WO2021129457A1 - 一种均匀镀膜方法、镀膜设备及计算机可读存储介质 - Google Patents

一种均匀镀膜方法、镀膜设备及计算机可读存储介质 Download PDF

Info

Publication number
WO2021129457A1
WO2021129457A1 PCT/CN2020/136428 CN2020136428W WO2021129457A1 WO 2021129457 A1 WO2021129457 A1 WO 2021129457A1 CN 2020136428 W CN2020136428 W CN 2020136428W WO 2021129457 A1 WO2021129457 A1 WO 2021129457A1
Authority
WO
WIPO (PCT)
Prior art keywords
deposition
deposition source
deposited
optical element
result
Prior art date
Application number
PCT/CN2020/136428
Other languages
English (en)
French (fr)
Inventor
王延超
刘震
王笑夷
杨海贵
高劲松
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Publication of WO2021129457A1 publication Critical patent/WO2021129457A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/46Sputtering by ion beam produced by an external ion source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Definitions

  • the invention relates to the technical field of optical element thin film preparation, in particular to a uniform coating method, coating equipment and computer readable storage medium.
  • the uniformity of optical film deposition distribution is one of the important indicators for the preparation of large-aperture optical element films.
  • optical film workers In the current process of increasing and increasing manufacturing requirements for large-aperture optical elements, it has become an important issue that optical film workers must face.
  • the uneven distribution of optical film deposition will, on the one hand, cause the optical properties of the optical film system to be severely affected or destroyed, which will cause polarization aberration and wavefront distortion, on the other hand, it will affect the surface shape of high-precision optical components. This affects the performance of the entire optical system. Therefore, when preparing high-performance large-diameter optical thin film components, it is very important to strictly control the uniformity of the thickness distribution of the film deposited on the optical components.
  • the uniformity control of deposition distribution has become an important challenge for large-aperture optical film workers.
  • optical thin-film workers have been exploring the methods of high-uniformity optical thin-film deposition.
  • the methods for controlling the uniformity of film deposition on optical components can be summarized into the following three types: 1.
  • the spatial distribution of optical film deposition uniformity is closely related to the relative position of the deposition source and the optical components to be deposited. Therefore, at the initial stage of manufacturing the coating equipment, The number and position of the deposition sources in the coating equipment and the relative spatial relationship with the optical components to be deposited will be optimized to achieve the best deposition uniformity. Even many large-aperture optical components adopt the design method of special coating equipment; 2 , Realize the integration of different deposition areas in space through the revolution, rotation or combination of revolution, rotation or revolution of the optical element to be deposited.
  • a uniform coating method, coating equipment and computer-readable storage medium The deposition source can be moved, the movement track and the movement state of the deposition source can be adjusted, and the component to be deposited can be rotated or fixed, with high efficiency and good adaptability.
  • the present invention provides a uniform coating method, which includes the following steps:
  • step (5) the deposition source moves during the deposition process, and the movement trajectory of the deposition source is a linear movement trajectory or a reciprocating movement trajectory or a trajectory moving along the grating.
  • the movement track of the deposition source penetrates or covers most of the area of the optical element to be deposited during the deposition process.
  • the deposition source moves at a constant speed or at a variable speed along its moving track.
  • step (5) before the deposition of the deposition source, the movement state and movement trajectory of the deposition source are planned to realize the adjustment of the movement state and movement trajectory of the deposition source.
  • a further improvement is to calculate according to the surface shape of different optical elements to be deposited and the deposition condition of the deposition source, and solve the movement mode of the deposition source to realize the planning of the movement state and movement trajectory of the deposition source.
