WO2021129124A1 - 一种电芬顿集群磁流变复合研磨抛光装置及方法 - Google Patents

一种电芬顿集群磁流变复合研磨抛光装置及方法 Download PDF

Info

Publication number
WO2021129124A1
WO2021129124A1 PCT/CN2020/124515 CN2020124515W WO2021129124A1 WO 2021129124 A1 WO2021129124 A1 WO 2021129124A1 CN 2020124515 W CN2020124515 W CN 2020124515W WO 2021129124 A1 WO2021129124 A1 WO 2021129124A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
polishing
fenton
magnet
gear
Prior art date
Application number
PCT/CN2020/124515
Other languages
English (en)
French (fr)
Inventor
潘继生
张棋翔
邓家云
阎秋生
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021129124A1 publication Critical patent/WO2021129124A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • B24B1/005Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes using a magnetic polishing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/033Other grinding machines or devices for grinding a surface for cleaning purposes, e.g. for descaling or for grinding off flaws in the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/10Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work
    • B24B31/102Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor involving other means for tumbling of work using an alternating magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B31/00Machines or devices designed for polishing or abrading surfaces on work by means of tumbling apparatus or other apparatus in which the work and/or the abrasive material is loose; Accessories therefor
    • B24B31/12Accessories; Protective equipment or safety devices; Installations for exhaustion of dust or for sound absorption specially adapted for machines covered by group B24B31/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/02Frames; Beds; Carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition

Definitions

  • the invention relates to the technical field of ultra-precision processing, and more specifically, to an electro-Fenton cluster magnetorheological composite grinding and polishing device and method.
  • Hard and brittle materials are used in electronics, optics, instrumentation, aerospace, civil military, etc. due to their high strength, high hardness, high brittleness, wear resistance and corrosion resistance, heat insulation, low density and low expansion coefficient, and stable chemical properties.
  • the application potential in this field is huge.
  • the demand for flat hard and brittle materials has become more and more extensive, but the surface quality of hard and brittle materials has become a key factor restricting their application.
  • the low plasticity of brittle materials, brittle failure, microcracks, and improper processing technology can cause defects such as surface and subsurface damage and structure damage of the workpiece, and high-efficiency precision processing of brittle materials has become an inevitable requirement.
  • Magnetorheological polishing technology has the advantages of good polishing effect, no subsurface damage, suitable for complex surface processing and other advantages that traditional polishing does not have. It has become a revolutionary optical surface processing method, especially suitable for ultra-precision processing of axisymmetric aspheric surfaces. It is widely used in the final processing of large-scale optical components, semiconductor wafers, LED substrates, liquid crystal display panels, etc., but the polishing efficiency of magnetorheological polishing technology is low.
  • Chinese patent CN200610132495.9 proposes a magnetorheological effect-based grinding and polishing method and its polishing device based on the magnetorheological polishing principle and clustering mechanism. Although the method is formed by the clustering method Surface polishing pad, but the processing uniformity of the workpiece is difficult to guarantee;
  • Chinese patent CN201510801886.4 proposes a dynamic magnetic field self-sharpening magnetorheological flexible polishing pad generator and polishing method, which realizes that the magnetorheological flexible polishing pad can be used in The constant pressure machining of the workpiece during the machining process can enable the abrasive to be updated and self-sharpened in real time during the machining process, but the machining efficiency is low.
  • the purpose of the present invention is to overcome the deficiencies in the prior art and provide an electro-Fenton cluster magnetorheological composite grinding and polishing device and method, which combine the electro-Fenton reaction to generate strong oxidizing ⁇ OH, ⁇ OH and the workpiece to be processed An oxidation reaction occurs on the surface to form a softer oxide layer, which is removed under the action of a dynamic magnetic field flexible polishing pad, which can improve processing efficiency and processing quality.
  • the technical solution adopted by the present invention is:
  • An electric Fenton cluster magnetorheological composite grinding and polishing device which includes a base, a cluster magnet, a rotation transmission component that drives the cluster magnet to rotate, a revolution transmission component that drives the cluster magnet to revolve, and the first that provides power for the rotation and revolution of the cluster magnet.
  • a driving assembly, a polishing disc containing a magnetorheological fluid, a second driving assembly driving the rotation of the polishing disc, and an electric Fenton assembly capable of generating an OH reactant by an electric Fenton reaction, and the cluster magnet is installed in the rotation transmission assembly ,
  • the rotation transmission assembly is connected between the cluster magnet and the first drive assembly
  • the revolution transmission assembly is connected between the first drive assembly and the rotation transmission assembly
  • the polishing disc is connected with the second drive assembly
  • the The polishing disc is located above the cluster magnets
  • the electric Fenton assembly includes an electrochemical workstation and an electric Fenton unit extending into the magnetorheological fluid
  • the electrochemical workstation is connected to the electric Fenton unit
  • the first drive assembly
  • the second driving component and the electrochemical workstation are all installed on the base.
  • the first driving component drives the cluster magnet to revolve through the revolution transmission component, and the cluster magnet is driven to rotate through the rotation transmission component, and the second driving component drives the polishing disc to rotate, and the magnetorheological fluid
  • a dynamic flexible grinding head is formed under the action of the cluster magnet, and a plurality of the dynamic flexible grinding head clusters to form a dynamic flexible polishing pad; at the same time, the reaction product ⁇ OH produced by the electro-Fenton reaction reacts with the workpiece to be processed to form an oxide layer.
  • the flexible polishing pad cuts and polishes the surface of the workpiece to be processed.
  • the invention can make full contact with the surface of the workpiece to be processed, improve the processing efficiency and processing uniformity of cluster magnetorheology, and has good processing surface consistency and no surface/subsurface damage.
  • the first drive assembly includes a first motor, a first pulley, a second pulley, a first transmission belt, and a main shaft.
  • the first pulley is connected to the first motor, and the first motor is installed on the base.
  • the first transmission belt surrounds the outer circumference of the first pulley and the second pulley, the main shaft is connected to the second pulley, and the main shaft is provided with an eccentric shaft connected to the rotation transmission assembly and the revolution transmission assembly Connected transition shaft.
  • the first motor starts, and drives the main shaft, transition shaft, and eccentric shaft to rotate through the first belt wheel, the second belt wheel and the first transmission belt to provide power for the rotation and revolution of the cluster magnet.
  • the rotation transmission assembly includes a first driving gear and a first driven gear that are meshedly arranged, the first driving gear is mounted on the eccentric shaft, and the cluster magnet is mounted on the first driven gear.
  • the main shaft drives the eccentric shaft to rotate, drives the first driving gear to rotate, the first driving gear drives the first driven gear to rotate, and the cluster magnets rotate.
  • the cluster magnet includes multiple sets of magnets, one set of magnets is arranged at the center of the first driven gear, and other sets of magnets are evenly surrounded around one set of magnets, and the magnetic poles of one set of magnets are opposite to those of the other sets of magnets. .
  • Multiple groups of magnets can form a local cluster magnet dynamic magnetic field generating device, the magnetorheological fluid forms a dynamic flexible grinding head under the action of the cluster magnets, and multiple dynamic flexible grinding heads cluster to form a dynamic flexible polishing pad.
  • the revolution transmission assembly includes a second driving gear, an internal gear, and a plurality of sets of second driven gears.
  • the second driving gear is mounted on the transition shaft, and the plurality of sets of second driven gears mesh with the second driving gear.
  • multiple sets of second driven gears mesh with internal gears, and the internal gears are coaxially installed with the main shaft;
  • the second driven gears are rotatably connected with a rotation shaft, and one end of the rotation shaft is connected to the first driven gear
  • the other end of the connecting and rotating shaft is connected with the internal gear.
  • the main shaft drives the second driving gear to rotate, the second driving gear drives the internal gear to rotate through the second driven gear, the internal gear drives the rotation shaft mounted on it to rotate, and the rotation shaft drives the first driven gear to rotate to realize the revolution movement of the cluster magnet .
  • the second driving gear is an incomplete gear, and the starting end of the incomplete gear is in contact with the second driven gear and rotates until the end of the incomplete gear is loosely engaged with the second driven gear, the angle of rotation of the internal gear It is equal to the angle between the centers of the two adjacent sets of second driven gears and the center of the second driving gear.
  • the second drive assembly includes a second motor, a third pulley, a fourth pulley, a second transmission belt, and a transmission member
  • the second motor is mounted on the base, and the third pulley and the second motor Connected, the fourth pulley is connected with the transmission member, the second transmission belt is wound around the outer peripheries of the third pulley and the fourth pulley, and the polishing disc is connected with the transmission member.
  • the second motor is started, and the polishing disc is driven to rotate through the third pulley, the fourth pulley, the second transmission belt and the transmission member.
  • the electric Fenton unit includes a working electrode, a reference electrode and an auxiliary electrode; the chemical reactions shown in formulas (1-1) and (1-2) occur at the working electrode:
  • the ⁇ OH generated by the electro-Fenton reaction can react with the surface of the workpiece to be processed to form an oxide layer with softer hardness and lower bonding force.
  • the oxide layer is removed under the action of a dynamic magnetic field flexible polishing pad, thereby improving processing efficiency and processing Quality; Among them, ⁇ OH is generated on-line by electro-Fenton reaction, which can avoid the risks of transportation, storage and handling, and reduce the cost.
  • the electric Fenton units are in multiple groups, and the multiple groups of electric Fenton units evenly surround the polishing disc.
  • the ⁇ OH generated online by the electric Fenton reaction is uniformly distributed in the magnetorheological fluid and can be in full contact with the surface of the workpiece to be processed, which can improve the processing uniformity.
  • the invention also provides an electro-Fenton cluster magnetorheological composite grinding and polishing method, which includes the following steps:
  • the cluster magnets rotate and revolve and the polishing disk rotates, the magnetorheological fluid forms a dynamic flexible grinding head under the action of the cluster magnets, and a plurality of the dynamic flexible grinding heads are clustered
  • a dynamic flexible polishing pad is formed; in this embodiment, the rotation speed of the first motor is adjusted to 600 rpm, and the rotation speed of the second motor is adjusted to 100 rpm;
  • step S5 Start the electrochemical workstation, the reaction product ⁇ OH of the electric Fenton unit reacts with the workpiece to be processed to form an oxide layer, and the dynamic flexible polishing pad in step S4 cuts the surface of the workpiece to be processed to complete the grinding and polishing of the surface of the workpiece to be processed.
  • the electro-Fenton cluster magnetorheological composite grinding and polishing method of the present invention the electro-Fenton reaction product ⁇ OH reacts with the workpiece to be processed to generate an oxide layer; the cluster magnet rotates and revolves and the polishing disk rotates, and the magnetorheological fluid is in the cluster magnet
  • a dynamic flexible grinding head is formed under the action of, and a plurality of the dynamic flexible grinding head clusters form a dynamic flexible polishing pad; the oxide layer is removed under the action of the dynamic flexible polishing pad, which can improve processing efficiency and processing quality.
  • the electro-Fenton reaction product OH reacts with the workpiece to be processed to form an oxide layer.
  • the cluster magnet can separately realize rotation and revolution.
  • the cluster magnet rotates to form a flexible polishing pad to realize the processing of the workpiece.
  • the cluster magnet intermittently revolves to achieve flexibility
  • the overall dressing of the polishing pad can improve the processing efficiency and improve the processing uniformity, and at the same time, it can also realize the rapid renewal of the magnetorheological fluid and the rapid self-sharpening of the abrasive; and the electric Fenton reaction raw materials H 2 O 2 and Fe 2+ of the present invention Generated online to avoid transportation, storage and handling risks and reduce device cost.
  • Figure 1 is a schematic diagram of the structure of an electric Fenton cluster magnetorheological composite grinding and polishing device
  • Figure 2 is the working principle diagram of the electric Fenton cluster magnetorheological composite grinding and polishing device
  • Fig. 3 is a schematic structural diagram of the rotation transmission assembly of the electric Fenton cluster magnetorheological composite grinding and polishing device
  • FIG. 4 is a schematic diagram of the structure of the revolution transmission assembly of the electric Fenton cluster magnetorheological composite grinding and polishing device
  • Fig. 5 is an enlarged schematic diagram of part A in Fig. 1;
  • FIG. 6 is a schematic diagram of the structure of the fixture of the electro-Fenton cluster magnetorheological composite grinding and polishing device
  • Figure 7 is a top view of the electric Fenton unit of the Fenton cluster magnetorheological composite grinding and polishing device
  • FIG. 8 is a schematic diagram of the structure of the electric Fenton unit of the Fenton cluster magnetorheological composite grinding and polishing device
  • Figures 1 to 8 show an embodiment of the electro-Fenton cluster magnetorheological composite grinding and polishing device of the present invention, which includes a base 1, a cluster magnet 2, a rotation transmission assembly 3 that drives the cluster magnet 2 to rotate, and a drive cluster magnet 2
  • the revolving transmission assembly 4 for revolution the first drive assembly 5 that provides power for the rotation and revolution of the cluster magnet 2, the polishing disc 6 containing the magnetorheological fluid, the second drive assembly 7 that drives the polishing disc 6 to rotate, and the generation of electricity
  • the Fenton reaction produces the electric Fenton component 8 of the OH reactant.
  • the cluster magnet 2 is installed in the rotation transmission component 3, the rotation transmission component 3 is connected between the cluster magnet 2 and the first drive component 5, and the revolution transmission component 4 is connected to the first drive component.
  • the electro-Fenton assembly 8 includes an electrochemical workstation 81 and extends into the magnetorheological fluid. For the electric Fenton cell in the liquid, the electrochemical workstation 81 is connected to the electric Fenton cell, and the first driving assembly 5, the second driving assembly 7, and the electrochemical workstation 81 are all installed on the base 1.
  • the first drive assembly 5 drives the cluster magnet 2 to revolve through the revolution transmission assembly 4, drives the cluster magnet 2 to rotate through the rotation drive assembly 3, and the second drive assembly 7 drives the polishing disk 6 to rotate, and the magnetorheological fluid is in
  • the cluster magnet 2 forms a dynamic flexible grinding head, and multiple dynamic flexible grinding heads cluster to form a dynamic flexible polishing pad; at the same time, the reaction product ⁇ OH produced by the electro-Fenton reaction reacts with the workpiece to be processed to form an oxide layer, and dynamic flexible polishing
  • the pad is cut and polished on the surface of the workpiece to be processed.
