WO2018040056A1 - 一种频偏校正方法及相关设备 - Google Patents

一种频偏校正方法及相关设备 Download PDF

Info

Publication number
WO2018040056A1
WO2018040056A1 PCT/CN2016/097812 CN2016097812W WO2018040056A1 WO 2018040056 A1 WO2018040056 A1 WO 2018040056A1 CN 2016097812 W CN2016097812 W CN 2016097812W WO 2018040056 A1 WO2018040056 A1 WO 2018040056A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency offset
data
estimation value
offset estimation
base station
Prior art date
Application number
PCT/CN2016/097812
Other languages
English (en)
French (fr)
Inventor
周平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/097812 priority Critical patent/WO2018040056A1/zh
Publication of WO2018040056A1 publication Critical patent/WO2018040056A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/16Frequency regulation arrangements

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a frequency offset correction method and related equipment.
  • MTC Machine-Type Communication
  • 5G The 5th Generation Mobile Communication
  • 5G The 5th Generation Mobile Communication
  • 5G The 5th Generation Mobile Communication
  • the traditional communication service is still based on base station scheduling, the user's scheduling overhead will increase dramatically.
  • it is considered that the number of users in a large connection is large, but the frequency of packets sent by users is not high.
  • a scheduling mechanism is adopted under large connections. That is, unlike the traditional base station scheduling, the user can directly transmit the data without transmitting the scheduling indication of the base station before sending the data on the PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the base station cannot identify the user identity when detecting the data sent by the user, and the measurement information of the user is invalidated in the base station.
  • the timing tracking and frequency offset tracking of the user cannot be implemented in the base station.
  • the user's frequency synchronization is accomplished by constant frequency tracking and correction at the base station.
  • the base station cannot recognize the user identity, the frequency offset of the user cannot be tracked in real time.
  • the embodiment of the invention discloses a frequency offset correction method and related equipment, which can track the frequency offset of the user in real time under multi-user unscheduled scheduling.
  • a first aspect of the embodiments of the present invention discloses a frequency offset correction method, including:
  • the MAC layer performs filtering processing on the frequency offset estimation value according to the identity information, include:
  • the historical frequency offset estimation value may be a frequency offset estimation value stored in the MAC layer after the previous filtering process of the UE. Filtering the frequency offset estimation value can eliminate the jitter as much as possible and improve the stability of the frequency offset estimation value.
  • the method further includes:
  • the parsing the demodulated data at the MAC layer to obtain the identity information of the UE includes:
  • the demodulated data is parsed at the MAC layer to obtain identity information of the UE. That is to say, the frequency offset value is fed back to the UE only when the data demodulation is successful.
  • the sending, by the MAC layer, the filtered frequency offset estimation value to the UE includes:
  • the MAC layer And transmitting, by the MAC layer, the filtered frequency offset estimation value to the UE at a preset time. That is, the frequency offset estimation value periodically transmits the value UE with the signaling.
  • the MAC layer Sending the filtered frequency offset estimation value to the UE including:
  • the MAC layer And adding, by the MAC layer, the filtered frequency offset estimation value to the response feedback information, and transmitting the result to the UE.
  • the estimated value of the frequency offset is carried in the response feedback information and sent together.
  • the method also includes:
  • the frequency offset pre-correction is completed before the UE sends the data, which can avoid data interference between users due to frequency offset interference under the large connection, so as to ensure the frequency synchronization of the base station side, thereby improving the reliability of the base station receiving data and improving the base station.
  • Data demodulation performance is completed before the UE sends the data, which can avoid data interference between users due to frequency offset interference under the large connection, so as to ensure the frequency synchronization of the base station side, thereby improving the reliability of the base station receiving data and improving the base station.
  • the method also includes:
  • the frequency offset estimation value after the filtering process is performed on the MAC layer to perform a zeroing process. In this way, the frequency offset value in the MAC layer is prevented from affecting the frequency offset value generated when the UE transmits data next time, and the frequency offset error is increased.
  • a second aspect of the embodiment of the present invention discloses a frequency offset correction method, including:
  • the pre-corrected data and pilot information are transmitted to the base station. That is to say, after the UE receives the frequency offset value fed back by the base station, the frequency offset value can be used to perform frequency offset pre-correction before transmitting the data to the base station before the next data transmission, thereby avoiding interference between users due to frequency offset interference.
  • the data is interfered to ensure the frequency synchronization of the base station side, thereby improving the reliability of the base station receiving data and improving the data demodulation performance of the base station.
  • the feedback information that is sent by the receiving base station in the downlink includes:
  • the feedback information includes response feedback information
  • the feedback information sent by the receiving base station in the downlink includes:
  • the base station Receiving, by the base station, the response feedback information that is sent by the base station, where the response feedback information carries a frequency offset estimation value. That is, the base station can carry the frequency offset estimation value in the response feedback information for transmission.
  • the using the frequency offset is pre-corrected for the data and pilot information transmitted in the uplink, including:
  • the sending the pre-corrected data and the pilot information to the base station includes:
  • the pre-corrected data and pilot information are sent to the base station, including:
  • Pre-corrected data and pilot information using single-antenna transmission or multi-antenna transmission Sent to the base station.
  • a third aspect of the embodiment of the present invention discloses a base station, including:
  • a receiving unit configured to receive data and pilot information that are uplinked by the user equipment UE;
  • a frequency offset estimation unit configured to perform frequency offset estimation by using the pilot information to obtain a frequency offset estimation value
  • a demodulation unit configured to demodulate the data that is uplinked by the UE according to the frequency offset estimation value
  • An uploading unit configured to upload the frequency offset estimation value and the demodulated data to a media access control MAC layer
  • a processing unit configured to parse the demodulated data at the MAC layer to obtain identity information of the UE, and perform filtering processing on the frequency offset estimation value according to the identity information, and filter the processed A frequency offset estimate is sent to the UE.
  • the processing unit in the MAC layer, filtering the frequency offset estimation value according to the identity information.
  • the way to deal with is specifically:
  • the processing unit acquires a historical frequency offset estimation value of the UE according to the identity information, and performs filtering processing on the frequency offset estimation value by using the historical frequency offset estimation value.
  • the uploading unit is further configured to upload a demodulation result of demodulating the data to the MAC layer;
  • the manner in which the processing unit parses the demodulated data in the MAC layer to obtain the identity information of the UE is specifically:
  • the processing unit parses the demodulated data at the MAC layer to obtain identity information of the UE when the demodulation result is that the demodulation is successful.
  • the processing unit is The manner in which the MAC layer sends the filtered frequency offset estimation value to the UE is specifically:
  • the processing unit sends the filtered frequency offset estimation value to the UE at the preset time at the MAC layer.
  • the processing unit is The manner in which the MAC layer sends the filtered frequency offset estimation value to the UE is specifically:
  • the processing unit adds the filtered frequency offset estimation value to the response feedback information at the MAC layer, and then sends the result to the UE.
  • the receiving unit is further configured to receive data and pilot information that is pre-corrected by using the filtered frequency offset estimation value that is uplinked by the UE.
  • a clearing unit configured to perform a zeroing process on the frequency offset estimation value after the filtering process at the MAC layer.
  • a fourth aspect of the embodiment of the present invention discloses a user equipment UE, including:
  • a receiving unit configured to receive feedback information sent by the base station in downlink
  • a parsing unit configured to parse the feedback information to obtain a frequency offset estimation value
  • a correcting unit configured to perform pre-correction on the data and pilot information to be uplink transmitted by using the frequency offset estimation value
  • a sending unit configured to send pre-corrected data and pilot information to the base station.
  • the manner in which the receiving unit receives the downlink information sent by the base station is specifically:
  • the receiving unit receives feedback information that is sent by the base station in downlink at a preset time, and the feedback information includes a frequency offset estimation value.
  • the feedback information includes response feedback information, and the manner in which the receiving unit receives the feedback information sent by the base station downlink is specific. for:
  • the receiving unit receives the response feedback information that is sent by the base station, and the response feedback information carries a frequency offset estimation value.
  • the correcting unit includes:
  • a framing sub-unit configured to perform framing processing on the data to be uplink and the pilot information to obtain frame data
  • a pre-correction sub-unit configured to perform frequency pre-correction on the frame data by using the frequency offset estimation value to obtain first data
  • a modulation subunit configured to perform carrier modulation on the first data to obtain second data
  • the sending unit is specifically configured to send the second data to the base station.
  • the manner in which the unit sends the pre-corrected data and pilot information to the base station is specifically:
  • the transmitting unit transmits the pre-corrected data and pilot information to the base station by using a single antenna transmission manner or a multi-antenna transmission manner.
  • a fifth aspect of the embodiments of the present invention discloses a base station, including: a processor, a memory, a communication interface, and a communication bus;
  • the memory is used to store programs and data
  • the communication bus is configured to establish connection communication between the processor, the memory, and the communication interface
  • the processor is configured to invoke the program stored in the memory, and perform the following operations:
  • the processor at the MAC layer, filters the frequency offset estimation value according to the identity information.
  • the way to deal with is specifically:
  • the processor is further configured to invoke the memory.
  • the manner in which the processor parses the demodulated data at the MAC layer to obtain the identity information of the UE is specifically:
  • the demodulated data is parsed at the MAC layer to obtain identity information of the UE.
  • the manner in which the MAC layer triggers the communication interface to send the filtered frequency offset estimation value to the UE is specifically:
  • the communication interface to send the filtered frequency offset estimation value to the UE at a preset time.
  • the manner in which the MAC layer triggers the communication interface to send the filtered frequency offset estimation value to the UE is specifically:
  • the communication interface to add the filtered frequency offset estimation value to the response feedback information, and then sending the result to the UE.
  • the device is also used to call the program stored in the memory and perform the following operations:
  • the processing The device is also used to call the program stored in the memory and perform the following operations:
  • the frequency offset estimation value after the filtering process is performed on the MAC layer to perform a zeroing process.
  • a sixth aspect of the embodiments of the present invention discloses a user equipment UE, including: a processor, a memory, a communication interface, and a communication bus;
  • the memory is used to store programs and data
  • the communication bus is configured to establish connection communication between the processor, the memory, and the communication interface
  • the processor is configured to invoke the program stored in the memory, and perform the following operations:
  • the communication interface is triggered to transmit pre-corrected data and pilot information to the base station.
  • the manner in which the processor triggers the communication interface to receive the downlink information sent by the base station is specifically:
  • the communication interface is triggered to receive feedback information that is sent by the base station in the downlink every preset time, and the feedback information includes a frequency offset estimation value.
  • the feedback information includes response feedback information
  • the processor triggers the communication interface to receive a downlink transmission of the base station.
  • the way to feedback information is as follows:
  • the communication interface is triggered to receive the response feedback information sent by the base station, and the response feedback information carries a frequency offset estimation value.
  • the method of pre-correcting the frequency offset estimation value for the uplink transmission data and the pilot information is specifically:
  • the manner in which the processor triggers the communication interface to send pre-corrected data and pilot information to the base station is specifically:
  • the processing The method for triggering the communication interface to send the pre-corrected data and pilot information to the base station is specifically:
  • the communication interface is triggered to transmit pre-corrected data and pilot information to the base station by using a single antenna transmission mode or a multi-antenna transmission mode.
  • a seventh embodiment of the present invention discloses a frequency offset correction system, which includes the base station disclosed in the third aspect of the embodiment of the present invention and at least one user equipment UE disclosed in the fourth aspect of the embodiment of the present invention.
  • the base station may use the pilot information to perform frequency offset estimation, and obtain a frequency offset estimation value. And demodulating the uplink data of the UE according to the frequency offset estimation value, and uploading the frequency offset estimation value and the demodulated data to the MAC layer, and parsing the demodulated data at the MAC layer to obtain the UE.
  • the identity information may be filtered according to the identity information, and the filtered frequency offset estimation value is sent to the UE.
  • the base station parses the data at the MAC layer to obtain the identity information of the UE under the large connection and free scheduling, so that the frequency offset of the user can be tracked in real time, and the convergence speed and accuracy of the frequency offset are improved.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart of a frequency offset correction method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a frequency offset value feedback format disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another frequency offset value feedback format disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a principle of frequency offset correction according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart of another frequency offset correction method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a principle of single antenna transmission based on OFDM according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a principle of multi-antenna transmission based on OFDM according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another UE according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of still another UE according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a frequency offset correction system according to an embodiment of the present invention.
  • the embodiment of the invention discloses a frequency offset correction method and related equipment.
  • the base station parses the data at the MAC layer to obtain the identity information of the UE, thereby realizing real-time tracking of the user frequency offset and improving the frequency offset. Convergence speed and accuracy. The details are described below separately.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • the base station and a plurality of user equipments (UEs), such as UE1, UE2, ..., UEn (n is a positive integer), may be included.
  • the base station can simultaneously perform communication connection with multiple user equipment UEs.
  • the user equipment UE may include, but is not limited to, a handheld device having a wireless communication function (such as a mobile phone, a tablet, a personal digital assistant, etc.), an in-vehicle device, a wearable device (such as a smart watch, a smart bracelet, etc.), a computing device, or a connection.
  • a wireless communication function such as a mobile phone, a tablet, a personal digital assistant, etc.
  • an in-vehicle device such as a smart watch, a smart bracelet, etc.
  • a computing device or a connection.
  • Other processing devices to the wireless modem as well as various forms of mobile stations (Mobile Station, MS for short), terminals (Terminal Equipment), terminal equipment (Terminal Equipment), and the like.
  • Mobile Station, MS for short
  • terminals Terminal Equipment
  • Terminal Equipment Terminal Equipment
  • the network architecture shown in FIG. 1 can be applied to a schedule-free transmission scenario, such as a scheduling-free scenario in a large-connection communication system.
  • a schedule-free transmission scenario such as a scheduling-free scenario in a large-connection communication system.
  • the embodiment of the present invention can adopt a scheduling-free mechanism under the large-connection communication.
  • the large connection communication system may refer to a communication system in which the number of connected users reaches a predetermined value.
  • the 5G standards organization proposes that the number of connections in a large connection scenario requires 10 ⁇ 6 per square kilometer, and the number of users required to access is 1000 times higher than the existing LTE (Long Term Evolution).
  • the specific process of the unscheduled transmission may be: multiple UEs access the base station by means of random access, after RRC (Radio) After the resource connection is established, the UE can send data on the PUSCH channel as needed. Different from the traditional base station scheduling, the UE can directly send the data without transmitting the scheduling indication of the base station before sending the data on the PUSCH channel. Then, an ACK/NACK (Acknowledgement/Negative Acknowledgment) feedback message sent by the base station is detected within a predetermined time. If it is detected that the base station sends a NACK message, it may indicate that the base station detects data error, and the UE needs to initiate data retransmission.
  • RRC Radio
  • the base station If it is detected that the ACK message is sent by the base station, it may indicate that the base station detects the data correctly, and the UE does not need to perform retransmission.
  • the use of a scheduling-free transmission mechanism can save scheduling overhead and reduce the waiting time for users to transmit data.
  • the data transmission time of the user is random and is not uniformly scheduled by the base station. Therefore, how the base station identifies the user identity is a key problem to be solved currently.
  • the identity of the user can be distinguished by the pilot.
  • the user identity cannot be completely recognized by the pilot.
  • the pilot is only used for the temporary identity within the user's current TTI (Transmission Time Interval) and can be used for uplink channel estimation and measurement.
  • TTI Transmission Time Interval
  • the same user can randomly select different pilots to transmit in different TTIs, so that the base station can only blindly check the user's data according to the current pilot channel estimation, but cannot identify the user's identity information when detecting the data. Therefore, real-time frequency offset tracking of the UE cannot be implemented.
  • the large connection access schemes under the non-scheduling are mostly based on OFDM (Orthogonal Frequency Division Multiplexing) technology, while the OFDM system is sensitive to frequency offset, and the frequency offset will destroy the positive between subcarriers. Intercourse.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the general system considers a larger interval value when designing the subcarrier spacing.
  • the design between subcarriers will use a smaller interval value, which has higher requirements for frequency synchronization of the system.
  • the embodiment of the present invention proposes a scheme for realizing user frequency synchronization under a large connection and no scheduling.
  • the UE frequency pre-correction method is adopted to solve the frequency synchronization problem of multi-user under the unscheduled problem, and the frequency synchronization of the user is completed by the constant frequency tracking and correction at the base station.
  • the identity information of the user is carried in the data transmitted in the uplink.
  • the specific implementation process may include: the frequency offset estimation of the UE is completed by the base station, and the base station completes the frequency offset correction of the current received data before the data detection.
  • the frequency offset estimation value and the detected data are reported to the MAC (Media Access Control) layer, and the user data is parsed at the MAC layer to obtain the user identity information, and the frequency offset estimation value is filtered by the user. Feedback to the UE.
  • MAC Media Access Control
  • the UE first corrects the feedback value based on the frequency offset and then transmits the data.
  • This scheme is actually a frequency positive feedback system between the base station and the UE.
  • the base station can track the frequency offset of the user in real time, thereby improving the convergence speed and accuracy of the frequency offset.
  • the UE performs frequency offset correction before transmitting data, thereby avoiding data interference between users due to frequency offset interference, and can further improve the reliability of receiving data of the base station.
  • FIG. 2 is a schematic flowchart diagram of a frequency offset correction method according to an embodiment of the present invention. As shown in FIG. 2, the frequency offset correction method may include the following steps:
  • the base station receives data and pilot information that are uplinked by the UE.
  • the UE when transmitting data to the base station, the UE may send the data to be sent together with the pilot information to the base station.
  • the base station receives data and pilot information that the UE transmits uplink through the PUSCH channel.
  • different UEs can perform signal transmission through different subcarriers. For example, there are 32 UEs, UE1 occupies 1, 33, 65, etc. for uplink transmission, and UE2 occupies 2, 34, 66, etc. for subcarriers for uplink transmission, ..., UE 32 occupies 32, 64, 96... ...subcarriers are uplinked to ensure orthogonality between subcarriers.
  • the base station performs frequency offset estimation by using the pilot information to obtain a frequency offset estimation value.
  • the base station may perform frequency offset estimation on the UE by using the pilot information sent by the UE to obtain a frequency offset estimation value of the UE.
  • the existing method can be used for the frequency offset estimation using the pilot information, which is not limited in the embodiment of the present invention.