  • the invention also discloses a coating equipment, which adopts the following technical solutions:
  • a coating equipment including:
  • a first deposition function module which is used to determine the first deposition function distribution characteristic of the deposition source according to the surface shape of the optical element to be deposited;
  • a movement trajectory module which is used to determine the movement trajectory of the deposition source according to the surface shape of the optical element to be deposited and the first deposition function distribution characteristic of the deposition source;
  • a second deposition function module which is used to obtain the second deposition function distribution characteristic of the deposition source according to the change in the relative positional relationship between the deposition source and the optical element to be deposited when the deposition source moves along its moving track;
  • the movement state module which is used to solve the movement state of the deposition source during the movement process of the deposition source according to the second deposition function distribution characteristic of the deposition source;
  • a verification module which is used to perform virtual coating using the solved movement state of the deposition source during the movement process to obtain a virtual coating result; after depositing the deposition source, perform the virtual coating result and the actual deposition result of the deposition source verification;
  • the processing from the first deposition function module to the verification module is repeated until the virtual coating result matches the actual deposition result.
  • the deposition source is a magnetron sputtering system or an ion beam sputtering system.
  • the surface shape of the optical element to be deposited is a shape with a hole in the center or a shape without a hole in the center.
  • the surface shape of the optical element to be deposited is an off-axis aspheric shape.
  • the surface shape of the optical element to be deposited is a co-body optical element.
  • the present invention also discloses a computer-readable storage medium, which adopts the following technical solutions:
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the above-mentioned uniform coating method are realized.
  • the present invention provides a uniform coating method, which can realize the effective optimization of the deposition uniformity of the deposited optical elements with different diameters and complex diameters. It can be used for the center hole, the center non-hole, off-axis aspheric surface, and the co-body optical element. Effectively achieve uniform film deposition, especially the difficulty of uniform coating of large-diameter center non-porous optical elements, the difficulty of uniform coating of off-axis aspheric optical elements, and the difficulty of uniform coating of common optical elements.
  • the uniform coating method proposed by the present invention is to plan the movement trajectory and movement state of the deposition source relative to the optical element to be deposited during the optical thin film deposition process, that is, to optimize the positional relationship between the deposition source and the optical element to be deposited by calculating and optimizing the change in the positional relationship between the deposition source and the optical element to be deposited.
  • the deposition residence time of the deposition source at different positions in its moving track realizes the adjustment of deposition uniformity.
  • the method proposed by the present invention has the following advantages: the deposition source can be moved, the movement track and the movement state of the deposition source can be adjusted, the component to be deposited can rotate or be fixed, with high efficiency and good adaptability.
  • the coating equipment and computer-readable storage medium provided by the present invention also have the above advantages.
  • Figure 1 is a flow chart of the uniform coating method of the present invention
  • FIG. 2 is a schematic diagram of the uniform coating method in embodiment 1 of the present invention.
  • Fig. 3 is a schematic diagram of a uniform coating method in Example 2 of the present invention.
  • a uniform coating method includes the following steps:
  • the deposition source moves during the deposition process, and the movement trajectory of the deposition source is a linear movement trajectory or a reciprocating movement trajectory or a trajectory moved along a grating or a Ross movement trajectory. Further preferably, the movement trajectory of the deposition source penetrates or covers most of the area of the optical element to be deposited during the deposition process; further preferably, the deposition source moves at a uniform or variable speed along its movement trajectory .
  • the movement state and movement trajectory of the deposition source are planned to realize the adjustment of the movement state and movement trajectory of the deposition source; specifically, according to the surface shape and deposition of different optical elements to be deposited
  • the deposition situation of the source is calculated, and the movement mode of the deposition source is obtained by solving to realize the planning of the movement state and movement trajectory of the deposition source.
  • This embodiment also discloses a coating equipment, which adopts the following technical solutions:
  • a coating equipment including:
  • the first deposition function module is used to determine the first deposition function distribution characteristics of the deposition source according to the surface shape of the optical element to be deposited; the deposition source is a magnetron sputtering system or an ion beam sputtering system .
  • a movement trajectory module which is used to determine the movement trajectory of the deposition source according to the surface shape of the optical element to be deposited and the first deposition function distribution characteristic of the deposition source; the surface shape of the optical element to be deposited has a hole shape at the center Or non-porous in the center or off-axis aspherical or co-body optical element.
