WO2021129078A1 - 频偏估计方法和装置 - Google Patents

频偏估计方法和装置 Download PDF

Info

Publication number
WO2021129078A1
WO2021129078A1 PCT/CN2020/122070 CN2020122070W WO2021129078A1 WO 2021129078 A1 WO2021129078 A1 WO 2021129078A1 CN 2020122070 W CN2020122070 W CN 2020122070W WO 2021129078 A1 WO2021129078 A1 WO 2021129078A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
time slot
offset estimation
uplink time
current
Prior art date
Application number
PCT/CN2020/122070
Other languages
English (en)
French (fr)
Inventor
谢思敏
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021129078A1 publication Critical patent/WO2021129078A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/24Testing correct operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end
    • H04L2027/0026Correction of carrier offset

Definitions

  • This application relates to the field of communications, and in particular to a frequency offset estimation method and device.
  • the frame structure used for transmission usually contains pilot symbols and data symbols, and the pilot symbols are used for frequency offset estimation.
  • the pilot is used to estimate the frequency offset, there may be problems that the frequency offset estimation value of the current time slot cannot be calculated or the estimation accuracy is very low.
  • the embodiments of the present application provide a frequency offset estimation method, device, and computer-readable storage medium, which can flexibly adjust the frequency offset estimation strategy to a certain extent according to the current configuration scenario of the UE, and ensure the accuracy of the frequency offset estimation.
  • an embodiment of the present application provides a frequency offset estimation method, including: obtaining and according to UE scheduling configuration information, determining a current configuration scenario and a frequency offset estimation strategy corresponding to the current configuration scenario; and according to the frequency offset estimation Strategy to obtain the frequency offset estimation value of the current uplink time slot.
  • an embodiment of the present application provides a device, including: a memory, configured to store a program; a processor, configured to execute the program stored in the memory, and when the processor executes the program stored in the memory, The processor is used to execute the frequency offset estimation method as described above.
  • an embodiment of the present application provides a computer-readable storage medium storing computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned frequency offset estimation method.
  • FIG. 1 is a schematic diagram of a pilot structure in the case where a subcarrier in a time slot contains not only one pilot symbol or two consecutive pilot symbols in the time domain;
  • Figure 2 is a schematic diagram of a pilot structure with only one pilot symbol configured on a subcarrier in a time slot;
  • FIG. 3 is a schematic diagram of a pilot structure in which subcarriers in a time slot are configured with only two pilot symbols that are continuous in the time domain;
  • FIG. 4 is a flowchart of a frequency offset estimation method provided by an embodiment of the present application.
  • FIG. 5 is a sub-flow chart of step S100 in a frequency offset estimation method provided by an embodiment of the present application
  • Fig. 6 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • multiple means two or more, greater than, less than, exceeding, etc. are understood to not include the number, and above, below, and within are understood to include the number. If there are descriptions of "first”, “second”, etc., which are only used to distinguish technical features, they cannot be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features or implicitly indicating the indicated The precedence of technical characteristics.
  • the deviation of the carrier frequency will cause demodulation errors, which will seriously affect the demodulation performance of the system. Especially in the case of a large number of constellation points, even a small frequency offset may cause constellation point offset and lead to misjudgment of information. Therefore, before demodulating the received signal, it is often necessary to perform accurate frequency offset estimation and frequency offset compensation.
  • the frame structure used for transmission usually contains pilot symbols and data symbols, and the pilot symbols are used for frequency offset estimation.
  • the system will configure a pilot scheme for the UE after the communication base station establishes a connection with the user equipment UE (User Equipment).
  • Figure 1 shows a schematic diagram of an existing pilot structure.
  • pilot symbols are usually inserted into data symbols in a time-division multiplexed manner, and the time slot contains at least two non-contiguous pilot symbols in the time domain, that is, two There are data symbols between the pilot symbols to obtain a larger frequency offset estimation range and higher estimation accuracy by setting the position of the pilot in the data reasonably.
  • pilot symbols in the time slot the more data symbols there will be, so that the data rate in a single time slot will be higher, and the capacity of the base station can be increased at the same time. Therefore, in some pilot configuration scenarios, as shown in Figure 2, only one pilot symbol is configured for the subcarrier in the time slot; or as shown in Figure 3, only two subcarriers are configured in the time domain. On the continuous pilot symbols, so that a larger number of streams can be obtained.
  • These two pilot structures are particularly suitable for application in a new generation of 5G communication systems to meet the high data transmission rate and large capacity requirements of 5G NR (5G New Radio) technology.
  • the embodiments of the present application provide a frequency offset estimation method, device, and computer-readable storage medium, which can flexibly adjust the frequency offset estimation strategy according to the current configuration scenario of the UE, and ensure the accuracy of the frequency offset estimation.
  • Fig. 4 shows a flowchart of a frequency offset estimation method provided by an embodiment of the present application. As shown in Figure 4, the method includes the following steps.
  • S100 Obtain and determine the current configuration scenario and the frequency offset estimation strategy corresponding to the current configuration scenario according to the scheduling configuration information of the user equipment UE.
  • step S100 may include but is not limited to the following sub-steps.
  • the scheduling configuration information of the UE can be obtained from the base station scheduler, and the corresponding pilot information can be extracted from the scheduling configuration information.
  • the first pilot information here may specifically include the number of pilot symbols and the position of the pilot symbols in the current uplink time slot. For example, first obtain the number of pilot symbols in the time slot, and if the number of sub-carrier pilot symbols in the time slot is greater than 1, further obtain the position of each pilot symbol.
  • step S101 when the first pilot information of the current uplink time slot is acquired, the first pilot information may also be saved.
  • step S101 based on the first pilot information obtained in step S101, it is determined whether the current uplink time slot subcarrier contains only one pilot symbol or two consecutive pilot symbols in the time domain. If the judgment result is yes, steps S103 and S104 are executed. If the judgment result is negative, it can be considered that the current uplink time slot subcarrier contains at least two pilot symbols that are not continuous in the time domain, and steps S109 and S110 are executed.
  • S103 Acquire second pilot information of a subcarrier of the previous uplink time slot.
  • this step S103 is performed to obtain the second pilot of the subcarrier of the previous uplink time slot.
  • Frequency information may specifically include the number of pilot symbols and the position of the pilot symbols in the previous uplink time slot.
  • step S103 based on the second pilot information obtained in step S103, it is determined whether the second pilot information includes only one pilot symbol or two consecutive pilot symbols in the time domain. If the judgment result is yes, that is, the subcarrier of the previous uplink time slot contains only one pilot symbol or two consecutive pilot symbols in the time domain, step S105 and S106 are executed. If the judgment result is no, it can be considered that the subcarrier of the previous uplink time slot contains at least two non-contiguous pilot symbols in the time domain, and steps S111 and S113 are executed.
  • the scheduling configuration information of the UE can be obtained from the base station scheduler, and the RB resource configuration information of the current uplink time slot and the previous uplink time slot can be extracted from the scheduling configuration information. By comparing the RB resources of the current uplink time slot and the previous uplink time slot, the number of RB overlaps between the current uplink time slot and the previous uplink time slot is obtained.
