WO2021128761A1 - 分布式多维力测力系统及测力方法 - Google Patents

分布式多维力测力系统及测力方法 Download PDF

Info

Publication number
WO2021128761A1
WO2021128761A1 PCT/CN2020/096253 CN2020096253W WO2021128761A1 WO 2021128761 A1 WO2021128761 A1 WO 2021128761A1 CN 2020096253 W CN2020096253 W CN 2020096253W WO 2021128761 A1 WO2021128761 A1 WO 2021128761A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate system
force
sensor
dimensional force
displacement
Prior art date
Application number
PCT/CN2020/096253
Other languages
English (en)
French (fr)
Inventor
马洪文
邢宇卓
Original Assignee
马洪文
邢宇卓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 马洪文, 邢宇卓 filed Critical 马洪文
Publication of WO2021128761A1 publication Critical patent/WO2021128761A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force
    • G01L5/166Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force using photoelectric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means

Definitions

  • the invention relates to a force measurement system and method, belonging to the technical field of force measurement.
  • Multi-dimensional force sensors can detect information about forces acting in space.
  • the accuracy of the multi-dimensional force obtained directly affects the working performance and control accuracy of the system.
  • the current force measurement methods have been able to measure the multidimensional force more accurately, the current multidimensional force sensors generally have an accuracy of only 1%, and their measurement accuracy still needs to be improved.
  • the current multi-dimensional force sensor and multi-dimensional force measurement system still have a serious problem, that is, for the measurement of large-mass objects and large-volume objects with a wide range of multi-dimensional forces, the existing multi-dimensional force measurement technology is difficult to achieve accurate measurement.
  • this type of measurement system mostly uses mechanical decoupling, that is, using guide rails or hinges to simplify multi-dimensional force measurement into multiple single-dimensional force measurements.
  • mechanical decoupling that is, using guide rails or hinges to simplify multi-dimensional force measurement into multiple single-dimensional force measurements.
  • there are relatively large friction forces in mechanical guide rails and hinges resulting in large measurement errors.
  • Some distributed measurement systems using multiple multi-dimensional force sensors have poor decoupling results and large errors due to excessive simplification of the measurement model.
  • the inventions with application numbers 2019108823616 and 201910882389X respectively propose a parallel rod system multi-dimensional force sensor structure and a multi-dimensional force acquisition method; compared with the existing multi-dimensional force sensor, the accuracy has been greatly improved.
  • its multiple strain beams can be regarded as spatial linear elastic bodies.
  • the support platform and load platform connecting all elastic beams are regarded as pseudo-rigid bodies.
  • the pseudo-rigid body means that when the strain beam is deformed, the corresponding The amount of deformation of the pseudo-rigid body is very small compared to the amount of deformation of the strain beam, and it can be almost ignored.
  • the force input distribution range is very large.
  • the load force deformation zone (Deformation zone) of loading forces) and beam deformation zone (Deformation zone of beams) and supporting force deformation zone (Deformation zone of supporting forces) and beam deformation zone (Deformation zone of beams) are isolated.
  • the multi-dimensional force sensor load platform and support platform required are also very large, and the rigidity of all internal parts must also be very large, and a solid body structure that makes all internal parts very rigid is required.
  • its structural size, weight and cost are extremely high, and it is very difficult to realize it.
  • the invention aims to solve the problem that the existing multi-dimensional force sensor or multi-dimensional force measurement system cannot achieve accurate multi-dimensional force measurement for equipment with large weight and large volume.
  • the distributed multi-dimensional force measurement system includes several multi-dimensional force sensors and several displacement sensors;
  • the load object is connected to the load frame, and the load frame is connected to the load platform of all multi-dimensional force sensors; or, the load object is directly connected to the load platform of the multi-dimensional force sensor, and the load object is directly regarded as the load frame;
  • the supporting platform of all multi-dimensional force sensors is connected to the supporting frame, and the supporting frame is finally connected to the ground; or, if the supporting platform of the multi-dimensional force sensor is directly connected to the ground, the ground is directly regarded as the supporting frame;
  • the displacement sensor is used to measure the current pose of the multidimensional force sensor
  • All displacement sensors are arranged on the sensor frame; the sensor frame is far away from the supporting frame, and/or the load frame and the sensor frame are mechanically isolated by an isolation structure.
  • the distributed multi-dimensional force measurement system further includes a set of measurement system fixedly connected with the earth, and the measurement system is used to measure the offset of the measured object relative to the earth.
  • the multidimensional force sensor adopts a parallel rod system multidimensional force sensor structure.
  • the displacement sensor is a non-contact or contact displacement sensor.
  • the measurement system is a CCD image displacement sensor, a camera device or a lidar three-dimensional pose measurement device.
  • the force measurement method of the distributed multidimensional force measurement system includes the following steps:
  • the multi-dimensional force of each multi-dimensional force sensor in its own coordinate system is calculated
  • the displacement sensor installed on the sensor frame is used to measure the position and attitude offset of each multi-dimensional force sensor in the global coordinate system under the force state, and the position and attitude offset of each multi-dimensional force sensor is corrected according to the said position and attitude offset.
  • the initial pose parameters under the coordinate system to obtain the current actual pose parameters of each multi-dimensional force sensor in the global coordinate system;
  • the multi-dimensional force measured by each multi-dimensional force sensor in its own coordinate system is subjected to space vector transformation, and all are transformed to the global coordinate system The same pose and sum, obtain the external multi-dimensional force of the measured object under the global coordinate system;
  • the actual pose will be offset.
  • the offset will be global according to the measured object's pose under the force state.
  • the external multi-dimensional force of the measured object undergoes space vector transformation, and finally the multi-dimensional force of the measured object in its own coordinate system is obtained.
  • the multi-dimensional force measured by all multi-dimensional force sensors is used to calculate the multi-dimensional force of the external load on the system
  • the position of the multi-dimensional force sensor coordinate system in the geodetic coordinate system will change greatly when subjected to external forces.
  • the actual position of the k-th multi-dimensional force sensor's own coordinate system in the geodetic coordinate system oxyz coordinate system defined by o k x k y k z k becomes o k 'x k' y k 'z k';
  • the elements in are respectively the linear micro-displacement along the three coordinate axes and the angular displacement around the three coordinate axes in the displacement sensor coordinate system o k, l x k, l y k, l z k, l;
  • the elements in are respectively the linear micro-displacement along the three coordinate axes and the angular displacement around the three coordinate axes in the multi-dimensional force sensor coordinate system o k x k y k z k;
  • the measurement sensitive axis of the displacement sensor is the coordinate system o k,l x k,l y k,l z k,l along the x k,l axis direction, and the measurement is obtained Take it as an observable measurement, so equation (5).
  • (a) has an observable measurement equation; a variety of non-contact or micro-force contact displacement sensors are used for measurement, and the sensor measures the sensitive axis along/around the coordinate system o k,l x k, Any axis of l y k,l z k,l , then the micro-displacement along/around the corresponding axis becomes observable, and equations (a) ⁇ (f) in the corresponding equation group (5) become observable equations;
  • the initial position parameter of the k-th multidimensional force sensor in the geodetic coordinate system is with Then the position of the multidimensional force sensor is shifted when the force is applied.
  • the sensor coordinate system o k x k y k z k is regarded as a solid connection with the sensor, and it shifts with the shift of the sensor, then when the force is applied, o k x k y k z k shifted to o k 'x k' y k 'z k'; coordinate system o k x k y k z k coordinate system o k 'x k' y k 'z k' oxyz the earth coordinate system
  • the micro-displacement in is calculated above
  • the coordinate system o k 'x k' y k 'z k' position parameter of the earth coordinate system is written as:
  • Is the six-dimensional force of the k-th six-axis force sensor is measured, the six-dimensional force actually o k 'x k' y k 'z k' coordinate system acting o k 'points;
  • the r k 'and ⁇ k ' in the transformation matrix are the actual pose parameters of the multi-dimensional force sensor measured by the displacement sensor in the global coordinate system oxyz.
  • the force measurement method of the distributed multidimensional force measurement system further includes the following steps:
  • the final multi-dimensional forces are all in a coordinate system oxyz that is fixed to the earth.
  • the multi-dimensional force relative to the coordinate origin o must be obtained in the coordinate system fixed to the aircraft. Force, use a set of measuring system fixedly connected with the earth to measure the offset of the measured object relative to the earth:
  • Q refers to the generalized six-dimensional force measured under the coordinate system oxyz of the fixed connection and the earth;
  • Q' refers to the generalized six-dimensional force under the coordinate system o'x'y'z' fixedly connected to the aircraft;
  • the displacement sensor only measures the support platform of the multidimensional force sensor; or, only measures the load platform of the multidimensional force sensor; or simultaneously measures the support platform and the load platform of the multidimensional force sensor.
  • the use of a distributed multi-dimensional force measurement system can make the volume and weight of the entire force measurement system smaller, and at the same time can achieve high-precision and large-scale multi-dimensional force measurement, such as in wind tunnel testing, especially for testing large objects subjected to wind When loading, the force distribution range is very large, and the system can have higher measurement accuracy than conventional wind tunnel force balances.
