arranged the questionnaire distribution, filling, and recovery work, and carried out the main business benefit index data statistics of the power grid, Fill in the questionnaire, supervise and summarize and feedback the questionnaire filling in time.
  • the quality of the raw data preprocessing directly determines the quality of the analyzed data, and affects the credibility of the survey results and the scientific decision-making based on this. Therefore, the questionnaire data is preprocessed first.
  • the process of questionnaire data preprocessing includes four steps: a data review, b data cleaning, c data conversion, and d data verification.
  • the data cleaning stage is mainly to use a variety of interpolation methods to interpolate the missing values, and use smoothing technology to perform corrective smoothing of outliers.
  • the data conversion stage there are more methods to choose from according to different needs. For different measurement units, non-dimensionalization and normalization can be used. For different data levels, methods such as data aggregation and generalization can be used. Combining the requirements of the analysis model can be used. Perform linear or other forms of transformation, construction and addition of new attributes to the data, as well as weighting processing.
  • the data verification stage includes confirming the correctness and validity of the above data preparation operations, checking whether the logical transformation of the data has caused distortion or deviation to the data, and again using description and exploratory analysis to check the basic characteristics of the data, and the balance relationship between the data And coordination is tested.
  • outliers are also called outliers.
  • the primary task of outlier processing is to detect outliers. Since outliers may be caused by data quality problems, they may also reflect the true development and changes of things, so after detecting outliers, it must be judged whether they are true outliers. Methods for detecting outliers are mainly divided into three categories: statistical methods, distance-based methods, and deviation-based methods.
  • the data object in the source data has at least the distance between the data object and the data object O greater than d, then the data object O is an outlier based on the distance DB with parameters p and d, namely DB(p, d ), the commonly used distance is Euclidean distance.
  • the outlier is determined by examining the main characteristics of a set of data objects. Data objects that "deviate" from the given main characteristics are considered as outliers.
  • the processing method for outliers is mainly to use data smoothing technology to smooth the source data according to the data distribution characteristics.
  • the processing methods of outliers include binning, clustering, regression and so on.
  • Binning smooth the values of abnormal data by examining "neighbors” and distribute them to some “buckets” or bins. For the values in the bins, it can be based on the bin average, median, or boundary value.
  • the principle is to perform local smoothing with reference to adjacent values.
  • Outliers can be detected by clustering. Clustering organizes similar values into groups or classes, and replaces outliers that fall outside of the various sets with the nearest class mean.
  • Regression by smoothing the data by fitting the data to a function (such as a regression function) and finding a mathematical equation suitable for the data to help eliminate noise.
  • a function such as a regression function
  • Many data smoothing methods also involve discretized data reduction.
  • main business index is an indicator reflecting the main business level
  • main business index difference indicates that the main business index is before and after the implementation of the technical standard system. Changes in the overall benefits of operating business indicators.
  • This application uses technical standards to systematically implement the evaluation of comprehensive benefits. It should grasp the "five principles”, namely scientific, practical, systematic, innovative, and developmental. At the same time, it should reflect the "four combinations" idea, namely subjective and The evaluation principles of objective combination, theory and practice, short-term and long-term combination, dynamic and static combination, comprehensively comb the application of the technical standard system in each production link of the main business of large and medium-sized power grids, and systematically build the enterprise
  • the comprehensive benefit index system of the technical standards of the whole and the main business of each power grid is based on scientific and advanced model methods, and the comprehensive benefits generated by the systematic implementation of technical standards are separated from multiple factors that affect the comprehensive benefits.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种大中型企业技术标准体系化实施效益评价方法,包括以下步骤:分析大中型企业的主营业务通过技术标准应用而产生的综合效益,构建大中型企业主营业务的技术标准体系化实施综合效益指标体系;计算每项主营业务在技术标准体系化实施期产生的综合效益;构建完整的技术标准体系化实施综合效益评价模型;将技术标准体系化实施综合效益评价模型,在不同的应用场景中进行校验并修正,并得到最终的技术标准体系化实施综合效益评价模型。