  • the current configuration scenario is the first configuration scenario.
  • S108 Determine the frequency offset estimation strategy corresponding to the current configuration scenario as the first frequency offset estimation strategy.
  • the embodiment of the present application sets the frequency offset estimation strategy corresponding to the first configuration scenario as the first frequency offset estimation strategy.
  • the current configuration scenario is the second configuration scenario.
  • the frequency offset estimation strategy corresponding to the second configuration scenario is set as the second frequency offset estimation strategy.
  • the subcarrier of the current uplink time slot contains only one pilot symbol or two consecutive pilot symbols in the time domain, and the subcarrier of the previous uplink time slot contains two pilot symbols that are not in the time domain. If the continuous pilot symbols are used, it is determined that the current configuration scenario is the third configuration scenario.
  • S112 Determine that the current configuration scenario is the fourth configuration scenario.
  • the current configuration scenario is the fourth configuration scenario.
  • the embodiment of the present application sets the frequency offset estimation strategy corresponding to the third and fourth configuration scenarios as the third frequency offset estimation strategy.
  • S200 Acquire an estimated value of the frequency offset of the current uplink time slot according to the frequency offset estimation strategy.
  • the embodiment of the present application selects different frequency offset estimation strategies according to different configuration scenarios to obtain the frequency offset estimation value of the current uplink time slot.
  • the channel estimation values of the previous uplink time slot and the current uplink time slot are obtained, and the channel estimation values are based on the previous uplink time slot and the current uplink time slot.
  • the pilot symbol of the previous uplink time slot can be used to obtain the channel estimation value of the previous uplink time slot
  • the pilot symbol of the current uplink time slot can be used to obtain the channel estimation value of the current uplink time slot.
  • the channel estimation value of the slot and the channel estimation value of the current uplink time slot are averaged, and the obtained channel estimation average value is then correlated to obtain the frequency offset estimation value of the current uplink time slot.
  • both the current uplink time slot and the previous uplink time slot contain only one pilot symbol or two consecutive pilot symbols in the time domain, and the current uplink time slot overlaps the RB of the previous uplink time slot If the number meets the preset threshold, it is determined that the current configuration scenario is the first configuration scenario, and the first frequency offset estimation strategy can be used. According to the channel estimation values of different time slots, the frequency offset between time slots is estimated to obtain the current time of the user equipment UE. The frequency offset value under the slot.
  • This method of frequency offset estimation between time slots is especially suitable for 5G NR systems, so that 5G NR systems can be configured with fewer pilot symbols and more data symbols, and greatly improve the high-end 5G NR system by improving UE demodulation performance Single user rate and base station capacity under QAM (such as 256-QAM).
  • QAM such as 256-QAM
  • the number of RB overlaps between the current uplink time slot and the previous uplink time slot is used as one of the judgment conditions of the first configuration scenario, in order to reduce the complexity of calculation. If the number of RB overlaps between the current uplink time slot and the previous uplink time slot does not meet the preset threshold, it means that the frequency bands where the RBs of the two time slots are separated are very large, which will reduce the accuracy of the calculated frequency offset estimation value. At the same time, it will increase the complexity of calculation. Therefore, in this scenario, the first frequency offset estimation strategy is not suitable.
  • the channel estimation value of the current uplink time slot when the channel estimation value of the current uplink time slot is obtained, the channel estimation value of the current uplink time slot is also saved, so that when the next uplink time slot is also the first configuration scenario, the saved channel is directly used.
  • the channel estimation value of the current uplink time slot obtains the frequency offset estimation value of the next uplink time slot.
  • the frequency offset estimation strategy when the frequency offset estimation strategy is the second frequency offset estimation strategy, at least two non-contiguous pilot symbols in the time domain of the current uplink time slot are used to obtain the channel estimation value of the current uplink time slot , And obtain the frequency offset estimation value of the current uplink time slot based on the channel estimation value of the current uplink time slot. For example, if the current uplink time slot contains two non-contiguous pilot symbols A and B in the time domain, the channel estimation value at the position of the pilot symbol A and the position of the pilot symbol B can be obtained.
  • the channel estimation value A and the channel estimation value B can be averaged on the channel estimation value A and the channel estimation value B to obtain the channel estimation value of the current uplink time slot, and then based on the channel estimation value to obtain the frequency of the current uplink time slot Partial estimate. Since obtaining the frequency offset estimation value based on the channel estimation value belongs to the prior art, it will not be repeated here.
  • the frequency offset estimation strategy is the third frequency offset estimation strategy
  • the frequency offset estimation value of the previous uplink time slot is obtained, and the frequency offset estimation value of the previous uplink time slot is used as the current uplink time Estimated value of the frequency offset of the slot.
  • the frequency offset estimation value of the current uplink time slot is obtained, the frequency offset estimation value is also saved, so as to facilitate the use of the frequency offset estimation in the next upper and lower time slots.
  • the frequency offset estimation method provided in the embodiments of the present application can be executed on the base station side.
  • a baseband processing unit, a baseband decision unit, and a baseband storage unit can be provided on the base station side.
  • the base station scheduler issues the scheduling configuration information of the UE in the uplink time slot
  • the scheduling configuration information of the UE in the current uplink time slot is stored in the baseband storage unit, so that the baseband decision unit can obtain the scheduling configuration information of the UE from the baseband storage unit.
  • the current configuration scenario and the frequency offset estimation strategy corresponding to the current configuration scenario are determined.
  • the baseband processing unit performs frequency offset estimation based on the determined frequency offset estimation strategy.
  • the following uses a specific configuration scenario as an example to further introduce the frequency offset estimation method provided in the embodiment of the present application.
  • the baseband storage unit is initialized, which is mainly to clear the baseband storage unit during power-on initialization, including clearing the historical scheduling configuration information, channel estimation values, and frequency offset estimation values of the first N uplink time slots.
  • the scheduler issues the scheduling configuration information of the first uplink time slot to the UE, where the scheduling configuration information carries the pilot configuration scheme. If the scheduler configures two non-contiguous pilot symbols in the time domain for the UE in the current uplink time slot, the baseband decision unit determines that the current configuration scenario is the second configuration scenario, and the corresponding frequency offset estimation strategy is the second frequency. Partial estimation strategy, while feeding back the above decision result to the baseband processing unit.
  • the baseband processing unit adopts the frequency offset estimation in the time slot, that is, uses the two non-contiguous pilot symbols in the time domain in the current uplink time slot to calculate the channel estimation value, and then uses the channel estimation value To calculate the frequency offset estimation value, and save the calculated channel estimation value and frequency offset estimation value in the baseband storage unit.
