WO2021128898A1 - 一种阳极构建淀粉燃料电池的方法 - Google Patents

一种阳极构建淀粉燃料电池的方法 Download PDF

Info

Publication number
WO2021128898A1
WO2021128898A1 PCT/CN2020/111061 CN2020111061W WO2021128898A1 WO 2021128898 A1 WO2021128898 A1 WO 2021128898A1 CN 2020111061 W CN2020111061 W CN 2020111061W WO 2021128898 A1 WO2021128898 A1 WO 2021128898A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
starch
solution
fuel cell
mmol
Prior art date
Application number
PCT/CN2020/111061
Other languages
English (en)
French (fr)
Inventor
孙晶
曹厚勇
郎明非
Original Assignee
大连大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连大学 filed Critical 大连大学
Priority to US17/754,631 priority Critical patent/US20220393186A1/en
Publication of WO2021128898A1 publication Critical patent/WO2021128898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/22Fuel cells in which the fuel is based on materials comprising carbon or oxygen or hydrogen and other elements; Fuel cells in which the fuel is based on materials comprising only elements other than carbon, oxygen or hydrogen
    • H01M8/225Fuel cells in which the fuel is based on materials comprising particulate active material in the form of a suspension, a dispersion, a fluidised bed or a paste
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8657Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites layered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/921Alloys or mixtures with metallic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8825Methods for deposition of the catalytic active composition
    • H01M4/8853Electrodeposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of fuel cells, and specifically relates to a method for constructing a starch fuel cell with an anode.
  • Sugar Fuel Cell is a battery developed by a research team at Virginia Tech. It uses sugar as energy to provide electricity, and its energy density has reached an unprecedented level. Continued development is expected to replace traditional batteries and become a cheap, rechargeable and bio Degraded battery. Related papers were published in the journal Nature Communications on January 21, 2014. Sugar fuel cells use a series of enzymes that are combined in a way that nature does not have. The researchers constructed an unnatural synthetic enzyme pathway that can extract all the electric potential energy from the sugar and generate an electric current in a small enzyme fuel cell. Traditional batteries usually use expensive platinum as a catalyst, and they use low-cost biocatalytic enzymes. Through an enzyme stream, all the charges in the sugar solution can be released slowly and step by step.
  • Enzymes are not sufficiently resistant to survive in a strong acid or alkaline environment, and they cannot provide a stable current, thus limiting their application in fuel cells.
  • the present invention provides a method for constructing a starch fuel cell with an anode.
  • the fuel cell constructed by the method can provide a stable current and is low in cost.
  • the fuel cell constructed by the present invention to solve the technical problems uses PdNFs/FeNPs/MFC electrodes as working electrodes, Ag/AgCl electrodes as reference electrodes, and platinum wires as auxiliary electrodes to form a three-electrode system.
  • the three-electrode system is placed in starch solution and supported In the electrolyte, set the potential to -0.2 ⁇ 1.3V, record the cyclic voltammetry curves of starch at the concentrations of 1mmol/L, 3mmol/L, 5mmol/L, 7mmol/L, and 10mmol/L, and use the standard curve method to electrocatalyze the electrode
  • the control process of the oxidized starch solution is analyzed.
  • the supporting electrolyte is a 1 mol/L KOH aqueous solution with a pH of 14.
  • the PdNFs/FeNPs/MFC electrode includes: mesoporous nickel foam as a substrate and a conductive layer, iron palladium particles as an electrochemically deposited layer, and the nano-palladium-iron particles are deposited on the mesoporous nickel foam.
  • the PdNFs/FeNPs/MFC electrode is based on mesoporous nickel foam.
  • the MFC has a uniform and porous pore size, has a huge specific surface area and a three-dimensional pore structure, and has good electrical conductivity.
  • Nano-iron particles are deposited on the MFC, and nano-palladium is electrodeposited on the nano-iron. Because carbon black has a huge specific surface area, it can deposit a large number of nano-iron particles, thereby increasing the area of nano-palladium attached to nano-iron, expanding its contact area with starch, and increasing its current. The purpose of large battery output power.
  • the PdNFs/FeNPs/MFC electrode has high sensitivity to starch, excellent catalytic effect, and good selectivity.
  • the present invention uses the good conductivity of the mesoporous nickel foam to prepare an electrode with high sensitivity to starch, and when starch is used as the base liquid, the electrode has good catalytic effect, high sensitivity, good selectivity and stable structure.
  • the fuel cell can be used to make portable power banks, and can be used in fields such as power plants and electric vehicles.
  • Figure 1 shows the surface morphology of a nano-palladium-iron composite electrode based on mesoporous nickel foam.
  • Figure 2 is a comparison diagram of cyclic voltammetry curves between starch solution and blank solution.
  • Figure 3 shows the cyclic voltammetry curves of starch solutions with different concentrations.
  • Figure 4 shows the standard curve of different concentrations of starch.
  • Figure 5 shows the anti-poisoning curve of PdNFs/FeNPs/MFC electrode.
  • the preparation method of the PdNFs/FeNPs/MFC electrode in the following embodiment is:
  • a three-electrode system is used, and the cleaned mesoporous nickel foam electrode is used as the working electrode, the Ag/AgCl electrode and the platinum wire electrode are the reference electrode and the counter electrode is put into the ferrous sulfate solution (0.02mol/L sulfuric acid Ferrous + 0.1mol/L sodium sulfate + 0.1mol/L ascorbic acid) in the electrolytic cell.
  • the electrodeposition parameters of the electrochemical workstation voltage -1.2V, time 300s.
  • the surface morphology of the mesoporous nickel/nano-palladium-iron composite electrode is shown in Figure 1: The size and distribution of the nanoparticles on the electrode are uniform, and the electrocatalytic performance is particularly outstanding.
  • Example 2 Cyclic voltammetric response of PdNFs/FeNPs/MFC electrodes to different starches of the same concentration.
  • the three-electrode system was placed in a 1mol/L KOH solution with a pH of 14 as the supporting electrolyte for different concentrations of starch to be tested.
  • the 1mmol/L, 3mmol/L, 5mmol/L, 7mmol/L, and 10mmol/L starch solutions were measured at a scanning rate of 50mV/S, and the cyclic voltammetry was used to scan in the potential range of -0.2 to 1.3V. Record the cyclic voltammetry curves of starch with different concentrations and the same scanning speed.
  • the three-electrode system is placed in a 10mm starch test solution containing 1mol/L KOH solution with a pH of 14 as the supporting electrolyte, and the time current curve of starch is recorded using the time current method at a potential of 0.65V.
  • the current density drops sharply at the beginning.
  • the active site does not contain adsorbed starch molecules.
  • the adsorption of new starch molecules depends on the release of electrocatalytic sites through starch oxidation, or intermediate substances such as CO, CHx, etc. formed in the first few minutes (rate determination step), and the catalytic active sites of the electrode are occupied.
  • the slight decrease in current density is mainly due to the poisoning of the catalyst.
  • the specific current experienced a rapid drop in the first 300 seconds, and after the end of the test, it still changed smoothly and moderately, with an attenuation of about 20%. Therefore, the electrode has strong anti-poisoning ability and stable structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)