Description

一种大中型企业技术标准体系化实施效益评价方法
本申请要求在2019年12月25日提交中国专利局、申请号为201911356923.X的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及大中型企业效益评价技术领域,例如一种大中型企业技术标准体系化实施效益评价方法。
背景技术
大中型企业经营管理过程中需要对其业务进行效益分析以供管理者了解公司的概况,评价公司效益能够全面落实国家深化标准化工作改革要求,落实国家标准化战略,建立完善的大中型企业标准化体制机制,提升技术标准,引领大中型企业高质量发展水平,促进我国标准质量整体提升,构建更加科学合理的标准体系,支撑社会经济可持续发展。随着科技体制的改革,科技项目已摆脱单纯科研的观念,转变为追求科技项目的经济效益,然而目前科技项目实施效果和效益评价无论是从理论还是从实践方面均缺乏一套比较完善的测评体系和方法。
发明内容
本申请提供了一种大中型企业技术标准体系化实施效益评价方法,采用自下而上的原则构建企业整体及各主营业务技术标准综合效益指标体系,基于科学先进的模型方法,从多个影响综合效益的因素中剥离出技术标准体系化实施产生的综合效益,便于公司管理,以避免上述背景技术中出现的情况。
本申请提供如下技术方案:一种大中型企业技术标准体系化实施效益评价方法,包括:
分析大中型企业的主营业务通过技术标准体系化实施而产生的综合效益,构建大中型企业主营业务的技术标准体系化实施综合效益指标体系;
基于大中型企业主营业务的技术标准体系化实施综合效益评价指标体系以及底层业务技术标准贡献度计算模型,通过所述主营业务的各级子业务的权重分配和层层归集传递,得到技术标准体系化实施对主营业务的贡献率,计算每项主营业务在技术标准体系化实施期产生的综合效益;
综合多项主营业务在技术标准体系化实施期产生的综合效益,从多个影响综合效益的因素中剥离出技术标准体系化实施产生的综合效益,从而构建完整的技术标准体系化实施综合效益评价模型;
将技术标准体系化实施综合效益评价模型,在不同的应用场景中进行校验并修正并得到最终的技术标准体系化实施综合效益评价模型,所述最终的技术标准体系化实施综合效益评价模型设置为计算技术标准体系化实施产生的综合效益。
本发明的具有以下特点:
1、提出针对大中型企业技术标准体系化实施效益评估的“全链条价值分解法”,按照“技术标准→业务链条→实施效益”的评价思路,通过“业务链条”将技术标准和实施效益准确关联,从而避免了ISO价值链法等传统评价方法无法对大中型企业大规模业务体系评价的情况,并考虑技术标准时滞效应,量化分析了公司技术标准体系化实施效益。该评价方法可复制,可推广,为国家标准化工作的推进奠定了坚实的基础。
2、科学构建了技术标准体系化实施效益评价指标体系。本课题提出的指标体系构建方法可以达到化繁为简的目的,避免了传统建模方法很难处理大规模评价对象的情况。同时,按照“自上而下、自下而上”的闭环思路建立的评价指标体系具有很强的实操性,一线业务人员可以快速理解该指标体系,且能很方便的收集底层指标需要的数据。
3、提出德尔菲法(DELPHI)-层次分析组合赋权法为各评价指标赋权。基 于传统标准体系化实施效益评价方法存在“量化难”、“主观性强”、“准确度不高”、“可复制可推广性不高”等诸多情况,本研究对大中型企业主营业务评价指标的权重分配模型构建时,在国内外研究的基础上并结合大中型企业业务繁杂且庞大的特点提出德尔菲法-层次分析组合赋权法。该方法能够对因素影响程度进行一致性校验,同时能够对大量难以采用技术方法进行定量分析的因素做出合理估算,避免了由于个别专家主观引导带来的数据偏离,便于得出更加稳定、客观的结果。对于权重的计算,综合专家经验形成因素重要性排序,计算权重并检验一致性。对技术标准体系化实施效益评价方法发展具有一定借鉴意义。
4、提出调查问卷采集法确定技术标准贡献率。基于“效益影响因素剥离法”理论,采用调查问卷下发的方式,将技术标准对公司业务的效益贡献率从管理水平提升、设备改良等其他影响因素中剥离出来,有效避免了其他因素对技术标准体系化实施效益评价的影响。本次研究以国家电网公司为例,以问卷处理发放的形式,对国家电网公司169项末端业务技术标准实施对主营业务的贡献度进行了调查分析。
附图说明
图1为本申请一实施例提供的一种大中型企业技术标准体系化实施效益评价方法流程框图;
图2为本申请一实施例提供的国家电网公司电网主营业务细分流程框图;
图3为本申请一实施例提供的电网主营业务层次结构流程框图;
图4为本申请一实施例提供的电网主营业务层次结构图权重流程框图;
图5为本申请一实施例提供的德尔菲法层次分析组合赋权法流程框图。
具体实施方式
参阅图1至图5,本申请提供一种技术方案:一种大中型企业技术标准体系化实施效益评价方法,如图1所示,包括步骤S1至步骤S4。
在S1中,分析大中型企业的主营业务通过技术标准实施而产生的综合效益,构建大中型企业主营业务的技术标准体系化实施综合效益评价指标体系。
需要说明的是,本申请中以国家电网公司为例,对大中型企业的技术标准体系化实施效益评价方法进行介绍。
大中型企业主营业务的技术标准体系化实施综合效益评价指标体系构建原则如下:
科学可行:评价指标体系不仅要依据电网公司技术标准实施的规律和特点科学制定,还应符合客观实际、切实可行、易于操作;
重点突出:评价指标体系的设计不能仅追求系统性和完整性,还应突出重点,具有代表性和可比性,体现研究对象的特征;
层次清晰:评价指标体系要做到层次分明,结构清晰,同一层次的指标不重叠、不相交,各指标需满足独立性要求;
动态发展:评价指标体系的构建是一个逐步完善的过程。一方面指标体系要随着标准化工作的要求不断完善;另一方面也要随着公司的发展而逐步调整。
大中型企业主营业务的技术标准实施综合效益评价指标体系构成。
本申请提出了“1+5”技术标准体系化实施综合效益评价指标体系。国家电网公司的电网主营业务主要包括规划、建设、运行、检修及营销,针对公司经营的各项业务,公司正在执行的技术标准共计10884余项。由于公司涉及的业务面十分广泛且技术标准体系十分庞大,为了建立能够有效反映出公司业务效益的评价指标体系,本申请构建评价指标体系的整体思路是先“自上而下”建立整体评价维度,再“自下而上”建立详细的底层评价维度,最后通过“组合配对”形成公司标准体系化实施的综合效益评价指标体系,最终形成“1+5”型的评价指标体系,即一个从公司整体效益出发的评价指标体系和针对电网主营 业务的特殊效益评价指标体系。
在形成综合效益评价指标体系的过程中,主要基于以下思路:
首先,采用“自上而下”的思路,对电网主营业务分别建立了一套效益评价指标体系。首先通过合理选择每个业务的评价维度,形成第一层评价指标;然后,深入分析每个评价维度的效益影响要素,进而形成第二层评价指标;最后,对第二层评价指标进一步细化,进而可以得到可定量或定性分析的绩效指标,形成第三层评价指标。
其次,采用“自下而上”的思路,梳理筛选电网主营业务的底层评价指标。底层评价指标是评价指标体系的根基,在构建指标体系时必须严格把关。本申请通过与各项业务的一线工作人员沟通,按照指标体系的全面性、独立性、可行性等原则梳理和筛选底层指标,最终确定的底层指标要能够反映出技术标准体系化实施给公司各项业务带来的收益,还要保证各项底层指标的数据可通过定性或定量的方式获取。