  • the scheduler issues the scheduling configuration information of the second uplink time slot (which can be continuous or discontinuous with the first uplink time slot) to the UE. If reconfiguration is not initiated, the UE will continue the previous uplink time slot. If the pilot frequency is configured, the baseband processing unit still adopts the second frequency offset estimation strategy to estimate the frequency offset in the time slot.
  • the baseband decision unit finds that there are 20 scheduled twice Or if the positions of more than 20 RBs are the same, it is determined that the current configuration scenario is the first configuration scenario, and the corresponding frequency offset estimation strategy is the first frequency offset estimation strategy, and the aforementioned decision result is fed back to the baseband processing unit.
  • the baseband processing unit adopts the frequency offset estimation between time slots. Specifically, it first uses the pilot symbols of the current uplink time slot to calculate the channel estimation value of the current uplink time slot, and then obtains it and saves it in the baseband storage unit.
  • the channel estimation value of the previous uplink time slot in, the channel estimation value of the two uplink time slots are then used to calculate the frequency offset estimation value of the current uplink time slot, and the channel estimation value and frequency offset estimation value of the current uplink time slot Save to the baseband storage unit.
  • the scheduler configures the UE with two non-contiguous pilot symbols in the time domain in the first uplink time slot N, and the scheduling configuration information will be stored in the baseband storage unit.
  • the scheduler initiates reconfiguration in the second uplink time slot (N+1) and configures only one pilot symbol for the UE, then the baseband decision unit determines that the current configuration scenario is the third configuration scenario, and the corresponding frequency offset estimation The strategy is the third frequency offset estimation strategy, and the above decision result is fed back to the baseband processing unit at the same time.
  • the baseband processing unit obtains the frequency offset estimation value of the UE in time slot N from the baseband storage unit, and uses the frequency offset estimation value as the frequency offset estimation value of the current uplink time slot for frequency offset compensation .
  • the scheduler configures a pilot symbol for the UE in time slot N, and the scheduling configuration information will be stored in the baseband storage unit.
  • the scheduler only schedules the second uplink time slot for the UE in the time slot (N+20), and configures only one pilot symbol for the UE, but the baseband decision unit finds that no RB has the same position in the two scheduling, then the baseband decision unit It is determined that the current configuration scenario is the fourth configuration scenario, and the corresponding frequency offset estimation strategy is the third frequency offset estimation strategy, and the aforementioned decision result is fed back to the baseband processing unit. After receiving the above decision result, the baseband processing unit obtains the frequency offset estimation value of the UE in time slot N from the baseband storage unit, and uses the frequency offset estimation value as the frequency offset estimation value of the current uplink time slot for frequency offset compensation .
  • both the current uplink time slot and the previous uplink time slot contain only one pilot symbol or two consecutive pilot symbols in the time domain, and the current uplink time slot is different from the previous uplink time slot.
  • the frequency offset between time slots is estimated according to the channel estimation values of different time slots to obtain the frequency offset estimation value of the user equipment UE in the current time slot.
  • the current uplink time slot contains two non-contiguous pilot symbols in the time domain
  • use the pilot symbols of the current time slot to estimate the frequency offset between time slots to obtain the frequency offset estimation of the user equipment UE in the current time slot value.
  • the current uplink time slot contains only one pilot symbol or two continuous pilot symbols in the time domain
  • the previous uplink time slot contains two non-continuous pilot symbols in the time domain
  • the current Both the uplink time slot and the previous uplink time slot contain only one pilot symbol or two consecutive pilot symbols in the time domain
  • the number of RB overlaps between the current uplink time slot and the previous uplink time slot does not meet the preset threshold
  • the frequency offset estimation value of the previous uplink time slot is used as the frequency offset estimation value of the user equipment UE in the current time slot. In this way, the optimal frequency offset estimation strategy is selected according to different configuration scenarios of the UE, and the accuracy of frequency offset estimation is ensured.
  • Fig. 6 shows an apparatus 300 provided in an embodiment of the present application.
  • the device 300 includes but is not limited to:
  • the memory 320 is used to store programs
  • the processor 310 is configured to execute a program stored in the memory 320, and when the processor 310 executes a program stored in the memory 320, the processor 310 is configured to execute the aforementioned frequency offset estimation method.
  • the processor 310 and the memory 320 may be connected by a bus or in other ways.
  • the memory 320 can be used to store non-transitory software programs and non-transient computer-executable programs, such as the frequency offset estimation method described in the embodiment of the present application.
  • the processor 310 implements the aforementioned frequency offset estimation method by running non-transient software programs and instructions stored in the memory 320.
  • the memory 320 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store and execute the aforementioned frequency offset estimation method.
  • the memory 320 may include a high-speed random access memory, and may also include a non-transitory memory, such as at least one magnetic disk storage device, a flash memory device, or other non-transitory solid-state storage devices.
  • the memory 320 can include memories remotely provided with respect to the processor 310, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the non-transient software programs and instructions required to implement the frequency offset estimation method described above are stored in the memory 320.
  • the frequency offset estimation method described above is executed, for example, as described in FIG. 4
  • the embodiment of the present application also provides a computer-readable storage medium, which stores computer-executable instructions, and the computer-executable instructions are used to execute the above-mentioned frequency offset estimation method.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more control processors 310, for example, executed by one of the processors 310 in the above-mentioned apparatus 300.
  • the above-mentioned one or more processors 310 are caused to execute the above-mentioned frequency offset estimation method, for example, to execute the method steps S100 and S200 described in FIG. 4 and the method steps S101 to S113 described in FIG. 5.
  • the embodiments of the application include: obtaining and determining the current configuration scenario and the frequency offset estimation strategy corresponding to the current configuration scenario according to the scheduling configuration information of the UE; and obtaining the frequency offset estimation value of the current uplink time slot according to the frequency offset estimation strategy.
  • the optimal frequency offset estimation strategy can be selected according to different configuration scenarios of the UE, so as to ensure the accuracy of the frequency offset estimation.
  • the device embodiments described above are merely illustrative, and the units described as separate components may or may not be physically separated, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • computer storage medium includes volatile and non-volatile data implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules, or other data).
  • Information such as computer-readable instructions, data structures, program modules, or other data.
  • Computer storage media include but are not limited to RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassettes, magnetic tapes, magnetic disk storage or other magnetic storage devices, or Any other medium used to store desired information and that can be accessed by a computer.
  • communication media usually include computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as carrier waves or other transmission mechanisms, and may include any information delivery media. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频偏估计方法和装置,方法包括:获取并根据UE的调度配置信息,确定当前配置场景以及与当前配置场景对应的频偏估计策略(S100);根据频偏估计策略,获取当前上行时隙的频偏估计值(S200)。