  • Figure 1 is a schematic diagram of multi-dimensional force acquisition of a large measured object
  • Figure 2 is a schematic diagram of the structure of a distributed multidimensional force measurement system
  • Figure 3 is a schematic diagram of the deformation of the load frame and the support frame
  • Figure 4 is a schematic diagram of the structure of a distributed multidimensional force measurement system with displacement sensors
  • Figure 5 is a schematic diagram of using a displacement sensor to measure a dimensional force sensor; among them, Figure 5 (a) is a schematic diagram of a support platform where the displacement sensor only measures a multi-dimensional force sensor; Figure 5 (b) is a load platform where the displacement sensor only measures a multi-dimensional force sensor. Such as; Figure 5 (c) is a schematic diagram of the displacement sensor simultaneously measuring the support platform and the load platform;
  • Figure 6 is a schematic diagram of the spatial pose change of the k-th multidimensional force sensor
  • Figure 7 is a schematic diagram of a distributed multidimensional force measurement system for wind tunnel test of an aircraft
  • Figure 8 is a schematic diagram of a distributed multidimensional force measurement system for thrust jet engine thrust test
  • Figure 9 is a schematic diagram of an automobile wind tunnel force measurement system
  • Figure 10 is a schematic diagram of a distributed multi-dimensional force measurement system for aircraft wind tunnel tests
  • Figure 11 is a schematic diagram of the connection between the multidimensional force sensor and the load frame;
  • Figure 11(a) is a schematic diagram of all the multidimensional force sensors connected to the load frame through a connecting rod and a mechanical hinge;
  • Figure 11(b) is a schematic diagram of all the multidimensional force sensors through a mechanical hinge
  • Figure 11(c) is a schematic diagram of all multi-dimensional force sensors directly connected to the load frame through flexible hinges;
  • Figure 11(d) is a schematic diagram of all multi-dimensional force sensors connected to the load frame through over-constrained supports;
  • 11(e) is a schematic diagram of all the multi-dimensional force sensors connected with the load frame through connecting rods;
  • Figure 11(f) is a schematic diagram of all the multi-dimensional force sensors connected with the load frame through a spire support.
  • the present invention proposes a distributed multidimensional force measurement system and a force measurement method of the distributed multidimensional force measurement system.
  • This embodiment is a distributed multidimensional force measurement system. As shown in FIG. 2, the distributed multidimensional force measurement system according to this embodiment includes several multidimensional force sensors and several displacement sensors;
  • the loading object (loading object) is connected with the loading frame (Loading frame), and the loading frame is connected with the load platform of all multi-dimensional force sensors.
  • the loading object can also be directly connected with the multi-axis force sensor (MAFS) load.
  • MAFS multi-axis force sensor
  • the platform (Loading platform) is connected, and the load object is directly regarded as the load frame at this time;
  • the supporting platform (Supporting platform) of all multi-dimensional force sensors is connected to the supporting frame (Supporting frame), and the supporting frame is finally connected to the ground.
  • the supporting platform of the multi-dimensional force sensor can also be directly connected to the ground. At this time, the ground is directly regarded as Support frame.
  • the multi-dimensional force sensor adopts the parallel rod system multi-dimensional force sensor structure with application number 2019108823616.
  • the displacement sensor is used to measure the current pose of the multidimensional force sensor; the displacement sensor is a non-contact or contact displacement sensor.
  • All displacement sensors are arranged on the sensor frame; the sensor frame is far away from the supporting frame, and/or the load frame and the sensor frame are mechanically isolated by an isolation structure, as shown in FIG. 7.
  • mechanical hinges and flexible hinges need to realize the connection of all multi-dimensional force sensors with the load frame by applying a pre-tightening force.
  • All multi-dimensional force sensors are connected to the load frame through over-constraint supports, as shown in Figure 11(d).
  • the over-constrained support needs to realize the connection of all the multi-dimensional force sensors and the load frame by applying a pre-tightening force.
  • connection can be realized in the following ways:
  • All multi-dimensional force sensors are connected to the load object through mechanical hinges and flexible hinges.
  • mechanical hinges and flexible hinges need to realize the connection of all the multi-dimensional force sensors and the load object by applying a pre-tightening force.
  • All multi-dimensional force sensors are connected to the load object through over-constraint supports.
  • the over-constrained support needs to realize the connection of all the multi-dimensional force sensors and the load object by applying a pre-tightening force.
  • the distributed multi-dimensional force measurement system further includes a measurement system fixedly connected to the earth, and the measurement system is used to measure the offset of the measured object relative to the earth.
  • This embodiment is a force measurement method of a distributed multidimensional force measurement system.
  • all the derivation processes of the multidimensional force are derived and explained using the most common six-dimensional force sensor as an example.
  • it can be obtained by appropriately simplifying the six-dimensional force related formulas. For example, for a plane three-dimensional force sensor (in the oxyz plane), set all the forces along the z-axis and the linear deformation, as well as the moments and corner deformations around the x and y axes, to 0, and at the same time convert the corresponding six-dimensional equations into three-dimensional Equations, you can get the corresponding results.
  • all the derivation processes of the multidimensional force are derived and explained using the most common six-dimensional force sensor as an example.
  • it can be obtained by appropriately simplifying the six-dimensional force related formulas.
  • a plane three-dimensional force sensor in the oxyz plane
  • some related drawings are expressed in a plane, as shown in Figure 2, the content expressed is a three-dimensional structure in space.
  • the z-axis in Figure 2 is perpendicular to the paper. According to this figure
  • the related formulas obtained are all six-dimensional force formulas in space (3 forces or displacements and 3 moments or rotation angles).
  • the displacement sensor installed on the sensor frame is used to measure the pose offset of each multi-dimensional force sensor under the force state under the global coordinate system, and each multi-dimensional force sensor is corrected according to the said pose offset.
  • the initial pose parameters of the force sensor in the global coordinate system, and the current actual pose parameters of each multi-dimensional force sensor in the global coordinate system are obtained;
  • the multi-dimensional force measured by each multi-dimensional force sensor in its own coordinate system is transformed to The same pose (position and pose) in the global coordinate system, such as the pose at the origin of the global coordinate system, and sum them to obtain the external multidimensional force of the measured object in the global coordinate system;
  • the process of transforming the external multi-dimensional force of the measured object under the global coordinate system into the space vector according to the position and attitude offset of the measured object under the force state can be used to obtain the measured object.
  • the posture offset of the object under force is measured, and the calculated six-dimensional force in the global coordinate system is transformed according to the offset to obtain the six-dimensional force in the object's own coordinate system.
  • the global coordinate system mentioned in the above process is recorded as the geodetic coordinate system.
  • the multi-dimensional force measured by all multi-dimensional force sensors can be used to calculate the multi-dimensional force of the external load on the system
  • the above calculation process can obtain the multi-dimensional force of the external load received by the system through multiple multi-dimensional sensors arranged in a distributed manner, in the process of multi-dimensional force measurement, when the external force is applied, due to the load frame (including the load object) and the support frame (including the load)
  • the rigidity of each position of the earth cannot be infinite, so large deformation will occur, that is, as shown in Figure 3, the shape of the solid line in the figure changes from the shape of the solid line to the shape of the dotted line when the load frame and the support frame are stressed.
  • the initial coordinate parameters ⁇ k and r k can be accurately obtained through system calibration, and the parameters ⁇ k 'and r k ' are related to the load force received during the force measurement process, and must be measured in real time by the displacement sensor during the force measurement process, and For different k, ⁇ k 'and r k ' are different. If ⁇ k 'and r k ' cannot be obtained accurately, then the formula (2) is the multi-dimensional system obtained by summing all the multi-dimensional forces after space vector transformation The force will be inaccurate.
  • the displacement sensor is used to measure the displacement of the multi-dimensional force sensor relative to the earth under the force state, so all displacement sensors must maintain their position and attitude relative to the earth when the system is working.
  • the displacement sensors can be non-contact or contact displacement sensors, including various optical, electrical, micro-force, image and other displacement sensors; All displacement sensors are set on the sensor frame.
  • the sensor frame In order to ensure that all the displacement sensors mentioned above remain unchanged when the system is working, the sensor frame needs to ensure that the system is not affected by the load force when the system is working. Therefore, on the ground, The sensor frame is far away from the support frame, and/or the load frame and the sensor frame are mechanically isolated by an isolation structure. The purpose is to have almost no effect on the sensor frame when the support frame and the ground connected to it deform, that is, all sensors can It is considered that the pose remains unchanged in the geodetic coordinate system. Under this setting condition, when the system is subjected to a load, the sensor frame can be regarded as a pseudo-rigid body without deformation;
  • the schematic diagram of the displacement sensor measuring the multi-dimensional force sensor is shown in Figure 5.
  • the displacement sensor can only measure the support platform of the multidimensional force sensor, as shown in Figure 5(a); it can also only measure the load platform of the multidimensional force sensor, as shown in Figure 5(b); or both can be measured at the same time, as shown in Figure 5( c);
  • the deformation of the multidimensional force sensor itself is almost negligible in this system, so the difference between the three is not large.