  • the base station performs channel estimation by using the received pilot information, calculates a phase of the pilot channel estimation, and selects a data symbol according to the phase (when the phase of the pilot channel estimation is greater than 0, the adjacent data symbol of the left side of the pilot bit is selected.
  • phase of the pilot channel estimation is less than or equal to 0, selecting a data symbol adjacent to the right of the pilot bit), and acquiring phase information caused by the frequency offset according to the data symbol; and estimating the phase according to the phase information and the pilot channel A residual phase difference is obtained; and a frequency offset value is obtained based on the residual phase difference.
  • the base station demodulates data that is uplinked by the UE according to the frequency offset estimation value.
  • the uplink transmission data of the UE may be demodulated according to the magnitude of the frequency offset estimation value.
  • the specific implementation manner of the base station performing demodulation on the uplink data of the UE according to the frequency offset estimation value may include the following steps:
  • the base station determines whether the frequency offset estimation value exceeds a preset threshold
  • the base station demodulates the uplink transmission data of the UE.
  • the base station determines the frequency offset estimation value according to the pilot information of the user, whether the frequency offset estimation value in the current TTI needs to be used for the UE may be determined according to the magnitude of the frequency offset estimation value.
  • This data demodulation Specifically, the frequency offset estimation value determined in the current TTI is compared with a preset threshold. When the frequency offset estimation value does not exceed the preset threshold, the frequency offset estimation value may be considered to be small, that is, the allowed frequency offset. In the range, the base station can directly demodulate the data transmitted by the UE in the uplink without performing frequency offset correction before demodulation.
  • the preset threshold may be a threshold for performing frequency offset correction on the uplink data of the UE, that is, when the frequency offset estimation value exceeds the preset threshold, frequency offset correction is needed; when the frequency offset estimation value is not When the preset threshold is exceeded, it is not necessary to perform frequency offset correction on the data.
  • the specific implementation manner of the base station performing demodulation on the uplink data of the UE according to the frequency offset estimation value may include the following steps:
  • the base station determines whether the frequency offset estimation value exceeds a preset threshold
  • the base station uses the frequency offset estimation value to perform frequency offset correction on the uplink uplink data of the UE;
  • the base station demodulates the frequency offset corrected data.
  • the frequency offset estimation value determined in the current TTI is compared with a preset threshold.
  • a preset threshold it may be stated that the frequency offset estimation value is large, that is, exceeds the allowed value.
  • Frequency offset range at this time, the base station needs to use the frequency offset estimation value to first transmit the uplink data of the UE in the current TTI. The frequency offset correction is performed, and the data after the frequency offset correction is demodulated. Therefore, the problem that the demodulation fails due to the excessive frequency offset of the uplink data transmitted by the UE can be effectively avoided.
  • the base station uploads the frequency offset estimation value and the demodulated data to the MAC layer.
  • the base station parses the demodulated data at the MAC layer to obtain identity information of the UE, and performs filtering processing on the frequency offset estimation value according to the identity information, and sends the filtered frequency offset estimation value to the UE.
  • the base station may report the frequency offset estimation value determined in the current TTI together with the demodulated data to the MAC layer in the base station.
  • the MAC layer belongs to the lower layer of the data link layer in the OSI (Open System Interconnection) model, and is a physical medium responsible for controlling and connecting the physical layer.
  • the base station performs steps 201-203 at the physical layer.
  • the base station cannot parse the data at the physical layer. Therefore, it is necessary to upload the data to the MAC layer for analysis.
  • the base station obtains the identity information of the UE by parsing the demodulated data at the MAC layer, and the identity information of the UE can uniquely identify the UE, that is, the identity information of each UE is unique, and the identity of different UEs.
  • the information is different.
  • the identity information of the UE may include, but is not limited to, at least one of a user equipment number, an IMSI (International Mobile Subscriber Identification Number), an IMEI (International Mobile Equipment Identity), and the like.
  • the MAC layer may perform filtering processing on the frequency offset estimation value reported by the base station according to the identity information of the UE, and then send the filtered frequency offset estimation value to the UE. .
  • the filtered frequency offset estimation value may be quantized before the MAC layer sends the filtered frequency offset estimation value to the UE.
  • the filtered frequency offset estimation value may be directly quantized by N bits, or may be fed back in units of minimum steps, such as a step system with a minimum step size of 2.
  • the minimum step size may depend on the maximum frequency offset value that the current system can tolerate.
  • the base station bases the identity information on the MAC layer according to the identity information.
  • the specific implementation manner of filtering the frequency offset estimation value may be:
  • the base station acquires the historical frequency offset estimation value of the UE according to the identity information at the MAC layer, and filters the frequency offset estimation value by using the historical frequency offset estimation value.
  • the MAC layer may obtain the historical frequency offset estimation value corresponding to the UE according to the identity information.
  • the historical frequency offset estimation value may be 0, or may be a frequency offset estimation value stored in the MAC layer after filtering processing for the previous time (such as in the previous TTI) of the UE. Further, the historical frequency offset estimation value may be used to filter the frequency offset estimation value reported in the current TTI to obtain the filtered frequency offset estimation value.
  • the filtered frequency offset estimation value obtained in the current TTI may be stored in the MAC layer, and the historical frequency offset estimation value may be replaced for the filtering processing operation of the UE in the next TTI.
  • the filtering processing operation in the MAC layer may adopt a conventional filtering algorithm, which is not limited in this embodiment.
  • the frequency offset estimation value is filtered, and the jitter can be eliminated as much as possible, and the stability of the frequency offset estimation value can be improved.
  • the method described in FIG. 2 may further include the following steps:
  • the base station uploads the demodulation result of the demodulated data to the MAC layer;
  • the specific implementation manner in which the base station parses the demodulated data at the MAC layer to obtain the identity information of the UE in step 205 may be:
  • the base station parses the demodulated data at the MAC layer to obtain identity information of the UE.
  • the base station reports the demodulated data and the frequency offset estimation value to the MAC, and also reports the demodulated data demodulated result.
  • the demodulation result may be a CRC (Cyclic Redundancy Check) information generated during demodulation, and is used to indicate whether the current data demodulation is successful.
  • the MAC layer analyzes the CRC information to know whether the data demodulation is successful. When the demodulation is successful, the MAC layer further parses the demodulated data to obtain the identity information of the UE, and filters and processes the frequency offset estimation value. Give the corresponding UE. When demodulation fails, the MAC layer will not be correct. The demodulated data is parsed, and the frequency offset estimation value is not filtered and transmitted. By implementing this embodiment, the frequency offset value is fed back to the UE only when the data demodulation is successful.
  • CRC Cyclic Redundancy Check
  • the specific implementation manner in which the base station sends the filtered frequency offset estimation value to the UE in the MAC layer in step 205 may be:
  • the base station sends the filtered frequency offset estimation value to the UE at a preset time at the MAC layer.
  • the CFO Carrier Frequency Offset
  • the TA Transmission Advanced
  • the base station can send the filtered frequency offset estimation value to the corresponding UE at the preset time at the MAC layer.
  • FIG. 3 is a schematic diagram of a frequency offset value feedback format disclosed in an embodiment of the present invention.
  • the feedback form of the frequency offset value is a fixed length cell, such as a total length of 8 bits.
  • R is a reserved field and its length is Mbit
  • N is the number of bits quantized by the CFO.
  • the value range of N can be [-a, a].
  • the value of a depends on the maximum frequency offset value that needs to be corrected in the system. This value is related to the application scenario of the font, such as the carrier frequency and the maximum moving speed supported by the user.
  • the specific implementation manner in which the base station sends the filtered frequency offset estimation value to the UE in the MAC layer in step 205 may be:
  • the base station adds the filtered frequency offset estimation value to the response feedback information at the MAC layer, and then sends the signal to the UE.
  • the filtered frequency offset estimation value may be quantized and sent to the UE together with the response feedback information, and the response feedback information may be ACK feedback information.
  • the frequency offset estimate CFO is fed back along with the ACK information, that is, the CFO is carried in the ACK information and transmitted together.
  • Can be in ACK A number of byte units are added to the feed structure for feeding back the CFO, wherein one byte is 8 bits, and one byte unit can feed back the CFO of one UE.
  • the feedback mode of the ACK information under the large connection may be different. For example, it may be fed back in the traditional PHICH (Physical Hybrid ARQ Indicator Channel), or may be in the PDSCH (Physical). Downlink Shared Channel, physical downlink shared channel) feedback. Regardless of the form, this embodiment adds a number of bytes to the original large connected ACK information feedback cell for feedback of the frequency offset estimate.
  • the base station may transmit the ACK information carrying the CFO in a broadcast manner or a unicast manner.
  • a special feedback format can be specifically defined to be transmitted in the downlink data channel PDSCH.
  • the PDSCH channel transmission format is previously broadcast to the users under the large connection to inform the PDSCH frequency. Domain location, demodulation information of PDSCH, etc.
  • the timing of the HARQ Hybrid Automatic Repeat reQuest
  • the user under the large connection demodulates the PDSCH according to a fixed timing to check whether the data packet carries its own ACK information and CFO information. Please refer to FIG. 4.
  • FIG. 4 shows an HARQ
  • the frequency offset value CFO is fed back together with the ACK information.
  • the number of UEs may be represented by 8 bits, where the number of UEs refers to the number of users successfully demodulated by the base station in the current TTI, that is, the number of users fed back by the ACK.
  • the UE# identity information refers to identity information of a UE that is successfully demodulated, such as the ID number of UE#. It should be noted that the identity information of each UE here is represented by 24 bits, that is, 24 bits are used to carry identity information of one UE, instead of repeated transmission 3 times.
  • the frequency offset value CFO of UE# refers to the frequency offset estimation value of UE#, and the frequency offset value CFO of each UE is represented by 8 bits, that is, the added byte in the ACK feedback information.
  • the user under the large connection can receive and parse the feedback information sent by the base station, and detect whether there is its corresponding ACK information and CFO information. If it exists, it can obtain its own frequency offset value CFO; if it does not exist, it can be explained If the base station demodulation fails, the UE can initiate data retransmission.
  • the method described in FIG. 2 may further include the following steps:
  • the base station performs a clearing process on the frequency offset estimation value after the filtering process at the MAC layer.
  • the filtered frequency offset estimation value may be cleared at the MAC layer to avoid the frequency offset in the MAC layer.
  • the value affects the frequency offset value generated when the UE transmits data next time, and the frequency offset error increases.
  • the method described in FIG. 2 may further include the following steps:
  • the base station receives the pre-corrected data and pilot information that is uplinked by the UE and uses the filtered frequency offset estimation value.
  • the UE may use the filtered frequency offset estimation value to transmit data and guidance to the UE before the next uplink transmission data.
  • the frequency information is subjected to pre-correction processing, and the pre-corrected data and pilot information are transmitted to the base station.
  • the frequency offset pre-correction is completed before the UE sends the data, which can avoid data interference between the users due to the frequency offset interference under the large connection, so as to ensure the frequency synchronization of the base station side, thereby improving the reliability of the base station receiving data. And improve the data demodulation performance of the base station.
  • FIG. 5 is a schematic diagram of a frequency offset correction method according to an embodiment of the present invention.
  • the base station can be divided into two parts, one is a multi-user detection module, and the other is a MAC layer scheduling module.
  • the user detection may be that the base station detects whether data is transmitted.
  • the frequency offset measurement may be: when the data transmission is detected, the frequency offset estimation is performed by using the pilot information transmitted together to obtain a frequency offset estimation value, and the magnitude of the frequency offset estimation value is compared with a preset threshold.
  • the data detection may be: directly demodulating the received data when the frequency offset estimation value does not exceed a preset threshold; or, when the frequency offset estimation value exceeds a preset threshold, first using the frequency offset estimation value to frequency the data. Offset correction, and then demodulate the corrected data.
  • the measured frequency offset estimation value may be reported to the MAC layer; after the data detection is completed, the demodulated data and the demodulation result (ie, the CRC information) may be reported to the MAC layer.
  • a transport block (TB) is a basic unit of data exchange between a physical layer and a MAC layer, the physical layer can transmit the demodulated data to the MAC layer through the TB block.
  • the layer may parse the demodulated data to obtain identity information of the UE; filter the frequency offset estimation value according to the identity information; and match the filtered processing
  • the estimated value is periodically sent to the user equipment UE, or fed back to the UE along with the ACK information.
  • the UE After receiving the frequency offset estimation value sent by the base station, the UE records the frequency offset estimation value, and performs frequency offset pre-correction on the data to be sent and the pilot information before transmitting the data. It can be understood that the data received by the base station each time may be the data after the UE is pre-corrected by the frequency offset.
  • the pilot information may be used to perform frequency offset estimation, obtain a frequency offset estimation value, and compare the UE according to the frequency offset estimation value.
  • the uplink transmission data is demodulated, and the frequency offset estimation value and the demodulated data are uploaded to the MAC layer together, and the demodulated data is parsed at the MAC layer to obtain the identity information of the UE, and the identity information may be obtained according to the identity information.
  • the frequency offset estimation value is filtered, and the filtered frequency offset estimation value is sent to the UE.
  • the base station parses the data at the MAC layer to obtain the identity information of the UE under the large connection free scheduling, so that the frequency offset of the user can be tracked in real time, and the convergence speed and accuracy of the frequency offset are improved.
  • the base station can receive the data after the UE performs the frequency offset pre-correction using the frequency offset value in the next data transmission, thereby avoiding data interference between users caused by the frequency offset interference, so as to ensure
  • the frequency synchronization on the base station side improves the reliability of the base station receiving data and improves the data demodulation performance of the base station.
  • FIG. 6 is a schematic flowchart diagram of another frequency offset correction method according to an embodiment of the present invention. As shown in FIG. 6, the frequency offset correction method may include the following steps:
  • the UE receives feedback information sent by the base station in downlink.
  • the feedback information sent by the base station may include the frequency offset estimation value of the UE.
  • the UE may receive feedback information that is sent by the base station in the downlink through the PHICH channel or the PDSCH channel.
  • the UE Before receiving the feedback information sent by the base station, the UE first transmits data and pilot information to the base station, and The data transmitted by the UE in the uplink carries the identity information of the UE.
  • the base station performs frequency offset estimation according to the pilot information to obtain a frequency offset estimation value. After the base station demodulates the uplink data of the UE, the frequency offset estimation value, the demodulated data, and the demodulation result may be reported to the MAC layer together.
  • the demodulated data is parsed by the MAC layer to obtain the identity information of the UE, and the reported frequency offset estimation value is filtered according to the identity information.
  • the MAC layer performs the quantization process on the filtered frequency offset estimation value and sends the frequency offset estimation value carried in the feedback information received by the UE to the filtered and quantized frequency offset estimation value.
  • the specific implementation manner that the step 601 UE receives the feedback information sent by the base station in the downlink may include the following steps:
  • the UE receives feedback information that is sent by the base station in the downlink every preset time, and the feedback information includes a frequency offset estimation value.
  • the base station may periodically feed back the frequency offset estimate CFO, which is similar to the periodic feedback manner of the TA value in LTE.
  • the base station may separately send the frequency offset estimation value, or may send it along with the TA value.
  • the feedback information received by the UE includes the TA value in addition to the frequency offset estimation value.
  • the representation of the frequency offset estimation value of the periodic feedback of the base station can be shown in FIG. 3.
  • the specific implementation manner of the UE receiving the feedback information sent by the base station in the downlink may include the following steps:
  • the UE receives the response feedback information sent by the base station, and the response feedback information carries the frequency offset estimation value.
  • the base station may send the frequency offset estimation value to the UE together with the response feedback information, and the response feedback information may be ACK feedback information.
  • a number of byte units are added to the ACK feedback information for transmitting the frequency offset estimate.
  • the ACK feedback information may include, but is not limited to, the number of successfully demodulated UEs, the identity information of each UE that is successfully demodulated, and the like.
  • the representation form that the base station sends the frequency offset estimation value together with the ACK feedback information may be as shown in FIG. 4.
  • the base station may send the ACK feedback information carrying the frequency offset estimation value in the form of broadcast signaling or unicast signaling. After receiving the ACK feedback information, each UE can check whether the packet is included. Contains its own frequency offset estimate.
  • the UE parses the feedback information to obtain a frequency offset estimation value.
  • the UE may parse the feedback information to obtain a frequency offset estimation value of the UE included in the feedback information.
  • the UE may detect whether the feedback information carries its own ACK feedback information and a frequency offset estimation value. Specifically, it may be detected whether the information of the UE is included in the feedback information, and when the identity information of the UE is included, the base station may be configured to demodulate the data sent by the UE, and the frequency offset of the UE may be acquired. estimated value.
  • the identity information of the UE it may be stated that the base station demodulates the data sent by the UE, and the feedback information does not include the frequency offset estimation value of the UE, and the UE needs to initiate data retransmission.
  • the UE performs pre-correction on the uplink transmitted data and the pilot information by using the frequency offset estimation value.
  • the frequency offset estimation value may be saved, and may be replaced with the historical frequency offset estimation value received in the UE.
  • the UE may use the frequency offset estimation value to perform frequency pre-correction processing on the uplink transmission data and the pilot information, so as to ensure the frequency synchronization of the user and avoid the data between the users caused by the frequency offset interference. interference.
  • the UE sends the pre-corrected data and pilot information to the base station.
  • the UE may send the pre-corrected data and the pilot information to the base station, so that the data received by the base station is subjected to frequency offset.
  • the interference effect is greatly reduced, which helps to improve data demodulation performance.
  • the specific implementation manner of the step 603 that the UE uses the frequency offset estimation value to perform pre-correction on the uplink transmission data and the pilot information may include the following steps:
  • the UE performs framing processing on the data to be uplink and the pilot information to obtain frame data.
  • the UE performs frequency pre-correction on the frame data by using the frequency offset estimation value to obtain first data
  • the UE performs carrier modulation on the first data to obtain second data
  • Step 604 The UE sends the pre-corrected data and pilot information to a specific implementation of the base station.
  • the formula can be:
  • the UE transmits the second data to the base station.
  • the framing may be combining data into data that can be transmitted on the channel, and the data transmitted by the base station and the UE on the uplink and downlink are transmitted in the form of “frames”.
  • the data to be transmitted and the pilot information are combined into one frame of data, and the frame data is pre-corrected by using the frequency offset estimation value, and the pre-corrected data is used as the first data, and then the first data is subjected to carrier modulation. And the carrier-modulated first data is used as the second data, and is sent to the base station.
  • the specific implementation manner of the step 604 that the UE sends the pre-corrected data and the pilot information to the base station may include the following steps:
  • the UE transmits the pre-corrected data and pilot information to the base station by using a single antenna transmission mode or a multi-antenna transmission mode.
  • the UE may transmit the pre-corrected data and pilot information to the base station by using a single TB block single antenna transmission transmission mode, or may use the multi-stream multi-antenna transmission transmission mode to pre-correct the data and
  • the pilot information is sent to the base station, which is not limited in this embodiment.