Description

频偏估计方法和装置
相关申请的交叉引用
本申请基于申请号为201911364944.6、申请日为2019年12月26日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信领域,特别是涉及一种频偏估计方法和装置。
背景技术
载波频率的偏移会引发解调出现误码,严重影响系统的解调性能。尤其对于高阶QAM(Quadrature Amplitude Modulation,正交振幅调制)调制下星座点数量很多的情况,即使是很小的频偏都可能造成星座点偏移进而导致信息误判。因此在对接收信号进行解调之前,往往要进行准确的频偏估计以进行频偏补偿。
在无线通信系统中,用于传输的帧结构通常包含了导频符号和数据符号,其中导频符号用于频偏估计。在一些情形中利用导频进行频偏估计时,会出现无法计算当前时隙的频偏估计值或者估计精度很低的问题。
发明内容
以下是对本申请的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本申请实施例提供了一种频偏估计方法、装置和计算机可读存储介质,能在一定程度上根据UE当前配置场景灵活调整频偏估计策略,保证频偏估计的准确性。
另一方面,本申请实施例提供了一种频偏估计方法,包括:获取并根据UE的调度配置信息,确定当前配置场景以及与当前配置场景对应的频偏估计策略;根据所述频偏估计策略,获取当前上行时隙的频偏估计值。
另一方面,本申请实施例提供了一种装置,包括:存储器,用于存储程序;处理器,用于执行所述存储器存储的程序,当所述处理器执行所述存储器存储的程序时,所述处理器用于执行如上所述的频偏估计方法。
再一方面,本申请实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令用于执行上述的频偏估计方法。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。
图1是时隙中子载波非仅包含一个导频符号或者两个在时域上连续的导频符号的情况下的一种导频结构示意图;
图2是时隙中子载波仅配置有一个导频符号的导频结构示意图;
图3是时隙中子载波仅配置有两个在时域上连续的导频符号的导频结构示意图;
图4是本申请实施例提供的一种频偏估计方法的流程图;
图5是本申请实施例提供的一种频偏估计方法中的步骤S100的子流程图;
图6是本申请实施例提供的一种装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
应了解,在本申请实施例的描述中,多个(或多项)的含义是两个以上,大于、小于、超过等理解为不包括本数,以上、以下、以内等理解为包括本数。如果有描述到“第一”、“第二”等只是用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
载波频率的偏移会引发解调出现误码,严重影响系统的解调性能。尤其对于星座点数量很多的情况,即使是很小的频偏都可能造成星座点偏移进而导致信息误判。因此在对接收信号进行解调之前,往往要进行准确的频偏估计并进行频偏补偿。
在无线通信系统中,用于传输的帧结构通常包含了导频符号和数据符号,其中导频符号用于频偏估计。一般情况下,系统会在通信基站与用户设备UE(User Equipment)建立连接后,为UE配置导频方案。图1示出了现有的一种导频结构示意图。如图1所示,在一些情形中,通常将导频符号以时分复用的方式插入到数据符号中,且时隙中包含至少两个在时域上非连续的导频符号,即两个导频符号之间具有数据符号,以通过合理的设置导频在数据中的位置获得较大的频偏估计范围和较高的估计精度。
可以理解,时隙中的导频符号越少,数据符号就会越多,这样单个时隙内的数据速率就会更高,同时可以增大基站的容量。因此在一些导频配置场景中,可能如图2所示,时隙中子载波仅配置有一个导频符号;又可能如图3所示,时隙中子载波仅配置有两个在时域上连续的导频符号,这样可以获得更大的流数。这两种导频结构尤其适合应用于新一代5G通信系统中,以满足5G NR(5G New Radio,5G新空口)技术的高数据传输速率和大容量需求。然而,这两种导频结构由于不满足采样要求,对于利用导频对当前时隙进行频偏估计是不利的。若不对频偏估计策略进行调整,按照传统的频偏估计方法,将无法对当前时隙的频偏进行估计或者估计精度很低。
本申请实施例提供了一种频偏估计方法、装置和计算机可读存储介质,能根据UE当前配置场景灵活调整频偏估计策略,保证频偏估计的准确性。
图4示出了本申请实施例提供的一种频偏估计方法的流程图。如图4所示,该方法包括如下步骤。
S100,获取并根据用户设备UE的调度配置信息,确定当前配置场景以及与当前配置场景对应的频偏估计策略。
参照图5,步骤S100可以包括但不限于如下子步骤。
S101,获取当前上行时隙子载波的第一导频信息。
在一些示例中,可以从基站调度器中获取UE的调度配置信息,并从调度配置信息中提取出相应的导频信息。这里的第一导频信息具体可以包括当前上行时隙的导频符号的数量和导频符号的位置。例如,先获取时隙中导频符号的数量,若时隙中子载波导频符号的数量大于1,进一步获取各个导频符号的位置。
在一些示例中,在步骤S101中,当获取当前上行时隙的第一导频信息,还可以对第一导频信息进行保存。
S102,判断第一导频信息是否仅包含一个导频符号或者两个在时域上连续的导频符号。如果判断结果为是,则执行步骤S103和S104,否则执行步骤S109和S110。
在一些示例中,基于步骤S101所获取的第一导频信息,判断当前上行时隙子载波是否仅包含一个导频符号或者两个在时域上连续的导频符号。如果判断结果为是,执行步骤S103和S104。如果判断结果为否,则可以认为当前上行时隙子载波中包含至少两个在时域上非连续的导频符号,执行步骤S109和S110。
S103,获取前一个上行时隙子载波的第二导频信息。
在一些示例中,在第一导频信息仅包含一个导频符号或者两个在时域上连续的导频符号的情况下,执行本步骤S103,获取前一个上行时隙子载波的第二导频信息。这里的第二导频信息具体可以包括前一个上行时隙的导频符号的数量和导频符号的位置。
S104,判断第二导频信息是否仅包含一个导频符号或者两个在时域上连续的导频符号。如果判断结果为是,则执行步骤S105和S106,否则执行步骤S111和S113。
在一些示例中,基于步骤S103所获取的第二导频信息,判断第二导频信息是否仅包含一个导频符号或者两个在时域上连续的导频符号。如果判断结果为是,即前一个上行时隙子载波中仅包含一个导频符号或者两个在时域上连续的导频符号,执行步骤S105和S106。如果判断结果为否,则可以认为前一个上行时隙子载波中包含至少两个在时域上非连续的导频符号,执行步骤S111和S113。