  • its stability is relatively Good
  • Fig. 5(b) the accuracy is better
  • Fig. 5(c) stability and accuracy can be taken into account, and even the measured position and attitude difference between the support platform and the load platform can be used to further correct the multidimensional force Sensors measure force, but they are more complicated and costly.
  • the k-th multi-dimensional force sensor is taken out for analysis.
  • On the sensor frame there are l displacement sensors corresponding to the k-th multi-dimensional force sensor to monitor its spatial pose changes.
  • two-dimensional coordinates are taken as an example.
  • the three-dimensional situation is exactly the same; in the stressed state, due to the deformation of the load frame and the supporting frame and the ground, the force sensor will change its pose relative to the geodetic coordinate system, that is, the position from the solid line to the dotted line.
  • the force must be corrected according to the change of the pose of each force sensor.
  • the sensor frame is far away from the supporting frame on the ground, the sensor frame is not affected by the load force and can be regarded as a pseudo-rigid body whose position and shape will not change under the geodetic coordinate system, so all can be placed
  • the displacement sensor on the sensor frame is regarded as keeping still relative to the earth, and using this as a reference, calculates the amount of change in the posture of the multidimensional force sensor after being loaded.
  • the elements in are respectively the linear micro-displacement along the three coordinate axes and the angular displacement around the three coordinate axes in the displacement sensor coordinate system o k, l x k, l y k, l z k, l;
  • the elements in are respectively the linear micro-displacement along the three coordinate axes and the angular displacement around the three coordinate axes in the multi-dimensional force sensor coordinate system o k x k y k z k;
  • the measurement sensitive axis of the displacement sensor in the figure is the coordinate system o k,l x k,l y k,l z k,l along the x k,l axis direction, that is, Measured Take it as an observable, so equation (5).(a) has an observable equation.
  • a variety of non-contact or micro-force contact displacement sensors can be used for measurement.
  • the sensor's measurement sensitive axis can be along/around any axis of the coordinate system o k,l x k,l y k,l z k,l , then along/around the corresponding axis
  • the micro-displacement becomes the observable, and the equations (a) ⁇ (f) in the corresponding equations (5) become the observable equations; here also needs to be explained:
  • a displacement sensor can have multiple measurement sensitive axes, such as when When a sensor has two measurement sensitive axes, two equations with observable measurements can be obtained.
  • the initial position parameter of the k-th multidimensional force sensor in the geodetic coordinate system is with After the multi-dimensional force sensor is stressed, the support frame (or the ground) is deformed due to the force on the support frame (or the ground), which causes the position of the multi-dimensional force sensor to shift in the global coordinate system.
  • the sensor coordinate system o k x k y k z k seen fixedly connected integrally with the sensor, with the sensor offset and offset, when stressed o k x k y k z k shifted to o k 'x k' y k 'z k '; coordinate system o k x k y k z k coordinate system o k' x k 'y k ' z k ' micro-displacement in the earth coordinate system oxyz compared with the above calculated
  • the coordinate system o k 'x k' y k 'z k' position in the world coordinate system parameter may be written as:
  • each six-dimensional force sensor can be accurately measured by multiple displacement sensors
  • Is the six-dimensional force of the k-th six-axis force sensor is measured, the six-dimensional force actually o k 'x k' y k 'z k' coordinate system acting o k 'point.
  • R k 'and ⁇ k ' in the transformation matrix are the actual pose parameters of the multi-dimensional force sensor measured by the displacement sensor in the global coordinate system oxyz;
  • FIG. 7 is a schematic diagram of a distributed multi-dimensional force measurement system for aircraft wind tunnel tests.
  • 1 is an isolation structure
  • 2 is a supporting ground
  • 3 is a sensor frame
  • 4 Is the sensor supporting ground
  • 5 is the 6-axis force sensor
  • 6 is the supporting beam
  • 5.1 in the 6-axis force sensor is the load platform of the 6-axis force sensor ( Loading platform)
  • 5.2 is the supporting platform of the six-dimensional force sensor (Supporting platform);
  • the displacement sensor can be 7 optical triangular displacement senior or 8 capacitive displacement senior; if it is an optical triangular displacement sensor, the optical triangular displacement sensor is set on the sensor frame (Fixed on Sensor frame); If it is a capacitive displacement sensor, a part of the capacitive displacement sensor is arranged on a sensor frame (Fixed on Sensor frame) and another part of the capacitive displacement sensor is arranged on a supporting platform (Fixed on Supporting platform).
  • the aircraft and the support rod can be regarded as a load frame together.
  • the six-dimensional force sensor is directly placed on the supporting ground, and the supporting ground can be regarded as a supporting frame.
  • the supporting ground on which the six-dimensional force sensor is placed passes through the isolation structure and the sensor on the sensor frame. Support the ground to achieve mechanical isolation; when the aircraft is under force, the support rods and the support ground will change.
  • the sensor frame is far away from the supporting ground and there is an isolation structure, the sensor frame can be regarded as a pseudo-rigid body, which is placed on it. All displacement sensors will not change their poses due to force on the aircraft.
  • the support rod in the wind tunnel can be further equipped with a support rod cover to avoid the mechanical influence of the airflow on the support rod.
  • this multidimensional force measurement system (wind tunnel balance) is that it can support a large aircraft through a distributed rod system.
  • the support rods can be relatively thin and have little effect on airflow.
  • the six-dimensional force measurement accuracy is extremely high.
  • Figure 8 is a schematic diagram of a distributed multi-dimensional force measurement system for thrust test of a thrust jet engine.
  • 1 is a loading frame
  • 2 is a 6-axis force sensor
  • 2.1 is a 6-axis force sensor.
  • 2.2 is the loading platform of the six-dimensional force sensor
  • 3 is the optical triangular sensor
  • 4 is the thrust jet engine.
  • the engine is connected to the load frame.
  • the sensor frame and the support frame are kept at a long distance on the ground, and/or an isolation structure is added between them to realize that the thrust of the jet engine has almost all displacement sensors’ poses. Will not have any impact.
  • the advantage of this multi-dimensional force measurement system is that the load frame for hoisting the jet thrust engine can be large and the bearing capacity is extremely large, while maintaining extremely high measurement accuracy.
  • Figure 9 is a schematic diagram of an automobile wind tunnel force measurement system.
  • the displacement senior is the displacement sensor
  • the Deformation zone is the deformation area
  • the Deformation of the ground represents the ground deformation
  • the Fixed far way from the deformation zone represents the fixed far away from the deformation zone.
  • the advantage of this structure is also that the structure is relatively small while maintaining a large bearing capacity, and it can measure distributed loads with a large distribution range with high precision.
  • Figure 10 is a schematic diagram of a distributed multi-dimensional force measurement system for air vehicle wind tunnel tests, which is similar to the structure of specific embodiment 1 shown in Figure 7, with an additional set of CCD image displacement sensors (or camera equipment, which calculates the displacement through the camera equipment). , Or space three-dimensional pose measurement equipment such as lidar), the structure of other parts refers to the specific embodiment, and the detailed description is omitted here.
  • the support rods are generally as thin as possible.
  • the aircraft will occur during the test process.
  • the final multi-dimensional force obtained by the measurement method in Figure 7 refers to the multi-dimensional force relative to the coordinate origin o in a coordinate system oxyz that is fixedly connected to the earth.
  • the multi-dimensional force under the coordinate system of the aircraft is o'x'y'z' in the figure.
  • the originally measured multidimensional force under the coordinate system oxyz is converted to the coordinate system o'x'y'z', which is equivalent to the measured multidimensional force fixed in the aircraft's coordinate system.