  • a second deposition function module which is used to obtain the second deposition function distribution characteristic of the deposition source according to the change in the relative positional relationship between the deposition source and the optical element to be deposited when the deposition source moves along its moving track;
  • the movement state module which is used to solve the movement state of the deposition source during the movement process of the deposition source according to the second deposition function distribution characteristic of the deposition source;
  • a verification module which is used to perform virtual coating using the solved movement state of the deposition source during the movement process to obtain a virtual coating result; after depositing the deposition source, perform the virtual coating result and the actual deposition result of the deposition source verification;
  • the processing from the first deposition function module to the verification module is repeated until the virtual coating result matches the actual deposition result.
  • This embodiment also discloses a computer-readable storage medium, and the technical solution adopted is as follows:
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the above-mentioned uniform coating method are realized.
  • the surface shape of the optical element A to be deposited is a large-diameter spherical surface with no hole in the center.
  • the specific steps are as follows:
  • the rectangular magnetron sputtering system B is determined to be used as the deposition source, and the rectangular magnetron sputtering system B deposition source is analyzed through experiments and calculations.
  • the optical element to be deposited is rotationally symmetrical, in the deposition method, the optical element to be deposited is rotated during the deposition process C, and the deposition source can move linearly along the direction D passing through the center of the optical element to be deposited, and the entire movement track Through the optical element to be deposited;
  • the sample A to be deposited is deposited, and finally a uniform thin film is obtained on the surface of the deposited optical element.
  • the schematic diagram of the deposition method is shown in Figure 3.
  • the surface shape of the optical element to be deposited is an aspheric surface with a large diameter and large off-axis amount without a hole in the center.
  • the specific steps are as follows:
  • the optical element to be deposited is non-rotationally symmetrical and has a large amount of off-axis, in the deposition method, the optical element to be deposited cannot rotate during the deposition process, and the deposition source can move along the surface of the optical element to be deposited in a grating manner. G and cover the entire surface of the optical element to be deposited;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种均匀镀膜方法、镀膜设备及计算机可读存储介质,该均匀镀膜方法包括以下步骤:(1),根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;(2),根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;(3),获得沉积源的第二沉积函数分布特性;(4),根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;(5),采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;将虚拟镀膜结果和沉积源的实际沉积结果进行验证。沉积源可移动,沉积源的移动轨迹和移动状态可以被调节,效率高,适应性好,应用于光学元件薄膜制备技术领域。

Description

一种均匀镀膜方法、镀膜设备及计算机可读存储介质 技术领域
本发明涉及光学元件薄膜制备技术领域,具体涉及一种均匀镀膜方法、镀膜设备及计算机可读存储介质。
背景技术
光学薄膜沉积分布均匀性是制备大口径光学元件薄膜的重要指标之一,在目前大口径的光学元件的制造需求日益增多和提高的过程中,成为光学薄膜工作者必须要面对的重要问题。光学薄膜沉积分布的不均匀,一方面会使得光学薄膜膜系的光学特性被严重影响以至于破坏,将引起偏振像差和波面畸变,另一方面会使得高精度光学元件的面形受到影响,进而影响到整个光学系统的性能。因此,制备高性能的大口径光学薄膜元件时,严格控制光学元件上沉积的薄膜厚度分布均匀性十分重要。随着光学元件的日益增大,自由曲面、离轴非球面、共体光学元件等复杂光学元件的出现,沉积分布均匀性控制成为大口径光学薄膜工作者不得不面对的重要挑战。
光学镀膜技术发展至今,光学薄膜工作者们一直保持着对高均匀性光学薄膜沉积方法的探索。控制光学元件上薄膜沉积均匀性的方法主要可以概括为以下三种:1、光学薄膜沉积均匀性的空间分布与沉积源和待沉积光学元件的空间相对位置关系密切,所以镀膜设备制造初期,就会对镀膜设备中沉积源的数量、位置以及与待沉积光学元件的空间相对位置关系进行优化设计,以实现最佳的沉积均匀性,甚至很多大口径光学元件采用专用镀膜设备的设计方法;2、通过待沉积光学元件进行公转、自转或公自转结合的方式实现其在空间上对不同沉积区域的积分,常见的有平面旋转、行星旋转等待沉积光学元件旋转方法;3、通过不同形状的均匀性修正板实现沉积源在空间沉积均匀性分布的再分配,针对不同待沉积光学元件设计不同形状的均匀性挡板即可实现沉积均匀性的优化。
以上传统的光学薄膜沉积均匀性优化方法,在日益增长的光学元件口径和 日渐复杂的光学元件设计面前面临着通用性差,周期长等诸多问题。因此,对未来更大尺寸,设计更加复杂多样的光学元件,需要一种效率更高、适应性更好的沉积均匀性调节方法来应对更加复杂的光学薄膜沉积的挑战。
发明内容
(一)要解决的技术问题
一种均匀镀膜方法、镀膜设备及计算机可读存储介质,沉积源可移动,沉积源的移动轨迹和移动状态可以被调节,待沉积元件可以自转也可以固定不动,效率高,适应性好。
(二)技术方案
为解决上述技术问题,本发明提供了一种均匀镀膜方法,包括以下步骤:
(1),根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;
(2),根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;
(3),根据沉积源沿其移动轨迹移动时与待沉积光学元件的相对位置关系的变化,获得沉积源的第二沉积函数分布特性;
(4),根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;
(5),采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;在对沉积源进行沉积后,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
若虚拟镀膜结果与实际沉积结果的不吻合,则在对沉积源进行调节后,重复步骤(1)至步骤(4),直至虚拟镀膜结果与实际沉积结果吻合。
进一步改进的,步骤(5)中,所述沉积源在沉积的过程中移动,所述沉积源的移动轨迹为直线移动轨迹或往复移动轨迹或沿着光栅移动的轨迹。
进一步改进的,所述沉积源的移动轨迹在沉积过程中贯穿或者覆盖待沉积光学元件的大部分面积。
进一步改进的,所述沉积源沿其移动轨迹做匀速移动或变速移动。
进一步改进的,步骤(5)中,所述沉积源沉积前,通过对沉积源的移动状态和移动轨迹进行规划实现对沉积源的移动状态和移动轨迹进行调节。
进一步改进的,根据不同待沉积光学元件的面形以及沉积源的沉积情况计算,并求解得到沉积源的移动方式以实现对沉积源的移动状态和移动轨迹进行规划。
本发明还公开了一种镀膜设备,其采用的技术方案如下:
一种镀膜设备,包括:
第一沉积函数模块,所述第一沉积函数模块用于根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;
移动轨迹模块,所述移动轨迹模块用于根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;
第二沉积函数模块,所述第二沉积函数模块用于根据沉积源沿其移动轨迹移动时与待沉积光学元件的相对位置关系的变化,获得沉积源的第二沉积函数分布特性;
移动状态模块,所述移动状态模块用于根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;
验证模块,所述验证模块用于采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;在对沉积源进行沉积后,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
若虚拟镀膜结果与实际沉积结果的不吻合,则在对沉积源进行调节后,重复第一沉积函数模块至验证模块的处理,直至虚拟镀膜结果与实际沉积结果吻合。
进一步改进的,所述沉积源为磁控溅射系统或者离子束溅射系统。
进一步改进的,所述待沉积光学元件的面形为中心有孔形或中心无孔形。
进一步改进的,所述待沉积光学元件的面形为离轴非球面形。
进一步改进的,所述待沉积光学元件的面形为共体光学元件。
本发明还公开了一种计算机可读存储介质,其采用的技术方案如下:
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述均匀镀膜方法的步骤。
(三)有益效果
本发明提供了一种可以均匀镀膜方法,该方法可以实现不同口径复杂的沉积光学元件沉积均匀性的有效优化,对于中心有孔、中心无孔,离轴非球面以及共体光学元件等都可以有效实现均匀的薄膜沉积,特别是实现了大口径中心无孔光学元件均匀镀膜的难度,实现了离轴非球面光学元件均匀镀膜的难度,实现了共体光学元件均匀镀膜的难度。
本发明所提出的均匀镀膜方法为通过规划光学薄膜沉积过程中沉积源相对于待沉积光学元件的移动轨迹和移动状态,即通过计算优化沉积源与待沉积光学元件之间的位置关系变化,获得沉积源在其移动轨迹中不同位置的沉积驻留时间,实现沉积均匀性的调节。本发明所提出的方法具有如下优点:沉积源可移动,沉积源的移动轨迹和移动状态可以被调节,待沉积元件可以自转也可以固定不动,效率高,适应性好。
本发明提出的镀膜设备和计算机可读存储介质也具有上述优点。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明均匀镀膜方法的流程图;
图2为本发明的实施例1中均匀镀膜方法的示意图;
图3为本发明的实施例2中均匀镀膜方法的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
实施例1
一种均匀镀膜方法,包括以下步骤:
(1),根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;
(2),根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;
(3),根据沉积源沿其移动轨迹移动时与待沉积光学元件的相对位置关系的变化,获得沉积源的第二沉积函数分布特性;
(4),根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;
(5),采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;在对沉积源进行沉积后,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
若虚拟镀膜结果与实际沉积结果的不吻合,则在对沉积源进行调节后,重复步骤(1)至步骤(4),直至虚拟镀膜结果与实际沉积结果吻合。优选的,所述沉积源在沉积的过程中移动,所述沉积源的移动轨迹为直线移动轨迹或往复移动轨迹或沿着光栅移动的轨迹或罗斯移动轨迹,往复移动轨迹可以是沿某种曲线进行的往复移动轨迹;进一步优选的,所述沉积源的移动轨迹在沉积过程中贯穿或者覆盖待沉积光学元件的大部分面积;进一步优选的,所述沉积源沿其移动轨迹做匀速移动或变速移动。进一步优选的,所述沉积源沉积前,通过对沉积源的移动状态和移动轨迹进行规划实现对沉积源的移动状态和移动 轨迹进行调节;具体的,根据不同待沉积光学元件的面形以及沉积源的沉积情况计算,并求解得到沉积源的移动方式以实现对沉积源的移动状态和移动轨迹进行规划。
本实施例还公开了一种镀膜设备,其采用的技术方案如下:
一种镀膜设备,包括:
第一沉积函数模块,所述第一沉积函数模块用于根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;所述沉积源为磁控溅射系统或者离子束溅射系统。
移动轨迹模块,所述移动轨迹模块用于根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;所述待沉积光学元件的面形为中心有孔形或中心无孔形或离轴非球面形或共体光学元件。
第二沉积函数模块,所述第二沉积函数模块用于根据沉积源沿其移动轨迹移动时与待沉积光学元件的相对位置关系的变化,获得沉积源的第二沉积函数分布特性;
移动状态模块,所述移动状态模块用于根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;
验证模块,所述验证模块用于采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;在对沉积源进行沉积后,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
若虚拟镀膜结果与实际沉积结果的不吻合,则在对沉积源进行调节后,重复第一沉积函数模块至验证模块的处理,直至虚拟镀膜结果与实际沉积结果吻合。