最后,从经济效益、社会效益和专业水平三个维度出发,提出国家电网公司的整体评价指标体系。通过对电网主营业务的底层评价指标按照经济效益、社会效益和专业水平三个维度进行分类,从公司整体视角,遴选出重要的、有代表性的、可以显著反映公司工作成效的评价指标,最终形成公司整体效益的评价指标体系。
本申请一是将公司标准体系化实施的评价对象按照业务进行划分,得到技术标准体系化实施效益评价指标体系的构建方案,可以达到化繁为简的目的,能够处理评估规模过大的情况。二是按照“自上而下、自下而上”的闭环思路建立的评价指标体系具有很强的实操性,一线业务人员可以快速理解该指标体系,且能很方便的收集底层指标需要的数据。三是该指标体系具有很高的灵活 度,通过底层指标的“灵活配对”可以得到公司对内或对外的经济效益、社会效益、专业水平等标准体系化实施的评估结果。
本申请提出针对大中型企业技术标准体系化实施效益评估的“全链条价值分解法”,按照“技术标准→业务链条→实施效益”的评价思路,通过“业务链条”将技术标准和实施效益准确关联,从而避免了国际标准化组织(International Organization for Standardization,ISO)价值链法等传统评价方法无法对大中型企业大规模业务体系评价的情况,并考虑技术标准时滞效应,量化分析了公司技术标准体系化实施效益。该评价方法可复制,可推广,为国家标准化工作的推进奠定了坚实的基础。
下面以国家电网公司的5项主营业务(规划设计业务、工程建设业务、调度运行业务、运维检修业务以及营销服务业务)为例,对电网主营业务的特殊效益评价指标体系的构建进行说明。
1)规划设计业务
规划设计业务效益从满足发展需求、规划设计质量、电网质量提升、电网安全提升、电网效率效益和节能环保效益共6个维度予以评价。每个维度下设多个一级指标,表征该维度效益的指标属性,以定性说明为主,包括保障地方经济发展、促进清洁能源发展等共计25项。每项一级指标包括多个二级指标,对相应一级指标予以充分支撑,即规划设计业务过程中产生的底层具体定量或定性指标,包括全社会用电量、全社会最高负荷等共计57项。
2)工程建设业务
工程建设业务从造价、工期、质量、安全、输变电能力和环境六个维度建立一套建设业务效益评价指标体系,整个指标体系共包含三层。第一层指标即工程建设业务的上述六个效益评价维度,第二层指标为每个效益评价维度的效 益影响要素,接下来通过三层指标对第二层指标进一步细化,进而可以得到可定量或定性分析的运营绩效指标。
3)调度运行业务
调度运行业务效益从电网效率效益、电网安全提升、电网质量提升、节能环保效益、满足发展需求共5个维度予以评价。每个维度下设多个一级指标,表征该维度效益的指标属性,以定性说明为主,包括装备水平、经济运行等共计10项。每项一级指标包括多个二级指标,对相应一级指标予以充分支撑,即调度运行业务过程中产生的底层具体定量或定性指标。
4)运维检修业务
运维检修业务效益从运维精益化管理水平提升、设备安全运行水平提升、智能运检能力提升、降低运维成本共4个维度予以评价。每个维度下设多个一级指标,表征该维度效益的指标属性,以定性说明为主,包括电能质量、供电可靠性、精益化管理等共计13项。每项一级指标包括多个二级指标,对相应一级指标予以充分支撑,即运维检修业务过程中产生的底层具体定量或定性指标。
5)营销服务业务
营销服务业务效益从电力市场开发、计量及抄核收、安全规范用电、优质营销服务、服务智能用电、服务能源管理共6个维度予以评价。每个维度下设多个一级指标,表征该维度效益的指标属性,以定性说明为主,包括市场开发、业扩报装等共计12项。每项一级指标包括多个二级指标,对相应一级指标予以充分支撑,即营销服务业务过程中产生的底层具体定量或定性指标。
下面对国家电网公司的整体效益评价指标体系的形成过程进行介绍。
按照指标体系构建原则,结合国家电网公司电网多项主营业务的效益指标体系及公司同业对标的指标体系,本申请基于公司整体视角主要从经济效益、 社会效益和专业水平三个维度最终遴选出重要的、有代表性的、可以显著反映公司经营成效的评价指标,最终形成公司技术标准体系化实施整体效益评价指标体系,如表1所示。
表1公司技术标准实施整体效益评价指标体系
Figure PCTCN2020137158-appb-000001
从经济效益的评价维度来看,考虑到技术标准体系化实施后可以使公司的营收增加和成本下降,故设置了公司经营收益和公司经营成本两个一级指标。其中,公司经营收益主要通过售电量、电网业务板块的营收和利润三个效益指 标反映;公司经营成本下降主要通过投资成本、建设成本和运维成本三类效益指标来反映。
从社会效益的评价维度来看,考虑到技术标准体系化实施后可以增加清洁能源消纳、节能减排、减少环境破坏,故设立了清洁能源消纳电量、新能源弃风和弃光率、电能替代、降损减少CO 2排放、节约耕地面积、工程项目竣工环保验收率6个效益指标。此外,考虑到供电质量改善对居民生活的影响,按照城市电网和农村电网的划分,增加了城网供电可靠率、农网供电可靠率2个效益指标。
从专业化水平的评价维度来看,共划分成六个类别,除了规划、建设、运行、检修、营销这电网五大主营业务,还增加了电网运营中各方重大关切的安全生产维度。从电网五大主营业务以及安全生产的效益指标中,选取了对应六个类别的最典型、具有代表性的共计13个效益指标,如表1指标17-指标29所示。
在S2中,基于企业主营业务技术标准实施综合效益指标体系以及底层业务技术标准贡献度计算模型,通过主营业务的各级子业务的权重分配和层层归集传递,得到技术标准体系化应用对主营业务贡献率,计算每项主营业务在技术标准实施期产生的综合效益。
如图2所示,为定量分析标准和效益之间的关系,需要分析以下两个问题,一是确定取得了哪些效益,最好是可以量化的效益(即效益的指标);二是所产生的效益是由哪些标准(簇)贡献的,以及这些标准的贡献度是多少。
然而,直接量化标准所产生的效益存在实施上的困难,由于标准制定时主要是对于具体业务,难以从标准直接联系所产生的效益,尤其是在通过专家打分等量化方法时,无法直接判断所使用的标准到底产生了多少的效益。本申请 采用步骤11至步骤15所述的方法,科学地定量分析了标准和效益之间的关系。
在步骤11中,将综合效益细化,即确定定量或定性的综合效益指标,建立国家电网公司业务技术标准体系化实施综合效益指标体系,通过易于量化的指标便于各省电网公司提供或收集数据。
在步骤12中,独立分析电网每项主营业务,采用专家打分的方法,确定电网每项主营业务对技术标准体系化实施综合效益指标体系中的综合效益指标的贡献度。
在步骤13中,将电网每项主营业务的各大业务进行细分,细分为二级业务、三级业务等具体业务,并在细分过程中确定“最底层业务”,并通过具体子业务对上级主业务的贡献度计算出“最底层业务”对电网主营业务的贡献度。在确定各级业务权重分配时,可以通过时间定额理论、判断矩阵法等方法。
在步骤14中,确定公司标准(或标准簇)对“最底层业务”的贡献度,即“技术标准对该项子业务的支撑程度”,大中型企业的电网主营业务往往由复杂的工序构成,难以直接与相应的技术标准相对应,故本申请提出一种基于电网主营业务细分的技术标准分类方法,该方法用于细化技术标准对电网主营业务的支撑程度。