  • the formula can be written as:
  • Q refers to the generalized six-dimensional force measured under the coordinate system oxyz of the fixed connection and the earth;
  • Q' refers to the generalized six-dimensional force under the coordinate system o'x'y'z' fixedly connected to the aircraft;
  • the advantage of this system is that by installing a sensor that measures the change of the measured object relative to a large position, the six-dimensional force of the coordinate system fixed on the measured object can be measured, which is closer to the actual measurement required.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

分布式多维力测力系统及测力方法,其中分布式多维力测力系统包括若干个多维力传感器和若干个位移传感器,载荷物体与负载框架相连接,负载框架与所有的多维力传感器的负载平台相连接,或者将载荷物体直接与多维力传感器的负载平台相连接,将载荷物体直接视为负载框架;所有多维力传感器的支撑平台与支撑框架相连接,支撑框架最终连接到大地上,或者将多维力传感器的支撑平台直接与大地连接;位移传感器用于测量多维力传感器的当前位姿;所有的位移传感器均设置于传感器框架上。该分布式多维力测力系统用于重量较大、体积较大的设备力的测量,解决了现有的多维力传感器或多维力测力系统无法实现准确的多维力测量的问题。

Description

分布式多维力测力系统及测力方法 技术领域
本发明涉及一种力的测量系统及方法,属于力的测量技术领域。
背景技术
多维力传感器能检测力在空间作用的信息。在航天机械臂、航天对接、协作机器人、仿生机械、医疗辅助器械、步行机器人、风洞测力、航空航天发动机推力测试、螺旋桨推力测试、汽车碰撞测试、微创手术机器人、打磨抛光器械、搅拌摩擦焊、机床加工力测量等众多领域,多维力传感器发挥着重要作用,其获得的多维力的准确性直接影响着系统的工作性能和控制精度。虽然目前的力的测量方法已经能够较为准确的测得多维力,但是目前的多维力传感器精度一般只能达到1%,其测量精度仍有待于提高。
目前的多维力传感器和多维力测量系统仍然存在一个较为严重的问题,即针对大质量物体,大体积物体上分布范围很大的多维力的测量,现有的多维力测量技术难以实现准确的测量,例如进行风洞测试的大型车辆或飞行器,火箭、飞机喷力发动机测试,大型螺旋桨推力测试,大型负载平台载荷测量等。目前该类测量系统多采用机械解耦方式,即采用导轨或铰链,将多维力测量简化为多个单维力测量,但机械导轨及铰链中存在较大摩擦力,导致测量误差较大,有一些采用多个多维力传感器的分布式测量系统由于测量模型过度简化,其解耦结果不好,误差也比较大。
申请号为2019108823616、201910882389X的发明分别提出了并联杆系多维力传感器结构以及多维力获取方法;其相比于现有的多维力传感器精度得到了非常大的提高。对于单个多维力传感器,其多个应变梁可以看做空间线性弹性体的基础是连接所有弹性梁的支撑平台和负载平台均视为伪刚体,伪刚体是指当应变梁发生变形时,相应的伪刚体部分的变形量相对于应变梁的变形量而言非常小,几乎可以忽略不计。
如图1所示,对一个大型被测物体,其力输入分布范围很大,为了保证负载平台和支撑平台上都分别有一个连续的伪刚体(Pseudo rigid body)将负载力变形区域(Deformation zone of loading forces)和梁变形区域(Deformation zone of beams)及支撑力变形区域(Deformation zone of supporting forces)和梁变形区域(Deformation zone of beams)进行隔离。从图中可以看出,这就需要的多维力传感器负载平台和支撑平台也非常大,且其内部所有部位的刚度也必须非常大,且需要采用令内部所有部位刚度都非常大的实心体结构,这对于这类大型结构多维力传感器而言,其结构尺寸、重量和成本及其高昂,实现起来非常困难。
发明内容
本发明是为了解决:针对重量较大、体积较大的设备,现有的多维力传感器或多维力测力系统无法实现准确的多维力测量的问题。
分布式多维力测力系统,包括若干个多维力传感器,还包括若干个位移传感器;
载荷物体与负载框架相连接,负载框架与所有的多维力传感器的负载平台相连接;或者,将载荷物体直接与多维力传感器的负载平台相连接,将载荷物体直接视为负载框架;
所有多维力传感器的支撑平台与支撑框架相连接,支撑框架最终连接到大地上;或者,将多维力传感器的支撑平台直接与大地连接,此时将大地直接视为支撑框架;
所述位移传感器用于测量多维力传感器的当前位姿;
所有的位移传感器均设置于传感器框架上;传感器框架远离支撑框架,和/或,采用隔离结构将负载框架和传感器框架进行力学隔离。
进一步地,当采用负载框架与所有的多维力传感器的负载平台相连接的结构时,包括以下的连接方式:
(A1)所有的多维力传感器通过机械铰链、柔性铰链与负载框架连接;
(A2)所有的多维力传感器通过过约束支撑与负载框架连接;
(A3)所有的多维力传感器通过连接杆与负载框架连接;
(A4)所有的多维力传感器通过尖顶支撑与负载框架连接;
当采用载荷物体与所有的多维力传感器的负载平台相连接的结构时,包括以下的连接方式:
(B1)所有的多维力传感器通过机械铰链、柔性铰链与载荷物体连接;
(B2)所有的多维力传感器通过过约束支撑与载荷物体连接;
(B3)所有的多维力传感器通过连接杆与载荷物体连接;
(B4)所有的多维力传感器通过尖顶支撑与载荷物体连接。
进一步地,所述的分布式多维力测力系统,还包括一套与大地固联的测量系统,所述测量系统用于测量被测物体相对于大地的偏移量。
进一步地,所述多维力传感器采用并联杆系多维力传感器结构。
进一步地,所述的位移传感器采用非接触式或接触式位移传感器。
进一步地,所述测量系统为CCD图像位移传感器、摄像设备或激光雷达三维位姿测量设备。
分布式多维力测力系统的测力方法,包括以下步骤:
在分布式多维力测力系统中,计算得到每一个多维力传感器在其自身坐标系统下的多维力;
采用安装于传感器框架上的位移传感器测量出受力状态下每一个多维力传感器在全局坐标系统下的位姿偏移量,并根据所述的位姿偏移量修正每一个多维力传感器在全局坐标系统下的初始位姿参数,得到每一个多维力传感器在全局坐标系统下的当前实际位姿参数;
根据所述的多维力传感器在全局坐标系统下的当前实际位姿参数,将每一个多维力传感器所测量得到的在其自身坐标系统下的多维力进行空间矢量变换,均变换到全局坐标系统下的同一位姿,并进行求和,得到在全局坐标系统下被测物体所受的外部多维力;
由于被测物体在力的作用下,实际位姿会发生偏移,当需要得到被测物体自身坐标系下的多维力时,根据被测物体在受力状态下的位姿偏移量将全局坐标系统下被测物体所受的外部多维力进行空间矢量变换,最终得到被测物体自身坐标系下的多维力。
进一步地,所述分布式多维力测力系统的测力方法的具体过程如下:
将所述的全局坐标系统记为大地坐标系统;
大地坐标系统中负载物体施加的载荷与所有多维力传感器自身坐标系统中测量得到的多维力的关系为:
Figure PCTCN2020096253-appb-000001
其中,
Figure PCTCN2020096253-appb-000002
表示在大地坐标系统g(oxyz)下,施加在坐标原点o的包括三个力和三个力矩的广义力;
Figure PCTCN2020096253-appb-000003
表示第k个多维力传感器,在自身坐标系统o kx ky kz k下,施加在其坐标原点o k的包括三个力和三个力矩的广义力;
Figure PCTCN2020096253-appb-000004
表示从坐标系o kx ky kz k到坐标系oxyz的广义力矢量变换;
Figure PCTCN2020096253-appb-000005
为绕坐标系oxyz的旋转变换;
Figure PCTCN2020096253-appb-000006
表示坐标系o kx ky kz k与坐标系oxyz的三个坐标轴的夹角;
Figure PCTCN2020096253-appb-000007
为反对称变换矩阵,相当于矢量叉乘;
Figure PCTCN2020096253-appb-000008
表示坐标系o kx ky kz k与坐标系oxyz的三个坐标轴的原点距离;
通过公式(1),利用所有多维力传感器测量得到的多维力计算出系统所受到的外部负载多维力;
在多维力测量过程中,受到外力作用时,多维力传感器坐标系统在大地坐标系统中的位姿会发生较大的改变,第k个多维力传感器自身坐标系统在大地坐标系统oxyz的实际位姿坐标系统由o kx ky kz k变为o k'x k'y k'z k';
公式(1)改写为:
Figure PCTCN2020096253-appb-000009
其中,
Figure PCTCN2020096253-appb-000010
中左上角的k'指坐标系o k'x k'y k'z k';左下角的o k'指坐标系o k'x k'y k'z k'原点,右上角k指第k个多维力传感器,该测量值
Figure PCTCN2020096253-appb-000011
由第k个多维力传感器准确获得;
Figure PCTCN2020096253-appb-000012
中右上角g指大地坐标系统oxyz,右下角k'指坐标系o k'x k'y k'z k';
此时,需要准确获得多维力传感器当前在大地坐标系统中准确的位姿参数
Figure PCTCN2020096253-appb-000013