本实施例还公开了一种计算机可读存储介质,其采用的技术方案如下:
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现上述均匀镀膜方法的步骤。
本实施例具体的实施方式如下:
请参照图1至图2,待沉积光学元件A的面形为一中心无孔的大口径球面,具体步骤如下:
(1),根据待沉积光学元件的面形特征-中心无孔的大口径球面,确定使用矩形磁控溅射系统B作为沉积源,通过实验和计算分析该矩形磁控溅射系统B沉积源的第一沉积函数分布特性;
(2),由于该待沉积光学元件回转对称,在沉积方法中使待沉积光学元件在沉积过程中进行自转C,沉积源可以沿通过待沉积光学元件的中心方向做直线移动D,整个移动轨迹贯穿待沉积光学元件;
(3),获得矩形磁控溅射系统B沉积源在移动轨迹D不同位置上时,在待沉积光学元件A上的第二沉积函数分布特性;
(4),根据得矩形磁控溅射系统B沉积源的第二沉积函数分布特性,结合沉积源的移动轨迹D和待沉积光学元件的自转情况C,对于沉积源B沉积过程的移动状态进行求解;
(5),采用求解出的沉积源的移动状态进行虚拟镀膜,获得虚拟镀膜结果,对沉积源进行沉积,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
本实施例还包括以下步骤:
若虚拟镀膜结果与实际沉积结果的不吻合,则对沉积源进行调节,然后重复步骤(1)至步骤(4),直至虚拟镀膜结果与实际沉积结果吻合;
(6),对待沉积样品A进行沉积,最终在沉积光学元件的表面获得均匀的薄膜。
实施例2
请参照图1和图3。
沉积方法示意图如图3所示,待沉积光学元件的面形为一中心无孔的大口径大离轴量非球面,具体步骤如下:
(1),根据待沉积光学元件的面形特征——中心无孔的大口径大离轴量非球面F,确定使用采用圆形溅射离子源的离子束溅射系统E作为沉积源,通过实验和计算分析该离子束溅射沉积源E的第一沉积函数分布特性;
(2),由于待沉积光学元件非回转对称并且离轴量大,在沉积方法中使待沉积光学元件在沉积过程中不能进行自转,沉积源可以沿通过待沉积光学元件的表面进行光栅式移动G并覆盖整个待沉积光学元件表面;
(3),获得离子束溅射系统E沉积源在移动轨迹G不同位置上时,在待沉积光学元件F上的的第二沉积函数分布特性;
(4),根据离子束溅射系统E沉积源的第二沉积函数分布特性,结合沉积源的移动轨迹G,对沉积源E沉积过程的移动状态进行求解;
(5),采用求解出的沉积源的移动状态进行虚拟镀膜,获得虚拟镀膜结果,对沉积源进行沉积,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
本实施例还包括以下步骤:
若虚拟镀膜结果与实际沉积结果的不吻合,则对沉积源进行调节,然后重复步骤(1)至步骤(4),直至虚拟镀膜结果与实际沉积结果吻合;
(6),对待沉积样品F进行沉积,最终在在沉积光学元件的表面获得均匀的薄膜。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变 型,这些改进和变型也应视为本发明的保护范围。

Claims (12)

  1. 一种均匀镀膜方法,其特征在于,包括以下步骤:
    (1),根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;
    (2),根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;
    (3),根据沉积源沿其移动轨迹移动时与待沉积光学元件的相对位置关系的变化,获得沉积源的第二沉积函数分布特性;
    (4),根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;
    (5),采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;在对沉积源进行沉积后,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
    若虚拟镀膜结果与实际沉积结果的不吻合,则在对沉积源进行调节后,重复步骤(1)至步骤(4),直至虚拟镀膜结果与实际沉积结果吻合。
  2. 根据权利要求1所述的均匀镀膜方法,其特征在于,步骤(5)中,所述沉积源在沉积的过程中移动,所述沉积源的移动轨迹为直线移动轨迹或往复移动轨迹或沿着光栅移动的轨迹。
  3. 根据权利要求1所述的均匀镀膜方法,其特征在于,所述沉积源的移动轨迹在沉积过程中贯穿或者覆盖待沉积光学元件的大部分面积。
  4. 根据权利要求1所述的均匀镀膜方法,其特征在于,所述沉积源沿其移动轨迹做匀速移动或变速移动。
  5. 根据权利要求1所述的均匀镀膜方法,其特征在于,步骤(5)中,所述 沉积源沉积前,通过对沉积源的移动状态和移动轨迹进行规划实现对沉积源的移动状态和移动轨迹进行调节。
  6. 根据权利要求5所述的均匀镀膜方法,其特征在于,根据不同待沉积光学元件的面形以及沉积源的沉积情况计算,并求解得到沉积源的移动方式以实现对沉积源的移动状态和移动轨迹进行规划。
  7. 一种镀膜设备,其特征在于,包括:
    第一沉积函数模块,所述第一沉积函数模块用于根据待沉积光学元件的面形确定沉积源的第一沉积函数分布特性;
    移动轨迹模块,所述移动轨迹模块用于根据待沉积光学元件的面形和沉积源的第一沉积函数分布特性确定沉积源的移动轨迹;
    第二沉积函数模块,所述第二沉积函数模块用于根据沉积源沿其移动轨迹移动时与待沉积光学元件的相对位置关系的变化,获得沉积源的第二沉积函数分布特性;
    移动状态模块,所述移动状态模块用于根据沉积源的第二沉积函数分布特性求解出沉积源移动过程中的移动状态;