  • the invention can make full contact with the surface of the workpiece to be processed, improve the processing efficiency and processing uniformity of cluster magnetorheology, and has good processing surface consistency and no surface/subsurface damage.
  • the first drive assembly 5 includes a first motor 51, a first pulley 52, a second pulley 53, a first transmission belt 54 and a main shaft 55.
  • the first pulley 52 is connected to the first motor 51 and the first pulley 52 is connected to the first motor 51.
  • a motor 51 is installed on the base 1
  • the first transmission belt 54 surrounds the outer peripheries of the first pulley 52 and the second pulley 53
  • the main shaft 55 is connected to the second pulley 53 and the main shaft 55 is provided with an eccentric connected to the rotation transmission assembly 3
  • the shaft 56 and the transition shaft 57 connected with the revolution transmission assembly 4.
  • the first motor 51 is started, and the main shaft 55, the transition shaft 57, and the eccentric shaft 56 are driven to rotate through the first belt wheel 52, the second belt wheel 53 and the first transmission belt 54 to provide power for the rotation and revolution of the cluster magnet 2.
  • the use of the pulley belt transmission mode for transmission is an optimization for simple structure and stable transmission, and is not a restrictive provision.
  • the rotation transmission assembly 3 includes a first driving gear 31 and a first driven gear 32 that are meshed and arranged.
  • the first driving gear 31 is installed on the eccentric shaft 56
  • the cluster magnet 2 is installed on the first driven gear 32.
  • the driven gear 32 is provided with a plurality of magnet placement holes for installing magnets.
  • the main shaft 55 drives the eccentric shaft 56 to rotate, drives the first driving gear 31 to rotate, the first driving gear 31 drives the first driven gear 32 to rotate, and the cluster magnet 2 rotates.
  • the cluster magnet 2 includes multiple sets of magnets. One set of magnets is arranged at the center of the first driven gear 32, and the other sets of magnets are evenly surrounded around one set of magnets, and the poles of one set of magnets are opposite to those of the other sets of magnets.
  • the first driving gear 31 is eccentrically arranged, and the first driven gear 32 is arranged with a plurality of magnets according to a certain arrangement rule.
  • the first driving gear 31 drives the first driven gear 32 to rotate eccentrically, thereby driving the magnets on the first driven gear 32 Movement; in the magnetorheological polishing process, the magnetorheological fluid forms a flexible polishing pad under the action of multiple magnets to completely cover the surface of the workpiece to be processed, forming multiple small flexible polishing pads for simultaneous processing, in which the magnetic field strength of the magnet is 0.2T ⁇ 4T, the diameter of the magnet can be adjusted according to the size of the workpiece to be processed.
  • a suitable sleeve can be added to the magnet placement hole on the first driven gear 32 to place magnets of different diameters.
  • the revolution transmission assembly 4 includes a second driving gear 41, an internal gear 42, and a plurality of sets of second driven gears 43.
  • the second driving gear 41 is mounted on the transition shaft 57, and the plurality of sets of second driven gears 43 mesh with the second driving gear 41 , And multiple sets of second driven gears 43 mesh with the internal gear 42, and the internal gear 42 is mounted coaxially with the main shaft 55;
  • the second driven gear 43 is rotatably connected with a self-rotating shaft 44, one end of the self-rotating shaft 44 and the first driven gear 32 is connected, and the other end of the self-rotating shaft 44 is connected to the internal gear 42.
  • the internal gear 42 is provided with a circular hole
  • the second driven gear 43 is fitted on the self-rotating shaft 44 through a pair of bearings
  • the self-rotating shaft 44 is fixed on the circular hole of the internal gear 42 through a fixed plate
  • the internal gear 42 is clearance-fitted in
  • the internal gear 42 is coaxially mounted with the main shaft 55 through a bearing.
  • the main shaft 55 drives the second driving gear 41 to rotate
  • the second driving gear 41 drives the internal gear 42 to rotate through the second driven gear 43
  • the internal gear 42 drives the rotation shaft 44 mounted on it to rotate
  • the self rotation shaft 44 drives the first A driven gear 32 rotates to realize the revolution movement of the cluster magnet 2.
  • the second driving gear 41 is an incomplete gear.
  • Three sets of second driven gears 43 are evenly placed in the internal gear 42 at 120°.
  • the central angle occupied by the gear portion of the second driving gear 41 is less than 120°.
  • Adjust the rotation of the second driving gear 41 to ensure that a critical side of the processing area just touches the second driven gear 43, and when the internal gear 42 rotates 120°
  • the two driven gears 43 and the second driving gear 41 just loosen the mesh; during the contact between the second driving gear 41 and the next set of second driven gears 43, the second driving gear 41 is idling, and the first driven gear 32 keeps rotating , So as to realize the processing of the workpiece and the trimming of the next set of flexible polishing pads.
  • the second drive assembly 7 includes a second motor 71, a third pulley 72, a fourth pulley 73, a second transmission belt 74 and a transmission member.
  • the second motor 71 is installed on the base 1, and the third pulley 72 is connected to the second motor 71, the fourth pulley 73 is connected to the transmission member, the second transmission belt 74 is wound around the outer periphery of the third pulley 72 and the fourth pulley 73, and the polishing disc 6 is connected to the transmission member;
  • the motor 71 is activated, and the polishing disc 6 is driven to rotate through the third pulley 72, the fourth pulley 73, the second transmission belt 74 and the transmission member.
  • the transmission member includes a transmission shaft 75 and an adapter disk 76.
  • the fourth pulley 73 is fixedly mounted on the transmission shaft 75
  • the gear support base 45 is fixed to the transmission shaft 75
  • the adapter disk 76 is fixed on the gear support base 45
  • the polishing disk 6 is connected with the adapter plate 76 through an adjusting screw 77
  • a tower spring 78 is installed on the adjusting screw 77 to ensure the smooth rotation of the polishing plate 6.
  • the electric Fenton unit includes a working electrode 82, a reference electrode 83 and an auxiliary electrode 84; the chemical reaction shown in formulas (1-1) and (1-2) occurs at the working electrode 82:
  • the ⁇ OH generated by the electro-Fenton reaction can react with the surface of the workpiece to be processed to form an oxide layer with softer hardness and lower bonding force.
  • the oxide layer is removed under the action of a dynamic magnetic field flexible polishing pad, thereby improving processing efficiency and processing Quality; Among them, ⁇ OH is generated on-line by electro-Fenton reaction, which can avoid the risks of transportation, storage and handling, and reduce the cost.
  • the electric Fenton unit is connected to the electrochemical workstation 81 through wires.
  • the electric Fenton unit is installed on the clamp 9, which is fixed on the outer spacer 91, the outer spacer 91 is fixed on the outer support cylinder 92, and the outer support cylinder 92 Installed on the base 1, a bearing is provided between the outer support cylinder 92 and the transmission shaft 75, and a bearing is also provided between the outer spacer 91 and the gear support base 45.
  • a wire groove 93 is opened in the outer spacer 91 in this embodiment. The wires are drawn from the electrochemical workstation 81 and pass through the wire groove 93 to connect to the electric Fenton unit.
  • this arrangement is made for compact structure and beautiful appearance. The preferences given are not intended as restrictive provisions.
  • the fixture 9 is provided with electrode copper ring placement grooves and multiple "I"-shaped electrical Fenton unit installation grooves 94, working electrode copper ring 95, reference electrode copper ring 96 and auxiliary electrode copper
  • the ring 97 is coaxially placed in the mounting slot 94, and the wires are respectively connected to the working electrode copper ring 95, the reference electrode copper ring 96 and the auxiliary electrode copper ring 97, the working electrode copper ring 95, the reference electrode copper ring 96 and the auxiliary electrode copper ring 95, respectively.
  • the rings 97 are kept insulated, and the working electrode 82 contacts, the reference electrode 83 contacts and the auxiliary electrode 84 contacts provided at the ends of the working electrode 82, the reference electrode 83 and the auxiliary electrode 84 are respectively connected to the working electrode through the contact groove.
  • the ring 95, the reference electrode copper ring 96, and the auxiliary electrode copper ring 97 are in contact with each other to realize energization.
  • the electric Fenton unit also includes a ceramic seat 85, a wire hole 86, an electrode fixing seat 87, an electrode filler 88, and a protective layer 89 of the electric Fenton unit.
  • the wire hole 86 is provided in the ceramic seat 85, and the wire Wires are connected in the holes 86.
  • the working electrode 82, the reference electrode 83 and the auxiliary electrode 84 are fixed on the electrode holder 87.
  • the wires are respectively connected to the working electrode 82, the reference electrode 83 and the auxiliary electrode 84, the working electrode 82 and the reference electrode 83
  • the auxiliary electrode 84 and the auxiliary electrode 84 are arranged in the protective layer 89 of the electric Fenton unit, and an electrode filler 88 is filled between the working electrode 82, the reference electrode 83 and the auxiliary electrode 84.
  • the working electrode 82 in this embodiment is one or more of a stainless steel electrode, a platinum electrode, an activated carbon fiber electrode, a titanium-based zirconium dioxide/tin dioxide composite electrode, and a titanium-based rubidium dioxide/iridium dioxide composite electrode;
  • the specific electrode 83 is one or more of hydrogen electrode, calomel electrode, silver/silver chloride electrode, mercury/mercury oxide electrode, mercury/mercurous sulfate electrode;
  • auxiliary electrode 84 is graphite electrode, titanium mesh, activated carbon fiber electrode
  • electrode filler 88 is one or more of solid oxygen beads, iron-carbon alloys, zeolite, and diatomaceous earth; working electrode 82, reference electrode 83, auxiliary electrode 84 and
  • the protective layer 89 of the electric Fenton unit is a mesh structure, the distance between the working electrode 82 and the reference electrode 83 is 1cm ⁇ 2cm, the distance between the working electrode 82 and the auxiliary electrode 84 is 1cm ⁇ 5cm, and
  • the electrode plate area of the auxiliary electrode 84 is larger than the electrode plate area of the working electrode 82; the working current density of the electric Fenton unit is 1mA/cm 2 ⁇ 100mA/cm 2 , the voltage intensity is 1V ⁇ 30V, and the working environment pH value is 1 ⁇ 5.
  • the specific parameter settings of the working electrode 82, the reference electrode 83, and the auxiliary electrode 84 are optimized for obtaining a high-efficiency electro-Fenton reaction, and not as a restrictive provision. They can be set according to grinding and polishing requirements. Make adjustments accordingly.
  • This embodiment is an embodiment of the grinding and polishing method of the electric Fenton cluster magnetorheological composite grinding and polishing device in the processing of a 2-inch single crystal SiC substrate.
  • 100nm ⁇ 500nm diamond abrasives and 5 ⁇ m ⁇ 10 ⁇ m carbonyl iron powder is used as a composite abrasive.
  • the working method includes the following steps:
  • step S5 Start the electrochemical workstation 81, the reaction product of the electric Fenton unit ⁇ OH reacts with the workpiece to be processed to form an oxide layer.
  • step S4 the dynamic flexible polishing pad cuts the surface of the workpiece to be processed to complete the grinding and polishing of the surface of the workpiece to be processed.
  • step S1 the relevant components of the grinding and polishing device need to be selected and adaptively adjusted:
  • the working electrode 82 selects a stainless steel electrode
  • the reference electrode 83 selects a calomel electrode
  • the auxiliary electrode 84 selects a graphite electrode.
  • the fillers are solid oxygen beads, iron-carbon alloys, and zeolite.
  • the frame unit is placed in the clamp 9 and the clamp 9 is fixed on the outer spacer 91.
  • the magnetorheological fluid is prepared according to the following component ratios and steps: add 15% concentration of composite abrasive, 10% concentration of dispersant and 5% concentration of rust inhibitor to deionized water, and stir thoroughly After uniformity, adjust the pH to 3, and then ultrasonically oscillate for 15 minutes to make a composite magnetorheological fluid.
  • step S5 the current density of the electrochemical workstation 81 is adjusted to 15mA/cm 2 and the voltage is adjusted to 5V; the electric Fenton unit reaction product ⁇ OH reacts with SiC to form an oxide layer:
  • This embodiment is an embodiment of the grinding and polishing method of the electric Fenton cluster magnetorheological composite grinding and polishing device for processing 2-inch single crystal silicon wafers.
  • the 5 ⁇ m carbonyl iron powder is used as a composite abrasive.
  • the working method of this embodiment is similar to that of the second embodiment, but the difference lies in:
  • the magnetorheological fluid is prepared according to the following component ratios and steps: add 15% concentration of composite abrasive, 10% concentration of dispersant and 5% concentration of rust inhibitor to deionized water, and stir thoroughly After uniformity, adjust the pH to 3, then ultrasonically oscillate for 20 minutes to make a composite magnetorheological fluid;
  • step S4 the rotation speed of the first motor 51 is adjusted to 400 rpm, and the rotation speed of the second motor 71 is adjusted to 100 rpm;
  • step S5 the current density of the electrochemical workstation 81 is adjusted to 10mA/cm 2 , and the voltage is 5V; the reaction product of the electric Fenton unit ⁇ OH reacts with the monocrystalline silicon wafer to form an oxide layer:
  • This embodiment is an embodiment of the grinding and polishing method of the electric Fenton cluster magnetorheological composite grinding and polishing device in the processing of a 2-inch single crystal GaN substrate.
  • a silica sol abrasive of 10nm-50nm is used together with Carbonyl iron powder of 0.5 ⁇ m to 1 ⁇ m is used as a composite abrasive.
  • the working method of this embodiment is similar to that of the second embodiment, except that:
  • the working electrode 82 is a platinum electrode
  • the reference electrode 83 is a calomel electrode
  • the auxiliary electrode 84 is a graphite electrode
  • the fillers are solid oxygen beads, iron-carbon alloys, and zeolite groups
  • the magnetorheological fluid is prepared according to the following component ratios and steps: add a composite abrasive with a concentration of 10%, a dispersant with a concentration of 15% and a rust inhibitor with a concentration of 5% in deionized water, and stir thoroughly After uniformity, adjust the pH to 3, then ultrasonically oscillate for 30 minutes to make a composite magnetorheological fluid;
  • step S4 the rotation speed of the first motor 51 is adjusted to 300 rpm, and the rotation speed of the second motor 71 is adjusted to 100 rpm;
  • step S5 the current density of the electrochemical workstation 81 is adjusted to 25mA/cm 2 , and the voltage is adjusted to 10V; the electric Fenton unit reaction product ⁇ OH reacts with GaN to form an oxide layer:

Abstract

一种电芬顿集群磁流变复合研磨抛光装置及方法,包括底座(1)、集群磁铁(2)、驱动集群磁铁(2)自转的自转传动组件(3)、驱动集群磁铁(2)公转的公转传动组件(4)、为集群磁铁(2)自转和公转提供动力的第一驱动组件(5)、内盛有磁流变液的抛光盘(6)、驱动抛光盘(6)转动的第二驱动组件(7)以及可发生电芬顿反应产生·OH反应物的电芬顿组件(8),电芬顿组件(8)包括电化学工作站(81)及伸入至磁流变液中的电芬顿单元,电化学工作站(81)与电芬顿单元连接。其中的电芬顿反应生成物·OH与被加工工件反应生成氧化层;集群磁铁自转和公转以及抛光盘转动,磁流变液在集群磁铁的作用下形成动态柔性抛光垫,氧化层在动态柔性抛光垫的作用下去除,可改善工件加工效率和加工质量。

Description

一种电芬顿集群磁流变复合研磨抛光装置及方法 技术领域
本发明涉及超精密加工的技术领域,更具体地,涉及一种电芬顿集群磁流变复合研磨抛光装置及方法。
背景技术
硬脆材料由于其高强度、高硬度、高脆性、耐磨损和腐蚀、隔热、低密度和低膨胀系数及稳定的化学性质等特点在电子、光学、仪器仪表、航天航空、民用军工等领域的应用潜力十分巨大。现代高新技术的发展对平面硬脆材料的需求越来越广泛,但硬脆材料的表面质量成为制约其应用的关键因素。脆性材料具有的低塑性、易脆性破坏、微裂纹及加工工艺不当会引起工件表面及亚表面损伤及组织破坏等缺点,对脆性材料的高效精密加工成为必然要求。磁流变抛光技术具有抛光效果好、不产生亚表面损伤、适合复杂表面加工等传统抛光所不具备的优点,已成为一种革命性光学表面加工方法,特别适合轴对称非球面的超精密加工,广泛应用于大型光学元件、半导体晶片、LED基板、液晶显示板等的最后加工工序,但磁流变抛光技术的抛光效率低。
为了提高磁流变的抛光效率,中国专利CN200610132495.9基于磁流变抛光原理和集群作用机理提出了一种基于磁流变效应的研磨抛光方法及其抛光装置,该方法虽然通过集群方法形成了面域抛光垫,但是工件的加工均匀性难以保证;中国专利CN201510801886.4提出了一种动态磁场自锐的磁流变柔性抛光垫发生装置及其抛光方法,实现了磁流变柔性抛光垫在加工过程中对工件的恒压加工,并且能使磨料在加工过程中实时更新自锐,但加工效率较低。
发明内容
本发明的目的在于克服现有技术中的不足,提供一种电芬顿集群磁流变复合研磨抛光装置及方法,结合电芬顿反应生成具有强氧化性的·OH,·OH与被加工工件表面发生氧化反应生成一层较软的氧化层,氧化层在动态磁场柔性抛光垫的作用下去除,可提高加工效率和加工质量。
为解决上述技术问题,本发明采用的技术方案是:
提供一种电芬顿集群磁流变复合研磨抛光装置,包括底座、集群磁铁、驱动集群磁铁自转的自转传动组件、驱动集群磁铁公转的公转传动组件、为集群磁铁 自转和公转提供动力的第一驱动组件、内盛有磁流变液的抛光盘、驱动抛光盘转动的第二驱动组件以及可发生电芬顿反应产生·OH反应物的电芬顿组件,所述集群磁铁安装于自转传动组件、所述自转传动组件连接于集群磁铁和第一驱动组件之间、所述公转传动组件连接于第一驱动组件和自转传动组件之间,所述抛光盘与第二驱动组件连接、且所述抛光盘位于集群磁铁上方,所述电芬顿组件包括电化学工作站及伸入至磁流变液中的电芬顿单元,所述电化学工作站与电芬顿单元连接,所述第一驱动组件、第二驱动组件、电化学工作站均安装于底座。
本发明的电芬顿集群磁流变复合研磨抛光装置,第一驱动组件通过公转传动组件驱动集群磁铁公转、通过自转传动组件驱动集群磁铁自转,第二驱动组件驱动抛光盘转动,磁流变液在集群磁铁的作用下形成动态柔性磨头,多个所述动态柔性磨头集群形成动态柔性抛光垫;同时,电芬顿反应产生的反应生成物·OH与待加工工件反应生成氧化层,动态柔性抛光垫对待加工工件表面切削完成研磨抛光。本发明可与待加工工件表面全面接触,提高集群磁流变的加工效率和加工均匀性,且加工表面一致性良好、无表面/亚表面损伤。
进一步地,所述第一驱动组件包括第一电机、第一带轮、第二带轮、第一传动带以及主轴,所述第一带轮与第一电机连接、第一电机安装于底座,所述第一传动带环绕于第一带轮和第二带轮的外周,所述主轴与第二带轮连接且所述主轴设有与所述自转传动组件连接的偏心轴以及与所述公转传动组件连接的过渡轴。第一电机启动,通过第一带轮、第二带轮及第一传动带带动主轴、过渡轴、偏心轴旋转,为集群磁铁的自转和公转提供动力。
进一步地,所述自转传动组件包括啮合设置的第一主动齿轮和第一从动齿轮,所述第一主动齿轮安装于偏心轴,所述集群磁铁安装于第一从动齿轮。主轴带动偏心轴转动,驱动第一主动齿轮旋转、第一主动齿轮驱动第一从动齿轮转动,集群磁铁发生自转。
进一步地,所述集群磁铁包括多组磁铁,其中一组磁铁设于第一从动齿轮的中心,其他组磁铁均匀围绕于其中一组磁铁的周围,其中一组磁铁与其他组磁铁的磁极相反。多组磁铁可形成局部集群磁铁动态磁场发生装置,磁流变液在集群磁铁的作用下形成动态柔性磨头,多个动态柔性磨头集群形成动态柔性抛光垫。
进一步地,所述公转传动组件包括第二主动齿轮、内齿轮以及多组第二从动齿轮,所述第二主动齿轮安装于过渡轴,多组第二从动齿轮与第二主动齿轮啮合、 且多组第二从动齿轮与内齿轮啮合,所述内齿轮与所述主轴同轴安装;所述第二从动齿轮转动连接有自转轴,所述自转轴的一端与第一从动齿轮连接、自转轴的另一端与内齿轮连接。主轴带动第二主动齿轮转动,第二主动齿轮通过第二从动齿轮带动内齿轮转动,内齿轮带动安装于其上的自转轴转动,自转轴带动第一从动齿轮转动实现集群磁铁的公转运动。
进一步地,所述第二主动齿轮为不完整齿轮,不完整齿轮的始端与第二从动齿轮接触啮合转动至不完整齿轮的末端与第二从动齿轮松开啮合时,内齿轮转动的角度等于相邻两组第二从动齿轮中心关于第二主动齿轮中心的夹角角度。如此设置,在第二主动齿轮与一组第二从动齿轮松开啮合至第二主动齿轮与下一组第二从动齿轮啮合过程中,第二主动齿轮空转,第一从动齿轮保持自转,从而实现对待加工工件的加工以及对下一组柔性抛光垫的修整,实现了磁流变液的快速更新与快速自锐。
进一步地,所述第二驱动组件包括第二电机、第三带轮、第四带轮、第二传动带以及传动件,所述第二电机安装于底座,所述第三带轮与第二电机连接,所述第四带轮与传动件连接,所述第二传动带缠绕于第三带轮和第四带轮外周,所述抛光盘与传动件连接。第二电机启动,通过第三带轮、第四带轮、第二传动带以及传动件带动抛光盘转动。
进一步地,所述电芬顿单元包括工作电极、参比电极和辅助电极;所述工作电极处发生如式(1-1)和(1-2)所示化学反应:
Fe-2e -→Fe 2+                             (1-1)
Fe-3e -→Fe 3+                             (1-2)
所述辅助电极处发生如式(1-3)所示化学反应:
O 2+2H ++2e -→H 2O 2                      (1-3)
生成的Fe 2+与H 2O 2反应生成·OH,如式(1-4)所示:
Fe 2++H 2O 2→Fe 3++·OH+OH -                 (1-4)
生成的Fe 3+与H 2O 2又还原成Fe 2+和·OOH,如式(1-5)所示:
Fe 3++H 2O 2→Fe 2++·OOH+H +               (1-5)。
电芬顿反应生成的·OH可与待加工工件表面反应生成一层硬度较软、结合 力较小的氧化层,氧化层在动态磁场柔性抛光垫的作用下去除,从而提高了加工效率和加工质量;其中,·OH为电芬顿反应在线生成,可避免运输、存储和处理风险,减小造价。
进一步地,所述电芬顿单元为多组,多组电芬顿单元均匀环绕于抛光盘内。电芬顿反应在线生成的·OH均匀分布于磁流变液中,可与待加工工件表面全面接触,可改善加工均匀性。
本发明还提供了一种电芬顿集群磁流变复合研磨抛光方法,包括以下步骤:
S1.将研磨抛光装置安装于XY精密移动平台,并移动至原点;
S2.将待加工工件安装在抛光轴的头部,通过调整抛光轴的高度调整抛光盘与所述待加工工件之间的间隙,以保证研磨抛光压力并使所述动态柔性抛光垫稳定形成;
S3.配置磁流变液并调节pH值,注入抛光盘内;
S4.启动第一驱动组件、第二驱动组件,集群磁铁自转和公转以及抛光盘转动,磁流变液在所述集群磁铁的作用下形成动态柔性磨头,多个所述动态柔性磨头集群形成动态柔性抛光垫;本实施例的第一电机的转速调节为600rpm,第二电机的转速调节为100rpm;