Figure PCTCN2020096253-appb-000014
利用位移传感器测量多维力传感器相对于大地的受力状态下位移:
对应第k个多维力传感器有l个位移传感器对其空间位姿变化进行监测;第k=(1,…K)个多维力传感器的局部坐标系统为:o kx ky kz k,其与大地坐标系统oxyz原点之间的距离为
Figure PCTCN2020096253-appb-000015
两者对应坐标轴的夹角为
Figure PCTCN2020096253-appb-000016
第k个多维力传感器共有L个位移传感器对其空间位姿进行测量,其中第l=(1,…L)个位移传感器的坐标系统为o k,lx k,ly k,lz k,l,其与大地坐标系统oxyz原点之间的距离为
Figure PCTCN2020096253-appb-000017
两者对应坐标轴的夹角为
Figure PCTCN2020096253-appb-000018
坐标系统o k,lx k,ly k,lz k,l与坐标系统o kx ky kz k的原点之间的距离为
Figure PCTCN2020096253-appb-000019
两者对应坐标轴的夹角为
Figure PCTCN2020096253-appb-000020
第(k,l)个位移传感器在o k,lx k,ly k,lz k,l中局部微位移与第k个多维力传感器支撑平台在o kx ky kz k中微位移的协调关系方程组写为:
Figure PCTCN2020096253-appb-000021
其中,
Figure PCTCN2020096253-appb-000022
指第(k,l)个位移传感器与原点o k,l重合点在位移传感器局部坐标系统o k,lx k,ly k,lz k,l中的微位移,
Figure PCTCN2020096253-appb-000023
指第k个多维力传感器原点o k重合点在坐标系统o kx ky kz k中 的微位移,
Figure PCTCN2020096253-appb-000024
指从坐标系统o kx ky kz k到坐标系统o k,lx k,ly k,lz k,l的空间矢量变换矩阵;
Figure PCTCN2020096253-appb-000025
中的元素分别为在位移传感器坐标系统o k,lx k,ly k,lz k,l中沿三个坐标轴的直线微位移和绕三个坐标轴的转角位移;
Figure PCTCN2020096253-appb-000026
中的元素分别为在多维力传感器坐标系统o kx ky kz k中沿三个坐标轴的直线微位移和绕三个坐标轴的转角位移;
Figure PCTCN2020096253-appb-000027
位移传感器微位移与支撑平台微位移的协调关系方程组
Figure PCTCN2020096253-appb-000028
具体写为:
Figure PCTCN2020096253-appb-000029
方程组中
Figure PCTCN2020096253-appb-000030
简写为β x
Figure PCTCN2020096253-appb-000031
简写为β y
Figure PCTCN2020096253-appb-000032
简写为β z
Figure PCTCN2020096253-appb-000033
简写为r x
Figure PCTCN2020096253-appb-000034
简写为r y
Figure PCTCN2020096253-appb-000035
简写为r z,sβ=sin(β),cβ=cos(β);
对所有的
Figure PCTCN2020096253-appb-000036
Figure PCTCN2020096253-appb-000037
当分布式多维力传感系统结构确定后,均为已知量,因此方程组(4)简写为
Figure PCTCN2020096253-appb-000038
简化方程组的所有参数a,包括
Figure PCTCN2020096253-appb-000039
Figure PCTCN2020096253-appb-000040
均由相应第(k,l)个位移传感器的位置参数
Figure PCTCN2020096253-appb-000041
Figure PCTCN2020096253-appb-000042
获得,均为已知量;其中:
Figure PCTCN2020096253-appb-000043
位移传感器的测量敏感轴为坐标系o k,lx k,ly k,lz k,l下沿x k,l轴方向,测量得到
Figure PCTCN2020096253-appb-000044
将其作为可观测量,因此方程(5).(a)为具有可观测量方程;采用多种非接触或微力接触位移传感器进行测量,传感器测量敏感轴线沿/绕坐标系o k,lx k,ly k,lz k,l的任意轴线,则沿/绕相应轴线的微位移成为可观测量,相应方程组(5)中的方程(a)~(f)成为具有可观测量方程;
对所有l=(1,…,L),提取具有可观测量方程,组成第P个多维力传感器位移求解方程组
Figure PCTCN2020096253-appb-000045
方程组(6)中左侧所有参数a与相应方程组(5)中抽取的具有可观测量的方程中左侧参数完全一致,即都视为已知量;
方程组(6)中右侧所有δ均与相应方程组(5)中右侧可观测量完全一致,通过相应位移传感器测量得到,通过该方程组直接计算出多维力传感器的微位移
Figure PCTCN2020096253-appb-000046
对于六维力传感器,需要保证P≥6,且由可观测量所确定的负载平台微位移求解方程组为非病态方程组;
当获得多维力传感器的微位移
Figure PCTCN2020096253-appb-000047
后,求解该微位移相对于大地坐标系统oxyz的微位移
Figure PCTCN2020096253-appb-000048
Figure PCTCN2020096253-appb-000049
第k个多维力传感器在大地坐标系统中的初始位置参数为
Figure PCTCN2020096253-appb-000050
Figure PCTCN2020096253-appb-000051
则多维力传感器受力发生位置偏移,此时将传感器坐标系统o kx ky kz k看做与传感器固联为一体,随传感器偏移而偏移,则受力时o kx ky kz k偏移到o k'x k'y k'z k';坐标系统o kx ky kz k与坐标系统o k'x k'y k'z k'在大地坐标系统oxyz中的微位移则为上述计算得到的
Figure PCTCN2020096253-appb-000052
则坐标系统o k'x k'y k'z k'在大地坐标系统中的位置参数写为:
Figure PCTCN2020096253-appb-000053
Figure PCTCN2020096253-appb-000054
每一个六维力传感器的精确空间位姿都由多个位移传感器精确测量得到;
将公式(2)重新写出:
Figure PCTCN2020096253-appb-000055
Figure PCTCN2020096253-appb-000056
Figure PCTCN2020096253-appb-000057
其中,
Figure PCTCN2020096253-appb-000058
即为第k个六维力传感器测量得到的六维力,该六维力实际上是在o k'x k'y k'z k'坐标系中作用于o k'点;
Figure PCTCN2020096253-appb-000059
是指将空间矢量从坐标系统o k'x k'y k'z k'平移到oxyz的空间矢量变换矩阵;
Figure PCTCN2020096253-appb-000060
Figure PCTCN2020096253-appb-000061
Figure PCTCN2020096253-appb-000062
变换矩阵中的r k'和β k'即为前述通过位移传感器测量得到的多维力传感器在全局坐标系统oxyz中的实际位姿参数。
进一步地,所述分布式多维力测力系统的测力方法,还包括以下步骤:
被测物体出现姿偏移时,最终得到的多维力都是在一个与大地固联的坐标系oxyz下,相对于坐标原点o的多维力,要得到在固联于飞行器的坐标系统下的多维力,采用一套与大地固联的测量系统测量被测物体相对于大地的偏移量:
通过测量系统测量出坐标系统o'x'y'z'与坐标系统oxyz的变化量:r'=[r x',r y',r z'] T,β'=[β x',β y',β z'] T,分别为两个坐标系统的原点距离和坐标轴转角,则:
Figure PCTCN2020096253-appb-000063
其中,Q指在固联与大地的坐标系统oxyz下测量得到的广义六维力;Q'指在固联于飞行器的坐标系统o'x'y'z'下的广义六维力;
Figure PCTCN2020096253-appb-000064
指从坐标系统oxyz到坐标系统o'x'y'z'的六维力矢量变换,利用r'=[r x',r y',r z'] T和β'=[β x',β y',β z'] T即完成该变换;r'=[r x',r y',r z'] T和β'=[β x',β y',β z'] T用立体视觉系统获得。
进一步地,所述位移传感器只测量多维力传感器的支撑平台;或者,只测量多维力传感器的负载平台;或者对多维力传感器的支撑平台和负载平台同时测量。
有益效果:采用分布式多维力测力系统可以令整个测力系统的体积、重量比较小,同时可以实现高精度大范围多维力测量,例如在风洞测试中,尤其是测试大型物体所受风力载荷时,其力的分布范围非常大,采用该系统可以比常规的风洞力天平具有更高的测量精度。
附图说明
图1为大型被测物体的多维力获取示意图;
图2为分布式多维力测力系统结构示意图;
图3为负载框架和支撑框架发生变形示意图;
图4为设置位移传感器分布式多维力测力系统结构示意图;
图5为采用位移传感器测量维力传感器的示意图;其中,图5(a)为位移传感器只测量多维力传感器的支撑平台示意图;图5(b)为位移传感器只测量多维力传感器的负载平台,如;图5(c)为位移传感器同时测量支撑平台何负载平台的示意图;