S105,获取当前上行时隙和前一个上行时隙的RB(Resource Block,资源块)重叠个数。
在一些示例中,可以从基站调度器中获取UE的调度配置信息,并从调度配置信息提取当前上行时隙和前一个上行时隙的RB资源配置信息。通过对比当前上行时隙和前一个上行时隙的RB资源,得到当前上行时隙和前一个上行时隙的RB重叠个数。
S106,判断当前上行时隙和前一个上行时隙的RB重叠个数是否满足预设阈值。如果判 断结果为是,则执行步骤S107和S108,否则执行步骤S112和S113。
在一些示例中,基于步骤S105获取的当前上行时隙和前一个上行时隙的RB重叠个数,判断当前上行时隙和前一个上行时隙的RB重叠个数是否满足预设阈值。例如,假定预设阈值设为20,如果当前上行时隙和前一个上行时隙的RB重叠个数等于或者大于20,则认为当前上行时隙和前一个上行时隙的RB重叠个数满足预设阈值。应理解,本领域技术人员可以通过有限次试验得到适于实际通信系统的最优预设阈值,本申请对预设阈值的数值不作具体要求。
S107,确定当前配置场景为第一配置场景。
在一些示例中,如果当前上行时隙及前一个上行时隙的子载波均仅包含一个导频符号或者两个在时域上连续的导频符号,而且当前上行时隙与前一个上行时隙的RB重叠个数满足预设阈值,则确定当前配置场景为第一配置场景。
S108,确定与当前配置场景对应的频偏估计策略为第一频偏估计策略。
在一些示例中,本申请实施例将与第一配置场景对应的频偏估计策略设为第一频偏估计策略。
S109,确定当前配置场景为第二配置场景。
在一些示例中,如果当前上行时隙中包含两个在时域上非连续的导频符号,则确定当前配置场景为第二配置场景。
S110,确定与当前配置场景对应的频偏估计策略为第二频偏估计策略。
本申请实施例将与第二配置场景对应的频偏估计策略设为第二频偏估计策略。
S111,确定当前配置场景为第三配置场景。
在一些示例中,如果当前上行时隙的子载波中仅包含一个导频符号或者两个在时域上连续的导频符号,而前一个上行时隙子载波中包含两个在时域上非连续的导频符号,则确定当前配置场景为第三配置场景。
S112,确定当前配置场景为第四配置场景。
在一些示例中,如果当前上行时隙及前一个上行时隙的子载波中均仅包含一个导频符号或者两个在时域上连续的导频符号,而当前上行时隙与前一个上行时隙的RB重叠个数不能满足预设阈值,则确定当前配置场景为第四配置场景。
S113,确定与当前配置场景对应的频偏估计策略为第三频偏估计策略。
本申请实施例将与第三、第四配置场景对应的频偏估计策略设为第三频偏估计策略。
S200,根据频偏估计策略,获取当前上行时隙的频偏估计值。
本申请实施例根据不同的配置场景,选择不同的频偏估计策略,获取当前上行时隙的频偏估计值。
本申请实施例中,当频偏估计策略为第一频偏估计策略的情况下,获取前一个上行时隙和当前上行时隙的信道估计值,并基于前一个上行时隙和当前上行时隙的信道估计值获取当 前上行时隙的频偏估计值。具体的,可以利用前一个上行时隙的导频符号获取前一个上行时隙的信道估计值,利用当前上行时隙的导频符号获取当前上行时隙的信道估计值,然后对前一个上行时隙的信道估计值和当前上行时隙的信道估计值求平均,再对所得的信道估计平均值进行相关性运算,从而获取当前上行时隙的频偏估计值。需说明的是,由于基于导频符号的信道估计、及基于信道估计值获取频偏估计值均属于现用技术,所以在此不再赘述。
在一些示例中,如果当前上行时隙及前一个上行时隙均仅包含一个导频符号或者两个在时域上连续的导频符号,并且当前上行时隙与前一个上行时隙的RB重叠个数满足预设阈值,则确定当前配置场景为第一配置场景,可以使用第一频偏估计策略,根据不同时隙的信道估计值,做时隙间的频偏估计得到用户设备UE当前时隙下的频偏值。
这种时隙间的频偏估计方法,尤其适用5G NR系统,使5G NR系统可以配置更少的导频符号和更多的数据符号,通过提升UE解调性能来大幅提升5G NR系统高阶QAM(例如256-QAM)下的单用户速率和基站容量。
应了解,本示例将当前上行时隙与前一个上行时隙的RB重叠个数作为第一配置场景的判断条件之一,目的是为了降低计算的复杂度。如果当前上行时隙与前一个上行时隙的RB重叠个数不满足预设阈值,说明两个时隙的RB所在频段的间隔很大,这样会导致计算出来的频偏估计值的精度降低,同时会增加计算的复杂程度,因此在这种场景下,不适宜采用第一频偏估计策略。
在一些示例中,当获取到当前上行时隙的信道估计值,还对当前上行时隙的信道估计值进行保存,以便在下一个上行时隙也为第一配置场景的情况下,直接利用已保存的当前上行时隙的信道估计值获取下一个上行时隙的频偏估计值。
本申请实施例中,当频偏估计策略为第二频偏估计策略的情况下,利用当前上行时隙的至少两个在时域上非连续的导频符号得到当前上行时隙的信道估计值,并基于当前上行时隙的信道估计值获取当前上行时隙的频偏估计值。例如,当前上行时隙的包含了两个在时域上非连续的导频符号A和导频符号B,可以求取在导频符号A位置上的信道估计值,以及在导频符号B位置上的信道估计值A和信道估计值B,然后可以对信道估计值A和信道估计值B求平均,得到当前上行时隙的信道估计值,再基于该信道估计值获取当前上行时隙的频偏估计值。由于基于信道估计值获取频偏估计值属于现有技术,因此这里不再展开赘述。
本申请实施例中,当频偏估计策略为第三频偏估计策略的情况下,获取前一个上行时隙的频偏估计值,并将前一个上行时隙的频偏估计值作为当前上行时隙的频偏估计值。
在一些示例中,当获取到当前上行时隙的频偏估计值,还对频偏估计值进行保存,以方便下一个上下时隙进行频偏估计时使用。
应了解,本申请实施例提供的方法的各种实施方式可以任意进行组合,以实现不同的技术效果。
在实际应用中,本申请实施例提供的频偏估计方法可以在基站侧执行。例如,可以在基 站侧设置基带处理单元、基带判决单元和基带存储单元。当基站调度器在上行时隙下发UE调度配置信息时,将当前上行时隙的UE的调度配置信息存储至基带存储单元中,以备基带判决单元从基带存储单元获取UE的调度配置信息,并根据UE的调度配置信息确定当前配置场景以及与当前配置场景对应的频偏估计策略。基带处理单元基于所确定的频偏估计策略,做频偏估计。以下通过具体的配置场景作为实例,进一步介绍本申请实施例提供的频偏估计方法。
实例1:
基带存储单元进行初始化,主要是上电初始化时,对基带存储单元进行清零操作,包括对前N个上行时隙的历史调度配置信息、信道估计值以及频偏估计值进行清零。