如图3所示,对于每一项电网主营业务,均可对其逐级细化,即细分为其下的二级、三级和四级业务体系。以国家电网公司的电力系统规划设计为例,其业务细分示意图如图3所示,规划设计业务可以细分为规划设计二级业务A、规划设计二级业务B…规划设计二级业务n,直到规划设计二级业务N。对于每一个二级业务,如规划设计二级业务n,可细分为规划设计三级业务A、规划设计三级业务B…规划设计三级业务n,直到规划设计三级业务N。对于每一个三级业务,如规划设计三级业务n,可细分为规划设计四级业务A、规划设计四级 业务B…规划设计四级业务n,直到规划设计四级业务N,业务细分后的最小业务(或业务集合)单元,本文称之为底层业务(或底层业务集合),底层业务(或底层业务集合)确定原则为与相应技术标准簇对应业务(或业务集合)一致。例如,当某业务细化到三级业务后,已经能对应某技术标准(簇),此时不必再继续细分为四级业务,三级业务即底层业务。为简化讨论,如图所示,规划设计业务均细分到四级业务,即底层业务均为四级业务。
业务细分完成之后,可得到底层业务(底层业务集合)单元与相应的业务对应的技术标准(簇)集合。对于某底层业务(底层业务集合)单元,均能找到技术标准(或标准簇)与之对应。
每一个底层业务(底层业务集合)单元所涉及到的技术标准(或标准簇)对其的贡献程度的计算方法,参见步骤15。
在步骤15中,可将同样量化且量纲相同的综合效益指标对应的贡献度求和,可得到技术标准体系化对同样量化且量纲相同的综合效益指标的总体贡献。如创造经济利润的指标可以相加求和,得到标准体系对总的经济利润的贡献。
如图4所示,层次分析法(Analytic Hierarchy Process,AHP)是一种处理层次权重决策问题的典型实用的数学方法,它是将与决策有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。层次分析法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究“根据各个工业部门对国家福利的贡献大小而进行电力分配”发明时,应用网络系统理论和多目标综合评价方法,所得到的一种应对层次权重决策问题的方法。
层次分析法不仅适用于存在不确定性和主观信息的情况,还允许以合乎逻辑的方式运用经验、洞察力和直觉。层次分析法最大的优点是可以让决策方能 够认真地考虑和衡量指标的相对重要性。考虑本申请中需要对公司电网主营业务下的各级业务,进行权重分配的实际需求,应用层次分析法可以较为方便科学的选择,本申请中权重分配采用层次分析法和德尔菲法相结合的方法确定,以层次分析法为基础,在形成判断矩阵的过程中引入德尔菲法。层次分析法包括步骤21至步骤24。
在步骤21中,建立层次结构模型。
利用层次分析法研究问题时,首先要把与问题有关的各种因素层次化,然后构造出一个树状结构的层次结构模型,称为层次结构图。最高层为目标层(O):问题决策的目标或理想结果,只有一个元素。中间层为准则层(C):包括为实现目标所涉及的中间环节各因素,每一因素为一准则,当准则多于9个时,可分为多个子层。最低层为方案层(P):方案层是为实现目标而供选择的各种措施,即为决策方案。一般说来,各层次之间的各因素,有的相关联,有的不一定相关联;各层次的因素个数也未必一定相同.实际中,主要是根据问题的性质和各相关因素的类别来确定。
以国家电网公司为例,层次分析法分析的对象是电网主营业务的各级业务之间的权重分配,因此,所构建的层次结构图实际是各大电网主营业务的分级结构图。
在步骤22中,构造判断(比较)矩阵。
构造比较矩阵主要是通过比较同一层次上的各因素对上一层相关因素的影响作用,不是把所有因素放在一起比较,而是将同一层的各因素进行两两对比。比较时采用相对尺度标准度量,尽可能地避免不同性质的因素之间相互比较的困难。同时,要尽量依据实际问题具体情况,减少由于决策人主观因素对结果造成的影响。
设要比较n个因素C 1,C 2,…,C n对上一层(如目标层)O的影响程度,即要确定它在O中所占的比重。对任意两个因素C i和C j,用a ij表示C i和C j对O的影响程度之比,按1-9的比例标度来度量a ij(i,j=1,2,…,n)。于是,可得到两两成对比较矩阵A=(a ij) n×n,又称为判断矩阵,显然
Figure PCTCN2020137158-appb-000002
因此,又称判断矩阵为正互反矩阵。
比例标度的确定:a ij取1-9的9个等级,a ji取a ij的倒数,1-9标度确定如下:
a ij=1,元素i与元素j对上一层次因素的重要性相同;
a ij=3,元素i比元素j略重要;
a ij=5,元素i比元素j重要;
a ij=7,元素i比元素j重要得多;
a ij=9,元素i比元素j的极其重要;
a ij=2n,n=1,2,3,4…元素i与j的重要性介于a ij=2n-1与a ij=2n+1之间;
Figure PCTCN2020137158-appb-000003
n=1,2,…9当且仅当a ji=n。
由正互反矩阵的性质可知,只要确定A的上(或下)三角的
Figure PCTCN2020137158-appb-000004
个元素即可。在特殊情况下,如果判断矩阵A的元素具有传递性,即满足
a ika kj=a ij(i,j,k=1,2,L,n)    (4.2)
则称A为一致性矩阵,简称为一致阵。
在步骤23中,进行判断矩阵的一致性检验。
通常情况下,由实际得到的判断矩阵不一定是一致的,即不一定满足传递性和一致性。实际中,也不必要求一致性绝对成立,但要求大体上是一致的,即不一致的程度应在容许的范围内。一致性主要考查以下指标:
一致性指标:
Figure PCTCN2020137158-appb-000005
一致性比率指标:
Figure PCTCN2020137158-appb-000006
当CR<0.10时,认为判断矩阵的一致性是可以接受的,则λ max对应的特征向量可以作为排序的权重向量,其中,λ max为判断矩阵的最大特征值,RI为随机一致性指标,RI的取值为预先设定的。此时,
Figure PCTCN2020137158-appb-000007
其中,W为矩阵A最大特征值对应的特征向量,(A·W) i表示A·W的第i个分量。
在步骤24中,计算除最高层之外的其他层上的各因素对最高层的组合权重并进行除最高层之外的其他层上的判断矩阵的组合一致性检验。
组合权重向量:设第k-1层上n k-1个元素(即k-1层上的问题有关的n k-1个因素)对总目标(最高层)的排序权重向量为
Figure PCTCN2020137158-appb-000008
第k层上n k个元素对上一层(k-1层)上第j个元素的权重向量为
Figure PCTCN2020137158-appb-000009
则矩阵
Figure PCTCN2020137158-appb-000010
是n k×n k-1阶矩阵,表示第k层上的元素对第k-1层各元素的排序权重向量.那么第k层上的元素对目标层(最高层)总排序权重向量为
Figure PCTCN2020137158-appb-000011
Figure PCTCN2020137158-appb-000012
对任意的k>2有一般公式
W (k)=P (k)·P (k-1)·L·P (3)·W (2)(k>2)    (4.6)
其中,W (4)则为第四层业务上各元素对目标层的总排序权重向量。
组合一致性指标校验:设k层的一致性指标为
Figure PCTCN2020137158-appb-000013
随机一致性指标为
Figure PCTCN2020137158-appb-000014
则第k层对目标层的(最高层)的组合一致性指标为
Figure PCTCN2020137158-appb-000015
组合随机一致性指标为