图6为第k个多维力传感器空间位姿变化示意图;
图7为一种飞行器风洞试验分布式多维力测力系统原理图;
图8为一种推力喷气发动机推力试验分布式多维力测力系统原理图;
图9为一种汽车风洞测力系统示意图;
图10为一种飞行器风洞试验分布式多维力测力系统原理图;
图11位多维力传感器与负载框架连接示意图;其中图11(a)为所有的多维力传感器通过连接杆和机械铰链与负载框架连接示意图;图11(b)为所有的多维力传感器通过机械铰链直接与负载框架连接示意图;图11(c)为所有的多维力传感器通过柔性铰链直接与负载框架连接示意图;图11(d)为所有的多维力传感器通过过约束支撑与负载框架连接示意图;图11(e)为所有的多维力传感器通过连接杆与负载框架连接示意图;图11(f)为所有的多维力传感器通过尖顶支撑与负载框架连接示意图。
具体实施方式
为了解决目前难以对大型被测物体进行准确测量的问题,本发明提出了一种分布式多维力测力系统以及分布式多维力测力系统的测力方法。
具体实施方式一:
本实施方式为一种分布式多维力测力系统。图2所示,本实施方式所述的分布式多维力测力系统,包括若干个多维力传感器,还包括若干个位移传感器;
载荷物体(loading object)与负载框架(Loading frame)相连接,负载框架与所有的多维力传感器的负载平台相连接,也可以将载荷物体直接与多维力传感器(Multi-axis force sensor,MAFS)负载平台(Loading platform)相连接,此时将载荷物体直接视为负载框架;
所有多维力传感器的支撑平台(Supporting platform)与支撑框架(Supporting frame)相连接,支撑框架最终连接到大地上,也可以将多维力传感器的支撑平台直接与大地连接,此时将大地直接视为支撑框架。
多维力传感器采用申请号为2019108823616的并联杆系多维力传感器结构。
所述位移传感器用于测量多维力传感器的当前位姿;所述的位移传感器采用非接触式或接触式位移传感器。
所有的位移传感器均设置于传感器框架上;传感器框架远离支撑框架,和/或,采用隔离结构将负载框架和传感器框架进行力学隔离,如图7所示。
(A)当采用负载框架与所有的多维力传感器的负载平台相连接的结构时,可以通过以下方式实现连接:
(A1)所有的多维力传感器通过机械铰链、柔性铰链与负载框架连接,如图11(a)至图11(c)所示,其中,图11(a)为所有的多维力传感器通过连接杆和机械铰链与负载框架连接,图11(b)为所有的多维力传感器通过机械铰链直接与负载框架连接,图11(c)为所有的多维力传感器通过柔性铰链直接与负载框架连接。
优选地,机械铰链、柔性铰链需要通过施加预紧力实现所有的多维力传感器与负载框架的连接。
(A2)所有的多维力传感器通过过约束支撑与负载框架连接,如图11(d)所示。优选地,过约束支撑需要通过施加预紧力实现所有的多维力传感器与负载框架的连接。
(A3)所有的多维力传感器通过连接杆与负载框架连接,如图11(e)所示。
(A4)所有的多维力传感器通过尖顶支撑与负载框架连接,如图11(f)所示。
(B)当采用载荷物体与所有的多维力传感器的负载平台相连接的结构时,可以通过以下方式实现连接:
(B1)所有的多维力传感器通过机械铰链、柔性铰链与载荷物体连接。优选地,机械铰链、柔性铰链需要通过施加预紧力实现所有的多维力传感器与载荷物体的连接。
(B2)所有的多维力传感器通过过约束支撑与载荷物体连接。优选地,过约束支撑需要通过施加预紧力实现所有的多维力传感器与载荷物体的连接。
(B3)所有的多维力传感器通过连接杆与载荷物体连接。
(B4)所有的多维力传感器通过尖顶支撑与载荷物体连接。
在一些实施例中,所述的分布式多维力测力系统,还包括一套与大地固联的测量系统,所述测量系统用于测量被测物体相对于大地的偏移量。
具体实施方式二:
本实施方式为分布式多维力测力系统的测力方法。本实施方式中,多维力的所有推导过程均以最通用的六维力传感器为例进行推导和说明,对于其它维度的多维力传感器,只要将六维力相关公式做适度简化即可得到。例如对平面三维力传感器(在oxyz平面内),将所有沿z轴的力和直线变形以及绕x、y轴的力矩和转角变形都设为0,同时将相应的六维方程组转化为三维方程组,即可得到相应结果。为了方便和便于表达起见,部分相关配图虽然平面方式进行表达,如图2所示,但其表达的内容为空间三维结构,如图2中的z轴为垂直于纸面方向,根据该图得到的相关公式也均为空间六维力公式(3个力或位移和3个力矩或转角)。
本实施方式中,多维力的所有推导过程均以最通用的六维力传感器为例进行推导和说明,对于其它维度的多维力传感器,只要将六维力相关公式做适度简化即可得到。例如对平面三维力传感器(在oxyz平面内),将所有沿z轴的力和直线变形以及绕x、y轴的力矩和转角变形都设为0,同时将相应的六维方程组转化为三维方程组,即可得到相应结果。为了方便和便于表达起见,部分相关配图虽然平面方式进行表达,如图2所示,但其表达的内容为空间三维结构,如图2中的z轴为垂直于纸面方向,根据该图得到的相关公式也均为空间六维力公式(3个力或位移和3个力矩或转角)。
本实施方式所述的分布式多维力测力系统的测力方法,包括以下步骤:
(1)、在分布式多维力测力系统中,计算得到每一个多维力传感器在其自身坐标系统下的多维力;
(2)、采用安装于传感器框架上的位移传感器测量出受力状态下每一个多维力传感器在全局坐标系统下的位姿偏移量,并根据所述的位姿偏移量修正每一个多维力传感器在全局坐标系统下的初始位姿参数,得到每一个多维力传感器在全局坐标系统下的当前实际位姿参数;
(3)、根据所述的多维力传感器在全局坐标系统下的当前实际位姿参数,将每一个多维力传感器所测量得到的在其自身坐标系统下的多维力进行空间矢量变换,均变换到全局坐标系统下的同一位姿(位置和姿态),例如全局坐标系原点处的位姿,并进行求和,得到在全局坐标系统下被测物体所受的外部多维力;
(4)、由于被测物体在力的作用下,实际位姿会发生偏移,当需要得到被测物体自身坐标系下的多维力时,根据被测物体在受力状态下的位姿偏移量将全局坐标系统下被测物体所受的外部多维力进行空间矢量变换,最终得到被测物体自身坐标系下的多维力。
根据被测物体在受力状态下的位姿偏移量将全局坐标系统下被测物体所受的外部多维力进行空间矢量变换的过程,可以采用空间位姿(位置和姿态)测量设备得到被测物体在受力状态下的位姿偏移量,进而根据所述偏移量将所计算得到的全局坐标系下的六维力进行变换,得到被测物体自身坐标系下的六维力。
接下来将上述过程的实现过程具体展开进行说明,即分布式多维力测力系统的测力方法的具体过程如下:
上述过程中所述的全局坐标系统记为大地坐标系统。
所有多维力传感器自身的坐标系统在大地坐标系统中的位姿可以事先全部标定好。则,大地坐标系统中负载物体施加的载荷与所有多维力传感器自身坐标系统中测量得到的多维力的关系为:
Figure PCTCN2020096253-appb-000065
其中,
Figure PCTCN2020096253-appb-000066
表示在大地坐标系统g(oxyz)下,施加在坐标原点o的包括三个力和三个力矩的广义力;
Figure PCTCN2020096253-appb-000067
表示第k个多维力传感器,在自身坐标系统o kx ky kz k下,施加在其坐标原点o k的包括三个力和三个力矩的广义力;
Figure PCTCN2020096253-appb-000068
表示从坐标系o kx ky kz k到坐标系oxyz的广义力矢量变换;
Figure PCTCN2020096253-appb-000069
为绕坐标系oxyz的旋转变换;
Figure PCTCN2020096253-appb-000070
表示坐标系o kx ky kz k与坐标系oxyz的三个坐标轴的夹角;
Figure PCTCN2020096253-appb-000071
为反对称变换矩阵,相当于矢量叉乘;
Figure PCTCN2020096253-appb-000072
表示坐标系o kx ky kz k与坐标系oxyz的三个坐标轴的原点距离;
通过公式(1),即可以利用所有多维力传感器测量得到的多维力计算出系统所受到的外部负载多维力;
上述计算过程虽然可以通过分布式布置的多个多维传感器得到系统所受到的外部负载多维力,但在多维力测量过程中,受到外力作用时,由于负载框架(包括负载物体)和支撑框架(包括大地)各个位置的刚度不可能无限大,因而会发生较大的变形,即如图3所示,负载框架和支撑框架受力时从图中实线形状变为虚线形状,此时,多维力传感器坐标系统在大地坐标系统中的位姿会发生较大的改变,第k个多维力传感器自身坐标系统在大地坐标系统oxyz的实际位姿坐标系统由o kx ky kz k变为o k'x k'y k'z k',虽然每一个多维力传感器所测量的多维力可以视为绝对准确的,但在将多个多维力进行空间变换并求和时,由于采用的变换矩阵
Figure PCTCN2020096253-appb-000073
中的坐标系o kx ky kz k参数β k和r k都已经变为了坐标系o k'x k'y k'z k'参数β k'和r k'因此为了获得准确的外部多维力,公式(1)需要改写为:
Figure PCTCN2020096253-appb-000074
其中,
Figure PCTCN2020096253-appb-000075
中左上角的k'指坐标系o k'x k'y k'z k';左下角的o k'指坐标系o k'x k'y k'z k'原点,右上角k指第k个多维力传感器,该测量值
Figure PCTCN2020096253-appb-000076
可以由第k个多维力传感器准确获得;
Figure PCTCN2020096253-appb-000077
中右上角g指大地坐标系统oxyz,右下角k'指坐标系o k'x k'y k'z k';
此时,需要准确获得多维力传感器当前在大地坐标系统中准确的位姿参数
Figure PCTCN2020096253-appb-000078
Figure PCTCN2020096253-appb-000079