S5.启动电化学工作站,电芬顿单元反应生成物·OH与被加工工件反应生成氧化层,步骤S4中所述动态柔性抛光垫对待加工工件表面进行切削完成待加工工件表面的研磨抛光。
本发明电芬顿集群磁流变复合研磨抛光方法,电芬顿反应生成物·OH与被加工工件反应生成氧化层;集群磁铁自转和公转以及抛光盘转动,磁流变液在所述集群磁铁的作用下形成动态柔性磨头,多个所述动态柔性磨头集群形成动态柔性抛光垫;氧化层在动态柔性抛光垫的作用下去除,可提高加工效率和加工质量。
与现有技术相比,本发明的有益效果是:
本发明电芬顿反应生成物·OH与被加工工件反应生成氧化层,集群磁铁可以分开实现自转和公转,集群磁铁自转形成柔性抛光垫实现了对工件的加工,集群磁铁间歇公转可实现对柔性抛光垫的全面修整,可提高加工效率、提高加工均匀性,同时也可实现磁流变液的快速更新与磨料的快速自锐;且本发明电芬顿反应原料H 2O 2和Fe 2+在线生成,避免运输、存储和处理风险,降低装置造价。
附图说明
图1为电芬顿集群磁流变复合研磨抛光装置的结构示意图;
图2为电芬顿集群磁流变复合研磨抛光装置的工作原理图;
图3为电芬顿集群磁流变复合研磨抛光装置的自转传动组件的结构示意图;
图4为电芬顿集群磁流变复合研磨抛光装置的公转传动组件的结构示意图;
图5为图1中局部A的放大示意图;
图6为电芬顿集群磁流变复合研磨抛光装置的夹具的结构示意图;
图7为芬顿集群磁流变复合研磨抛光装置的电芬顿单元的俯视图;
图8为芬顿集群磁流变复合研磨抛光装置的电芬顿单元的结构示意图;
附图中:1-底座;2-集群磁铁;3-自转传动组件;31-第一主动齿轮;32-第一从动齿轮;4-公转传动组件;41-第二主动齿轮;42-内齿轮;43-第二从动齿轮;44-自转轴;45-齿轮支撑座;5-第一驱动组件;51-第一电机;52-第一带轮;53-第二带轮;54-第一传动带;55-主轴;56-偏心轴;57-过渡轴;6-抛光盘;7-第二驱动组件;71-第二电机;72-第三带轮;73-第四带轮;74-第二传动带;75-传动轴;76-转接盘;77-调节螺钉;78-塔型弹簧;8-电芬顿组件;81-电化学工作站;82-工作电极;83-参比电极;84-辅助电极;85-陶瓷座;86-导线孔;87-电极固定座;88-电极填充物;89-电芬顿单元保护层;9-夹具;91-外隔套;92-外支撑筒;93-导线槽;94-安装槽;95-工作电极铜环;96-参比电极铜环;97-辅助电极铜环。
具体实施方式
下面结合具体实施方式对本发明作进一步的说明。其中,附图仅用于示例性说明,表示的仅是示意图,而非实物图,不能理解为对本专利的限制;为了更好地说明本发明的实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
本发明实施例的附图中相同或相似的标号对应相同或相似的部件;在本发明的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语 的具体含义。
实施例一
如图1至图8所示为本发明的电芬顿集群磁流变复合研磨抛光装置的实施例,包括底座1、集群磁铁2、驱动集群磁铁2自转的自转传动组件3、驱动集群磁铁2公转的公转传动组件4、为集群磁铁2自转和公转提供动力的第一驱动组件5、内盛有磁流变液的抛光盘6、驱动抛光盘6转动的第二驱动组件7以及可发生电芬顿反应产生·OH反应物的电芬顿组件8,集群磁铁2安装于自转传动组件3、自转传动组件3连接于集群磁铁2和第一驱动组件5之间、公转传动组件4连接于第一驱动组件5和自转传动组件3之间,抛光盘6与第二驱动组件7连接、且抛光盘6位于集群磁铁2上方,电芬顿组件8包括电化学工作站81及伸入至磁流变液中的电芬顿单元,电化学工作站81与电芬顿单元连接,第一驱动组件5、第二驱动组件7、电化学工作站81均安装于底座1。
本实施例在实施时,第一驱动组件5通过公转传动组件4驱动集群磁铁2公转、通过自转传动组件3驱动集群磁铁2自转,第二驱动组件7驱动抛光盘6转动,磁流变液在集群磁铁2的作用下形成动态柔性磨头,多个动态柔性磨头集群形成动态柔性抛光垫;同时,电芬顿反应产生的反应生成物·OH与待加工工件反应生成氧化层,动态柔性抛光垫对待加工工件表面切削完成研磨抛光。本发明可与待加工工件表面全面接触,提高集群磁流变的加工效率和加工均匀性,且加工表面一致性良好、无表面/亚表面损伤。
如图1所示,第一驱动组件5包括第一电机51、第一带轮52、第二带轮53、第一传动带54以及主轴55,第一带轮52与第一电机51连接、第一电机51安装于底座1,第一传动带54环绕于第一带轮52和第二带轮53的外周,主轴55与第二带轮53连接且主轴55设有与自转传动组件3连接的偏心轴56以及与公转传动组件4连接的过渡轴57。实施时,第一电机51启动,通过第一带轮52、第二带轮53及第一传动带54带动主轴55、过渡轴57、偏心轴56旋转,为集群磁铁2的自转和公转提供动力。但需要说明的是,采用带轮皮带的传动方式进行传动是为了结构简便、传动稳定而做出的优选,并不作为限制性的规定。
自转传动组件3包括啮合设置的第一主动齿轮31和第一从动齿轮32,第一主动齿轮31安装于偏心轴56,集群磁铁2安装于第一从动齿轮32,本实施例的第一从动齿轮32设有多个安装磁铁的磁铁放置孔。主轴55带动偏心轴56转动, 驱动第一主动齿轮31旋转、第一主动齿轮31驱动第一从动齿轮32转动,集群磁铁2发生自转。其中,集群磁铁2包括多组磁铁,其中一组磁铁设于第一从动齿轮32的中心,其他组磁铁均匀围绕于其中一组磁铁的周围,其中一组磁铁与其他组磁铁的磁极相反,如图3所示。第一主动齿轮31偏心设置,第一从动齿轮32按照一定排布规律放置多个磁铁,第一主动齿轮31带动第一从动齿轮32偏心旋转,从而带动第一从动齿轮32上的磁铁运动;在磁流变抛光过程中,磁流变液在多个磁铁作用下形成柔性抛光垫完全覆盖在被加工工件表面,形成多个小柔性抛光垫同时加工,其中磁铁的磁场强度为0.2T~4T,磁铁的直径可根据被加工工件的大小调整,本实施例可在第一从动齿轮32上的磁铁放置孔中添加适合的套筒以放置不同直径的磁铁。
公转传动组件4包括第二主动齿轮41、内齿轮42以及多组第二从动齿轮43,第二主动齿轮41安装于过渡轴57,多组第二从动齿轮43与第二主动齿轮41啮合、且多组第二从动齿轮43与内齿轮42啮合,内齿轮42与主轴55同轴安装;第二从动齿轮43转动连接有自转轴44,自转轴44的一端与第一从动齿轮32连接、自转轴44的另一端与内齿轮42连接。具体地,内齿轮42设有圆孔,第二从动齿轮43通过一对轴承配合在自转轴44上,自转轴44通过固定板固定在内齿轮42的圆孔上,内齿轮42间隙配合在齿轮支撑座45上,内齿轮42通过轴承与主轴55同轴安装。实施时,主轴55带动第二主动齿轮41转动,第二主动齿轮41通过第二从动齿轮43带动内齿轮42转动,内齿轮42带动安装于其上的自转轴44转动,自转轴44带动第一从动齿轮32转动实现集群磁铁2的公转运动。
本实施例中,第二主动齿轮41为不完整齿轮,内齿轮42内成120°均匀放置有三组第二从动齿轮43,第二主动齿轮41上齿轮部分所占的圆心角小于120°,如图4所示;在安装此结构时,调试第二主动齿轮41转动,使之保证在加工区域的一条临界边刚接触第二从动齿轮43,在内齿轮42转过120°的时候第二从动齿轮43与第二主动齿轮41刚好松开啮合;在第二主动齿轮41与下一组第二从动齿轮43接触期间,第二主动齿轮41空转,第一从动齿轮32保持自转,从而实现对工件的加工以及对下一组柔性抛光垫的修整。
如图1所示,第二驱动组件7包括第二电机71、第三带轮72、第四带轮73、第二传动带74以及传动件,第二电机71安装于底座1,第三带轮72与第二电机71连接,第四带轮73与传动件连接,第二传动带74缠绕于第三带轮72和第 四带轮73外周,抛光盘6与传动件连接;实施时,第二电机71启动,通过第三带轮72、第四带轮73、第二传动带74以及传动件带动抛光盘6转动。具体地,传动件包括传动轴75及转接盘76,第四带轮73固定安装在传动轴75,齿轮支撑座45与传动轴75固定,转接盘76固定在齿轮支撑座45,抛光盘6与转接盘76通过调节螺钉77连接,调节螺钉77上安装有塔型弹簧78,以保证抛光盘6转动的平稳性。
电芬顿单元包括工作电极82、参比电极83和辅助电极84;工作电极82处发生如式(1-1)和(1-2)所示化学反应:
Fe-2e -→Fe 2+                             (1-1)
Fe-3e -→Fe 3+                             (1-2)
辅助电极84处发生如式(1-3)所示化学反应:
O 2+2H ++2e -→H 2O 2                      (1-3)
生成的Fe 2+与H 2O 2反应生成·OH,如式(1-4)所示:
Fe 2++H 2O 2→Fe 3++·OH+OH -                 (1-4)
生成的Fe 3+与H 2O 2又还原成Fe 2+和·OOH,如式(1-5)所示:
Fe 3++H 2O 2→Fe 2++·OOH+H +               (1-5)。
电芬顿反应生成的·OH可与待加工工件表面反应生成一层硬度较软、结合力较小的氧化层,氧化层在动态磁场柔性抛光垫的作用下去除,从而提高了加工效率和加工质量;其中,·OH为电芬顿反应在线生成,可避免运输、存储和处理风险,减小造价。
本实施例中,电芬顿单元为多组,多组电芬顿单元均匀环绕于抛光盘6内。其中,电芬顿单元分别通过导线与电化学工作站81连接,电芬顿单元安装在夹具9上,夹具9固定在外隔套91上,外隔套91固定在外支撑筒92上,外支撑筒92安装在底座1,外支撑筒92与传动轴75之间设有轴承,外隔套91与齿轮支撑座45之间也设有轴承。为隐藏导线,本实施例在外隔套91内开设有导线槽93,导线从电化学工作站81引出,穿过导线槽93与电芬顿单元连接,但如此设置是为了结构紧凑、外表美观而做出的优选,并不作为限制性的规定。
如图5至图7所示,夹具9上开设有电极铜环放置槽以及多个“工”字形电 芬顿单元安装槽94,工作电极铜环95、参比电极铜环96和辅助电极铜环97同轴放置在安装槽94内,导线分别与工作电极铜环95、参比电极铜环96和辅助电极铜环97相连,工作电极铜环95、参比电极铜环96和辅助电极铜环97之间保持绝缘,工作电极82、参比电极83和辅助电极84端部设置的工作电极82触头、参比电极83触头和辅助电极84触头通过触头槽分别与工作电极铜环95、参比电极铜环96、辅助电极铜环97接触实现通电。
如图8所示,电芬顿单元还包括有陶瓷座85、导线孔86、电极固定座87、电极填充物88、电芬顿单元保护层89,导线孔86设于陶瓷座85内,导线孔86内连接导线,工作电极82、参比电极83和辅助电极84固定在电极固定座87,导线分别与工作电极82、参比电极83、辅助电极84连接,工作电极82、参比电极83和辅助电极84设于电芬顿单元保护层89内,工作电极82、参比电极83和辅助电极84之间填充有电极填充物88。本实施例的工作电极82为不锈钢电极、铂电极、活性炭纤维电极、钛基二氧化锆/二氧化锡复合电极、钛基二氧化铷/二氧化铱复合电极中的一种或多种;参比电极83为氢电极、甘汞电极、银/氯化银电极、汞/氧化汞电极、汞/硫酸亚汞电极的一种或多种;辅助电极84为石墨电极、钛网、活性炭纤维电极、铂电极中的一种或多种;电极填充物88为固体氧珠、铁碳合金、沸石、硅藻土中的一种或多种;工作电极82、参比电极83、辅助电极84和电芬顿单元保护层89均为网状结构,工作电极82和参比电极83之间间距为1cm~2cm,工作电极82和辅助电极84间距为1cm~5cm,极板面积为5cm 2~30cm 2,辅助电极84的极板面积大于工作电极82的极板面积;电芬顿单元工作电流密度为1mA/cm 2~100mA/cm 2,电压强度为1V~30V,工作环境pH值为1~5。但需要说明的是,工作电极82、参比电极83和辅助电极84的具体参数设置是为了获得高效率的电芬顿反应而做出的优选,并不作为限制性规定,可根据研磨抛光需求进行相应调整。
实施例二
本实施例为实施例一电芬顿集群磁流变复合研磨抛光装置在加工2英寸的单晶SiC基片的研磨抛光方法的实施例,本实施例中采用100nm~500nm的金刚石磨料与5μm~10μm的羰基铁粉作为复合磨料,工作方法包括以下步骤:
S1.将研磨抛光装置安装于XY精密移动平台,并移动至原点;
S2.将待加工工件单晶SiC安装在抛光轴的头部,通过调整抛光轴的高度调 整抛光盘6与待加工工件之间的间隙,以保证研磨抛光压力并使动态柔性抛光垫稳定形成;
S3.配置磁流变液并调节pH值,注入抛光盘6内;
S4.启动第一驱动组件5、第二驱动组件7,集群磁铁2自转和公转以及抛光盘6转动,磁流变液在集群磁铁2的作用下形成动态柔性磨头,多个动态柔性磨头集群形成动态柔性抛光垫;
S5.启动电化学工作站81,电芬顿单元反应生成物·OH与被加工工件反应生成氧化层,步骤S4中动态柔性抛光垫对待加工工件表面进行切削完成待加工工件表面的研磨抛光。
在步骤S1之前,需先对研磨抛光装置相关组件进行选择和适应性调整:
选择7个直径为20mm,磁场强度为1T的平头圆柱形铷磁铁安装在第一从动齿轮32上,如图3所示,按照一定的规律排布磁铁,圆心处放置一个磁铁,其余磁铁围绕圆心处的磁铁放置,圆心处的磁极分布跟外面磁极分布相反,外围磁极分布保持一致,以便形成连续的抛光垫完全接触单晶SiC基片表面;
在内齿轮42上成120°均匀安装三组第二从动齿轮43,并通过第二固定螺钉28和固定板固定在内齿轮42上,适当转动第二主动齿轮41,以确保能在120°的加工区域内,第二主动齿轮41能将第二从动齿轮43从一条临界加工线转动到另一条临界加工线;
将第一驱动组件5、第二驱动组件7正确安装在抛光盘6下方的预设位置后,在抛光盘6上方放置一个水平气泡仪,调节下方调节螺钉77,以调整加工间隙并保证抛光盘6水平;
工作电极82选择不锈钢电极、参比电极83选择甘汞电极、辅助电极84选择石墨电极,填充物为固体氧珠、铁碳合金、沸石组装成电芬顿单元,并将大于三个的电芬顿单元放置在夹具9内,将夹具9固定在外隔套91上。
步骤S3中,磁流变液按以下组分比例和步骤进行制备:在去离子水中加入浓度为15%的复合磨料,浓度为10%的分散剂和浓度为5%的防锈剂,充分搅拌均匀后调节pH为3,然后超声振荡15min制成复合磁流变液.
步骤S5中,电化学工作站81的电流密度调为15mA/cm 2,电压调为5V;电芬顿单元反应生成物·OH与SiC反应生成氧化层:
SiC+4·OH+O 2→SiO 2+2H 2O+CO 2↑           (1-6)
实施例三
本实施例为实施例一电芬顿集群磁流变复合研磨抛光装置在加工2英寸的单晶硅片的研磨抛光方法的实施例,本实施例中采用50nm~100nm的硅溶胶磨料与1μm~5μm的羰基铁粉作为复合磨料,本实施例与实施例二工作方法相似,所不同之处在于:
步骤S3中,磁流变液按以下组分比例和步骤进行制备:在去离子水中加入浓度为15%的复合磨料,浓度为10%的分散剂和浓度为5%的防锈剂,充分搅拌均匀后调节pH为3,然后超声振荡20min制成复合磁流变液;
步骤S4中,调节第一电机51的转速为400rpm,第二电机71的转速为100rpm;
步骤S5中,电化学工作站81电流密度调为10mA/cm 2,电压为5V;电芬顿单元反应生成物·OH与单晶硅片反应生成氧化层:
Si+2·OH+O 2→SiO 2+2H 2O        (1-7)
实施例四
本实施例为实施例一电芬顿集群磁流变复合研磨抛光装置在在加工2英寸的单晶GaN基片的研磨抛光方法的实施例,本实施例中采用10nm~50nm的硅溶胶磨料与0.5μm~1μm的羰基铁粉作为复合磨料,本实施例与实施例二工作方法相似,所不同之处在于:
本实施例的工作电极82选择铂电极、参比电极83选择甘汞电极、辅助电极84选择石墨电极,填充物为固体氧珠、铁碳合金、沸石组;
步骤S3中,磁流变液按以下组分比例和步骤进行制备:在去离子水中加入浓度为10%的复合磨料,浓度为15%的分散剂和浓度为5%的防锈剂,充分搅拌均匀后调节pH为3,然后超声振荡30min制成复合磁流变液;
步骤S4中,调节第一电机51的转速为300rpm,第二电机71的转速为100rpm;
步骤S5中,电化学工作站81的电流密度调为25mA/cm 2,电压调为10V;电芬顿单元反应生成物·OH与GaN反应生成氧化层:
2GaN+6·OH→Ga 2O 3+3H 2O+N 2        (1-8)
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