Figure PCTCN2020137158-appb-000016
组合一致性比率指标为
Figure PCTCN2020137158-appb-000017
当CR (k)<0.10时,则认为整个层次的比较判断矩阵通过一致性检验。
如图5所示,德尔菲法本质上是一种反馈匿名函询法,它首先根据评价对象的具体要求选定多个评价方法,再根据评价方法制订出评价标准。通过匿名方式征询有关专家对评价标准的意见,对专家意见进行统计、处理、分析和归纳,客观地综合多数专家经验与主观判断,对大量难以采用技术方法进行定量分析的因素做出合理估算,经过多轮意见征询、反馈和调整后,对债权价值和价值可实现程度进行分析的方法。因此,基于德尔菲法进行专家打分,可以在 最大程度上保证打分过程和结果的公正性和独立性。
本申请采用层次分析法和德尔菲法相结合的方法。以层次分析法为基础,在形成判断矩阵的过程中引入德尔菲法,从而避免个别专家的主观引导,便于得出更加稳定、客观的结果。然后综合专家经验形成因素重要性排序,计算权重并检验一致性。
在构建判断矩阵的过程中基于德尔菲法进行操作包括步骤31至步骤36。
在步骤31中,选择专家。
在步骤32中,确定影响权重判断的因素,设计权重判断征询意见表。
在步骤33中,向专家提供背景资料,以匿名方式征询专家意见。
在步骤34中,对专家意见进行分析汇总,将统计结果反馈给专家。
在步骤35中,专家根据反馈结果修正自己的意见。
在步骤36中,经过多轮匿名征询和意见反馈,形成最终分析结论。
最终分析结论即为,专家对上述影响权重判断的因素的权重分配,即所述主营业务的各级子业务的权重分配。专家分数的计算方法为加法评价型,将评价各指标的分值进行加法求和,按总分来表示评价结果(即专家意见)。
在S3中,综合各项主营业务在技术标准实施期产生的综合效益,从多个影响综合效益的因素中剥离出技术标准体系化实施产生的综合效益,从而构建完整的技术标准体系化实施综合效益评价模型。
1.技术标准时滞效应
技术标准的时滞效应,是指技术标准体系化实施对综合效益的贡献程度,会根据标准对体系化生命周期的不同阶段而发生变化的现象。标准的生命周期是指一项标准编制发布后,被企业(组织)采用,直至该项标准失去效用被废止所经历的时间。结合标准的制修订流程,标准的生命周期主要分为前半期(研 究孕育期)以及后半期(采用实施期),标准的经济效益主要产生于标准的后半期,即标准的实施进入成熟期阶段。
标准更替产生于标准的生命周期进入衰退期,进入更替阶段的原因可以是标准的使用情况不符合预期效果、标准本身与现有其他标准之间缺乏协调性、标准内容存在问题及标准与当前经济社会环境不相适应等。国家电网公司主要采用的标准为国际标准(国际电工委员会(International Electro technical Commission,IEC)、国际标准化组织(International Organization for Standardization,简称为ISO)等)、国家标准(GB)、电力行业标准(DL等)以及企业标准(Q/GDW)。国际标准中规定,一旦标准发布时间超过5年,则必须进行复审。强制复审包括三项准则,分别是对国际贸易和生产的贡献、对国民经济、健康、安全或环境保护的贡献以及该标准在多大程度上被该国直接使用或转化,每项准则分为5个等级,在总得分低于9分的情况下,该标准将被废止。因此,国际标准的更替周期为5年。我国标准化法参照国际标准寿命规定,国内标准(包括国家标准、行业标准、地方标准等)复审周期一般不超过5年,标准寿命周期将历经导入期、成长期、成熟期乃至衰退期的生命历程。
2.技术标准时滞效应的处理
按国家电网公司电网主营业务的细分业务体系,并将每个细分业务体系中涉及的标准进行整合,构建成单个业务标准簇,实现标准簇技术剥离。按照标准寿命周期的原则,假设取2012年—2017年为标准数据采集寿命周期,标准簇内的各项标准对应于每项技术业务,由于每项标准在业务活动中产生效益的周期不同,通过综合分析每项标准在该标准领域中寿命的平均值,得出该标准簇产生效益的平均寿命周期。
在统计标准簇时,会因技术革新或装备改进等原因产生标准更替情况以及 寿命周期未达到5年。算法:
Figure PCTCN2020137158-appb-000018
式中η i为标准(簇)i的时间修正系数,N i为标准(簇)i的寿命周期(年),N base为效益评价周期,本申请为5年,即N base=5。
3.考虑时滞效应的技术标准体系化实施综合效益计算
结合底层业务技术标准贡献度计算模型和电网主营业务的各级子业务的权重分配,可以得到技术标准体系化实施对电网主营业务的贡献度,所述技术标准体系化实施对主营业务的贡献度乘以技术标准时滞效应系数,可以得到考虑时滞效应的技术标准体系化实施对综合效益的贡献度,如下式所示:
Figure PCTCN2020137158-appb-000019
式中F s为技术标准实施对综合效益的贡献度,其效益由一级业务k=1…K贡献,
Figure PCTCN2020137158-appb-000020
为一级业务k对实施效益s的贡献度;一级业务k由其底层业务j=1…J贡献,
Figure PCTCN2020137158-appb-000021
为底层业务j对一级业务k的贡献度;底层业务j中标准的贡献度由对应标准(簇)i的贡献度
Figure PCTCN2020137158-appb-000022
乘以其时间修正系数η i再求和得到,时间修正系数η i可由式(4.7)计算得到。
在S4中,将技术标准体系化实施综合效益评价模型,在不同的应用场景中进行校验并修正,,并得到最终的技术标准体系化实施效益评价模型,所述最终的技术标准体系化实施效益评价模型设置为计算技术标准实施产生的综合效益。
根据技术标准体系化实施综合效益评价模型的数据需求,设计技术标准贡 献度调查问卷。问卷由熟悉业务的实操人员填写,填写者根据业务及岗位自行选择,避免业务与岗位划分的差异性情况,在问卷填写者负责多个业务的情况下,根据其涵盖业务类型个数填写多份问卷;问卷采取打分的方式,填写者对提供的多个影响业务开展的因素打分,每个影响因素的打分区间相同,填写者根据其业务经验对每个影响因素自由打分,各影响因素的分值比反映其对综合效益的影响强度比,其中,影响业务开展的因素包括技术标准体系化实施、生产效率提升、人员素质提高以及设备改进等因素。基于填写者对各影响因素的打分结果,可以得到由技术标准体系化实施在底层业务的效益中的占比,即得到底层业务由标准体系化实施产生的效益,通过各级子业务的权重加权,层层向上传导,就可以最终得到由技术标准体系化实施产生的效益。
在一实施例中,针对每项业务,从影响因素池中选取相关性较强的影响因素进行问卷打分,经过计算后可获得技术标准体系化实施对第四级细分业务贡献的权重分,并将技术标准体系化实施对第四级细分业务贡献的权重分转化为相对贡献率。
在一实施例中,调查问卷界面设计及填写流程过程如下:
为便于问卷的无纸化填写、收集、统计、分析,设计技术标准贡献度电子调研问卷,问卷调研参与者根据自身工作经验与认知在线填写电子问卷;
在问卷正式填写前,填写人应明确填写个人信息,选择单位名称、填写部门名称、逐级选择业务目次,确保选择的业务名称与个人负责业务内容的一致性,填写人应根据个人负责业务实际情况如实填写。
下面对技术标准体系化实施综合效益评价试点实施方案,进行详细介绍,该方案主要包括启动部署、宣贯培训、数据调查、数据回收、分析评价及闭环提升这6个步骤。
1.启动部署