    验证模块,所述验证模块用于采用求解出的沉积源移动过程中的移动状态进行虚拟镀膜,获得虚拟镀膜结果;在对沉积源进行沉积后,将虚拟镀膜结果和沉积源的实际沉积结果进行验证;
    若虚拟镀膜结果与实际沉积结果的不吻合,则在对沉积源进行调节后,重复第一沉积函数模块至验证模块的处理,直至虚拟镀膜结果与实际沉积结果吻合。
  8. 根据权利要求7所述的镀膜设备,其特征在于,所述沉积源为磁控溅射系统或者离子束溅射系统。
  9. 根据权利要求7所述的镀膜设备,其特征在于,所述待沉积光学元件的 面形为中心有孔形或中心无孔形。
  10. 根据权利要求7所述的镀膜设备,其特征在于,所述待沉积光学元件的面形为离轴非球面形。
  11. 根据权利要求7所述的镀膜设备,其特征在于,所述待沉积光学元件的面形为共体光学元件。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述均匀镀膜方法的步骤。
PCT/CN2020/136428 2019-12-28 2020-12-15 一种均匀镀膜方法、镀膜设备及计算机可读存储介质 WO2021129457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911383950.6 2019-12-28
CN201911383950.6A CN111041441B (zh) 2019-12-28 2019-12-28 一种均匀镀膜方法、镀膜设备及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021129457A1 true WO2021129457A1 (zh) 2021-07-01

Family

ID=70240759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136428 WO2021129457A1 (zh) 2019-12-28 2020-12-15 一种均匀镀膜方法、镀膜设备及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111041441B (zh)
WO (1) WO2021129457A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111041441B (zh) * 2019-12-28 2021-04-13 中国科学院长春光学精密机械与物理研究所 一种均匀镀膜方法、镀膜设备及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101743617A (zh) * 2007-06-27 2010-06-16 斗山麦卡泰克株式会社 蒸发装置
CN102776484A (zh) * 2012-06-27 2012-11-14 中国科学院光电技术研究所 一种用于镀膜行星系统中控制平面光学元件膜厚分布的挡板设计方法
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
US20140245957A1 (en) * 2003-02-14 2014-09-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
JP2016125108A (ja) * 2015-01-07 2016-07-11 日東電工株式会社 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置
CN107557750A (zh) * 2017-08-22 2018-01-09 中国科学院长春光学精密机械与物理研究所 镀膜实时闭环控制系统及其控制方法
CN108441838A (zh) * 2018-03-21 2018-08-24 中国兵器科学研究院宁波分院 一种中大口径光学元件表面离子束溅射沉积薄膜的方法
CN111041441A (zh) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 一种均匀镀膜方法、镀膜设备及计算机可读存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100363533C (zh) * 2005-07-12 2008-01-23 中国科学院上海光学精密机械研究所 电子束蒸发镀膜膜厚均匀性的修正方法
US20070281075A1 (en) * 2006-05-31 2007-12-06 Cheng-Chia Huang Optical method to monitor nano thin-film surface structure and thickness thereof
TW201204535A (en) * 2010-07-22 2012-02-01 Univ Chung Yuan Christian Non-planar stretching apparatus for producing large dimension thin films
CN103726019B (zh) * 2013-12-13 2015-10-28 中国科学院上海光学精密机械研究所 改善球面光学元件镀膜均匀性的挡板的设计方法
JP6251588B2 (ja) * 2014-02-04 2017-12-20 株式会社アルバック 成膜方法
CN108315702B (zh) * 2018-02-05 2020-01-10 中国科学院长春光学精密机械与物理研究所 一种平面矩形磁控溅射阴极镀膜均匀性调整装置及方法
US10138539B1 (en) * 2018-04-03 2018-11-27 Shiping Cheng Method of managing coating uniformity with an optical thickness monitoring system