当基带存储单元完成初始化,且通信基站建立小区UE接入且开始做业务之后,调度器下发第一个上行时隙的调度配置信息至UE,其中调度配置信息携带有导频配置方案。如果调度器在当前上行时隙为UE配置了两个在时域上非连续的导频符号,那么基带判决单元确定当前配置场景为第二配置场景,以及对应的频偏估计策略为第二频偏估计策略,同时将上述判决结果反馈给基带处理单元。基带处理单元接收到上述判决结果之后,采取时隙内的频偏估计,即使用当前上行时隙内的两个在时域上非连续的导频符号计算出信道估计值,进而利用信道估计值来计算频偏估计值,并将计算得到的信道估计值、频偏估计值保存在基带存储单元中。
调度器下发第二个上行时隙(可以与第一个上行时隙连续,也可以是不连续的)的调度配置信息至UE,如果不发起重配,UE将延续前一个上行时隙的导频配置,那么基带处理单元还是采取第二频偏估计策略做时隙内的频偏估计。
如果发起重配,并由两个在时域上非连续的导频符号的方案切换为仅配置一个导频符号的方案,假设预设阈值为20,当基带判决单元发现两次调度有20个或者20个以上的RB位置相同,则确定当前配置场景为第一配置场景,以及对应的频偏估计策略为第一频偏估计策略,同时将上述判决结果反馈给基带处理单元。基带处理单元接收到上述判决结果之后,采取时隙间的频偏估计,具体是先利用当前上行时隙的导频符号,计算出当前上行时隙的信道估计值,再获取保存在基带存储单元中的前一个上行时隙的信道估计值,进而利用两个上行时隙的信道估计值计算出当前上行时隙的频偏估计值,并且将当前上行时隙的信道估计值和频偏估计值保存到基带存储单元。
实例2:
基带存储单元初始化之后,调度器在第一个上行时隙N给UE配置两个在时域上非连续的导频符号,该调度配置信息会保存在基带存储单元中。
调度器在第二个上行时隙(N+1)发起重配,且给UE仅配置一个导频符号的方案,那么基带判决单元确定当前配置场景为第三配置场景,以及对应的频偏估计策略为第三频偏估计策略,同时将上述判决结果反馈给基带处理单元。基带处理单元接收到上述判决结果之后, 从基带存储单元获取该UE的在时隙N的频偏估计值,并以该频偏估计值作为当前上行时隙的频偏估计值来做频偏补偿。
实例3:
基带存储单元初始化之后,调度器在时隙N给UE配置一个导频符号,该调度配置信息会保存在基带存储单元中。
调度器在时隙(N+20)才给UE调度第二个上行时隙,且给UE仅配置一个导频符号,但是基带判决单元发现两次调度没有一个RB的位置相同,那么基带判决单元确定当前配置场景为第四配置场景,以及对应的频偏估计策略为第三频偏估计策略,同时将上述判决结果反馈给基带处理单元。基带处理单元接收到上述判决结果之后,从基带存储单元获取该UE的在时隙N的频偏估计值,并以该频偏估计值作为当前上行时隙的频偏估计值来做频偏补偿。
基于本申请实施例提供的技术方案,对于当前上行时隙及前一个上行时隙均仅包含一个导频符号或者两个在时域上连续的导频符号,并且当前上行时隙与前一个上行时隙的RB重叠个数满足预设阈值的场景,根据不同时隙的信道估计值,做时隙间的频偏估计得到用户设备UE当前时隙下的频偏估计值。对于当前上行时隙中包含两个在时域上非连续的导频符号的场景,利用当前时隙的导频符号做时隙间的频偏估计得到用户设备UE当前时隙下的频偏估计值。对于当前上行时隙仅包含一个导频符号或者两个在时域上连续的导频符号,而前一个上行时隙中包含两个在时域上非连续的导频符号的场景;或者,当前上行时隙及前一个上行时隙均仅包含一个导频符号或者两个在时域上连续的导频符号,但是当前上行时隙与前一个上行时隙的RB重叠个数不满足预设阈值的场景,将前一个上行时隙的频偏估计值作为用户设备UE当前时隙下的频偏估计值。由此实现根据UE不同的配置场景选择最优的频偏估计策略,保证频偏估计的准确性。
图6示出了本申请实施例提供的装置300。如图6所示,该装置300包括但不限于:
存储器320,用于存储程序;
处理器310,用于执行存储器320存储的程序,当处理器310执行存储器320存储的程序时,处理器310用于执行上述的频偏估计方法。
处理器310和存储器320可以通过总线或者其他方式连接。
存储器320作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序以及非暂态性计算机可执行程序,如本申请实施例描述的频偏估计方法。处理器310通过运行存储在存储器320中的非暂态软件程序以及指令,从而实现上述的频偏估计方法。
存储器320可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储执行上述的频偏估计方法。此外,存储器320可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施方式中,存储器320能够包括相对于处理器310远程设置的存储器,这些远程存储器可以通过网络连接至该装置。上述网络的实例 包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
实现上述的频偏估计方法所需的非暂态软件程序以及指令存储在存储器320中,当被一个或者多个处理器310执行时,执行上述的频偏估计方法,例如,执行图4中描述的方法步骤S100和S200,图5中描述的方法步骤S101至S113。
本申请实施例还提供了计算机可读存储介质,存储有计算机可执行指令,计算机可执行指令用于执行上述的频偏估计方法。
在一实施例中,该计算机可读存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个控制处理器310执行,例如,被上述装置300中的一个处理器310执行,可使得上述一个或多个处理器310执行上述的频偏估计方法,例如,执行图4中描述的方法步骤S100和S200,图5中描述的方法步骤S101至S113。
本申请实施例包括:获取并根据UE的调度配置信息,确定当前配置场景以及与当前配置场景对应的频偏估计策略;根据所述频偏估计策略,获取当前上行时隙的频偏估计值。基于本申请的实施例,能够根据UE不同的配置场景选择最优的频偏估计策略,保证频偏估计的准确性。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包括计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上是对本申请的较佳实施进行了具体说明,但本申请并不局限于上述实施方式,熟悉本领域的技术人员在不违背本申请精神的共享条件下还可作出种种等同的变形或替换,这些等同的变形或替换均包括在本申请权利要求所限定的范围内。