  • FIG. 7 is a schematic diagram of a principle of single antenna transmission based on OFDM according to an embodiment of the present invention.
  • the data packets of large connected users are relatively small, so the UE can adopt a transmission mode of single TB block single antenna transmission.
  • the TB block is coded and then rate matched to match the size of the TB block with the physical resource carrying capacity. Interleaving scrambling is then performed to randomize the interference signal.
  • the data is modulated, and then subjected to DFT (Discrete Fourier Transform) processing, and framing processing with the pilot information to obtain frame data.
  • DFT Discrete Fourier Transform
  • the frame data is subjected to IFFT (Inverse Fast Fourier Transform) processing, and the frequency pre-correction module performs frequency pre-correction on the output data of the IFFT module, and then performs pre-corrected data through the carrier modulation module. Frequency offset.
  • the CP Cyclic Prefix
  • the input data of the frequency pre-correction module is the output data of the IFFT module, and the performance formula is as follows:
  • is the frequency offset estimation value fed back by the base station, and the value range is -a ⁇ ⁇ ⁇ a, and the value of a determines the maximum frequency offset value that the user needs to correct in the large connection scenario.
  • k is the subcarrier number
  • l is the number of symbols
  • N is the total number of subcarriers.
  • S'(k,l) is the data after IFFT transformation
  • S(k,l) is the data after frequency pre-correction. After the frequency pre-correction process, carrier modulation and CP operation are required, and finally mapped to the antenna for transmission.
  • carrier modulation is actually a frequency offset operation, that is, the UE needs to shift half of the subcarriers in the frequency domain before transmission in order to avoid the DC effect of the multicarrier. Its implementation formula is as follows:
  • S''(k, l) is carrier-modulated data. It can be known from equations (1) and (2) that the frequency pre-correction module and the carrier modulation module are both frequency offset operations, which can be combined into one processing module, and the above two formulas can be combined, namely:
  • FIG. 8 is a schematic diagram of a principle of multi-antenna transmission based on OFDM according to an embodiment of the present invention.
  • the data of each path is subjected to layer mapping after DFT change, and then MIMO (Multiple-Input Multiple-Output) precoding processing is performed through the codebook.
  • MIMO Multiple-Input Multiple-Output
  • the codeword stream needs to be mapped to different transmitting antennas, so layer mapping and MIMO precoding are needed.
  • the precoding is followed by framing with the pilot information to obtain frame data.
  • the frequency pre-correction module uses the same processing operation as the single antenna for each antenna, and transmits it to each antenna through carrier modulation and CP operation respectively.
  • the method described in FIG. 6 can also be applied to a traditional communication system based on base station scheduling, such as GSM (Global System for Mobile Communication), CDMA (Code Division Multiple Access), code division multiple access (CDMA). ) System, etc. That is, before the user sends data, it is necessary to perform frequency offset pre-correction on the data. In this way, the data received by the base station is greatly reduced by the interference of the frequency offset, which helps to improve the data demodulation performance.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multiple Access
  • CDMA code division multiple access
  • the frequency offset value can be used to perform frequency offset pre-correction before being sent to the base station, which can avoid data interference between users due to frequency offset interference, so as to ensure frequency synchronization on the base station side, and then Improve the reliability of the base station receiving data, and improve the data demodulation performance of the base station.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present invention, which may be used to perform a frequency offset correction method disclosed in an embodiment of the present invention.
  • the base station may include:
  • the receiving unit 901 is configured to receive data and pilot information that are uplinked by the user equipment UE.
  • the receiving unit 901 is specifically configured to receive data and pilot information that are uplinked by the UE through the PUSCH channel.
  • the frequency offset estimation unit 902 is configured to perform frequency offset estimation by using the pilot information to obtain a frequency offset estimation value.
  • the demodulation unit 903 is configured to demodulate data that is uplinked by the UE according to the frequency offset estimation value.
  • the demodulation unit 903 demodulates the uplink data of the UE according to the frequency offset estimation value, and the specific implementation manner may be:
  • the demodulation unit 903 determines whether the frequency offset estimation value exceeds a preset threshold, and demodulates the uplink transmission data of the UE when the frequency offset estimation value does not exceed the preset threshold.
  • the demodulation unit 903 demodulates the uplink data of the UE according to the frequency offset estimation value, and the specific implementation manner may be:
  • the demodulation unit 903 determines whether the frequency offset estimation value exceeds a preset threshold. When the frequency offset estimation value exceeds a preset threshold, the frequency offset estimation is used to perform frequency offset correction on the uplink data of the UE, and the frequency offset correction is performed. The post data is demodulated.
  • the preset threshold may be a threshold for performing frequency offset correction on the uplink data of the UE, that is, when the frequency offset estimation value exceeds the preset threshold, frequency offset correction is needed; when the frequency offset estimation value is not When the preset threshold is exceeded, it is not necessary to perform frequency offset correction on the data.
  • the uploading unit 904 is configured to upload the frequency offset estimated value and the demodulated data to the media access control MAC layer.
  • the processing unit 905 is configured to parse the demodulated data at the MAC layer to obtain identity information of the UE, and perform filtering processing on the frequency offset estimation value according to the identity information, and send the filtered frequency offset estimation value to the UE.
  • the identity information of the UE may uniquely identify the UE, that is, the identity information of each UE is unique, and the identity information of different UEs is different.
  • the identity information of the UE may include, but is not limited to, at least one of a user equipment number, an IMSI, an IMEI, and the like.
  • the processing unit 905 may perform quantization processing on the filtered frequency offset estimation value before transmitting the filtered frequency offset estimation value to the UE.
  • the filtered frequency offset estimation value may be directly quantized by Nbit, or may be fed back in units of minimum steps.
  • the specific implementation manner that the processing unit 905 performs filtering processing on the frequency offset estimation value according to the identity information by the processing unit 905 may be:
  • the processing unit 905 acquires the historical frequency offset estimation value of the UE according to the identity information at the MAC layer, and performs filtering processing on the frequency offset estimation value by using the historical frequency offset estimation value.
  • the uploading unit 904 is further configured to upload the demodulation result of the demodulated data to the MAC layer.
  • the specific implementation manner that the processing unit 905 parses the demodulated data at the MAC layer to obtain the identity information of the UE may be:
  • the processing unit 905 parses the demodulated data at the MAC layer to obtain identity information of the UE.
  • the specific implementation manner that the processing unit 905 sends the filtered frequency offset estimation value to the UE in the MAC layer may be:
  • the processing unit 905 sends the filtered frequency offset estimation value to the UE at the preset time at the MAC layer.
  • the specific implementation manner that the processing unit 905 sends the filtered frequency offset estimation value to the UE in the MAC layer may be:
  • the processing unit 905 adds the filtered frequency offset estimation value to the response feedback information at the MAC layer. Send to the UE afterwards.
  • the receiving unit 901 may be further configured to receive the frequency offset estimation value of the uplink transmission of the UE by using the filtering process. Pre-corrected data and pilot information are performed.
  • the base station shown in FIG. 9 may further include a clearing unit (not shown), where:
  • the clearing unit is configured to perform zeroing on the frequency offset estimation value after the filtering process at the MAC layer.
  • the frequency offset value in the MAC layer can be prevented from affecting the frequency offset value generated when the UE transmits data next time, and the frequency offset error is increased.
  • the base station parses the data at the MAC layer to obtain the identity information of the UE under the large connection free scheduling, thereby realizing real-time tracking of the user frequency offset and improving the convergence of the frequency offset. Speed and accuracy.
  • the base station feeds back the frequency offset value to the UE, it can receive the data after the UE performs the frequency offset pre-correction using the frequency offset value in the next data transmission, thereby avoiding data interference between users caused by the frequency offset interference, so as to ensure
  • the frequency synchronization on the base station side improves the reliability of the base station receiving data and improves the data demodulation performance of the base station.
  • FIG. 10 is a schematic structural diagram of another base station according to an embodiment of the present invention, which may be used to perform a frequency offset correction method disclosed in an embodiment of the present invention.
  • the base station 1000 may include at least one processor 1001, such as a CPU (Central Processing Unit), at least one communication interface 1002, a memory 1003, and the like. Among them, these components can be communicatively connected through one or more communication buses 1004.
  • processor 1001 such as a CPU (Central Processing Unit)
  • communication interface 1002 such as a CPU (Central Processing Unit)
  • memory 1003 such as a central processing Unit
  • these components can be communicatively connected through one or more communication buses 1004.
  • the structure of the base station 1000 shown in FIG. 10 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may also include more than the illustration. Or fewer parts, or combine some parts, or different parts. among them:
  • the communication interface 1002 may include a wired interface, a wireless interface, etc. Used to communicate with peers such as the user equipment UE.
  • the memory 1003 may be a high speed RAM memory, or may be a non-volatile memory, such as at least one disk memory.
  • the memory 1003 can also optionally be at least one storage device located remotely from the aforementioned processor 1001.
  • the application 100, the communication interface module, the data, and the like may be included in the memory 1003, which is not limited in the embodiment of the present invention.
  • the processor 1001 can be used to call an application stored in the memory 1003 to perform the following operations:
  • the trigger communication interface 1002 receives data and pilot information that are uplinked by the user equipment UE;
  • the demodulated data is parsed at the MAC layer to obtain the identity information of the UE, and the frequency offset estimation value is filtered according to the identity information, and the triggering communication interface 1002 sends the filtered frequency offset estimation value to the UE.
  • the specific implementation manner of the processor 1001 filtering the frequency offset estimation value according to the identity information by the processor 1001 may be:
  • the MAC layer obtains the historical frequency offset estimation value of the UE stored in the memory 1003 according to the identity information, and performs filtering processing on the frequency offset estimation value by using the historical frequency offset estimation value.
  • processor 1001 may also invoke an application stored in the memory 1003 and perform the following operations:
  • the specific implementation manner in which the processor 1001 parses the demodulated data at the MAC layer to obtain the identity information of the UE may be:
  • the demodulated data is parsed at the MAC layer to obtain identity information of the UE.
  • the processor 1001 triggers the communication interface 1002 to filter at the MAC layer.
  • the specific implementation manner that the frequency offset estimation value after the wave processing is sent to the UE may be:
  • the MAC layer triggering communication interface 1002 transmits the filtered frequency offset estimation value to the UE at a preset time.
  • the specific implementation manner in which the processor 1001 sends the filter-processed frequency offset estimation value to the UE in the MAC layer triggering communication interface 1002 may be:
  • the MAC layer triggering communication interface 1002 adds the filtered frequency offset estimation value to the response feedback information and transmits it to the UE.
  • processor 1001 may also invoke an application stored in the memory 1003 and perform the following operations:
  • the trigger communication interface 1002 receives the pre-corrected data and pilot information of the UE using the frequency offset estimation value after the filtering process.
  • processor 1001 may also invoke an application stored in the memory 1003 and perform the following operations:
  • the frequency offset estimation value after the filtering process is cleared at the MAC layer.
  • the base station introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the frequency offset correction method introduced in conjunction with FIG. 2 of the present invention.
  • the base station parses the data at the MAC layer to obtain the identity information of the UE under the large connection free scheduling, so that the frequency offset of the user can be tracked in real time, and the convergence of the frequency offset is improved. Speed and accuracy.
  • the base station can receive the data after the UE performs the frequency offset pre-correction using the frequency offset value in the next data transmission, thereby avoiding data interference between users caused by the frequency offset interference, so as to ensure
  • the frequency synchronization on the base station side improves the reliability of the base station receiving data and improves the data demodulation performance of the base station.
  • FIG. 11 is a schematic structural diagram of a UE disclosed in an embodiment of the present invention, which may be used to perform a frequency offset correction method disclosed in an embodiment of the present invention.
  • the UE may include:
  • the receiving unit 1101 is configured to receive feedback information sent by the base station in downlink.
  • the feedback information may include a frequency offset estimation value of the UE.
  • the receiving unit 1101 may be specifically configured to receive feedback information that is sent by the base station in the downlink through the PHICH channel or the PDSCH channel.
  • the specific implementation manner in which the receiving unit 1101 receives the feedback information sent by the base station in the downlink may be:
  • the receiving unit 1101 receives feedback information that is sent by the base station in the downlink every preset time, and the feedback information includes a frequency offset estimation value.
  • the specific implementation manner in which the receiving unit 1101 receives the feedback information sent by the base station in the downlink may be:
  • the receiving unit 1101 receives the response feedback information sent by the base station, and the response feedback information carries the frequency offset estimation value.
  • the parsing unit 1102 is configured to parse the feedback information to obtain a frequency offset estimation value.
  • the correcting unit 1103 is configured to perform pre-correction on the uplink transmission data and the pilot information by using the frequency offset estimation value.
  • the UE may save the frequency offset estimation value, and may replace the historical frequency offset estimation value received by the UE in the previous time.
  • the correcting unit 1103 can perform frequency pre-correction processing on the uplink transmitted data and the pilot information by using the frequency offset estimation value, so as to ensure the frequency synchronization of the user, and avoid the interference between the users due to the frequency offset interference. Data interference.
  • the sending unit 1104 is configured to send the pre-corrected data and pilot information to the base station.
  • the sending unit 1104 may send the pre-corrected data and the pilot information to the base station, so that the base station receives the The data is greatly reduced by the interference of the frequency offset, which helps to improve the data demodulation performance.
  • the sending unit 1104 sends the pre-corrected data and pilot information.
  • the specific implementation method sent to the base station may be:
  • the transmitting unit 1104 transmits the pre-corrected data and pilot information to the base station by using a single antenna transmission mode or a multi-antenna transmission mode.
  • FIG. 12 is a schematic structural diagram of another UE disclosed in the embodiment of the present invention, which may be used to perform the frequency offset correction method disclosed in the embodiment of the present invention.
  • the UE shown in FIG. 12 is further optimized based on the UE shown in FIG. Compared with the UE shown in FIG. 11, the correction unit 1103 in the UE shown in FIG. 12 may include:
  • the framing sub-unit 1103a is configured to perform framing processing on the data to be uplink and the pilot information to obtain frame data.
  • a pre-correction sub-unit 1103b configured to perform frequency pre-correction on the frame data by using the frequency offset estimation value to obtain first data
  • a modulation subunit 1103c configured to perform carrier modulation on the first data to obtain second data
  • the sending unit 1104 is specifically configured to send the second data to the base station.
  • the frequency offset value may be used to perform frequency offset pre-correction before transmitting the data to the base station. It can avoid data interference between users due to frequency offset interference, so as to ensure frequency synchronization on the base station side, thereby improving the reliability of receiving data of the base station and improving the data demodulation performance of the base station.
  • FIG. 13 is a schematic structural diagram of another UE according to an embodiment of the present disclosure, which may be used to perform a frequency offset correction method disclosed in an embodiment of the present invention.
  • the UE 1300 may include at least one processor 1301, such as a CPU, at least one communication interface 1302, a memory 1303, and the like. Among these, these components can be communicatively coupled via one or more communication buses 1304. It can be understood by those skilled in the art that the structure of the UE 1300 shown in FIG. 13 does not constitute a limitation on the embodiment of the present invention. It may be a bus-shaped structure or a star-shaped structure, and may include more than the figure or Fewer parts, or a combination of some parts, or different parts. among them:
  • the communication interface 1302 may include a wired interface, a wireless interface, and the like, and may be used to communicate with a peer such as a base station.
  • the memory 1303 may be a high speed RAM memory, or may be a non-volatile memory, such as at least one disk memory.
  • the memory 1303 can also optionally be at least one storage device located remotely from the aforementioned processor 1301.
  • the operating system, the application program, the communication interface module, the data, and the like may be included in the memory 1303, which is not limited by the embodiment of the present invention.
  • the processor 1301 may be configured to call an application stored in the memory 1303 to perform the following operations:
  • the trigger communication interface 1302 receives feedback information sent by the base station in downlink
  • the trigger communication interface 1302 transmits the pre-corrected data and pilot information to the base station.
  • the specific implementation manner of the processor 1301 triggering the communication interface 1302 to receive the feedback information sent by the base station in the downlink may be:
  • the trigger communication interface 1302 receives feedback information that is sent by the base station in the downlink every preset time, and the feedback information includes a frequency offset estimation value.
  • the feedback information includes the response feedback information
  • the specific implementation manner of the processor 1301 triggering the communication interface 1302 to receive the feedback information sent by the base station in the downlink may be:
  • the trigger communication interface 1302 receives the response feedback information sent by the base station, and the response feedback information carries the frequency offset estimation value.
  • the specific implementation manner in which the processor 1301 uses the frequency offset estimation value to perform pre-correction on the uplink transmission data and the pilot information may be:
  • the specific implementation manner in which the processor 1301 triggers the communication interface 1302 to send the pre-corrected data and the pilot information to the base station may be:
  • the trigger communication interface 1302 transmits the second data to the base station.
  • the specific implementation manner in which the processor 1301 triggers the communication interface 1302 to send the pre-corrected data and the pilot information to the base station may be:
  • the trigger communication interface 1302 transmits the pre-corrected data and pilot information to the base station by using a single antenna transmission method or a multi-antenna transmission method.
  • the UE introduced in the embodiment of the present invention may implement some or all of the processes in the embodiment of the frequency offset correction method introduced in conjunction with FIG. 6 of the present invention.
  • the frequency offset value may be used to perform frequency offset pre-correction before transmitting the data to the base station, which may be avoided.
  • the data interference between users is caused by the interference of the frequency offset to ensure the frequency synchronization of the base station side, thereby improving the reliability of the data received by the base station and improving the data demodulation performance of the base station.
  • FIG. 14 is a schematic structural diagram of a frequency offset correction system according to an embodiment of the present invention.
  • the frequency offset correction system may include a base station 1401 and at least one UE 1402 (e.g., UE1, UE2, ..., UEn).
  • the specific functions of the base station 1401 and the UE 1402 may refer to the content described in the foregoing various embodiments, and details are not described herein again.
  • the frequency offset correction system shown in FIG. 14 can be used to perform the frequency offset correction method described in FIG. 2 or FIG.
  • the base station and the UE jointly perform frequency offset correction, and performing frequency offset estimation and real-time tracking on the base station side, thereby improving convergence rate of the frequency offset and Precision.
  • the base station feeds back the frequency offset value to the UE, and the UE completes the frequency offset pre-correction before the next data transmission, thereby avoiding data interference between the users due to the frequency offset interference, so as to ensure the frequency synchronization of the base station side, thereby improving the base station receiving data. Reliability, and improve the data demodulation performance of the base station.
  • the unit or subunit in the base station or the UE in the embodiment of the present invention may be combined, divided, and deleted according to actual needs.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read Only Memory
  • OTPROM One-Time Programmable Read-Only Memory
  • EEPROM Electronically-Erasable Programmable Read-Only Memory
  • CD-ROM Compact Disc Read-Only Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频偏校正方法及相关设备,其中,该方法包括:接收用户设备UE上行传输的数据和导频信息;利用该导频信息进行频偏估计,以获得频偏估计值;根据该频偏估计值,对UE上行传输的所述数据进行解调;将该频偏估计值和解调后的数据上传至媒体访问控制MAC层;在MAC层解析该解调后的数据,以获得UE的身份信息,并根据该身份信息对该频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至UE。实施本发明实施例,可以在多用户免调度下实现对用户的频偏进行实时跟踪。