Abstract

一种阳极构建淀粉燃料电池的方法,属于燃料电池领域。该方法以PdNFs/FeNPs/MFC电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于淀粉溶液和支持电解质中,设置电位为-0.2~1.3V,记录浓度为1mmol/L、3mmol/L、5mmol/L、7mmol/L、10mmol/L淀粉的循环伏安曲线,并利用标准曲线法对电极电催化氧化淀粉溶液的控制过程进行分析。利用介孔泡沫镍良好的导电性,制得一种对淀粉具有高灵敏度的电极,且该电极在淀粉为基液时,催化效果好、灵敏度高、选择性好、结构稳定等优点,本燃料电池可用于制作随身充电宝,可用于发电厂及电动汽车等领域。

Description

一种阳极构建淀粉燃料电池的方法 技术领域
本发明属于燃料电池领域,具体涉及一种阳极构建淀粉燃料电池的方法。
背景技术
糖燃料电池糖燃料电池是美国弗吉尼亚理工大学研究小组开发的一种电池,以糖为能源提供电力,能量密度达到前所未有的水平,继续发展有望替代传统电池成为一种廉价的、可充电而且可生物降解的电池。相关论文发表在2014年1月21日的《自然·通讯》杂志上。糖燃料电池利用了一系列酶,这些酶以一种自然界没有的方式组合在一起。研究人员构造了一种非天然式的合成酶路径,能从糖里面获取所有的电荷势能,在一个小小的酶燃料电池中产生电流。传统电池通常是用昂贵的铂金作催化剂,而他们用的是低成本的生物催化酶。通过一种酶流注,能把糖溶液中的所有电荷缓慢地、一步步地释放出来。
酶的耐受性不足,无法在强酸性或强碱性环境下存活,并且也无法提供稳定的电流,因而限制其在燃料电池方面的应用。
发明内容
针对上述不足,本发明提供一种阳极构建淀粉燃料电池的方法,该方法构建出的燃料电池可提供稳定的电流,且成本较低廉。
本发明解决技术问题构建的燃料电池以PdNFs/FeNPs/MFC电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于淀粉溶液和支持电解质中,设置电位为-0.2~1.3V,记录浓度为1mmol/L、3mmol/L、5mmol/L、7mmol/L、10mmol/L淀粉的循环伏安曲线,并利用标准曲线法对电极电催化氧化淀粉溶液的控制过程进行分析。
进一步地,所述支持电解质为1mol/LKOH水溶液,pH为14。
进一步地,所述PdNFs/FeNPs/MFC电极包括:介孔泡沫镍为基底和导电层,铁钯颗粒为电化学沉积层,所述纳米钯-铁颗粒沉积在介孔泡沫镍上。
原理:PdNFs/FeNPs/MFC电极是以介孔泡沫镍为基底,MFC孔径均一且多孔,有巨大的比表面积与三维孔道结构,具有良好的导电性。在MFC上沉积出纳米铁粒子,在纳米铁上电沉积出纳米钯。因为炭黑有巨大的比表面积,故可以沉积出大量的纳米铁粒子,从而使得纳米钯附着在纳米铁上的面积增大,扩大了其对淀粉的接触面积,使其电流增大,达到增大电池输出功率的目的。PdNFs/FeNPs/MFC电极对于淀粉具有高灵敏度,优异的催化效果,以及良好的 选择性。
有益效果:本发明利用介孔泡沫镍良好的导电性,制得一种对淀粉具有高灵敏度的电极,且该电极在淀粉为基液时,催化效果好、灵敏度高、选择性好、结构稳定等优点,本燃料电池可用于制作随身充电宝,可用于发电厂及电动汽车等领域。
附图说明
图1为基于介孔泡沫镍的纳米钯-铁复合电极表面形貌图。
图2为淀粉溶液与空白溶液循环伏安曲线对比图。
图3为不同浓度淀粉溶液的循环伏安曲线。
图4为不同浓度的淀粉的标准曲线。
图5为PdNFs/FeNPs/MFC电极抗毒化曲线。
具体实施方式
下面结合附图和具体实施例对本发明的技术方案作进一步的说明,但本发明不以任何形式受限于实施例内容。实施例中所述实验方法如无特殊说明,均为常规方法;如无特殊说明,所述实验试剂和材料,均可从商业途径获得。
下述实施例PdNFs/FeNPs/MFC电极的制备方法为:
取一块待用的介孔泡沫镍,切割出尺寸为10*20mm规格的介孔泡沫镍,备用。用去离子水冲洗,烘干。
电极制备具体步骤如下:
(1)采用三电极体系,用清洗后的介孔泡沫镍电极作为工作电极,Ag/AgCl电极和铂丝电极为参比电极和对电极放入盛有硫酸亚铁溶液(0.02mol/L硫酸亚铁+0.1mol/L硫酸钠+0.1mol/L抗坏血酸)的电解池中。采用计时电流法,设置电化学工作站电沉积参数:电压-1.2V,时间300s。
(2)采用三电极体系,以纳米结构的Fe/介孔泡沫镍玻璃浸入将三电极体系置于以pH=4的醋酸-醋酸钠为缓冲溶液,浓度为5mmol/L的PdCl 2溶液中的混合物5min,5min后取出超纯水洗,氮气吹干,放置两天备用。
基于介孔泡沫镍/纳米钯-铁复合电极表面形貌图如图1所示:电极上的纳米粒子颗粒大小和分布均匀,电催化性能尤为突出。
实施例1淀粉溶液与空白溶液循环伏安曲线对比
首先,将三电极体系置于pH为14浓度为1mol/L的KOH溶液中,利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描,记录空白溶液的循环伏安曲线; 然后,将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的10mmol/L的淀粉待测液中利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描,记录淀粉的循环伏安曲线。如附图2所示:100mV/s的扫描速度下测试PdNFs/FeNPs/MFC电极在10mmol/L的淀粉的催化效果。从图中可以看出PdNFs/FeNPs/MFC电极对淀粉催化电流为1000000μA/cm 2/mol。表明PdNFs/FeNPs/MFC电极所组成的燃料能将生物能高效转换为电能。
实施例2 PdNFs/FeNPs/MFC电极对不同相同浓度的淀粉的循环伏安响应依次将三电极体系置于1mol/L,pH为14的KOH溶液作为支持电解质的不同浓度的淀粉待测液中,在50mV/S的扫速下测定1mmol/L、3mmol/L、5mmol/L、7mmol/L、10mmol/L淀粉溶液,利用循环伏安法,在-0.2~1.3V的电位范围内进行扫描。记录不同浓度同扫速的淀粉的循环伏安曲线。如附图3、附图4所示:从图中可以看出,随着浓度不断增大,纳米电极在淀粉溶液中的氧化电流也不断增大,氧化峰也不断升高,呈现出良好的催化淀粉的线性响应.淀粉的氧化还原反应受扩散控制。在1~10mmol/L的范围内两者之间还存在着良好的线性关系,淀粉的氧化峰电流与浓度的线性回归方程为I=0.0005C+0.0038,相关系数为0.9483。
实施例3电极抗毒化能力的测定
首先,将三电极体系置于含有1mol/L,pH为14的KOH溶液作为支持电解质的10mm淀粉待测液中,利用时间电流法,在0.65V的电位下,记录淀粉的时间电流曲线。然如附图5所示:电流密度在开始时急剧下降。在反应开始时,它是一个快速动力学反应,因此活性位点不含吸附的淀粉分子。之后,新淀粉分子的吸附取决于通过淀粉氧化释放电催化位点,或者在最初几分钟(速率确定步骤)中形成的中间物质如CO,CHx等,电极催化活性位点被占据。因此,电流密度稍微降低主要是由于催化剂的中毒。此外,在整个测试期间特定电流在前300秒经历了快速下降,并且在测试结束之后仍然是平稳且温和的变化,衰减约为20%。所以电极的抗毒化能力强,结构稳定。
以上所述,仅为本发明创造较佳的具体实施方式,但本发明创造的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明创造披露的技术范围内,根据本发明创造的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明创造的保护范围之内。