开展技术标准体系化实施综合效益评价试点工作动员,明确省电网公司内部分工,成立各单位技术标准体系化实施综合效益评价试点工作小组,明确职责分工,召开评价试点工作启动动员大会;各单位、各部门逐级反馈各单位工作小组组成、归口部门及联系人至省电网公司科技、业务管理部门,最后汇总至发明组;各单位、各部门逐级安排技术标准体系化实施效益评价试点工作,建立相关工作联络,提前查找、收集、熟悉与试点工作有关的资料。
2.宣贯培训
国家电网公司科技部发明组就公司技术标准体系化实施综合效益评价开展宣贯培训,向参与试点的省电网公司说明试点工作的预期目标、工作原则等,并下发相关材料;省电网公司安排部署各单位、各专业宣贯培训工作,各单位根据试点工作要求选择适当的打分专家,建立联系机制;对打分专家进行调查问卷填写及数据回收进行宣贯培训,说明试点工作要求,明确打分专家责任,确保打分结果的可靠性、科学性。
3.数据调查
省电网公司下发技术标准体系化实施综合效益评价调查问卷、电网主营业务效益指标数据统计模板;各级单位安排调查问卷下发、填写、回收工作,开展电网主营业务效益指标数据统计、调查问卷填写,监督并及时汇总与反馈问卷填写情况。
4.数据回收
统计、汇总问卷填写数据及电网主营业务效益指标数据;对漏填、不足量、难统计的业务影响因素权重或效益指标数据安排补填;对调查问卷数据进行预处理,消除偏差过大的干扰数据。
5.分析评价
统计、分析各专业调查问卷数据;综合各类数据,分析计算权重值、以及技术标准体系化实施综合效益评价结果。
6.闭环提升
联合试点单位反馈调查问卷及效益指标修改建议;结合试点结果对公司技术标准实施提出反馈建议,以支撑下一步技术标准工作开展。
下面对技术标准体系化实施综合效益评价试点实施的结果进行分析。
本次研究完成了5家省级供电公司2家市级供电公司的试点示范工作,调研对象达到2716人次,回收数据32575条,总体数据呈现数据量大、种类多等特点。
原始数据预处理质量直接决定着分析数据的质量,影响到调查结果的可信度及以此做出决策的科学性。因此,首先对问卷数据进行预处理,问卷数据预处理的过程包括a数据审查、b数据清理、c数据转换和d数据验证这四大步骤。
a.数据审查:主要检查数据的数量(记录数)是否满足分析的最低要求,字段值的内容是否与调查要求一致是否全面;还包括利用描述性统计分析,检查各个字段的字段类型字段值的最大值、最小值、平均数、中位数等,记录个数、缺失值或空值个数等。
b.数据清理:针对数据审查过程中发现的明显错误值、缺失值、异常值、可疑数据,选用适当的方法进行“清理”,使“脏”数据变为“干净”数据,有利于后续的统计分析得出可靠的结论。当然,数据清理还包括对重复记录进行删除。
c.数据转换:分析强调分析对象的可比性,但不同字段值由于计量单位等不同,往往造成数据不可比;对一些统计指标进行综合评价时,如果统计指标的 性质、计量单位不同,也容易引起评价结果出现较大误差,再加上分析过程中的其他一些要求,需要在分析前对数据进行变换,包括无量纲化处理、线性变换、汇总和聚集、适度概化、规范化以及属性构造等。
d.数据审查:对调查数据进行信度、效度检验,利用描述及探索性分析手段对数据进行基本的统计考察,初步认识数据特征。数据清理阶段主要是利用多种插补方法对缺失值进行插补,采用平滑技术进行异常值纠正性平滑。数据转换阶段则根据不同的需要可供选择的方法较多,针对计量单位不同可采用无量纲化和归一化,针对数据层级不同可采用数据汇总、概化等方法,结合分析模型的要求可对数据进行线性或其他形式的变换、构造和添加新的属性,以及加权处理等。数据验证阶段包括确认上述数据准备操作的正确性与有效性,检查数据的逻辑转换是否对数据造成扭曲或偏差,并再次利用描述及探索性分析检查数据的基本特征,对数据之间的平衡关系及协调性进行检验。
问卷数据预处理主要以异常值清理为主,异常值又称为孤立点,异常值处理的首要任务是检测出孤立点。由于异常值可能是数据质量问题所致,也可能反映事物现象的真实发展变化,所以检测出异常值后必须判断其是否为真正的异常值。检测异常值的方法主要分为三类:统计学方法、基于距离的方法和基于偏离的方法。
1.统计学方法,首先对源数据假设一个分布或概率模型,然后根据模型采用相应的统计量做不一致性检验来确定异常值。常用的方法是用契比雪夫定理来检测异常值。该方法要求知道数据的分布参数,多数情况下这一条件难以满足,故具有一定的局限性。
2.基于距离的方法,源数据中数据对象至少有p部分与数据对象O的距离大于d,则数据对象O是一个带参数p和d的基于距离DB的异常值,即DB(p, d),常用的距离是欧几里得距离。
3.基于偏离的方法,通过检查一组数据对象的主要特征来确定异常值,与给出的主要特征相“偏离”的数据对象被认为是异常值。
检测出事实上的异常值,接下来还需对异常值进行处理。异常值的处理方法主要是采用数据平滑技术,按数据分布特征修匀源数据。异常值的处理方法包括分箱、聚类、回归等几种。
a.分箱,通过考察“邻居”来平滑异常数据的值,让其分布到一些“桶”或箱中,对于箱中的值可以按箱平均值、中值、或边界值。原理是参考相邻的值,进行局部平滑。
b.聚类,异常值可以被聚类检测,聚类将类似的值组织成群或类,将落在各类集合之外的异常值利用离其最近的类均值替代。
c.回归,通过让数据适合一个函数(如回归函数)平滑数据,找出适合数据的数学方程式,来帮助消除噪声。许多数据平滑方法还涉及离散化的数据归约问题。
下面为问卷数据预处理及技术标准体系化实施效益分析计算的一个示例。
在数据处理初始阶段,应对数据中不合理的异常数值进行清除,常用的方法是数据频次分析和分布图像分析。本申请结合数据特点和类型,采用高斯分布进行数据筛选,在业务影响因素(技术标准)对业务效益的影响程度X服从以数学期望为μ、方差为δ 2的正态分布(记为N(μ,δ 2)),X的概率密度函数为正态分布,μ决定了X的概率密度函数的期望值的位置,标准差δ决定了X的概率密度函数分布的幅度。
在技术标准体系化实施效益分析计算阶段:首先末级业务技术标准贡献度问卷数据、收集效益指标数据、收集各级业务权重数据,然后进行省电网公司 技术标准体系化实施综合效益计算,省电网公司技术标准体系化实施综合效益贡献度计算公式如下:
∑(专业技术标准贡献度×专业权重值);
最后,根据计算,得出省电网公司的技术标准体系化实施综合效益结果如下:
湖北公司技术标准贡献度:8.18%。
省电网公司技术标准体系化实施综合效益计算及分析:
技术标准体系化实施整体性效益计算方法:
省电网公司技术标准体系化实施综合效益贡献度*整体性指标差值,其中,整体性指标包括经济效益指标、社会效益指标和专业化水平指标,整体性指标差值表示技术标准体系化实施前后整体性指标综合效益的变化。
技术标准体系化实施主营业务效益计算方法:
技术标准体系化实施主营业务综合效益贡献度*主营业务指标差值,其中,主营业务指标为反映主营业务水平的指标,主营业务指标差值表示指技术标准体系化实施前后主营业务指标综合效益的变化。
本申请以技术标准体系化实施综合效益的评价,应该把握“五性原则”,即科学性、实践性、系统性、创新性、发展性,同时应体现“四个结合”思想,即主观和客观相结合、理论和实践相结合、近期和远期相结合、动态和静态相结合的评价原则,全面梳理技术标准体系在大中型企业电网主营业务各生产环节中的应用情况,系统构建企业整体及各电网主营业务技术标准综合效益指标体系,基于科学先进的模型方法,从多个影响综合效益的因素中剥离出技术标准体系化实施产生的综合效益。