Description

一种频偏校正方法及相关设备 技术领域
本发明涉及通信技术领域,尤其涉及一种频偏校正方法及相关设备。
背景技术
随着物联网技术的不断发展,传统的无线通信系统已逐渐扩展到机器间的通信应用上,即机器类通信(Machine-Type Communication,MTC),其具有传输包小、传输时延不敏感、用户数目庞大等特点。目前,已将MTC业务作为5G(The 5th Generation Mobile Communication,第五代移动通信)重要的业务研究场景之一,其适用于5G标准的大连接通信场景。对于大连接通信系统,如果仍采用传统通信业务基于基站调度的话,则用户的调度开销将急剧增加。为了降低大连接场景下的用户上行调度开销,考虑到大连接下用户数目虽然多,但用户发包的频度不高,因此在大连接下采用免调度机制。即有别于传统的基于基站调度,用户在PUSCH(Physical Uplink Shared Channel,物理上行共享信道)上发送数据前无需预先获取基站的调度指示即可直接发送。然而,由于大连接下的用户数目比较多但导频数目有限,用户的身份识别已不能通过导频来区分。因此,基站在对用户发送的数据进行检测时不能识别用户身份,导致用户的测量信息在基站中失效,例如,用户的定时跟踪、频偏跟踪在基站中无法实施。传统的无线网络,用户的频率同步是在基站进行不断的频率跟踪和校正完成的。但在免调度的大连接通信系统下,由于基站不能识别用户身份,因此无法对用户的频偏进行实时跟踪。
发明内容
本发明实施例公开了一种频偏校正方法及相关设备,能够在多用户免调度下对用户的频偏进行实时跟踪。
本发明实施例第一方面公开了一种频偏校正方法,包括:
接收用户设备UE上行传输的数据和导频信息;
利用所述导频信息进行频偏估计,以获得频偏估计值;
根据所述频偏估计值,对所述UE上行传输的所述数据进行解调;
将所述频偏估计值和解调后的数据上传至媒体访问控制MAC层;
在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,并根据所述身份信息对所述频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至所述UE。即,在大连接免调度下基站在MAC层解析数据获得UE的身份信息,从而可以实现对用户的频偏进行实时跟踪,提高频偏的收敛速度和精度。
结合本发明实施例第一方面,在本发明实施例第一方面的第一种可能的实施方式中,所述在所述MAC层根据所述身份信息对所述频偏估计值进行滤波处理,包括:
在所述MAC层根据所述身份信息获取所述UE的历史频偏估计值,并利用所述历史频偏估计值对所述频偏估计值进行滤波处理。其中,该历史频偏估计值可以是针对该UE的前一次滤波处理后存储在MAC层中的频偏估计值。对频偏估计值进行滤波处理,可以尽量消除抖动,提高频偏估计值的稳定性。
结合本发明实施例第一方面或第一方面的第一种可能的实施方式,在本发明实施例第一方面的第二种可能的实施方式中,所述方法还包括:
将解调所述数据的解调结果上传至所述MAC层;
其中,所述在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,包括:
当所述解调结果为解调成功时,在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息。也即是说,只有在数据解调成功时才将频偏值反馈给UE。
结合本发明实施例第一方面或第一方面的第一种或第二种可能的实施方 式,在本发明实施例第一方面的第三种可能的实施方式中,所述在所述MAC层将滤波处理后的频偏估计值发送至所述UE,包括:
在所述MAC层将滤波处理后的频偏估计值在预设时刻发送至所述UE。即将频偏估计值随信令周期性发送值UE。
结合本发明实施例第一方面或第一方面的第一种或第二种可能的实施方式,在本发明实施例第一方面的第四种可能的实施方式中,所述在所述MAC层将滤波处理后的频偏估计值发送至所述UE,包括:
在所述MAC层将滤波处理后的频偏估计值添加至应答反馈信息中后发送至所述UE。即将频偏估计值携带在应答反馈信息中一并发送。
结合本发明实施例第一方面或第一方面的第一种至第四种中任一种可能的实施方式,在本发明实施例第一方面的第五种可能的实施方式中,所述方法还包括:
接收所述UE上行传输的利用所述滤波处理后的频偏估计值进行预校正后的数据和导频信息。即在UE发送数据前完成频偏预校正,可以避免大连接下因频偏干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而可以提高基站接收数据的可靠性,且提升基站的数据解调性能。
结合本发明实施例第一方面或第一方面的第一种至第五种中任一种可能的实施方式,在本发明实施例第一方面的第六种可能的实施方式中,所述方法还包括:
在所述MAC层对所述滤波处理后的频偏估计值进行清零处理。这样可以避免MAC层中的频偏值对UE下一次传输数据时所产生的频偏值进行滤波时造成影响,而使得频偏误差增大。
本发明实施例第二方面公开了一种频偏校正方法,包括:
接收基站下行发送的反馈信息;
解析所述反馈信息,以获得频偏估计值;
利用所述频偏估计值对待上行传输的数据和导频信息进行预校正;
将预校正后的数据和导频信息发送至所述基站。也即是说,当UE接收到基站反馈的频偏值后,在下一次发数据前可以利用该频偏值进行频偏预校正后再发送至基站,可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而可以提高基站接收数据的可靠性,且提升基站的数据解调性能。
结合本发明实施例第二方面,在本发明实施例第二方面的第一种可能的实施方式中,所述接收基站下行发送的反馈信息,包括:
接收基站每隔预设时间下行发送的反馈信息,所述反馈信息包括频偏估计值。即基站可以周期性下发频偏估计值。
结合本发明实施例第二方面,在本发明实施例第二方面的第二种可能的实施方式中,所述反馈信息包括应答反馈信息,所述接收基站下行发送的反馈信息,包括:
接收基站下行发送的所述应答反馈信息,所述应答反馈信息中携带有频偏估计值。即基站可以将频偏估计值携带在应答反馈信息中进行发送。
结合本发明实施例第二方面或第二方面的第一种或第二种可能的实施方式,在本发明实施例第二方面的第三种可能的实施方式中,所述利用所述频偏估计值对待上行传输的数据和导频信息进行预校正,包括:
将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
利用所述频偏估计值对所述帧数据进行频率预校正,以获得第一数据;
对所述第一数据进行载波调制,以获得第二数据;
其中,所述将预校正后的数据和导频信息发送至所述基站,包括:
将所述第二数据发送至所述基站。
结合本发明实施例第二方面或第二方面的第一种至第三种中任一种可能的实施方式,在本发明实施例第二方面的第四种可能的实施方式中,所述将预校正后的数据和导频信息发送至所述基站,包括:
利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息 发送至所述基站。
本发明实施例第三方面公开了一种基站,包括:
接收单元,用于接收用户设备UE上行传输的数据和导频信息;
频偏估计单元,用于利用所述导频信息进行频偏估计,以获得频偏估计值;
解调单元,用于根据所述频偏估计值,对所述UE上行传输的所述数据进行解调;
上传单元,用于将所述频偏估计值和解调后的数据上传至媒体访问控制MAC层;
处理单元,用于在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,并根据所述身份信息对所述频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至所述UE。
结合本发明实施例第三方面,在本发明实施例第三方面的第一种可能的实施方式中,所述处理单元在所述MAC层根据所述身份信息对所述频偏估计值进行滤波处理的方式具体为:
所述处理单元在所述MAC层根据所述身份信息获取所述UE的历史频偏估计值,并利用所述历史频偏估计值对所述频偏估计值进行滤波处理。
结合本发明实施例第三方面或第三方面的第一种可能的实施方式,在本发明实施例第三方面的第二种可能的实施方式中,
所述上传单元,还用于将解调所述数据的解调结果上传至所述MAC层;
所述处理单元在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息的方式具体为:
所述处理单元当所述解调结果为解调成功时,在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息。
结合本发明实施例第三方面或第三方面的第一种或第二种可能的实施方式,在本发明实施例第三方面的第三种可能的实施方式中,所述处理单元在所述MAC层将滤波处理后的频偏估计值发送至所述UE的方式具体为:
所述处理单元在所述MAC层将滤波处理后的频偏估计值在预设时刻发送至所述UE。
结合本发明实施例第三方面或第三方面的第一种或第二种可能的实施方式,在本发明实施例第三方面的第四种可能的实施方式中,所述处理单元在所述MAC层将滤波处理后的频偏估计值发送至所述UE的方式具体为:
所述处理单元在所述MAC层将滤波处理后的频偏估计值添加至应答反馈信息中后发送至所述UE。
结合本发明实施例第三方面或第三方面的第一种至第四种中任一种可能的实施方式,在本发明实施例第三方面的第五种可能的实施方式中,
所述接收单元,还用于接收所述UE上行传输的利用所述滤波处理后的频偏估计值进行预校正后的数据和导频信息。
结合本发明实施例第三方面或第三方面的第一种至第五种中任一种可能的实施方式,在本发明实施例第三方面的第六种可能的实施方式中,所述基站还包括:
清零单元,用于在所述MAC层对所述滤波处理后的频偏估计值进行清零处理。
本发明实施例第四方面公开了一种用户设备UE,包括:
接收单元,用于接收基站下行发送的反馈信息;
解析单元,用于解析所述反馈信息,以获得频偏估计值;
校正单元,用于利用所述频偏估计值对待上行传输的数据和导频信息进行预校正;
发送单元,用于将预校正后的数据和导频信息发送至所述基站。
结合本发明实施例第四方面,在本发明实施例第四方面的第一种可能的实施方式中,所述接收单元接收基站下行发送的反馈信息的方式具体为:
所述接收单元接收基站每隔预设时间下行发送的反馈信息,所述反馈信息包括频偏估计值。
结合本发明实施例第四方面,在本发明实施例第四方面的第二种可能的实施方式中,所述反馈信息包括应答反馈信息,所述接收单元接收基站下行发送的反馈信息的方式具体为:
所述接收单元接收基站下行发送的所述应答反馈信息,所述应答反馈信息中携带有频偏估计值。
结合本发明实施例第四方面或第四方面的第一种或第二种可能的实施方式,在本发明实施例第四方面的第三种可能的实施方式中,所述校正单元包括:
组帧子单元,用于将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
预校正子单元,用于利用所述频偏估计值对所述帧数据进行频率预校正,以获得第一数据;
调制子单元,用于对所述第一数据进行载波调制,以获得第二数据;
所述发送单元具体用于将所述第二数据发送至所述基站。
结合本发明实施例第四方面或第四方面的第一种至第三种中任一种可能的实施方式,在本发明实施例第四方面的第四种可能的实施方式中,所述发送单元将预校正后的数据和导频信息发送至所述基站的方式具体为:
所述发送单元利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至所述基站。
本发明实施例第五方面公开了一种基站,包括:处理器、存储器、通信接口以及通信总线;
其中,所述存储器用于存储程序和数据;
所述通信总线用于建立所述处理器、所述存储器和所述通信接口之间的连接通信;
所述处理器用于调用所述存储器存储的程序,执行如下操作:
触发所述通信接口接收用户设备UE上行传输的数据和导频信息;
利用所述导频信息进行频偏估计,以获得频偏估计值;
根据所述频偏估计值,对所述UE上行传输的所述数据进行解调;
将所述频偏估计值和解调后的数据上传至媒体访问控制MAC层;
在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,并根据所述身份信息对所述频偏估计值进行滤波处理,触发所述通信接口将滤波处理后的频偏估计值发送至所述UE。
结合本发明实施例第五方面,在本发明实施例第五方面的第一种可能的实施方式中,所述处理器在所述MAC层根据所述身份信息对所述频偏估计值进行滤波处理的方式具体为:
在所述MAC层根据所述身份信息获取所述存储器中存储的所述UE的历史频偏估计值,并利用所述历史频偏估计值对所述频偏估计值进行滤波处理。
结合本发明实施例第五方面或第五方面的第一种可能的实施方式,在本发明实施例第五方面的第二种可能的实施方式中,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
将解调所述数据的解调结果上传至所述MAC层;
其中,所述处理器在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息的方式具体为:
当所述解调结果为解调成功时,在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息。
结合本发明实施例第五方面或第五方面的第一种或第二种可能的实施方式,在本发明实施例第五方面的第三种可能的实施方式中,所述处理器在所述MAC层触发所述通信接口将滤波处理后的频偏估计值发送至所述UE的方式具体为:
在所述MAC层触发所述通信接口将滤波处理后的频偏估计值在预设时刻发送至所述UE。
结合本发明实施例第五方面或第五方面的第一种或第二种可能的实施方式,在本发明实施例第五方面的第四种可能的实施方式中,所述处理器在所述 MAC层触发所述通信接口将滤波处理后的频偏估计值发送至所述UE的方式具体为:
在所述MAC层触发所述通信接口将滤波处理后的频偏估计值添加至应答反馈信息中后发送至所述UE。
结合本发明实施例第五方面或第五方面的第一种至第四种中任一种可能的实施方式,在本发明实施例第五方面的第五种可能的实施方式中,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
触发所述通信接口接收所述UE上行传输的利用所述滤波处理后的频偏估计值进行预校正后的数据和导频信息。
结合本发明实施例第五方面或第五方面的第一种至第五种中任一种可能的实施方式,在本发明实施例第五方面的第六种可能的实施方式中,所述处理器还用于调用所述存储器存储的程序,并执行如下操作:
在所述MAC层对所述滤波处理后的频偏估计值进行清零处理。
本发明实施例第六方面公开了一种用户设备UE,包括:处理器、存储器、通信接口以及通信总线;
其中,所述存储器用于存储程序和数据;
所述通信总线用于建立所述处理器、所述存储器和所述通信接口之间的连接通信;
所述处理器用于调用所述存储器存储的程序,执行如下操作:
触发所述通信接口接收基站下行发送的反馈信息;
解析所述反馈信息,以获得频偏估计值;
利用所述频偏估计值对待上行传输的数据和导频信息进行预校正;
触发所述通信接口将预校正后的数据和导频信息发送至所述基站。
结合本发明实施例第六方面,在本发明实施例第六方面的第一种可能的实施方式中,所述处理器触发所述通信接口接收基站下行发送的反馈信息的方式具体为:
触发所述通信接口接收基站每隔预设时间下行发送的反馈信息,所述反馈信息包括频偏估计值。
结合本发明实施例第六方面,在本发明实施例第六方面的第二种可能的实施方式中,所述反馈信息包括应答反馈信息,所述处理器触发所述通信接口接收基站下行发送的反馈信息的方式具体为:
触发所述通信接口接收基站下行发送的所述应答反馈信息,所述应答反馈信息中携带有频偏估计值。
结合本发明实施例第六方面或第六方面的第一种或第二种可能的实施方式,在本发明实施例第六方面的第三种可能的实施方式中,所述处理器利用所述频偏估计值对待上行传输的数据和导频信息进行预校正的方式具体为:
将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
利用所述频偏估计值对所述帧数据进行频率预校正,以获得第一数据;
对所述第一数据进行载波调制,以获得第二数据;
其中,所述处理器触发所述通信接口将预校正后的数据和导频信息发送至所述基站的方式具体为:
触发所述通信接口将所述第二数据发送至所述基站。
结合本发明实施例第六方面或第六方面的第一种至第三种中任一种可能的实施方式,在本发明实施例第六方面的第四种可能的实施方式中,所述处理器触发所述通信接口将预校正后的数据和导频信息发送至所述基站的方式具体为:
触发所述通信接口利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至所述基站。
本发明实施例第七方面公开了一种频偏校正系统,包括本发明实施例第三方面公开的基站以及至少一个本发明实施例第四方面公开的用户设备UE。
本发明实施例中,针对大连接下的每一个UE,当基站接收到UE上行传输的数据和导频信息时,可以利用该导频信息进行频偏估计,获得频偏估计值, 并根据该频偏估计值对UE上行传输的数据进行解调,将该频偏估计值和解调后的数据一并上传至MAC层,并在MAC层解析该解调后的数据,获得UE的身份信息,可以根据该身份信息对该频偏估计值进行滤波处理,并将滤波处理后的频偏估计值发送至UE。可见,实施本发明实施例,在大连接免调度下基站在MAC层解析数据获得UE的身份信息,从而可以实现对用户的频偏进行实时跟踪,提高频偏的收敛速度和精度。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的一种频偏校正方法的流程示意图;
图3是本发明实施例公开的一种频偏值反馈格式的示意图;
图4是本发明实施例公开的另一种频偏值反馈格式的示意图;
图5是本发明实施例公开的一种频偏校正的原理示意图;
图6是本发明实施例公开的另一种频偏校正方法的流程示意图;
图7是本发明实施例公开的一种基于OFDM的单天线发射的原理示意图;
图8是本发明实施例公开的一种基于OFDM的多天线发射的原理示意图;
图9是本发明实施例公开的一种基站的结构示意图;
图10是本发明实施例公开的另一种基站的结构示意图;
图11是本发明实施例公开的一种UE的结构示意图;
图12是本发明实施例公开的另一种UE的结构示意图;
图13是本发明实施例公开的又一种UE的结构示意图;
图14是本发明实施例公开的一种频偏校正系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例公开了一种频偏校正方法及相关设备,在大连接免调度下基站在MAC层解析数据获得UE的身份信息,从而可以实现对用户的频偏进行实时跟踪,提高频偏的收敛速度和精度。以下分别进行详细说明。
为了更好的理解本发明实施例,下面先对本发明实施例适用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种网络架构示意图。在图1所示的网络架构中,可以包括基站和多个用户设备(User Equipment,UE),如UE1、UE2、……、UEn(n为正整数)。其中,基站可以同时与多个用户设备UE进行通信连接。用户设备UE可以包括但不限于具有无线通信功能的手持设备(如移动手机、平板电脑、个人数字助理等)、车载设备、可穿戴设备(如智能手表、智能手环等)、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的移动台(Mobile Station,简称MS),终端(Terminal),终端设备(Terminal Equipment)等等。为方便描述,本申请中,简称为用户设备或UE。
本发明实施例中,图1所示的网络架构可以适用于免调度传输场景,例如大连接通信系统下的免调度场景。为了克服大连接通信系统下基于基站调度所产生的开销,本发明实施例可以在大连接通信下采用免调度机制。其中,大连接通信系统可以是指连接的用户数量达到预定值的一种通信系统。例如,5G标准组织提出大连接场景下连接数目要求每平方公里达到10^6,要求接入的用户数比现有的LTE(Long Term Evolution,长期演进)要高上千倍。免调度传输的具体过程可以为:多个UE通过随机接入的方式接入基站,经过RRC(Radio  Resource Control,无线资源控制)信令连接建立后,UE可以在PUSCH信道上按需发送数据。与传统基于基站调度不同的是,UE在PUSCH信道上发送数据前无需预先获取基站的调度指示即可直接发送。然后在预定的时间内检测基站下发的ACK/NACK(Acknowledgement/Negative Acknowledgment,确认应答/否定应答)反馈消息。如果检测到基站下发的是NACK消息,可以表明基站检测数据出错,此时UE需要发起数据重传。如果检测到基站下发的是ACK消息,可以表明基站检测数据正确,此时UE无需进行重传。采用免调度的传输机制可以节省调度开销,减少用户传输数据的等待时间。然而,用户的数据传输时间是随机的,不受基站的统一调度,因此基站如何对用户身份进行识别是当前要解决的关键问题。对于传统的基于基站调度机制,可以通过导频来对用户的身份进行区分。但由于大连接免调度下的用户数目较多,而系统中的导频数目有限,从而不能完全通过导频来对用户身份进行识别。导频只是用于用户当前TTI(Transmission Time Interval,传输时间间隔)内的临时身份,可以用于上行信道估计和测量。相同的用户在不同的TTI内可以随机选择不同的导频来发送,这样使得基站只能按当前的导频信道估计来盲检用户的数据,但无法在检测数据时识别出用户的身份信息,从而无法实现对UE进行实时频偏跟踪。