Claims (3)

  1. 一种阳极构建淀粉燃料电池的方法,其特征在于,该方法以PdNFs/FeNPs/MFC电极为工作电极,Ag/AgCl电极为参比电极,铂丝为辅助电极组成三电极系统,将该三电极系统置于淀粉溶液和支持电解质中,设置电位为-0.2~1.3V,记录浓度为1mmol/L、3mmol/L、5mmol/L、7mmol/L、10mmol/L淀粉的循环伏安曲线,并利用标准曲线法对电极电催化氧化淀粉溶液的控制过程进行分析。
  2. 根据权利要1所述的一种自制阳极构建淀粉燃料电池的方法,其特征在于,所述支持电解质为1mol/LKOH水溶液,pH为14。
  3. 根据权利要1所述的一种自制阳极构建淀粉燃料电池的方法,其特征在于,PdNFs/FeNPs/MFC电极制备步骤如下:
    (1)采用三电极体系,用清洗后的介孔泡沫镍电极作为工作电极,Ag/AgCl电极和铂丝电极为参比电极和对电极放入盛有0.02mol/L硫酸亚铁、0.1mol/L硫酸钠、0.1mol/L抗坏血酸的电解池中,采用计时电流法,设置电化学工作站电沉积参数:电压-1.2V,时间300s;
    (2)采用三电极体系,以纳米结构的Fe/介孔泡沫镍玻璃浸入将三电极体系置于以pH=4的醋酸-醋酸钠为缓冲溶液,浓度为5mmol/L的PdCl 2溶液中的混合物5min,5min后取出超纯水洗,氮气吹干,放置两天备用。
PCT/CN2020/111061 2019-12-25 2020-08-25 一种阳极构建淀粉燃料电池的方法 WO2021128898A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/754,631 US20220393186A1 (en) 2019-12-25 2020-08-25 Method for constructing starch fuel cell with anode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911355749.7 2019-12-25
CN201911355749.7A CN113036158B (zh) 2019-12-25 2019-12-25 一种阳极构建淀粉燃料电池的方法

Publications (1)

Publication Number Publication Date
WO2021128898A1 true WO2021128898A1 (zh) 2021-07-01

Family

ID=76458069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111061 WO2021128898A1 (zh) 2019-12-25 2020-08-25 一种阳极构建淀粉燃料电池的方法

Country Status (3)