  1. 一种电芬顿集群磁流变复合研磨抛光装置,其特征在于,包括底座(1)、集群磁铁(2)、驱动集群磁铁(2)自转的自转传动组件(3)、驱动集群磁铁(2)公转的公转传动组件(4)、为集群磁铁(2)自转和公转提供动力的第一驱动组件(5)、内盛有磁流变液的抛光盘(6)、驱动抛光盘(6)转动的第二驱动组件(7)以及可发生电芬顿反应产生·OH反应物的电芬顿组件(8),所述集群磁铁(2)安装于自转传动组件(3)、所述自转传动组件(3)连接于集群磁铁(2)和第一驱动组件(5)之间、所述公转传动组件(4)连接于第一驱动组件(5)和自转传动组件(3)之间,所述抛光盘(6)与第二驱动组件(7)连接、且所述抛光盘(6)位于集群磁铁(2)上方,所述电芬顿组件(8)包括电化学工作站(81)及伸入至磁流变液中的电芬顿单元,所述电化学工作站(81)与电芬顿单元连接,所述第一驱动组件(5)、第二驱动组件(7)、电化学工作站(81)均安装于底座(1)。
  2. 根据权利要求1所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述第一驱动组件(5)包括第一电机(51)、第一带轮(52)、第二带轮(53)、第一传动带(54)以及主轴(55),所述第一带轮(52)与第一电机(51)连接、第一电机(51)安装于底座(1),所述第一传动带(54)环绕于第一带轮(52)和第二带轮(53)的外周,所述主轴(55)与第二带轮(53)连接且所述主轴(55)设有与所述自转传动组件(3)连接的偏心轴(56)以及与所述公转传动组件(4)连接的过渡轴(57)。
  3. 根据权利要求2所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述自转传动组件(3)包括啮合设置的第一主动齿轮(31)和第一从动齿轮(32),所述第一主动齿轮(31)安装于偏心轴(56),所述集群磁铁(2)安装于第一从动齿轮(32)。
  4. 根据权利要求3所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述集群磁铁(2)包括多组磁铁,其中一组磁铁设于第一从动齿轮(32)的中心,其他组磁铁均匀围绕于其中一组磁铁的周围,其中一组磁铁与其他组磁铁的磁极相反。
  5. 根据权利要求3所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述公转传动组件(4)包括第二主动齿轮(41)、内齿轮(42)以及多组第 二从动齿轮(43),所述第二主动齿轮(41)安装于过渡轴(57),多组第二从动齿轮(43)与第二主动齿轮(41)啮合、且多组第二从动齿轮(43)与内齿轮(42)啮合,所述内齿轮(42)与所述主轴(55)同轴安装;所述第二从动齿轮(43)转动连接有自转轴(44),所述自转轴(44)的一端与第一从动齿轮(32)连接、自转轴(44)的另一端与内齿轮(42)连接。
  6. 根据权利要求5所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述第二主动齿轮(41)为不完整齿轮,不完整齿轮的始端与第二从动齿轮(43)接触啮合转动至不完整齿轮的末端与第二从动齿轮(43)松开啮合时,内齿轮(42)转动的角度等于相邻两组第二从动齿轮(43)中心关于第二主动齿轮(41)中心的夹角角度。
  7. 根据权利要求1所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述第二驱动组件(7)包括第二电机(71)、第三带轮(72)、第四带轮(73)、第二传动带(74)以及传动件,所述第二电机(71)安装于底座(1),所述第三带轮(72)与第二电机(71)连接,所述第四带轮(73)与传动件连接,所述第二传动带(74)缠绕于第三带轮(72)和第四带轮(73)外周,所述抛光盘(6)与传动件连接。
  8. 根据权利要求1至7任一项所述的电芬顿集群磁流变复合研磨抛光装置,其特征在于,所述电芬顿单元包括工作电极(82)、参比电极(83)和辅助电极(84);所述工作电极(82)处发生如式(1-1)和(1-2)所示化学反应:
    Fe-2e -→Fe 2+  (1-1)
    Fe-3e -→Fe 3+  (1-2)
    所述辅助电极(84)处发生如式(1-3)所示化学反应:
    O 2+2H ++2e -→H 2O 2  (1-3)
    生成的Fe 2+与H 2O 2反应生成·OH,如式(1-4)所示:
    Fe 2++H 2O 2→Fe 3++·OH+OH -  (1-4)
    生成的Fe 3+与H 2O 2又还原成Fe 2+和·OOH,如式(1-5)所示:
    Fe 3++H 2O 2→Fe 2++·OOH+H +  (1-5)。
  9. 根据权利要求8所述的电芬顿集群磁流变复合研磨抛光装置,其特征在 于,所述电芬顿单元为多组,多组电芬顿单元均匀环绕于抛光盘(6)内。
  10. 一种电芬顿集群磁流变复合研磨抛光方法,其特征在于,包括以下步骤:
    S1.将权利要求1至权利要求9任一项所述的研磨抛光装置安装于XY精密移动平台,并移动至原点;
    S2.将待加工工件安装在抛光轴的头部,通过调整抛光轴的高度调整抛光盘(6)与所述待加工工件之间的间隙,以保证研磨抛光压力并使所述动态柔性抛光垫稳定形成;
    S3.配置磁流变液并调节pH值,注入抛光盘(6)内;
    S4.启动第一驱动组件(5)、第二驱动组件(7),集群磁铁(2)自转和公转以及抛光盘(6)转动,磁流变液在所述集群磁铁(2)的作用下形成动态柔性磨头,多个所述动态柔性磨头集群形成动态柔性抛光垫;
    S5.启动电化学工作站(81),电芬顿单元反应生成物·OH与被加工工件反应生成氧化层,步骤S4中所述动态柔性抛光垫对待加工工件表面进行切削完成待加工工件表面的研磨抛光。
PCT/CN2020/124515 2019-12-23 2020-10-28 一种电芬顿集群磁流变复合研磨抛光装置及方法 WO2021129124A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911337686.2 2019-12-23
CN201911337686.2A CN110900322B (zh) 2019-12-23 2019-12-23 一种电芬顿集群磁流变复合研磨抛光装置及方法