目前,免调度下的大连接接入方案大都是基于OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术,而OFDM系统对频偏很敏感,频率的偏移会破坏子载波间的正交性。为了抗频偏,一般系统在设计子载波间隔时会考虑采用较大的间隔值。但是在大连接场景下,为了保证覆盖范围,子载波间的设计会采用较小的间隔值,从而对系统的频率同步具有更高的要求。基于上述问题,本发明实施例提出了一种大连接免调度下实现用户频率同步的方案。采用基于UE频率预校正的方法来解决免调度下多用户的频率同步问题,用户的频率同步是在基站进行不断的频率跟踪和校正完成的。其中,用户的身份信息携带在上行传输的数据中。其具体的实现过程可以包括:UE的频偏估计由基站完成,并且基站在数据检测前完成本次接收数据的频偏校正。 同时将频偏估计值和检测后的数据上报给MAC(Media Access Control,媒体访问控制)层,并在MAC层解析用户数据以获得用户身份信息,并对频偏估计值按用户进行滤波后再反馈给UE。UE下次先根据频偏的反馈值进行校正后再发送数据。该方案实际上是基站与UE间的频率正反馈系统。基站可以对用户的频偏进行实时跟踪,从而提高频偏的收敛速度和精度。同时,UE在发送数据前完成频偏校正,避免了因频偏的干扰导致用户间的数据干扰,可以进一步提高基站接收数据的可靠性。
基于图1所示的网络架构,本发明实施例公开了一种频偏校正方法。请参阅图2,图2是本发明实施例公开的一种频偏校正方法的流程示意图。如图2所示,该频偏校正方法可以包括以下步骤:
201、基站接收UE上行传输的数据和导频信息。
本发明实施例中,针对每一个UE,UE在向基站上行发送数据时,可以将待发送的数据与导频信息一并发送至基站。具体的,基站接收UE通过PUSCH信道上行传输的数据和导频信息。在OFDM系统下,不同UE可以通过不同的子载波进行信号传输。例如:有32个UE,UE1占用1、33、65……等子载波进行上行传输,UE2占用2、34、66……等子载波进行上行传输,……,UE32占用32、64、96……等子载波进行上行传输,从而保证子载波间的正交性。
202、基站利用该导频信息进行频偏估计,以获得频偏估计值。
本发明实施例中,基站可以利用UE发送的导频信息对该UE进行频偏估计,以获得该UE的频偏估计值。利用导频信息进行频偏估计可以采用现有的方法,本发明实施例不作限定。例如,基站利用接收到的导频信息进行信道估计,计算导频信道估计的相位;根据该相位选择数据符号(当导频信道估计的相位大于0时,选择导频位左边相邻的数据符号;当导频信道估计的相位小于或等于0时,选择导频位右边相邻的数据符号),并根据该数据符号获取频偏引起的相位信息;根据该相位信息和导频信道估计的相位获得残余相位差;并根据该残余相位差获取频偏值。
203、基站根据该频偏估计值,对UE上行传输的数据进行解调。
本发明实施例中,当基站利用导频信息估算出频偏估计值时,可以根据该频偏估计值的大小,来对UE上行传输的数据进行解调。
作为一种可选的实施方式,步骤203基站根据该频偏估计值,对UE上行传输的数据进行解调的具体实施方式可以包括以下步骤:
21)基站判断该频偏估计值是否超过预设阈值;
22)当该频偏估计值未超过预设阈值时,基站对UE上行传输的数据进行解调。
在该实施方式中,当基站根据用户的导频信息确定出频偏估计值后,可以根据该频偏估计值的大小判断是否需要将本次TTI内的频偏估计值用于对该UE的本次数据解调。具体地,将本次TTI内确定的频偏估计值与预设阈值进行比较,当该频偏估计值不超过预设阈值时,可以认为该频偏估计值不大,即在允许的频偏范围内,此时基站可以直接对UE上行传输的数据进行解调,而无需在解调前进行频偏校正。其中,该预设阈值可以为需要对UE上行传输的数据进行频偏校正的临界值,即当频偏估计值超过该预设阈值时,需要对数据进行频偏校正;当频偏估计值未超过该预设阈值时,可以无需对数据进行频偏校正。
作为一种可选的实施方式,步骤203基站根据该频偏估计值,对UE上行传输的数据进行解调的具体实施方式可以包括以下步骤:
23)基站判断该频偏估计值是否超过预设阈值;
24)当该频偏估计值超过预设阈值时,基站利用该频偏估计值对UE上行传输的数据进行频偏校正;
25)基站对频偏校正后的数据进行解调。
在该实施方式中,将本次TTI内确定的频偏估计值与预设阈值进行比较,当该频偏估计值超过预设阈值时,可以说明该频偏估计值较大,即超出允许的频偏范围,此时基站需要利用该频偏估计值对本次TTI内UE上行传输的数据先 进行频偏校正,再对频偏校正后的数据进行解调。从而可以有效避免因UE上行传输的数据频偏过大而造成解调失败的问题。
204、基站将该频偏估计值和解调后的数据上传至MAC层。
205、基站在MAC层解析该解调后的数据,以获得UE的身份信息,并根据该身份信息对该频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至UE。
本发明实施例中,基站可以将本次TTI内确定的频偏估计值连同解调后的数据一并上报给基站中的MAC层。其中,MAC层属于OSI(Open System Interconnection,开放式通信系统互联)模型中数据链路层下层子层,为负责控制与连接物理层的物理介质。基站是在物理层执行步骤201~203的,然而基站在物理层并不能对数据进行解析,所以需要将数据上传至MAC层来进行解析。
本发明实施例中,基站在MAC层通过对解调后的数据进行解析来获取UE的身份信息,UE的身份信息可以唯一标识UE,即每一个UE的身份信息是唯一的,不同UE的身份信息是不同的。UE的身份信息可以包括但不限于用户设备号、IMSI(International Mobile Subscriber Identification Number,国际移动用户识别码)、IMEI(International Mobile Equipment Identity,国际移动设备标识)等中的至少一种。当基站在MAC层获取到UE的身份信息后,可以在MAC层根据UE的身份信息对基站上报的频偏估计值按用户进行滤波处理,然后将滤波处理后的频偏估计值下发给UE。
作为一种可选的实施方式,在MAC层将滤波处理后的频偏估计值下发给UE之前,可以对滤波处理后的频偏估计值进行量化处理。具体的,可以将滤波处理后的频偏估计值直接按N比特(bit)进行量化,或者按最小步长的单位进行反馈,如最小步长为2的步进制。其中,最小步长可以取决于当前系统能够容忍的最大频偏值。
作为一种可选的实施方式,步骤205中基站在MAC层根据该身份信息对该 频偏估计值进行滤波处理的具体实施方式可以为:
基站在MAC层根据该身份信息获取UE的历史频偏估计值,并利用历史频偏估计值对该频偏估计值进行滤波处理。
在该实施方式中,针对任一个UE,当获取到该UE的身份信息后,可以在MAC层根据该身份信息获取该UE对应的历史频偏估计值。其中,该历史频偏估计值可以是0,也可以是针对该UE的前一次(如前一个TTI内)滤波处理后存储在MAC层中的频偏估计值。进一步地,可以利用该历史频偏估计值对本次TTI内上报的频偏估计值进行滤波处理,以得到滤波处理后的频偏估计值。此外,可以将本次TTI内得到的滤波处理后的频偏估计值保存在MAC层,可以替换掉历史频偏估计值,用于下一TTI内对该UE的滤波处理操作。MAC层中的滤波处理操作可以采用传统的滤波算法,该实施方式不作限定。通过实施该实施方式,对频偏估计值进行滤波处理,可以尽量消除抖动,提高频偏估计值的稳定性。
作为一种可选的实施方式,在执行步骤205之前,图2所描述的方法还可以包括以下步骤:
26)基站将解调数据的解调结果上传至MAC层;
其中,步骤205中基站在MAC层解析该解调后的数据,以获得UE的身份信息的具体实施方式可以为:
当该解调结果为解调成功时,基站在MAC层解析该解调后的数据,以获得UE的身份信息。
在该实施方式中,基站向MAC上报解调后的数据以及频偏估计值的同时,还将解调数据的解调结果一并进行上报。其中,解调结果可以是解调时生成的CRC(Cyclic Redundancy Check,循环冗余校验)信息,用于指示本次数据解调是否成功。在MAC层通过解析该CRC信息来获知是否数据解调成功,当解调成功时,MAC层才进一步解析该解调后的数据获得UE的身份信息,并对频偏估计值进行滤波处理并发送给相应的UE。当解调失败时,MAC层将不会对 解调后的数据进行解析,也不会对频偏估计值进行滤波处理并发送。通过实施该实施方式,只有在数据解调成功时才将频偏值反馈给UE。
作为一种可选的实施方式,步骤205中基站在MAC层将滤波处理后的频偏估计值发送至UE的具体实施方式可以为:
基站在MAC层将滤波处理后的频偏估计值在预设时刻发送至UE。
在该实施方式中,可以周期性向UE反馈CFO(Carrier Frequency Offset,载波频偏),即频偏估计值,类似于LTE中TA(Timing Advanced,时间提前量)值的周期性反馈。周期性反馈即每隔特定时间发送一次,但每次发送的CFO一般不同。所以基站在MAC层可以将滤波处理后的频偏估计值在预设时刻发送至对应的UE。
在该实施方式中,可以将CFO单独发送给UE,也可以将其随同TA值一起进行发送,该实施方式不作限定。可以在协议中新定义一个MAC控制单元,其类似于LTE中的TA控制单元。请参阅图3,图3是本发明实施例公开的一种频偏值反馈格式的示意图。如图3所示,频偏值的反馈形式为一固定长度的信元,如总长度为8bit。其中,R为预留字段,其长度为Mbit;频偏值CFO的长度为Nbit,当信元的总长度为8bit时,则M=8-N。N为CFO量化后的比特数目,由于频偏值可以是正数,也可以是负数,所以N的取值范围可以为[-a,a]。其中,a值取决于系统中需要校正的最大频偏值,这个值与字体的应用场景有关,比如载波的主频、用户支持的最大移动速度等。
作为一种可选的实施方式,步骤205中基站在MAC层将滤波处理后的频偏估计值发送至UE的具体实施方式可以为:
基站在MAC层将滤波处理后的频偏估计值添加至应答反馈信息中后发送至UE。
在该实施方式中,可以将滤波处理后的频偏估计值量化后随同应答反馈信息一起下发给UE,应答反馈信息可以为ACK反馈信息。将频偏估计值CFO随同ACK信息一起反馈,即将CFO携带在ACK信息中一起发送。可以在ACK反 馈结构体中新增若干个字节单元用于反馈CFO,其中,一个字节为8bit,一个字节单元可以反馈一个UE的CFO。在实际应用中,大连接下的ACK信息的反馈方式可能各有不同,例如,可能在传统的PHICH(Physical Hybrid ARQ Indicator Channel,物理混合自动重传指示信道)中反馈,也可能在PDSCH(Physical Downlink Shared Channel,物理下行共享信道)中反馈。无论采用什么形式,该实施方式都是在原大连接的ACK信息反馈信元中增加若干个字节用于频偏估计值的反馈。
在该实施方式中,基站可以以广播方式或单播方式将携带有CFO的ACK信息进行发送。大连接下为了节省下行控制信道反馈的资源,可以专门定义一种特殊的反馈格式在下行数据信道PDSCH中发送,其中,PDSCH信道发送格式事先对大连接下的用户做系统广播,告知PDSCH的频域位置,PDSCH的解调信息等。同时HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)的时序可以预先定义,大连接下的用户按照固定的时序去解调PDSCH,查看数据包中是否携带了自身的ACK信息和CFO信息。请参阅图4,图4是本发明实施例公开的另一种频偏值反馈格式的示意图。如图4所示,频偏值CFO与ACK信息一并反馈。其中,可以用8bit来表示UE的数目,这里UE的数目是指本次TTI内基站解调成功的用户数目,即ACK反馈的用户数目。UE#身份信息是指解调成功的UE的身份信息,如UE#的ID号。需要注意的是,这里每一个UE的身份信息用24bit来表示,即用24bit来承载一个UE的身份信息,而不是重复传输3次。UE#的频偏值CFO是指UE#的频偏估计值,每一个UE的频偏值CFO用8bit来表示,即为ACK反馈信息中增加的字节。大连接下的用户可以接收并解析基站下发的反馈信息,并从中检测是否存在自身对应的ACK信息和CFO信息,若存在,则可以从中获取自身的频偏值CFO;若不存在,可以说明基站解调失败,则UE可以发起数据重传。
作为一种可选的实施方式,在执行完步骤205之后,图2所描述的方法还可以包括以下步骤:
27)基站在MAC层对所述滤波处理后的频偏估计值进行清零处理。
在该实施方式中,当基站在MAC层将滤波后的频偏估计值反馈给UE后,可以在MAC层对该滤波后的频偏估计值进行清零处理,以避免MAC层中的频偏值对UE下一次传输数据时所产生的频偏值进行滤波时造成影响,而使得频偏误差增大。
作为一种可选的实施方式,在执行完步骤205之后,图2所描述的方法还可以包括以下步骤:
28)基站接收UE上行传输的利用该滤波处理后的频偏估计值进行预校正后的数据和导频信息。
在该实施方式中,当UE接收到基站反馈的滤波处理后的频偏估计值后,UE在下一次上行发送数据之前,可以利用该滤波处理后的频偏估计值对UE待传输的数据和导频信息进行预校正处理,并将预校正后的数据和导频信息发送至基站。通过实施该实施方式,在UE发送数据前完成频偏预校正,可以避免大连接下因频偏干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而可以提高基站接收数据的可靠性,且提升基站的数据解调性能。
请参阅图5,图5是本发明实施例公开的一种频偏校正的原理示意图。如图5所示,可以将基站划分为两部分,一是多用户检测模块,二是MAC层调度模块。其中,用户检测可以是基站检测是否有数据传输过来。频偏测量可以是当检测到有数据传输进来时,利用随同传输的导频信息进行频偏估计,以获得频偏估计值,并将该频偏估计值的大小与预设阈值进行比较。数据检测可以是当频偏估计值不超过预设阈值时,直接对接收到的数据进行解调;或者,当频偏估计值超过预设阈值时,先利用该频偏估计值对数据进行频偏校正,再对校正后的数据进行解调。频偏测量后,可以将测得的频偏估计值上报给MAC层;数据检测完成后,可以将解调后的数据和解调结果(即CRC信息)上报给MAC层。由于传输块(Transport Block,简称TB)是物理层与MAC层之间数据交换的基本单元,所以物理层可以将解调后的数据通过TB块发送至MAC层。MAC 层在接收到的解调结果为解调成功时,可以对解调后的数据进行解析以获得UE的身份信息;根据该身份信息对频偏估计值进行滤波处理;并将滤波处理后的匹配估计值经过量化后周期性下发给用户设备UE,或者随同ACK信息一起反馈给UE。UE接收到基站下发的频偏估计值后,对频偏估计值进行记录,在下一次发送数据前,需要先对待发送的数据和导频信息进行频偏预校正再进行发送。可以理解的是,基站每次接收到的数据均可以是UE经过频偏预校正后的数据。
在图2所描述的方法中,当基站接收到UE上行传输的数据和导频信息时,可以利用该导频信息进行频偏估计,获得频偏估计值,并根据该频偏估计值对UE上行传输的数据进行解调,将该频偏估计值和解调后的数据一并上传至MAC层,并在MAC层解析该解调后的数据,获得UE的身份信息,可以根据该身份信息对该频偏估计值进行滤波处理,并将滤波处理后的频偏估计值发送至UE。通过实施图2所描述的方法,在大连接免调度下基站在MAC层解析数据获得UE的身份信息,从而可以实现对用户的频偏进行实时跟踪,提高频偏的收敛速度和精度。此外,基站向UE反馈频偏值后,可以接收UE在下一次发数据时利用该频偏值进行频偏预校正后的数据,从而可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而提高基站接收数据的可靠性,且提升基站的数据解调性能。
基于图1所示的网络架构,本发明实施例公开了另一种频偏校正方法。请参阅图6,图6是本发明实施例公开的另一种频偏校正方法的流程示意图。如图6所示,该频偏校正方法可以包括以下步骤:
601、UE接收基站下行发送的反馈信息。
本发明实施例中,基站下发的反馈信息中可以包含UE的频偏估计值。具体的,UE可以接收基站通过PHICH信道或PDSCH信道中下行发送的反馈信息。UE在接收基站下发的反馈信息之前,先向基站上行传输数据和导频信息,其 中,UE上行传输的数据中携带有UE的身份信息。基站根据该导频信息进行频偏估计,以得到频偏估计值。当基站对UE上行传输的数据进行解调后,可以将频偏估计值、解调后的数据以及解调结果一起上报给MAC层。当解调结果为解调成功时,由MAC层对解调后的数据进行解析以获得UE的身份信息,并根据该身份信息对上报的频偏估计值进行滤波处理。MAC层将滤波处理后的频偏估计值经过量化处理后下发给UE,则UE接收到的反馈信息中携带的频偏估计值为经过滤波处理且量化后的频偏估计值。
作为一种可选的实施方式,步骤601UE接收基站下行发送的反馈信息的具体实施方式可以包括以下步骤:
61)UE接收基站每隔预设时间下行发送的反馈信息,该反馈信息包括频偏估计值。
在该实施方式中,基站可以周期性反馈频偏估计值CFO,其与LTE中的TA值的周期性反馈方式类似。基站可以将频偏估计值进行单独发送,也可以将其随同TA值一起进行发送,此时,UE收到的反馈信息中除包含频偏估计值外,还包含有TA值。基站周期性反馈的频偏估计值的表现形式可以如图3所示。
作为一种可选的实施方式,当UE接收的反馈信息为应答反馈信息时,步骤601UE接收基站下行发送的反馈信息的具体实施方式可以包括以下步骤:
62)UE接收基站下行发送的应答反馈信息,该应答反馈信息中携带有频偏估计值。
在该实施方式中,基站可以将频偏估计值随同应答反馈信息一起下发给UE,该应答反馈信息可以为ACK反馈信息。在ACK反馈信息中增加若干个字节单元用于传输频偏估计值。ACK反馈信息中除包含频偏估计值外,还可以包括但不限于解调成功的UE数目、解调成功的各UE的身份信息等。基站将频偏估计值与ACK反馈信息一并发送的表现形式可以如图4所示。
在该实施方式中,基站可以以广播信令或单播信令的形式发送携带有频偏估计值的ACK反馈信息。各UE接收到ACK反馈信息后,可以从中查看是否包 含自身的频偏估计值。
602、UE解析该反馈信息,以获得频偏估计值。
本发明实施例中,当UE接收到基站下发的反馈信息后,可以对该反馈信息进行解析,以获得该反馈信息中包含的该UE的频偏估计值。可选的,当频偏估计值是携带在ACK反馈信息一起发送至UE时,UE可以检测该反馈信息中是否携带自身的ACK反馈信息和频偏估计值。具体的,可以检测该反馈信息中是否包含该UE的身份信息来进行判断,当包含该UE的身份信息时,可以说明基站解调该UE发送的数据成功,此时可以获取该UE的频偏估计值。当不包含该UE的身份信息时,可以说明基站解调该UE发送的数据失败,此时反馈信息中将不包含该UE的频偏估计值,该UE需要发起数据重传。
603、UE利用该频偏估计值对待上行传输的数据和导频信息进行预校正。
本发明实施例中,当UE解析出基站反馈的频偏估计值后,可以保存该频偏估计值,并可以将其替换掉UE中前一次接收到的历史频偏估计值。当UE再一次进行上行传输时,UE可以利用该频偏估计值对待上行传输的数据和导频信息进行频率预校正处理,以保证用户的频率同步,避免因频偏的干扰导致用户间的数据干扰。
604、UE将预校正后的数据和导频信息发送至基站。
本发明实施例中,UE利用频偏估计值对待传输的数据和导频信息进行频率预校正后,可以将预校正后的数据和导频信息发送至基站,使得基站接收到的数据受频偏的干扰影响大大降低,有助于提升数据解调性能。
作为一种可选的实施方式,步骤603UE利用该频偏估计值对待上行传输的数据和导频信息进行预校正的具体实施方式可以包括以下步骤:
63)UE将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
64)UE利用该频偏估计值对帧数据进行频率预校正,以获得第一数据;
65)UE对第一数据进行载波调制,以获得第二数据;
其中,步骤604UE将预校正后的数据和导频信息发送至基站的具体实施方 式可以为:
UE将第二数据发送至基站。
在该实施方式中,组帧可以是将信息组合在一起成为可以在信道上传输的数据,基站与UE上下行传输的数据均是以“帧”的形式进行传输的。这里将待传输的数据与导频信息组合成一帧数据,并利用频偏估计值对该帧数据进行预校正处理,并将预校正后的数据作为第一数据,再对第一数据进行载波调制,并将载波调制后的第一数据作为第二数据,并发送至基站。