初始坐标参数β k和r k可以通过系统标定准确地获得,而参数β k'和r k'与测力过程中所受的负载力有关,必须在测力过程中通过位移传感器实时测量,且针对不同的k,β k'和r k' 都是不同的,如不能精确得到β k'和r k',则公式(2)将所有的多维力进行空间矢量变换后求和得到的系统多维力将是不准确的。
利用位移传感器测量多维力传感器相对于大地的受力状态下位移,因此所有的位移传感器在系统工作时必须相对于大地保持位姿不变。
如图4所示,所有的多维力传感器的当前位姿均采用位移传感器进行实时测量,位移传感器可以采用非接触式或接触式位移传感器,包括各种光学、电学、微力、图像等位移传感器;所有的位移传感器均设置于传感器框架(Sensor frame)上,为了保证前述的所有位移传感器在系统工作时位姿不变,传感器框架需要保证在系统工作时不受负载力影响,因此在大地上,传感器框架远离支撑框架,和/或,采用隔离结构将负载框架和传感器框架进行力学隔离,其目的在于当支撑框架及与其相连的地面发生变形时,对传感器框架几乎没有任何影响,即所有传感器可以视为在大地坐标系统之中位姿一直保持不变,在此设定条件下,系统受到负载力时,传感器框架可以视为不发生变形的伪刚体;
位移传感器测量多维力传感器的示意图如图5所示。其中,位移传感器可以只测量多维力传感器的支撑平台,如图5(a);也可以只测量多维力传感器的负载平台,如图5(b);也可以两者同时测量,如图5(c);一般而言,由于相对于框架和地面变形,多维力传感器自身的变形在本系统中几乎可以忽略不计,因此三者的差别并不大,对于图5(a),其稳定性较好,对于图5(b),其精度较好,对于图5(c),可以兼顾稳定性和精度,甚至可以利用测量得到的支撑平台和负载平台之间的位姿变化差进一步校正多维力传感器测量力,但其比较复杂,成本较高。
为了简化分析,下面的计算过程只以图5(a)为例进行分析,后两者的具体分析与计算过程与此基本一致;
如图6所示,取出第k个多维力传感器进行分析,在传感器框架上对应第k个多维力传感器有l个位移传感器对其空间位姿变化进行监测,图中以二维坐标为例作图,三维情况与此完全相同;在受力状态下,由于负载框架和支撑框架及地面变形而导致力传感器相对于大地坐标系统会发生位姿变化,即从实线位置变为虚线位置,因此在进行力合成时,必须要根据每一个力传感器的位姿变化进行力修正。如前所述,由于传感器框架在大地上远离支撑框架,传感器框架不受负载力的影响,可以视为在大地坐标系统下位置和形状均不会发生变化的伪刚体,因此即可将所有安放于传感器框架上的位移传感器视为相对于大地保持不动,并以此作为参考物,计算多维力传感器受负载力后位姿的变化量。
设共有K个多维力传感器,其中第k=(1,…K)个多维力传感器的局部坐标系统为: o kx ky kz k,其与大地坐标系统oxyz原点之间的距离为
Figure PCTCN2020096253-appb-000080
两者对应坐标轴的夹角为
Figure PCTCN2020096253-appb-000081
第k个多维力传感器共有L个位移传感器对其空间位姿进行测量,其中第l=(1,…L)个位移传感器的坐标系统为o k,lx k,ly k,lz k,l,其与大地坐标系统oxyz原点之间的距离为
Figure PCTCN2020096253-appb-000082
两者对应坐标轴的夹角为
Figure PCTCN2020096253-appb-000083
坐标系统o k,lx k,ly k,lz k,l与坐标系统o kx ky kz k的原点之间的距离为
Figure PCTCN2020096253-appb-000084
两者对应坐标轴的夹角为
Figure PCTCN2020096253-appb-000085
第(k,l)个位移传感器在o k,lx k,ly k,lz k,l中局部微位移与第k个多维力传感器支撑平台在o kx ky kz k中微位移的协调关系方程组可以写为:
Figure PCTCN2020096253-appb-000086
其中,
Figure PCTCN2020096253-appb-000087
指第(k,l)个位移传感器与原点o k,l重合点在位移传感器局部坐标系统o k,lx k,ly k,lz k,l中的微位移,
Figure PCTCN2020096253-appb-000088
指第k个多维力传感器原点o k重合点在坐标系统o kx ky kz k中的微位移,
Figure PCTCN2020096253-appb-000089
指从坐标系统o kx ky kz k到坐标系统o k,lx k,ly k,lz k,l的空间矢量变换矩阵。
Figure PCTCN2020096253-appb-000090
中的元素分别为在位移传感器坐标系统o k,lx k,ly k,lz k,l中沿三个坐标轴的直线微位移和绕三个坐标轴的转角位移;
Figure PCTCN2020096253-appb-000091
中的元素分别为在多维力传感器坐标系统o kx ky kz k中沿三个坐标轴的直线微位移和绕三个坐标轴的转角位移;
Figure PCTCN2020096253-appb-000092
根据上述定义,位移传感器微位移与支撑平台微位移的协调关系方程组
Figure PCTCN2020096253-appb-000093
可以具体写为:
Figure PCTCN2020096253-appb-000094
方程组中
Figure PCTCN2020096253-appb-000095
简写为β x
Figure PCTCN2020096253-appb-000096
简写为β y
Figure PCTCN2020096253-appb-000097
简写为β z
Figure PCTCN2020096253-appb-000098
简写为r x
Figure PCTCN2020096253-appb-000099
简写为r y
Figure PCTCN2020096253-appb-000100
简写为r z,sβ=sin(β),cβ=cos(β);
对所有的
Figure PCTCN2020096253-appb-000101
Figure PCTCN2020096253-appb-000102
当分布式多维力传感系统结构确定后,均为已知量,因此方程组(4)可以简写为
Figure PCTCN2020096253-appb-000103
可以看出简化方程组的所有参数a,包括
Figure PCTCN2020096253-appb-000104
Figure PCTCN2020096253-appb-000105
均可由相应第(k,l)个位移传感器的位置参数
Figure PCTCN2020096253-appb-000106
Figure PCTCN2020096253-appb-000107
获得,均为已知量;其中:
Figure PCTCN2020096253-appb-000108
如图6所示,图中的位移传感器(三角光传感器)的测量敏感轴为坐标系o k,lx k,ly k,lz k,l下沿x k,l轴方向,即可以测量得到
Figure PCTCN2020096253-appb-000109
将其作为可观测量,因此方程(5).(a)为具有可观测量方程。可以采用多种非接触或微力接触位移传感器进行测量,传感器测量敏感轴线可以沿/绕坐标系o k,lx k,ly k,lz k,l的任意轴线,则沿/绕相应轴线的微位移成为可观测量,相应方程组 (5)中的方程(a)~(f)成为具有可观测量方程;这里还需要说明的是:1个位移传感器可以有多个测量敏感轴,例如当一个传感器具有两个测量敏感轴时,则可以获得两个具有可观测量的方程。
对所有l=(1,…,L),提取具有可观测量方程,组成第P个多维力传感器位移求解方程组
Figure PCTCN2020096253-appb-000110
方程组(6)中左侧所有参数a与相应方程组(5)中抽取的具有可观测量的方程中左侧参数完全一致,即都可以视为已知量。
方程组(6)中右侧所有δ均与相应方程组(5)中右侧可观测量完全一致,完全可以通过相应位移传感器测量得到,因此可以通过该方程组直接计算出多维力传感器的微位移
Figure PCTCN2020096253-appb-000111
对于六维力传感器,需要保证P≥6,且由可观测量所确定的负载平台微位移求解方程组为非病态方程组;
当获得多维力传感器的微位移
Figure PCTCN2020096253-appb-000112
后,求解该微位移相对于大地坐标系统oxyz的微位移
Figure PCTCN2020096253-appb-000113
Figure PCTCN2020096253-appb-000114
第k个多维力传感器在大地坐标系统中的初始位置参数为
Figure PCTCN2020096253-appb-000115
Figure PCTCN2020096253-appb-000116
则多维力传感器受力后,在支撑框架上(或大地上)由于支撑框架(或大地)受力发生变形,而导致多维力传感器在全局坐标系统下发生位置偏移,此时将传感器坐标系统o kx ky kz k看做与传感器固联为一体,随传感器偏移而偏移,则受力时o kx ky kz k偏移到o k'x k'y k'z k';坐标系统o kx ky kz k与坐标系统o k'x k'y k'z k'在大地坐标系统oxyz中的微位移则为上述计算得到的
Figure PCTCN2020096253-appb-000117
则坐标系统o k'x k'y k'z k'在大地坐标系统中的位置参数可以写为:
Figure PCTCN2020096253-appb-000118
Figure PCTCN2020096253-appb-000119
可以看出,每一个六维力传感器的精确空间位姿都可以由多个位移传感器精确测量得到;
将公式(2)重新写出:
Figure PCTCN2020096253-appb-000120
Figure PCTCN2020096253-appb-000121
Figure PCTCN2020096253-appb-000122
其中,
Figure PCTCN2020096253-appb-000123
即为第k个六维力传感器测量得到的六维力,该六维力实际上是在o k'x k'y k'z k'坐标系中作用于o k'点。