Country Link
US (1) US20220393186A1 (zh)
CN (1) CN113036158B (zh)
WO (1) WO2021128898A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642714A (zh) * 2009-09-02 2010-02-10 山东大学 一种核壳型纳米双金属Fe/Pd催化剂的制备方法
CN106328961A (zh) * 2016-10-19 2017-01-11 天津大学 一种用于生物质碱性燃料电池的阳极材料及其制备方法
CN109298053A (zh) * 2018-10-23 2019-02-01 大连大学 一种应用AuNPs/AgNWs/PDMS可塑电极测定葡萄糖的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7419580B2 (en) * 2000-12-14 2008-09-02 The University Of Hong Kong Methods and apparatus for the oxidation of glucose molecules
CN109065893B (zh) * 2018-06-21 2021-03-30 华南理工大学 一种复合电催化材料及其制备方法和应用
CN110006974B (zh) * 2019-03-26 2023-12-19 西北工业大学深圳研究院 一种高效柔性无酶葡萄糖生物传感电极及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642714A (zh) * 2009-09-02 2010-02-10 山东大学 一种核壳型纳米双金属Fe/Pd催化剂的制备方法
CN106328961A (zh) * 2016-10-19 2017-01-11 天津大学 一种用于生物质碱性燃料电池的阳极材料及其制备方法
CN109298053A (zh) * 2018-10-23 2019-02-01 大连大学 一种应用AuNPs/AgNWs/PDMS可塑电极测定葡萄糖的方法

Also Published As

Publication number Publication date
US20220393186A1 (en) 2022-12-08
CN113036158A (zh) 2021-06-25
CN113036158B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2006022224A1 (ja) 燃料電池、燃料電池の使用方法、燃料電池用カソード電極、電子機器、電極反応利用装置および電極反応利用装置用電極
CN113013421B (zh) 一种基于pdms的银纳米线/纳米金/纳米镍复合电极的制备方法及其应用
WO2021128898A1 (zh) 一种阳极构建淀粉燃料电池的方法
CN113013420B (zh) 一种具有抗毒化能力的果糖燃料电池的制备方法
CN113130913B (zh) PtNPs/NiNPs/AgNWs/PET可塑电极及其在构建果糖燃料电池上的应用
CN112993266B (zh) 一种应用CuO-NiNPs/碳布可塑电极构建的构建淀粉燃料电池
CN113030203B (zh) 一种PdNPs/NiNPs/GO/AgNWs/电极构建麦芽糖燃料电池的方法
CN114583183A (zh) 一种酸性葡萄糖燃料电池电极及其制备方法
CN112993269B (zh) 一种非酶燃料电池阳极及其制备方法和应用
CN113130914B (zh) 乳糖燃料电池及构建该燃料电池的PtNPs/CuNPs/NiNPs/碳布可塑电极
CN113092552B (zh) 一种CuO-NiNPs/MFC电极构建乳糖燃料电池的方法
CN112886025A (zh) 一种果糖燃料电池及其构建方法
CN113013453B (zh) 一种构建甲醇燃料电池的方法
CN113036157B (zh) 一种泡沫镍电极的应用
CN113130916B (zh) 基于PdNPs/NiNPs/ITO电极构建乳糖燃料电池的方法
CN113130950B (zh) 一种应用CuO/泡沫镍电极电催化氧化麦芽糖溶液构建麦芽糖燃料电池的方法
CN113036164B (zh) 一种基于介孔泡沫碳的复合电极制备方法及应用
CN113013429A (zh) 一种PdNPs/NiNPs/碳布电极及其制备方法
CN113054206B (zh) 一种NiNPs/AuNPs/GN/AgNWs/纸可塑电极的制备方法及应用
CN113054201B (zh) 基于NiNPs/AuNPs/CFP电极电催化氧化蔗糖溶液构建蔗糖燃料电池的方法
CN103521220A (zh) 石墨烯-二维贵金属原子层复合材料的制备方法
CN112886023B (zh) 一种CuO-NiNPs/PET-ITO电极及其应用
CN114583188B (zh) 一种构建中性葡萄糖燃料电池电极的方法
CN113097500B (zh) 一种CuO-NiNPs/AgNWs/CNT/PDMS阳极的制备方法及其应用
CN113130952A (zh) PdNPs/NiNPs/ITO电极及其电催化氧化乙醇溶液构建乙醇燃料电池的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906483

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906483

Country of ref document: EP

Kind code of ref document: A1