Claims (10)

  1. 一种大中型企业技术标准体系化实施效益评价方法,包括:
    分析大中型企业的主营业务通过技术标准体系化实施而产生的综合效益,构建大中型企业主营业务的技术标准体系化实施综合效益指标体系;
    基于大中型企业主营业务的技术标准体系化实施综合效益指标体系以及底层业务技术标准贡献度计算模型,通过所述主营业务的各级子业务的权重分配和层层归集传递,得到技术标准体系化实施对主营业务的贡献率,计算每项主营业务在技术标准实施期产生的综合效益;
    综合多项主营业务在技术标准体系化实施期产生的综合效益,从多个影响综合效益的因素中剥离出技术标准体系化实施产生的综合效益,从而构建完整的技术标准体系化实施综合效益评价模型;
    将技术标准体系化实施综合效益评价模型,在不同的应用场景中进行校验并修正,并得到最终的技术标准体系化实施综合效益评价模型,所述最终的技术标准体系化实施综合效益评价模型设置为计算技术标准体系化实施产生的综合效益。
  2. 根据权利要求1的方法,其中,大中型企业主营业务的技术标准体系化实施综合效益指标体系包括电网主营业务的特殊效益评价指标体系和整体效益指标体系;采用自上而下的思路建立电网主营业务的效益评价指标体系,采用“自下而上”的思路,梳理筛选并提出主营业务的底层评价指标,采用主营业务的底层评价指标对电网主营业务的效益评价指标体进行细化,形成电网主营业务的特殊效益评价指标体系;基于公司整体视角,在主营业务的底层评价指标中根据经济效益、社会效益和专业水平三个维度最终遴选出重要的、有代表性的、可以显著反映公司经营成效的评价指标,形成公司的整体效益指标体系。
  3. 根据权利要求1的方法,其中,所述底层业务技术标准贡献度计算模型的计算过程如下:
    将综合效益细化,即确定定量或定性的综合效益指标,建立公司业务技术标准体系化实施综合效益指标体系;
    独立分析电网每项主营业务,采用专家打分的方法,确定所述电网每项主营业务对所述技术标准体系化实施综合效益指标体系中的综合效益指标的贡献度;
    将每项主营业务的各大业务进行细分,确定最底层业务;
    确定公司标准(簇)对所述最底层业务的贡献度;
    可将同样量化且量纲相同的综合效益指标对应的所述贡献度求和,可得到技术标准体系化对所述同样量化且量纲相同的综合效益指标的总体贡献。
  4. 根据权利要求1的方法,其中,所述主营业务的各级子业务的权重分配采用层次分析法和德尔菲法相结合的方法确定,以所述层次分析法为基础,在形成判断矩阵的过程中引入所述德尔菲法。
  5. 根据权利要求4的方法,其中,所述层次分析法操作步骤如下:
    建立层次结构模型,将与问题有关的各种因素层次化,构造出一个树状结构的层次结构模型即层次结构图;
    构造判断矩阵,构造所述判断矩阵是通过比较同一层次上的各因素对上一层相关因素的影响作用,即将同一层的各因素进行两两对比;
    进行所述判断矩阵的一致性检验;
    计算除最高层之外的其他层上的各因素对最高层的组合权重并进行除最高层之外的其他层上的判断矩阵的组合一致性检验。
  6. 根据权利要求4的方法,其中,所述德尔菲法为根据评价对象的具体要求选定多个评价方法,再根据评价方法制订出评价标准,通过匿名方式征询有关专家对所述评价标准的意见,对专家意见进行统计、处理、分析和归纳,对大量难以采用技术方法进行定量分析的因素做出合理估算,经过多轮意见征询、反馈和调整后,对债权价值和价值可实现程度进行分析的方法。
  7. 根据权利要求6的方法,其中,在构建所述判断矩阵的过程中基于德尔菲法进行操作,包括:
    选择专家;
    确定影响权重判断的因素,设计权重判断征询意见表;
    向专家提供背景资料,以匿名方式征询专家意见;
    对专家意见进行分析汇总,将统计结果反馈给专家;
    专家根据反馈结果修正自己的意见;
    经过多轮匿名征询和意见反馈,形成最终分析结论,其中,所述最终分析结论为所述主营业务的各级子业务的权重分配。
  8. 根据权利要求7的方法,其中,专家分数的计算方法为加法评价型,将评价各指标的分值进行加法求和,按总分来表示评价结果,其中,所述评价结果即为所述专家意见。
  9. 根据权利要求1的方法,其中,所述计算每项主营业务在技术标准体系化实施期产生的综合效益,需要考虑技术标准的时滞效应,所述技术标准的时滞效应为技术标准体系化实施对综合效益的贡献程度,会根据技术标准体系生命周期的不同阶段而发生变化的现象,结合所述底层业务技术标准贡献度计算模型和所述主营业务的各级子业务的权重分配,可以得到技术标准体系化实施对主营业务的贡献度,所述技术标准体系化实施对主营业务的贡献度乘以技术标准时滞效应系数,得到考虑时滞效应的技术标准体系化实施对综合效益的贡献度。
  10. 根据权利要求1的方法,其中,所述将技术标准体系化实施综合效益评价模型,在不同的应用场景中进行校验并修正,包括:
    在场景中进行实证时,根据所述技术标准体系化实施综合效益评价模型的数据需求,设计技术标准贡献度调查问卷,问卷由熟悉业务的实操人员填写,填写者根据业务及岗位自行选择,在所述填写者负责多个业务的情况下,根据其涵盖业务类型个数填写多份问卷;所述问卷采取打分的方式,所述填写者对提供的多个影响业务开展的因素打分,每个影响因素的打分区间相同,所述填写者根据其业务经验对所述每个影响因素打分,多个影响因素的分值比反映其对综合效益的影响强度比。
PCT/CN2020/137158 2019-12-25 2020-12-17 一种大中型企业技术标准体系化实施效益评价方法 WO2021129509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537217A JP2022518887A (ja) 2019-12-25 2020-12-17 大規模・中規模企業の技術標準体系化実施の利益評価方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911356923.X 2019-12-25
CN201911356923.XA CN111191906A (zh) 2019-12-25 2019-12-25 一种大中型企业技术标准体系化实施效益评价方法