作为一种可选的实施方式,步骤604UE将预校正后的数据和导频信息发送至基站的具体实施方式可以包括以下步骤:
66)UE利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至基站。
在该实施方式中,UE可以采用单TB块单天线发射的传输方式将预校正后的数据和导频信息发送给基站,也可以采用多流多天线发射的传输方式将预校正后的数据和导频信息发送给基站,该实施方式不作限定。
请参阅图7,图7是本发明实施例公开的一种基于OFDM的单天线发射的原理示意图。一般大连接用户的数据包都比较小,所以UE可以采用单TB块单天线发射的传输方式。如图7所示,TB块编码后进行速率匹配,以使TB块的大小与物理资源承载能力匹配。然后进行交织加扰,使干扰信号随机化。接下来,对数据进行调制,之后经过DFT(Discrete Fourier Transform,离散傅里叶变换)处理,并与导频信息进行组帧处理,以获得帧数据。然后将帧数据进行IFFT(Inverse Fast Fourier Transform,快速傅里叶逆变换)处理,再经过频率预校正模块对IFFT模块的输出数据进行频率预校正,再经过载波调制模块对预校正后的数据进行频率偏移。之后再进行加CP(Cyclic Prefix,循环前缀)处理后通过单天线发射出去。其中,频率预校正模块的输入数据是IFFT模块的输出数据,其表现公式如下:
S(k,l)=S′(k,l)·ej2πΔk/N,0<k<N-1     (1)
其中,△为基站反馈的频偏估计值,取值范围为-a<△<a,a的取值决定大连接场景下用户需要校正的最大频偏值。k是子载波序号,l是符号个数,N是子载波总数。S′(k,l)就是IFFT变换后的数据,S(k,l)就是频率预校正后的数据。频率预校正处理后,需要进行载波调制和加CP操作,最后映射到天线上进行发射。
由于载波调制实际上是一个频率偏移的操作,即UE为了避免多载波的直流效应,在发射前需要在频域上偏移半个子载波。其实现公式如下:
S‘’(k,l)=S(k,l)·ejπk/N,0<k<N-1       (2)
其中,S‘’(k,l)是载波调制后的数据。从公式(1)和(2)可知,频率预校正模块和载波调制模块都是频率偏移的操作,可以将其合并为一个处理模块,也即可将上述两个公式进行合并,即:
S‘’(k,l)=S′(k,l)·ej2π(Δ+0.5)k/N,0<k<N-1       (3)
另外,大连接用户也可以采用多流多天线发射的传输方式。请参阅图8,图8是本发明实施例公开的一种基于OFDM的多天线发射的原理示意图。如图8所示,每一路的数据经过DFT变化后进行层映射,然后通过码本进行MIMO(Multiple-Input Multiple-Output,多输入多输出)预编码处理。其中,由于码字数据和发射天线数量可能不一致,需要将码字流映射到不同的发射天线上,因此需要采用层映射和MIMO预编码。预编码之后再与导频信息进行组帧,以获得帧数据。频率预校正模块要针对每根天线的数据均采用与单天线相同的处理操作,并分别通过载波调制和加CP操作后映射到各天线上进行发射。
可以理解的是,图6所描述的方法也可以适用于基于基站调度的传统通信系统中,比如GSM(Global System for Mobile Communication,全球移动通信系统),CDMA(Code Division Multiple Access,码分多址)系统等。即在用户发数据前,需要先对数据做频偏预校正。这样基站接收到的数据受频偏的干扰影响会大大降低,有助于提升数据解调性能。
本发明实施例中,通过实施图6所描述的方法,当UE接收到基站反馈的频 偏值后,在下一次发数据前可以利用该频偏值进行频偏预校正后再发送至基站,可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而可以提高基站接收数据的可靠性,且提升基站的数据解调性能。
基于图1所示的网络架构,本发明实施例公开了一种基站。请参阅图9,图9是本发明实施例公开的一种基站的结构示意图,可以用于执行本发明实施例公开的频偏校正方法。如图9所示,该基站可以包括:
接收单元901,用于接收用户设备UE上行传输的数据和导频信息。
本发明实施例中,接收单元901具体可以用于接收UE通过PUSCH信道上行传输的数据和导频信息。
频偏估计单元902,用于利用该导频信息进行频偏估计,以获得频偏估计值。
解调单元903,用于根据该频偏估计值,对UE上行传输的数据进行解调。
作为一种可选的实施方式,解调单元903根据该频偏估计值,对UE上行传输的数据进行解调的具体实施方式可以为:
解调单元903判断该频偏估计值是否超过预设阈值,当该频偏估计值未超过预设阈值时,对UE上行传输的数据进行解调。
作为一种可选的实施方式,解调单元903根据该频偏估计值,对UE上行传输的数据进行解调的具体实施方式可以为:
解调单元903判断该频偏估计值是否超过预设阈值,当该频偏估计值超过预设阈值时,利用该频偏估计值对UE上行传输的数据进行频偏校正,并对频偏校正后的数据进行解调。
其中,该预设阈值可以为需要对UE上行传输的数据进行频偏校正的临界值,即当频偏估计值超过该预设阈值时,需要对数据进行频偏校正;当频偏估计值未超过该预设阈值时,可以无需对数据进行频偏校正。
上传单元904,用于将该频偏估计值和解调后的数据上传至媒体访问控制 MAC层。
处理单元905,用于在MAC层解析该解调后的数据,以获得UE的身份信息,并根据该身份信息对该频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至UE。
本发明实施例中,UE的身份信息可以唯一标识UE,即每一个UE的身份信息是唯一的,不同UE的身份信息是不同的。UE的身份信息可以包括但不限于用户设备号、IMSI、IMEI等中的至少一种。可选的,处理单元905在将滤波处理后的频偏估计值发给UE之前,可以对滤波处理后的频偏估计值进行量化处理再进行发送。可以将滤波处理后的频偏估计值直接按Nbit进行量化,或者按最小步长的单位来进行反馈。
作为一种可选的实施方式,处理单元905在MAC层根据该身份信息对该频偏估计值进行滤波处理的具体实施方式可以为:
处理单元905在MAC层根据该身份信息获取UE的历史频偏估计值,并利用历史频偏估计值对该频偏估计值进行滤波处理。
作为一种可选的实施方式,上传单元904,还可以用于将解调数据的解调结果上传至MAC层;
相应地,处理单元905在MAC层解析该解调后的数据,以获得UE的身份信息的具体实施方式可以为:
处理单元905当上传单元904上报的解调结果为解调成功时,在MAC层解析该解调后的数据,以获得UE的身份信息。
作为一种可选的实施方式,处理单元905在MAC层将滤波处理后的频偏估计值发送至UE的具体实施方式可以为:
处理单元905在MAC层将滤波处理后的频偏估计值在预设时刻发送至UE。
作为一种可选的实施方式,处理单元905在MAC层将滤波处理后的频偏估计值发送至UE的具体实施方式可以为:
处理单元905在MAC层将滤波处理后的频偏估计值添加至应答反馈信息 中后发送至UE。
作为一种可选的实施方式,当UE接收到基站反馈的经过滤波处理后的频偏估计值后,接收单元901,还可以用于接收UE上行传输的利用该滤波处理后的频偏估计值进行预校正后的数据和导频信息。
作为一种可选的实施方式,图9所示的基站还可以包括清零单元(图中未示出),其中:
清零单元,用于在MAC层对滤波处理后的频偏估计值进行清零处理。可以避免MAC层中的频偏值对UE下一次传输数据时所产生的频偏值进行滤波时造成影响,而使得频偏误差增大。
本发明实施例中,通过实施图9所示的基站,在大连接免调度下基站在MAC层解析数据获得UE的身份信息,从而可以实现对用户的频偏进行实时跟踪,提高频偏的收敛速度和精度。此外,基站向UE反馈频偏值后,可以接收UE在下一次发数据时利用该频偏值进行频偏预校正后的数据,从而可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而提高基站接收数据的可靠性,且提升基站的数据解调性能。
基于图1所示的网络架构,本发明实施例公开了另一种基站。请参阅图10,图10是本发明实施例公开的另一种基站的结构示意图,可以用于执行本发明实施例公开的频偏校正方法。如图10所示,该基站1000可以包括:至少一个处理器1001,例如CPU(Central Processing Unit,中央处理器),至少一个通信接口1002,存储器1003等组件。其中,这些组件可以通过一条或多条通信总线1004进行通信连接。本领域技术人员可以理解,图10中示出的基站1000的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,通信接口1002可以包括有线接口和无线接口等,可以 用于与用户设备UE等对端进行通信。
本发明实施例中,存储器1003可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1003可选的还可以是至少一个位于远离前述处理器1001的存储装置。如图10所示,存储器1003中可以包括应用程序、通信接口模块和数据等,本发明实施例不作限定。
在图10所示的基站1000中,处理器1001可以用于调用存储器1003中存储的应用程序以执行以下操作:
触发通信接口1002接收用户设备UE上行传输的数据和导频信息;
利用该导频信息进行频偏估计,以获得频偏估计值;
根据该频偏估计值,对UE上行传输的数据进行解调;
将该频偏估计值和解调后的数据上传至媒体访问控制MAC层;
在MAC层解析该解调后的数据,以获得UE的身份信息,并根据该身份信息对该频偏估计值进行滤波处理,触发通信接口1002将滤波处理后的频偏估计值发送至UE。
作为一种可选的实施方式,处理器1001在MAC层根据该身份信息对该频偏估计值进行滤波处理的具体实施方式可以为:
在MAC层根据该身份信息获取存储器1003中存储的UE的历史频偏估计值,并利用历史频偏估计值对该频偏估计值进行滤波处理。
作为一种可选的实施方式,处理器1001还可以调用存储器1003中存储的应用程序,并执行以下操作:
将解调数据的解调结果上传至MAC层;
其中,处理器1001在MAC层解析该解调后的数据,以获得UE的身份信息的具体实施方式可以为:
当该解调结果为解调成功时,在MAC层解析该解调后的数据,以获得UE的身份信息。
作为一种可选的实施方式,处理器1001在MAC层触发通信接口1002将滤 波处理后的频偏估计值发送至UE的具体实施方式可以为:
在MAC层触发通信接口1002将滤波处理后的频偏估计值在预设时刻发送至UE。
作为一种可选的实施方式,处理器1001在MAC层触发通信接口1002将滤波处理后的频偏估计值发送至UE的具体实施方式可以为:
在MAC层触发通信接口1002将滤波处理后的频偏估计值添加至应答反馈信息中后发送至UE。
作为一种可选的实施方式,处理器1001还可以调用存储器1003中存储的应用程序,并执行以下操作:
触发通信接口1002接收UE上行传输的利用滤波处理后的频偏估计值进行预校正后的数据和导频信息。
作为一种可选的实施方式,处理器1001还可以调用存储器1003中存储的应用程序,并执行以下操作:
在MAC层对滤波处理后的频偏估计值进行清零处理。
具体地,本发明实施例中介绍的基站可以实施本发明结合图2介绍的频偏校正方法实施例中的部分或全部流程。
本发明实施例中,通过实施图10所示的基站,在大连接免调度下基站在MAC层解析数据获得UE的身份信息,从而可以实现对用户的频偏进行实时跟踪,提高频偏的收敛速度和精度。此外,基站向UE反馈频偏值后,可以接收UE在下一次发数据时利用该频偏值进行频偏预校正后的数据,从而可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而提高基站接收数据的可靠性,且提升基站的数据解调性能。
基于图1所示的网络架构,本发明实施例公开了一种UE。请参阅图11,图11是本发明实施例公开的一种UE的结构示意图,可以用于执行本发明实施例公开的频偏校正方法。如图11所示,该UE可以包括:
接收单元1101,用于接收基站下行发送的反馈信息。
本发明实施例中,该反馈信息中可以包括UE的频偏估计值。具体的,接收单元1101具体可以用于接收基站通过PHICH信道或PDSCH信道中下行发送的反馈信息。
作为一种可选的实施方式,接收单元1101接收基站下行发送的反馈信息的具体实施方式可以为:
接收单元1101接收基站每隔预设时间下行发送的反馈信息,该反馈信息包括频偏估计值。
作为一种可选的实施方式,当该反馈信息为应答反馈信息时,接收单元1101接收基站下行发送的反馈信息的具体实施方式可以为:
接收单元1101接收基站下行发送的应答反馈信息,该应答反馈信息中携带有频偏估计值。
解析单元1102,用于解析该反馈信息,以获得频偏估计值。
校正单元1103,用于利用该频偏估计值对待上行传输的数据和导频信息进行预校正。
本发明实施例中,当解析单元1102解析出基站反馈的频偏估计值后,UE可以保存该频偏估计值,并可以将其替换掉UE中前一次接收到的历史频偏估计值。当UE再一次进行上行传输时,校正单元1103可以利用该频偏估计值对待上行传输的数据和导频信息进行频率预校正处理,以保证用户的频率同步,避免因频偏的干扰导致用户间的数据干扰。
发送单元1104,用于将预校正后的数据和导频信息发送至基站。
本发明实施例中,校正单元1103利用频偏估计值对待传输的数据和导频信息进行频率预校正后,发送单元1104可以将预校正后的数据和导频信息发送至基站,使得基站接收到的数据受频偏的干扰影响大大降低,有助于提升数据解调性能。
作为一种可选的实施方式,发送单元1104将预校正后的数据和导频信息发 送至基站的具体实施方式可以为:
发送单元1104利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至基站。
请一并参阅图12,图12是本发明实施例公开的另一种UE的结构示意图,可以用于执行本发明实施例公开的频偏校正方法。其中,图12所示的UE是在图11所示的UE的基础上进一步优化得到的。与图11所示的UE相比,图12所示的UE中校正单元1103可以包括:
组帧子单元1103a,用于将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
预校正子单元1103b,用于利用该频偏估计值对帧数据进行频率预校正,以获得第一数据;
调制子单元1103c,用于对第一数据进行载波调制,以获得第二数据;
相应地,发送单元1104具体可以用于将第二数据发送至基站。
本发明实施例中,通过实施图11和图12所示的UE,在接收到基站反馈的频偏值后,下一次发数据前可以利用该频偏值进行频偏预校正后再发送至基站,可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而可以提高基站接收数据的可靠性,且提升基站的数据解调性能。
基于图1所示的网络架构,本发明实施例公开了又一种UE。请参阅图13,图13是本发明实施例公开的又一种UE的结构示意图,可以用于执行本发明实施例公开的频偏校正方法。如图13所示,该UE1300可以包括:至少一个处理器1301,例如CPU,至少一个通信接口1302,存储器1303等组件。其中,这些组件可以通过一条或多条通信总线1304进行通信连接。本领域技术人员可以理解,图13中示出的UE1300的结构并不构成对本发明实施例的限定,它既可以是总线形结构,也可以是星型结构,还可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。其中:
本发明实施例中,通信接口1302可以包括有线接口和无线接口等,可以用于与基站等对端进行通信。
本发明实施例中,存储器1303可以是高速RAM存储器,也可以是非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。存储器1303可选的还可以是至少一个位于远离前述处理器1301的存储装置。如图13所示,存储器1303中可以包括操作系统、应用程序、通信接口模块和数据等,本发明实施例不作限定。
在图13所示的UE1300中,处理器1301可以用于调用存储器1303中存储的应用程序以执行以下操作:
触发通信接口1302接收基站下行发送的反馈信息;
解析该反馈信息,以获得频偏估计值;
利用该频偏估计值对待上行传输的数据和导频信息进行预校正;
触发通信接口1302将预校正后的数据和导频信息发送至基站。
作为一种可选的实施方式,处理器1301触发通信接口1302接收基站下行发送的反馈信息的具体实施方式可以为:
触发通信接口1302接收基站每隔预设时间下行发送的反馈信息,该反馈信息包括频偏估计值。
作为一种可选的实施方式,该反馈信息包括应答反馈信息,处理器1301触发通信接口1302接收基站下行发送的反馈信息的具体实施方式可以为:
触发通信接口1302接收基站下行发送的应答反馈信息,该应答反馈信息中携带有频偏估计值。
作为一种可选的实施方式,处理器1301利用该频偏估计值对待上行传输的数据和导频信息进行预校正的具体实施方式可以为:
将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
利用该频偏估计值对帧数据进行频率预校正,以获得第一数据;
对第一数据进行载波调制,以获得第二数据;
其中,处理器1301触发通信接口1302将预校正后的数据和导频信息发送至基站的具体实施方式可以为:
触发通信接口1302将第二数据发送至基站。
作为一种可选的实施方式,处理器1301触发通信接口1302将预校正后的数据和导频信息发送至基站的具体实施方式可以为:
触发通信接口1302利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至基站。
具体地,本发明实施例中介绍的UE可以实施本发明结合图6介绍的频偏校正方法实施例中的部分或全部流程。
本发明实施例中,通过实施图13所示的UE,在接收到基站反馈的频偏值后,下一次发数据前可以利用该频偏值进行频偏预校正后再发送至基站,可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而可以提高基站接收数据的可靠性,且提升基站的数据解调性能。
基于图1所示的网络架构,本发明实施例公开了一种频偏校正系统。请参阅图14,图14是本发明实施例公开的一种频偏校正系统的结构示意图。如图14所示,该频偏校正系统可以包括基站1401和至少一个UE1402(如UE1、UE2、……、UEn)。其中,基站1401和UE1402的具体功能可以参考前述各个实施例中所描述的内容,这里将不再赘述。图14所示的频偏校正系统可以用于执行图2或图6所介绍的频偏校正方法。
本发明实施例中,通过实施图14所示的频偏校正系统,采用基站和UE联合进行频偏校正的方式,在基站侧进行频偏的估计和实时跟踪,提高了频偏的收敛速度和精度。基站将频偏值反馈给UE,UE在下一次发数据前完成频偏预校正,从而可以避免因频偏的干扰导致用户间的数据干扰,以保证基站侧的频率同步,进而提高基站接收数据的可靠性,且提升基站的数据解调性能。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表 述为一系列的动作组合,但是本领域技术人员应该知悉,本发明并不受所描述的动作顺序的限制,因为依据本发明,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本发明所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本发明实施例的方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本发明实施例的基站或UE中的单元或子单元可以根据实际需要进行合并、划分和删减。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质包括只读存储器(Read-Only Memory,ROM)、随机存储器(Random Access Memory,RAM)、可编程只读存储器(Programmable Read-only Memory,PROM)、可擦除可编程只读存储器(Erasable Programmable Read Only Memory,EPROM)、一次可编程只读存储器(One-time Programmable Read-Only Memory,OTPROM)、电子抹除式可复写只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储器、磁盘存储器、磁带存储器、或者能够用于携带或存储数据的计算机可读的任何其他介质。
以上对本发明实施例所提供的频偏校正方法及相关设备进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (22)