Claims (11)

  1. 一种频偏估计方法,包括:
    获取并根据用户设备UE的调度配置信息,确定当前配置场景以及与当前配置场景对应的频偏估计策略;
    根据所述频偏估计策略,获取当前上行时隙的频偏估计值。
  2. 根据权利要求1所述的方法,其中,所述获取并根据用户设备UE的调度配置信息,确定当前配置场景以及与当前配置场景对应的频偏估计策略,包括:
    获取当前上行时隙中子载波的第一导频信息和前一个上行时隙中子载波的第二导频信息;
    当所述第一导频信息仅包含一个导频符号或者两个在时域上连续的导频符号,并且所述第二导频信息仅包含一个导频符号或者两个在时域上连续的导频符号,获取当前上行时隙和前一个上行时隙的资源块RB重叠个数;
    当当前上行时隙和前一个上行时隙的RB重叠个数满足预设阈值,确定当前配置场景为第一配置场景,以及与第一配置场景对应的频偏估计策略为第一频偏估计策略。
  3. 根据权利要求2所述的方法,其中,还包括:
    当所述第一导频信息非仅包含一个导频符号或者两个在时域上连续的导频符号,确定当前配置场景为第二配置场景,以及与所述第二配置场景对应的频偏估计策略为第二频偏估计策略。
  4. 根据权利要求2所述的方法,其中,还包括:
    当所述第一导频信息仅包含一个导频符号或者两个在时域上连续的导频符号,并且所述第二导频信息非仅包含一个导频符号或者两个在时域上连续的导频符号,确定当前配置场景为第三配置场景,以及与第三配置场景对应的频偏估计策略为第三频偏估计策略。
  5. 根据权利要求2所述的方法,其中,还包括:
    当当前上行时隙和前一个上行时隙的RB重叠个数不满足预设阈值,确定当前配置场景为第四配置场景,以及与第四配置场景对应的频偏估计策略为第三频偏估计策略。
  6. 根据权利要求2所述的方法,其中,所述根据所述频偏估计策略,获取当前上行时隙的频偏估计值,包括:
    当所述频偏估计策略为所述第一频偏估计策略,获取前一个上行时隙和当前上行时隙的信道估计值,并基于前一个上行时隙和当前上行时隙的信道估计值获取当前上行时隙的频偏估计值。
  7. 根据权利要求3所述的方法,其中,所述根据所述频偏估计策略,获取当前上行时隙的频偏估计值,包括:
    当所述频偏估计策略为所述第二频偏估计策略,利用当前上行时隙的至少两个在时域上非连续的导频符号得到当前上行时隙的信道估计值,并基于当前上行时隙的信道估计值 获取当前上行时隙的频偏估计值。
  8. 根据权利要求4或5所述的方法,其中,所述根据所述频偏估计策略,获取当前上行时隙的频偏估计值,包括:
    当所述频偏估计策略为所述第三频偏估计策略,获取前一个上行时隙的频偏估计值,并将前一个上行时隙的频偏估计值作为所述当前上行时隙的频偏估计值。
  9. 根据权利要求1所述的方法,还包括:
    当获取当前上行时隙的频偏估计值,还对所述频偏估计值进行保存。
  10. 一种装置,包括:
    存储器,用于存储程序;
    处理器,用于执行所述存储器存储的程序,当所述处理器执行所述存储器存储的程序时,所述处理器用于执行:
    如权利要求1至9中任一项所述的方法。
  11. 一种计算机可读存储介质,存储有计算机可执行指令,其中,所述计算机可执行指令用于执行:
    如权利要求1至9中任一项所述的方法。
PCT/CN2020/122070 2019-12-26 2020-10-20 频偏估计方法和装置 WO2021129078A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911364944.6 2019-12-26
CN201911364944.6A CN113055995B (zh) 2019-12-26 2019-12-26 频偏估计方法和装置

Publications (1)

Publication Number Publication Date
WO2021129078A1 true WO2021129078A1 (zh) 2021-07-01

Family

ID=76506005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122070 WO2021129078A1 (zh) 2019-12-26 2020-10-20 频偏估计方法和装置

Country Status (2)