Publications (1)

Publication Number Publication Date
WO2021129124A1 true WO2021129124A1 (zh) 2021-07-01

Family

ID=69827140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124515 WO2021129124A1 (zh) 2019-12-23 2020-10-28 一种电芬顿集群磁流变复合研磨抛光装置及方法

Country Status (2)

Country Link
CN (1) CN110900322B (zh)
WO (1) WO2021129124A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110900322B (zh) * 2019-12-23 2024-04-09 广东工业大学 一种电芬顿集群磁流变复合研磨抛光装置及方法
CN113334149A (zh) * 2021-07-22 2021-09-03 广东技术师范大学 一种超声磁流变化学复合抛光装置及方法
CN114571293B (zh) * 2022-05-09 2022-07-29 江苏克莱德激光技术有限责任公司 一种用于金属表面处理的磁流变抛光装置及其使用方法
CN115558427A (zh) * 2022-10-24 2023-01-03 浙江奥首材料科技有限公司 一种基于微电解-芬顿氧化体系的抛光液、其制备方法及用途
CN117300748B (zh) * 2023-11-30 2024-02-06 内蒙古工业大学 一种交变磁场磁力研磨装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025444A1 (en) * 2002-02-11 2004-02-12 Ekc Technology, Inc. Fenton's reagent composition for chemical-mechanical polishing, method of using same, and substrate treated with same
JP4873694B2 (ja) * 2006-04-12 2012-02-08 国立大学法人 熊本大学 触媒支援型化学加工方法
CN103192297B (zh) * 2012-08-24 2016-09-21 广东工业大学 一种单晶碳化硅晶片的化学集群磁流变复合加工方法
CN110281085A (zh) * 2019-07-25 2019-09-27 广东工业大学 一种集群磁流变研磨抛光装置及其使用方法
CN110355617A (zh) * 2019-05-24 2019-10-22 浙江工业大学 预芬顿处理和磁场联合的均匀高效抛光方法
CN110900322A (zh) * 2019-12-23 2020-03-24 广东工业大学 一种电芬顿集群磁流变复合研磨抛光装置及方法
CN211439242U (zh) * 2019-12-23 2020-09-08 广东工业大学 一种电芬顿集群磁流变复合研磨抛光装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050260940A1 (en) * 2004-05-21 2005-11-24 Simon Palushaj Abrasive cleaning device
CN104209862B (zh) * 2014-08-26 2017-01-11 广东工业大学 柔性抛光垫在线修整的超光滑平面研磨抛光装置及方法
CN105328516B (zh) * 2015-11-18 2018-03-30 广东工业大学 磁流变柔性抛光垫的动态磁场自锐抛光装置及其抛光方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040025444A1 (en) * 2002-02-11 2004-02-12 Ekc Technology, Inc. Fenton's reagent composition for chemical-mechanical polishing, method of using same, and substrate treated with same
JP4873694B2 (ja) * 2006-04-12 2012-02-08 国立大学法人 熊本大学 触媒支援型化学加工方法
CN103192297B (zh) * 2012-08-24 2016-09-21 广东工业大学 一种单晶碳化硅晶片的化学集群磁流变复合加工方法
CN110355617A (zh) * 2019-05-24 2019-10-22 浙江工业大学 预芬顿处理和磁场联合的均匀高效抛光方法
CN110281085A (zh) * 2019-07-25 2019-09-27 广东工业大学 一种集群磁流变研磨抛光装置及其使用方法
CN110900322A (zh) * 2019-12-23 2020-03-24 广东工业大学 一种电芬顿集群磁流变复合研磨抛光装置及方法
CN211439242U (zh) * 2019-12-23 2020-09-08 广东工业大学 一种电芬顿集群磁流变复合研磨抛光装置

Also Published As

Publication number Publication date
CN110900322A (zh) 2020-03-24
CN110900322B (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2021129124A1 (zh) 一种电芬顿集群磁流变复合研磨抛光装置及方法
CN106312796B (zh) 双面平坦化加工系统
CN211439242U (zh) 一种电芬顿集群磁流变复合研磨抛光装置
EP3142142B1 (en) Method for processing wide-bandgap semiconductor substrate
CN107877269A (zh) 一种集群磁流变高效抛光加工高精度球的装置及抛光方法
EP2789420A1 (en) Method for manufacturing solid oxide and device therefor
CN110197789B (zh) SiC单晶片的超声辅助电化学机械抛光加工装置及方法
CN208262558U (zh) 一种离心泵叶轮盖板抛光装置
CN102814738A (zh) 用于护理研磨垫的方法和设备
CN205111610U (zh) 大尺寸径向超声辅助端面磨削磨盘
CN113427389B (zh) 一种圆柱滚子力流变抛光方法
CN113334149A (zh) 一种超声磁流变化学复合抛光装置及方法
CN105058254A (zh) 一种大尺寸径向超声辅助端面磨削磨盘
CN103317197B (zh) 一种平面电化学加工装置
CN210549948U (zh) 一种集群磁流变研磨抛光装置
CN104838480B (zh) 晶圆抛光方法
CN207760221U (zh) 一种大规格二氧化硅疏松体生产用制砣设备
CN108436747A (zh) 一种面接触式液态金属平面抛光装置及方法
CN1672875A (zh) 一种化学机械法金刚石膜抛光装置及其抛光方法
CN113681436B (zh) 一种抛光装置及其抛光方法
CN110355617A (zh) 预芬顿处理和磁场联合的均匀高效抛光方法
WO2021035971A1 (zh) 电磁耦合装置及具有其的抛光装置、电磁流变性能测量装置
TWI283146B (en) Method polishing glass for OLED and glass substrate for OLED manufactured with the same
CN211219930U (zh) 一种电磁耦合抛光设备
CN2822875Y (zh) 一种化学机械法金刚石膜抛光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907377

Country of ref document: EP

Kind code of ref document: A1