  1. 一种频偏校正方法,其特征在于,包括:
    接收用户设备UE上行传输的数据和导频信息;
    利用所述导频信息进行频偏估计,以获得频偏估计值;
    根据所述频偏估计值,对所述UE上行传输的所述数据进行解调;
    将所述频偏估计值和解调后的数据上传至媒体访问控制MAC层;
    在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,并根据所述身份信息对所述频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至所述UE。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述MAC层根据所述身份信息对所述频偏估计值进行滤波处理,包括:
    在所述MAC层根据所述身份信息获取所述UE的历史频偏估计值,并利用所述历史频偏估计值对所述频偏估计值进行滤波处理。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    将解调所述数据的解调结果上传至所述MAC层;
    其中,所述在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,包括:
    当所述解调结果为解调成功时,在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述在所述MAC层将滤波处理后的频偏估计值发送至所述UE,包括:
    在所述MAC层将滤波处理后的频偏估计值在预设时刻发送至所述UE。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述在所述MAC 层将滤波处理后的频偏估计值发送至所述UE,包括:
    在所述MAC层将滤波处理后的频偏估计值添加至应答反馈信息中后发送至所述UE。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述UE上行传输的利用所述滤波处理后的频偏估计值进行预校正后的数据和导频信息。
  7. 一种频偏校正方法,其特征在于,包括:
    接收基站下行发送的反馈信息;
    解析所述反馈信息,以获得频偏估计值;
    利用所述频偏估计值对待上行传输的数据和导频信息进行预校正;
    将预校正后的数据和导频信息发送至所述基站。
  8. 根据权利要求7所述的方法,其特征在于,所述接收基站下行发送的反馈信息,包括:
    接收基站每隔预设时间下行发送的反馈信息,所述反馈信息包括频偏估计值。
  9. 根据权利要求7所述的方法,其特征在于,所述反馈信息包括应答反馈信息,所述接收基站下行发送的反馈信息,包括:
    接收基站下行发送的所述应答反馈信息,所述应答反馈信息中携带有频偏估计值。
  10. 根据权利要求7-9中任一项所述的方法,其特征在于,所述利用所述频偏估计值对待上行传输的数据和导频信息进行预校正,包括:
    将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
    利用所述频偏估计值对所述帧数据进行频率预校正,以获得第一数据;
    对所述第一数据进行载波调制,以获得第二数据;
    其中,所述将预校正后的数据和导频信息发送至所述基站,包括:
    将所述第二数据发送至所述基站。
  11. 根据权利要求7-10中任一项所述的方法,其特征在于,所述将预校正后的数据和导频信息发送至所述基站,包括:
    利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至所述基站。
  12. 一种基站,其特征在于,包括:
    接收单元,用于接收用户设备UE上行传输的数据和导频信息;
    频偏估计单元,用于利用所述导频信息进行频偏估计,以获得频偏估计值;
    解调单元,用于根据所述频偏估计值,对所述UE上行传输的所述数据进行解调;
    上传单元,用于将所述频偏估计值和解调后的数据上传至媒体访问控制MAC层;
    处理单元,用于在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息,并根据所述身份信息对所述频偏估计值进行滤波处理,将滤波处理后的频偏估计值发送至所述UE。
  13. 根据权利要求12所述的基站,其特征在于,所述处理单元在所述MAC层根据所述身份信息对所述频偏估计值进行滤波处理的方式具体为:
    所述处理单元在所述MAC层根据所述身份信息获取所述UE的历史频偏估计值,并利用所述历史频偏估计值对所述频偏估计值进行滤波处理。
  14. 根据权利要求12或13所述的基站,其特征在于,
    所述上传单元,还用于将解调所述数据的解调结果上传至所述MAC层;
    所述处理单元在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息的方式具体为:
    所述处理单元当所述解调结果为解调成功时,在所述MAC层解析所述解调后的数据,以获得所述UE的身份信息。
  15. 根据权利要求12-14中任一项所述的基站,其特征在于,所述处理单元在所述MAC层将滤波处理后的频偏估计值发送至所述UE的方式具体为:
    所述处理单元在所述MAC层将滤波处理后的频偏估计值在预设时刻发送至所述UE。
  16. 根据权利要求12-14中任一项所述的基站,其特征在于,所述处理单元在所述MAC层将滤波处理后的频偏估计值发送至所述UE的方式具体为:
    所述处理单元在所述MAC层将滤波处理后的频偏估计值添加至应答反馈信息中后发送至所述UE。
  17. 根据权利要求12-16中任一项所述的基站,其特征在于,
    所述接收单元,还用于接收所述UE上行传输的利用所述滤波处理后的频偏估计值进行预校正后的数据和导频信息。
  18. 一种用户设备UE,其特征在于,包括:
    接收单元,用于接收基站下行发送的反馈信息;
    解析单元,用于解析所述反馈信息,以获得频偏估计值;
    校正单元,用于利用所述频偏估计值对待上行传输的数据和导频信息进行预校正;
    发送单元,用于将预校正后的数据和导频信息发送至所述基站。
  19. 根据权利要求18所述的UE,其特征在于,所述接收单元接收基站下行发送的反馈信息的方式具体为:
    所述接收单元接收基站每隔预设时间下行发送的反馈信息,所述反馈信息包括频偏估计值。
  20. 根据权利要求18所述的UE,其特征在于,所述反馈信息包括应答反馈信息,所述接收单元接收基站下行发送的反馈信息的方式具体为:
    所述接收单元接收基站下行发送的所述应答反馈信息,所述应答反馈信息中携带有频偏估计值。
  21. 根据权利要求18-20中任一项所述的UE,其特征在于,所述校正单元包括:
    组帧子单元,用于将待上行传输的数据与导频信息进行组帧处理,获得帧数据;
    预校正子单元,用于利用所述频偏估计值对所述帧数据进行频率预校正,以获得第一数据;
    调制子单元,用于对所述第一数据进行载波调制,以获得第二数据;
    所述发送单元具体用于将所述第二数据发送至所述基站。
  22. 根据权利要求18-21中任一项所述的UE,其特征在于,所述发送单元将预校正后的数据和导频信息发送至所述基站的方式具体为:
    所述发送单元利用单天线发射方式或者多天线发射方式将预校正后的数据和导频信息发送至所述基站。
PCT/CN2016/097812 2016-09-01 2016-09-01 一种频偏校正方法及相关设备 WO2018040056A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097812 WO2018040056A1 (zh) 2016-09-01 2016-09-01 一种频偏校正方法及相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/097812 WO2018040056A1 (zh) 2016-09-01 2016-09-01 一种频偏校正方法及相关设备