CN108546897B (zh) * 2018-05-11 2019-10-29 鞍钢股份有限公司 一种冷轧热镀锌钢板横向镀层均匀性控制方法
CN109332033A (zh) * 2018-11-13 2019-02-15 江苏大学 一种静电喷涂机器人针对非规则平面多边形涂层厚度均匀性的优化方法
CN109576667B (zh) * 2018-12-18 2020-08-18 中国科学院力学研究所 一种提高大型模具pvd膜层均匀性的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140245957A1 (en) * 2003-02-14 2014-09-04 Semiconductor Energy Laboratory Co., Ltd. Manufacturing apparatus
CN101743617A (zh) * 2007-06-27 2010-06-16 斗山麦卡泰克株式会社 蒸发装置
CN102776484A (zh) * 2012-06-27 2012-11-14 中国科学院光电技术研究所 一种用于镀膜行星系统中控制平面光学元件膜厚分布的挡板设计方法
CN103938161A (zh) * 2014-04-29 2014-07-23 京东方科技集团股份有限公司 基板蒸镀装置和蒸镀方法
JP2016125108A (ja) * 2015-01-07 2016-07-11 日東電工株式会社 多層光学膜の膜厚制御方法、多層光学膜の製造方法および多層光学膜のスパッタ装置
CN107557750A (zh) * 2017-08-22 2018-01-09 中国科学院长春光学精密机械与物理研究所 镀膜实时闭环控制系统及其控制方法
CN108441838A (zh) * 2018-03-21 2018-08-24 中国兵器科学研究院宁波分院 一种中大口径光学元件表面离子束溅射沉积薄膜的方法
CN111041441A (zh) * 2019-12-28 2020-04-21 中国科学院长春光学精密机械与物理研究所 一种均匀镀膜方法、镀膜设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN111041441B (zh) 2021-04-13
CN111041441A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN102732844B (zh) 一种真空镀膜机行星转动夹具上球面光学元件镀膜均匀性修正挡板的设计方法
CN103726019B (zh) 改善球面光学元件镀膜均匀性的挡板的设计方法
WO2021129457A1 (zh) 一种均匀镀膜方法、镀膜设备及计算机可读存储介质
WO2014149193A2 (en) Method of growing aluminum oxide onto substrates by use of an aluminum source in an environment containing partial pressure of oxygen to create transparent, scratch-resistant windows
CN102776484B (zh) 一种用于镀膜行星系统中控制平面光学元件膜厚分布的挡板设计方法
JP2004269988A (ja) スパッタ装置
CN105510001B (zh) 一种用于光学场景能量模拟的连续衰减系统
WO2015165167A1 (zh) 基板蒸镀装置和蒸镀方法
CN108441838B (zh) 一种中大口径光学元件表面离子束溅射沉积薄膜的方法
US6187159B1 (en) Mechanism for setting optical lens base material on holder
CN113862625B (zh) 高通量薄膜沉积设备及薄膜沉积方法
CN105154843A (zh) 高通量组合材料芯片前驱体沉积设备及其沉积方法
CN105372112A (zh) 一种掩模更换装置及高通量样品制备方法
CN106569332A (zh) 连续型螺旋相位板设计方法
CN204589292U (zh) 光学薄膜用可调节夹具
KR20160123247A (ko) 기판에 도포되는 포토레지스트를 적어도 부분적으로 경화하는 방법 및 장치
CN105132881B (zh) 一种用于大口径曲率半径比透镜的光学薄膜膜系设计方法
CN105463384A (zh) 耐用的3d几何形状保形抗反射涂层
CN202954086U (zh) 一种镀膜设备及靶材
CN114481021B (zh) 一种光学镜头的镀膜方法、装置及产品
Zhu et al. A novel approach to calculate the deposition uniformity of multi-target sputtering system
US20220357665A1 (en) Decreasing Distortion by Modifying Pixel Spacing
CN111826629A (zh) 一种用于控制椭球形光学元件膜厚分布的挡板设计方法
CN209239652U (zh) 一种用于降低薄板形材料离子束抛光时热应力的装置
肖帆 et al. Multiple module neural network solving for inverse kinematics of space 3R manipulators

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906918

Country of ref document: EP

Kind code of ref document: A1