Country Link
CN (1) CN113055995B (zh)
WO (1) WO2021129078A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441969A (zh) * 2013-09-12 2013-12-11 西安电子科技大学 导频间距可变的载波频偏估计方法
US20150030108A1 (en) * 2013-07-24 2015-01-29 Research & Business Foundation Sungkyunkwan University Frequency offset estimation method in ofdm system and ofdm receiver using the same
CN106063147A (zh) * 2014-04-07 2016-10-26 英特尔Ip公司 客户端特定的频率偏移估计
CN110098903A (zh) * 2018-01-30 2019-08-06 普天信息技术有限公司 一种上行导频传输方法、用户设备和基站

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368875B2 (ja) * 1999-11-05 2003-01-20 日本電気株式会社 周波数オフセット補正システム及び方法
US6606363B1 (en) * 1999-12-28 2003-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for estimating a frequency offset by combining pilot symbols and data symbols
CN102014097B (zh) * 2009-09-04 2014-04-09 中兴通讯股份有限公司 一种接收终端、以及快速频偏估计的装置和方法
CN102035764A (zh) * 2009-09-24 2011-04-27 中兴通讯股份有限公司 非理想同步单载波频分多址系统的信道估计装置及方法
CN102130864A (zh) * 2010-01-20 2011-07-20 中兴通讯股份有限公司 一种信道估计方法和装置
CN102457452B (zh) * 2010-10-19 2015-06-03 中兴通讯股份有限公司 一种计算频偏估计值和信道估计值的方法和lte基站
CN102594740B (zh) * 2011-01-11 2015-04-01 中兴通讯股份有限公司 一种频偏估计方法及装置
CN102739572B (zh) * 2011-04-15 2015-03-25 中兴通讯股份有限公司 提高信道估计性能的方法及系统
CN104283822B (zh) * 2013-07-08 2017-08-04 普天信息技术研究院有限公司 一种频偏估计及补偿的方法
CN103338508B (zh) * 2013-07-10 2015-09-16 武汉邮电科学研究院 一种联合频偏估计方法及系统
CN104348516B (zh) * 2013-07-30 2016-06-29 上海摩波彼克半导体有限公司 用户终端的频偏估计方法、装置和用户终端
CN103873396B (zh) * 2014-03-21 2018-03-23 电信科学技术研究院 一种频偏估计和补偿的方法及装置
CN104639479B (zh) * 2015-02-03 2019-02-26 大唐移动通信设备有限公司 一种频偏校准方法及设备
CN106411800B (zh) * 2015-07-29 2021-01-01 上海中兴软件有限责任公司 一种频偏预补偿方法及装置
CN106506412A (zh) * 2015-09-07 2017-03-15 中兴通讯股份有限公司 一种频偏估计的方法及装置
CN107040295A (zh) * 2016-01-30 2017-08-11 华为技术有限公司 Mu-mimo系统中上行频偏估计方法、相关设备和系统
WO2018040056A1 (zh) * 2016-09-01 2018-03-08 华为技术有限公司 一种频偏校正方法及相关设备
US10637709B2 (en) * 2017-01-16 2020-04-28 Qualcomm Incorporated Signaling methods for frequency offset estimation using reference signals
CN107426123B (zh) * 2017-07-17 2020-06-05 西安宇飞电子技术有限公司 一种利用多符号间导频进行联合整数频偏估计方法及装置
CN109274619B (zh) * 2017-07-18 2020-10-20 电信科学技术研究院 一种频率偏移确定方法及装置
CN109756435B (zh) * 2017-11-07 2021-10-15 北京中科晶上科技股份有限公司 一种对信号的频偏估计方法
CN109495409B (zh) * 2018-12-29 2021-06-25 京信通信系统(中国)有限公司 信道估计方法、装置、无线接收设备和存储介质
CN109688075B (zh) * 2019-01-16 2021-08-03 武汉虹信科技发展有限责任公司 一种无线通信的信道估计方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150030108A1 (en) * 2013-07-24 2015-01-29 Research & Business Foundation Sungkyunkwan University Frequency offset estimation method in ofdm system and ofdm receiver using the same
CN103441969A (zh) * 2013-09-12 2013-12-11 西安电子科技大学 导频间距可变的载波频偏估计方法
CN106063147A (zh) * 2014-04-07 2016-10-26 英特尔Ip公司 客户端特定的频率偏移估计
CN110098903A (zh) * 2018-01-30 2019-08-06 普天信息技术有限公司 一种上行导频传输方法、用户设备和基站

Also Published As

Publication number Publication date
CN113055995B (zh) 2023-10-27
CN113055995A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
JP6985422B2 (ja) 信号送信の方法、デバイス、およびシステム
US11533767B2 (en) Activation of secondary cells for carrier aggregation and dual connectivity
US12041005B2 (en) System and method for determining a pilot signal
US10893473B2 (en) Envelope modulation for concurrent transmission of a wake-up signal and user data
US9014133B2 (en) Method of reducing transmission power and terminal thereof
CN111726877B (zh) 数据传输方法、终端和基站
WO2015122833A1 (en) Cell change based on uplink configuration
CN103517432B (zh) 信道资源指示方法及设备
WO2019184565A1 (zh) 物理下行共享信道接收及其时域资源指示方法、装置、存储介质、基站、终端
WO2021036889A1 (zh) 小区专属参考信号配置方法及装置、存储介质、基站、用户设备
WO2018098692A1 (zh) 一种降低无线信号的papr的方法及相关装置
EP2672772B1 (en) Wireless communication system and wireless communication method for reducing inter-cell interference
US10390349B2 (en) 256 QAM-based resource allocation method and base station thereof
CN110351035B (zh) 一种导频位置的确定方法、终端及基站
US9781720B2 (en) Component carrier (de)activation in communication systems using carrier aggregation
WO2021129078A1 (zh) 频偏估计方法和装置
US20220376964A1 (en) Method and apparatus for wireless communication, and storage medium
WO2023024731A1 (zh) 一种降低峰均功率比papr的方法以及通信装置
WO2018018633A1 (zh) 一种csi-rs传输方法及网络设备
CN110752886B (zh) 一种cce聚集级别的确定方法和装置
JP6790275B2 (ja) 信号送信方法および基地局
WO2022082766A1 (zh) 一种dc位置的上报方法及装置、终端设备、网络设备
WO2023078394A1 (zh) 由用户设备执行的方法以及用户设备
CN113381961B (zh) 相位跟踪参考信号的配置、确定方法及装置、存储介质、基站、用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20908339

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20908339

Country of ref document: EP

Kind code of ref document: A1