Publications (1)

Publication Number Publication Date
WO2018040056A1 true WO2018040056A1 (zh) 2018-03-08

Family

ID=61299685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/097812 WO2018040056A1 (zh) 2016-09-01 2016-09-01 一种频偏校正方法及相关设备

Country Status (1)

Country Link
WO (1) WO2018040056A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943948A (zh) * 2018-09-21 2020-03-31 中国移动通信有限公司研究院 一种信息配置的方法和设备
CN113055995A (zh) * 2019-12-26 2021-06-29 中兴通讯股份有限公司 频偏估计方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040008618A1 (en) * 1998-05-26 2004-01-15 Naganori Shirakata Modulator, demodulator, and transmission system for use in OFDM transmission
CN101547062A (zh) * 2009-03-03 2009-09-30 华为技术有限公司 频偏纠正方法和设备
CN101682432A (zh) * 2007-05-29 2010-03-24 三菱电机株式会社 校准方法、通信系统、频率控制方法以及通信装置
CN102075477A (zh) * 2009-11-20 2011-05-25 中兴通讯股份有限公司 一种频偏补偿的方法和装置
CN104243380A (zh) * 2013-06-09 2014-12-24 普天信息技术研究院有限公司 一种上行频率同步的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040008618A1 (en) * 1998-05-26 2004-01-15 Naganori Shirakata Modulator, demodulator, and transmission system for use in OFDM transmission
CN101682432A (zh) * 2007-05-29 2010-03-24 三菱电机株式会社 校准方法、通信系统、频率控制方法以及通信装置
CN101547062A (zh) * 2009-03-03 2009-09-30 华为技术有限公司 频偏纠正方法和设备
CN102075477A (zh) * 2009-11-20 2011-05-25 中兴通讯股份有限公司 一种频偏补偿的方法和装置
CN104243380A (zh) * 2013-06-09 2014-12-24 普天信息技术研究院有限公司 一种上行频率同步的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943948A (zh) * 2018-09-21 2020-03-31 中国移动通信有限公司研究院 一种信息配置的方法和设备
CN110943948B (zh) * 2018-09-21 2023-07-21 中国移动通信有限公司研究院 一种信息配置的方法和设备
CN113055995A (zh) * 2019-12-26 2021-06-29 中兴通讯股份有限公司 频偏估计方法和装置
CN113055995B (zh) * 2019-12-26 2023-10-27 中兴通讯股份有限公司 频偏估计方法和装置

Similar Documents

Publication Publication Date Title
US20210377924A1 (en) Methods, devices and systems for grant-less uplink multiple access
JP6553262B2 (ja) 時分割二重化システムにおける受信確認情報生成及び電力制御のための方法及び装置
US20210184801A1 (en) Method and apparatus for harq-ack codebook size determination and resource selection in nr
US9191162B2 (en) Simultaneous reporting of ACK/NACK and channel-state information using PUCCH format 3 resources
US11791948B2 (en) HARQ feedback skipping
US20200137749A1 (en) Terminal device, base station device, integrated circuit and communication method
CN108934082B (zh) 用于执行随机接入的方法及无线发射接收单元
JP6920307B2 (ja) 波形ベースのデータインテグリティチェックおよびエラー訂正
KR20190005155A (ko) 5g 시스템에서의 상이한 유형들의 트래픽의 물리 계층 다중화
CN111226485B (zh) 在无线通信系统中发送/接收数据的方法和支持该方法的装置
CN111567006A (zh) 终端装置、基站装置以及通信方法
US11184882B2 (en) Method and device in UE and base station for wireless communication
CN114938260B (zh) 一种被用于无线通信的节点中的方法和装置
WO2022061622A1 (zh) 通信方法、通信设备、电子设备及计算机可读存储介质
CN110740434A (zh) 一种被用于无线通信的节点中的方法和装置
WO2018040056A1 (zh) 一种频偏校正方法及相关设备
CN112564869B (zh) 一种被用于无线通信的节点中的方法和装置
CN111698065B (zh) 一种被用于无线通信的节点中的方法和装置
US10693614B2 (en) Data transmission method, terminal device, and network device
CN113890711A (zh) 一种被用于无线通信的节点中的方法和装置
WO2023123797A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024046153A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023174230A1 (zh) 一种被用于无线通信的节点中的方法和装置
US20220263563A1 (en) Method and device in nodes used for wireless communication
US20210307017A1 (en) Method for wireless communication and terminal device thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16914622

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16914622

Country of ref document: EP

Kind code of ref document: A1