Publications (1)

Publication Number Publication Date
WO2021129509A1 true WO2021129509A1 (zh) 2021-07-01

Family

ID=70709390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137158 WO2021129509A1 (zh) 2019-12-25 2020-12-17 一种大中型企业技术标准体系化实施效益评价方法

Country Status (3)

Country Link
JP (1) JP2022518887A (zh)
CN (1) CN111191906A (zh)
WO (1) WO2021129509A1 (zh)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643153A (zh) * 2021-08-13 2021-11-12 南京工程学院 一种以企业为主体的电能替代扩散分析方法
CN113723828A (zh) * 2021-08-31 2021-11-30 金恒智控管理咨询集团股份有限公司 基于企业内控流程要点和专业判断的内控调研评价系统
CN113762795A (zh) * 2021-09-13 2021-12-07 浙江万维空间信息技术有限公司 一种基于层次分析的产业链诊断方法及系统
CN113947281A (zh) * 2021-09-09 2022-01-18 西华大学 城市轨道交通装备制造业集群竞争力评价方法
CN113988634A (zh) * 2021-10-29 2022-01-28 北京航空航天大学 考虑认知不确定性的城市道路行程时间可靠性评价方法
CN113988692A (zh) * 2021-11-10 2022-01-28 中铁第一勘察设计院集团有限公司 基于灰色模糊的城市群轨道交通网络化规划评价方法
CN114171139A (zh) * 2021-10-20 2022-03-11 中国航发四川燃气涡轮研究院 压气机叶片选材方法
CN114358503A (zh) * 2021-12-08 2022-04-15 国电南瑞科技股份有限公司 一种基于多元专家库的配电网节能改造效益评估系统及方法
CN114723178A (zh) * 2022-05-24 2022-07-08 同方泰德国际科技(北京)有限公司 一种基于ahp的建筑设备监控系统评价方法
CN114745294A (zh) * 2022-03-30 2022-07-12 深圳市国电科技通信有限公司 网络多节点通信质量评估方法、装置及电子设备
CN114943463A (zh) * 2022-06-02 2022-08-26 西南石油大学 一种配电网节能技措评估方法
CN114971230A (zh) * 2022-05-10 2022-08-30 华能国际电力股份有限公司上海石洞口第二电厂 一种基于组合赋权-改进topsis法的配煤掺烧效果评价方法
CN114995864A (zh) * 2022-04-25 2022-09-02 北京计算机技术及应用研究所 一种基于层次分析法的工业软件质量度量方法
CN115664695A (zh) * 2022-08-26 2023-01-31 南方电网数字电网研究院有限公司 一种基于二维码反映的网络空间安全形势的综合评估方法
CN115879726A (zh) * 2022-12-23 2023-03-31 中国环境科学研究院 一种企业用电量与排放量数据相互优化筛选方法
CN116361925A (zh) * 2023-05-31 2023-06-30 西北工业大学 一种船舶传动构型的多方案评估方法及系统
CN116720662A (zh) * 2023-07-13 2023-09-08 北京迅巢科技有限公司 基于集对分析的分布式能源系统适用性评估方法
CN116739382A (zh) * 2023-06-27 2023-09-12 国网湖北省电力有限公司经济技术研究院 一种生产成本量化分析方法、系统、介质、设备及终端
CN117910885A (zh) * 2024-03-18 2024-04-19 国网安徽省电力有限公司经济技术研究院 一种综合能源服务的综合评价方法及系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111191906A (zh) * 2019-12-25 2020-05-22 国网能源研究院有限公司 一种大中型企业技术标准体系化实施效益评价方法
CN111695797B (zh) * 2020-06-02 2023-08-04 北京北大软件工程股份有限公司 许可职权履责效果评估模型的构建方法、装置及系统
CN113806623B (zh) * 2020-06-12 2024-02-02 中国石油天然气股份有限公司 目标领域的标准数据处理方法、装置、设备和存储介质
CN113657788A (zh) * 2021-08-24 2021-11-16 中国安全生产科学研究院 一种企业安全生产标准化智能监管系统及方法
KR102569398B1 (ko) * 2022-07-21 2023-08-22 한국산업기술평가관리원 인공지능 기반의 기술수준평가시스템 및 그 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241923A1 (en) * 2002-08-02 2006-10-26 Capital One Financial Corporation Automated systems and methods for generating statistical models
CN101309009A (zh) * 2008-02-28 2008-11-19 江苏省电力试验研究院有限公司 基于层次分析法和德尔菲法建立的城市电网综合评价体系
CN104318339A (zh) * 2014-09-15 2015-01-28 国家电网公司 一种基于综合赋权法的电网投资效益评价方法
CN106651147A (zh) * 2016-11-30 2017-05-10 佛山电力设计院有限公司 基于lcc的配电网综合效益评估指标的综合权重确定方法
CN109685342A (zh) * 2018-12-13 2019-04-26 国网青海省电力公司 一种光伏发电站综合效益评价指标体系的评价方法
CN111191906A (zh) * 2019-12-25 2020-05-22 国网能源研究院有限公司 一种大中型企业技术标准体系化实施效益评价方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5370840B2 (ja) * 2009-08-27 2013-12-18 株式会社チームスピリット 階層分析法に基づく意思決定支援システム及びそのプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241923A1 (en) * 2002-08-02 2006-10-26 Capital One Financial Corporation Automated systems and methods for generating statistical models
CN101309009A (zh) * 2008-02-28 2008-11-19 江苏省电力试验研究院有限公司 基于层次分析法和德尔菲法建立的城市电网综合评价体系
CN104318339A (zh) * 2014-09-15 2015-01-28 国家电网公司 一种基于综合赋权法的电网投资效益评价方法
CN106651147A (zh) * 2016-11-30 2017-05-10 佛山电力设计院有限公司 基于lcc的配电网综合效益评估指标的综合权重确定方法
CN109685342A (zh) * 2018-12-13 2019-04-26 国网青海省电力公司 一种光伏发电站综合效益评价指标体系的评价方法
CN111191906A (zh) * 2019-12-25 2020-05-22 国网能源研究院有限公司 一种大中型企业技术标准体系化实施效益评价方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113643153A (zh) * 2021-08-13 2021-11-12 南京工程学院 一种以企业为主体的电能替代扩散分析方法
CN113723828A (zh) * 2021-08-31 2021-11-30 金恒智控管理咨询集团股份有限公司 基于企业内控流程要点和专业判断的内控调研评价系统
CN113947281A (zh) * 2021-09-09 2022-01-18 西华大学 城市轨道交通装备制造业集群竞争力评价方法
CN113762795A (zh) * 2021-09-13 2021-12-07 浙江万维空间信息技术有限公司 一种基于层次分析的产业链诊断方法及系统
CN114171139A (zh) * 2021-10-20 2022-03-11 中国航发四川燃气涡轮研究院 压气机叶片选材方法
CN113988634A (zh) * 2021-10-29 2022-01-28 北京航空航天大学 考虑认知不确定性的城市道路行程时间可靠性评价方法
CN113988692A (zh) * 2021-11-10 2022-01-28 中铁第一勘察设计院集团有限公司 基于灰色模糊的城市群轨道交通网络化规划评价方法
CN114358503A (zh) * 2021-12-08 2022-04-15 国电南瑞科技股份有限公司 一种基于多元专家库的配电网节能改造效益评估系统及方法
CN114745294B (zh) * 2022-03-30 2023-12-05 深圳市国电科技通信有限公司 网络多节点通信质量评估方法、装置及电子设备
CN114745294A (zh) * 2022-03-30 2022-07-12 深圳市国电科技通信有限公司 网络多节点通信质量评估方法、装置及电子设备
CN114995864A (zh) * 2022-04-25 2022-09-02 北京计算机技术及应用研究所 一种基于层次分析法的工业软件质量度量方法
CN114971230A (zh) * 2022-05-10 2022-08-30 华能国际电力股份有限公司上海石洞口第二电厂 一种基于组合赋权-改进topsis法的配煤掺烧效果评价方法
CN114723178A (zh) * 2022-05-24 2022-07-08 同方泰德国际科技(北京)有限公司 一种基于ahp的建筑设备监控系统评价方法
CN114943463A (zh) * 2022-06-02 2022-08-26 西南石油大学 一种配电网节能技措评估方法
CN114943463B (zh) * 2022-06-02 2024-04-26 西南石油大学 一种配电网节能技措评估方法
CN115664695A (zh) * 2022-08-26 2023-01-31 南方电网数字电网研究院有限公司 一种基于二维码反映的网络空间安全形势的综合评估方法
CN115664695B (zh) * 2022-08-26 2023-11-17 南方电网数字电网研究院有限公司 一种基于二维码反映的网络空间安全形势的综合评估方法
CN115879726B (zh) * 2022-12-23 2023-10-31 中国环境科学研究院 一种企业生产状况与排放量监测方法
CN115879726A (zh) * 2022-12-23 2023-03-31 中国环境科学研究院 一种企业用电量与排放量数据相互优化筛选方法
CN116361925B (zh) * 2023-05-31 2023-11-03 西北工业大学 一种船舶传动构型的多方案评估方法及系统
CN116361925A (zh) * 2023-05-31 2023-06-30 西北工业大学 一种船舶传动构型的多方案评估方法及系统
CN116739382A (zh) * 2023-06-27 2023-09-12 国网湖北省电力有限公司经济技术研究院 一种生产成本量化分析方法、系统、介质、设备及终端
CN116720662B (zh) * 2023-07-13 2023-10-20 北京迅巢科技有限公司 基于集对分析的分布式能源系统适用性评估方法
CN116720662A (zh) * 2023-07-13 2023-09-08 北京迅巢科技有限公司 基于集对分析的分布式能源系统适用性评估方法
CN117910885A (zh) * 2024-03-18 2024-04-19 国网安徽省电力有限公司经济技术研究院 一种综合能源服务的综合评价方法及系统

Also Published As

Publication number Publication date
CN111191906A (zh) 2020-05-22
JP2022518887A (ja) 2022-03-17

Similar Documents

Publication Publication Date Title
WO2021129509A1 (zh) 一种大中型企业技术标准体系化实施效益评价方法
Wu et al. Evaluation the drivers of green supply chain management practices in uncertainty
Sohrabinejad et al. Risk Determination, Prioritization, and Classifying in Construction Project Case Study: Gharb Tehran Commercial‐Administrative Complex
CN113537807B (zh) 一种企业智慧风控方法及设备
CN106469353A (zh) 一种面向大数据的项目合作企业智慧筛选排序方法
CN108898285A (zh) 一种基于信息熵的啤酒包装生产线运行效率定量评估方法
CN112488565A (zh) 一种基于物元可拓的海外工程项目风险评价方法
CN108305011A (zh) 一种正逆结合的航天质量管理体系有效性评价方法
Al-Mhdawi et al. Modeling the effects of construction risks on the performance of oil and gas projects in developing countries: Project managers’ perspective
CN114298538A (zh) 电网零购项目的投资方案评估方法、系统及存储介质
CN114282697A (zh) 一种设备类供应商差异化绩效确定方法和系统
Wang et al. Study on the method of selecting sustainable food suppliers considering interactive factors
Bai et al. Organizational project selection based on fuzzy multi-index evaluation and bp neural network
Shih A study of ERP systems selection via fuzzy AHP method
Wang et al. A fuzzy DEA–Neural approach to measuring design service performance in PCM projects
Shao et al. External R&D supplier evaluation and selection: a three-stage integrated funnel model
Ahmed et al. Investigating factors affecting feasibility study of construction projects in Iraq
CN116823008A (zh) 一种园区能源利用效率评估方法、系统、设备和存储介质
Kovaitė et al. Risks of digitalisation of business models
Kung Using fuzzy sets and grey decision-making to construct the performance evaluation model of firm’s outsourcing management–A case study of avionics manufacturer in Taiwan
Medel-González et al. Multi-criteria sustainability performance measurement: an application in Cuba
CN113642915A (zh) 电网供应链中一种电力器材质检技术标准贡献率的推导模型
Kumawat et al. Investigating End User Satisfaction in ERP Systems: An Analytical Approach
Fei Application of Fuzzy Comprehensive Model of AHP in Performance Evaluation of University Administrators in China and Abroad
Ajripour et al. A case study in strategic decision making using multi-criteria decision making and balanced scorecard

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021537217

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20905804

Country of ref document: EP

Kind code of ref document: A1