Figure PCTCN2020096253-appb-000124
是指将空间矢量从坐标系统o k'x k'y k'z k'平移到oxyz的空间矢量变换矩阵。
Figure PCTCN2020096253-appb-000125
Figure PCTCN2020096253-appb-000126
Figure PCTCN2020096253-appb-000127
变换矩阵中的r k'和β k'即为前述通过位移传感器测量得到的多维力传感器在全局坐标系统oxyz中的实际位姿参数;
由公式(10)可以看出,即使六维力传感器在外力作用下出现了空间位姿变化,仍然可以得到精确的六维力合力。
具体实施例1:
图7为一种飞行器风洞试验分布式多维力测力系统原理图,图中,1为隔离结构(Isolation structure),2为支撑地面(Supporting ground),3为传感器框架(Sensor frame),4为传感器支撑地面(Sensor supporting ground),5为六维力传感器(6-axis force sensor),6为与支撑杆(Supporting beam);六维力传感器中的5.1为六维力传感器的负载平台(Loading platform),5.2为六维力传感器的支撑平台(Supporting platform);
位移传感器可以为7光学三角位移传感器(Optical triangular displacement senior)或8电容式位移传感器(Capacitive displacement senior);如果为光学三角位移传感器,光学三 角位移传感器设置在传感器框架(Fixed on Sensor frame)上;如果为电容式位移传感器,电容式位移传感器的一部分设置在传感器框架(Fixed on Sensor frame)上电容式位移传感器的另一部分设置在支撑平台(Fixed on Supporting platform)上。
图7中飞行器与支撑杆可以共同看做负载框架,六维力传感器直接放置于支撑地面上,支撑地面可以看做支撑框架,放置六维力传感器的支撑地面通过隔离结构与放置传感器框架的传感器支撑地面实现力学隔离;飞行器受力时会导致支撑杆、支撑地面发生变性,但由于传感器框架距离支撑地面较远,且存在隔离结构,因此传感器框架可视为伪刚体,即其上所放置的所有位移传感器都不会因为飞行器受力而发生位姿变化。风洞中的支撑杆可以进一步加装支撑杆罩以避免气流对支撑杆的力学影响。
该种多维力测力系统(风洞天平)的好处是可以通过分布式杆系支撑大型飞行器,支撑杆可以比较细,对气流影响小,同时六维力测量精度极高。
具体实施例2:
图8为一种推力喷气发动机推力试验分布式多维力测力系统原理图,图中,1为负载框架(Loading frame),2为六维力传感器(6-axis force sensor),2.1为六维力传感器的支撑平台(Supporting platform),2.2为六维力传感器的负载平台(Loading platform),3为光学三角位移传感器(Optical triangular sensor),4为推力喷气发动机(Thrust jet engine)。
该发动机连接于负载框架上,负载框架上安装有6个分布式设置的多维力传感器,所有的多维力传感器在于支撑框架相连,最终固定于地面,所有测量六维力传感器位姿变化的位移传感器连接于传感器框架上,最终也固定于地面,传感器框架与支撑框架在地面上保持较远的距离,和/或,之间加入隔离结构,以实现喷气发动机的推力对所有位移传感器的位姿几乎不会产生任何影响。
该种多维力测力系统的好处是吊装喷气推力发动机的负载框架可以很大,承载力极大,其同时保持极高的测量精度。
具体实施例3:
图9为一种汽车风洞测力系统示意图,图中displacement senior为移传感器,Deformation zone为变形区域,Deformation of the ground表示地面变形,Fixed fara way from the deformation zone表示远离变形区进行固定。其他部分的结构参考实施方式的结构以及具体实施例1和2的机构设置,这里不再详细说明。
该结构的好处同样是在保持大承载力的基础上结构比较小,可以高精度的测量分布范围极大的分布式载荷。
具体实施例4:
图10为一种飞行器风洞试验分布式多维力测力系统原理图,与图7所示具体实施例1的结构相似,额外增加一套CCD图像位移传感器(或摄像设备,通过摄像设备计算位移,或激光雷达等空间三维位姿测量设备),其他部分的结构参考具体实施例,这里不再详细说明。
对于图7中的飞行器风洞多维力测量,为了减小支撑杆的气动影响,支撑杆一般都尽可能细,同时再加上多维力传感器的支撑地面变形等因素,飞行器在测试过程中会发生较大位姿偏移,图7中测量方法最终得到的多维力都是指在一个与大地固联的坐标系oxyz下,相对于坐标原点o的多维力,有时希望得到的是在固联于飞行器的坐标系统下的多维力,如图中的o'x'y'z',此时需要再采用一套与大地固联的测量系统用于测量被测物体相对于大地的偏移量,即如图10中采用的立体视觉系统,该立体视觉系统与大地固联,通过该系统测量出坐标系统o'x'y'z'与坐标系统oxyz的变化量:r'=[r x',r y',r z'] T,β'=[β x',β y',β z'] T,分别为两个坐标系统的原点距离和坐标轴转角,通过该种方式即可以将原本测量得到的在坐标系统oxyz下的多维力转换到坐标系统o'x'y'z'下,也就相当于测量的多维力固联于飞行器的坐标系统下,则公式可以写为:
Figure PCTCN2020096253-appb-000128
其中,Q指在固联与大地的坐标系统oxyz下测量得到的广义六维力;Q'指在固联于飞行器的坐标系统o'x'y'z'下的广义六维力;
Figure PCTCN2020096253-appb-000129
指从坐标系统oxyz到坐标系统o'x'y'z'的六维力矢量变换,利用r'=[r x',r y',r z'] T和β'=[β x',β y',β z'] T即可以完成该变换;r'=[r x',r y',r z'] T和β'=[β x',β y',β z'] T可以用立体视觉系统获得。
该系统的好处是通过加装测量被测物体相对于大地位姿变化的传感器,实现测量固定于被测物体上坐标系统的六维力,与实际所需测量更加接近。

Claims (10)

  1. 分布式多维力测力系统,包括若干个多维力传感器,其特征在于,还包括若干个位移传感器;
    载荷物体与负载框架相连接,负载框架与所有的多维力传感器的负载平台相连接;或者,将载荷物体直接与多维力传感器的负载平台相连接,将载荷物体直接视为负载框架;
    所有多维力传感器的支撑平台与支撑框架相连接,支撑框架最终连接到大地上;或者,将多维力传感器的支撑平台直接与大地连接,此时将大地直接视为支撑框架;
    所述位移传感器用于测量多维力传感器的当前位姿;
    所有的位移传感器均设置于传感器框架上;传感器框架远离支撑框架,和/或,采用隔离结构将负载框架和传感器框架进行力学隔离。
  2. 根据权利要求1所述的分布式多维力测力系统,其特征在于,
    (A)当采用负载框架与所有的多维力传感器的负载平台相连接的结构时,包括以下的连接方式:
    (A1)所有的多维力传感器通过机械铰链、柔性铰链与负载框架连接;
    (A2)所有的多维力传感器通过过约束支撑与负载框架连接;
    (A3)所有的多维力传感器通过连接杆与负载框架连接;
    (A4)所有的多维力传感器通过尖顶支撑与负载框架连接;
    (B)当采用载荷物体与所有的多维力传感器的负载平台相连接的结构时,包括以下的连接方式:
    (B 1)所有的多维力传感器通过机械铰链、柔性铰链与载荷物体连接;
    (B 2)所有的多维力传感器通过过约束支撑与载荷物体连接;
    (B 3)所有的多维力传感器通过连接杆与载荷物体连接;
    (B 4)所有的多维力传感器通过尖顶支撑与载荷物体连接。
  3. 根据权利要求1所述的分布式多维力测力系统,其特征在于,还包括一套与大地固联的测量系统,所述测量系统用于测量被测物体相对于大地的偏移量。
  4. 根据权利要求1、2或3所述的分布式多维力测力系统,其特征在于,所述多维力传感器采用并联杆系多维力传感器结构。
  5. 根据权利要求1、2或3所述的分布式多维力测力系统,其特征在于,所述的位移传感器采用非接触式或接触式位移传感器。
  6. 根据权利要求5所述的分布式多维力测力系统,其特征在于,所述测量系统为CCD图像位移传感器、摄像设备或激光雷达三维位姿测量设备。
  7. 分布式多维力测力系统的测力方法,其特征在于,包括以下步骤:
    在分布式多维力测力系统中,计算得到每一个多维力传感器在其自身坐标系统下的多维力;
    采用安装于传感器框架上的位移传感器测量出受力状态下每一个多维力传感器在全局坐标系统下的位姿偏移量,并根据所述的位姿偏移量修正每一个多维力传感器在全局坐标系统下的初始位姿参数,得到每一个多维力传感器在全局坐标系统下的当前实际位姿参数;
    根据所述的多维力传感器在全局坐标系统下的当前实际位姿参数,将每一个多维力传感器所测量得到的在其自身坐标系统下的多维力进行空间矢量变换,均变换到全局坐标系统下的同一位姿,并进行求和,得到在全局坐标系统下被测物体所受的外部多维力;
    由于被测物体在力的作用下,实际位姿会发生偏移,当需要得到被测物体自身坐标系下的多维力时,根据被测物体在受力状态下的位姿偏移量将全局坐标系统下被测物体所受的外部多维力进行空间矢量变换,最终得到被测物体自身坐标系下的多维力。
  8. 根据权利要求7所述的分布式多维力测力系统的测力方法,其特征在于,所述分布式多维力测力系统的测力方法的具体过程如下:
    将所述的全局坐标系统记为大地坐标系统;
    大地坐标系统中负载物体施加的载荷与所有多维力传感器自身坐标系统中测量得到的多维力的关系为:
    Figure PCTCN2020096253-appb-100001
    其中,
    Figure PCTCN2020096253-appb-100002
    表示在大地坐标系统g(oxyz)下,施加在坐标原点o的包括三个力和三个力矩的广义力;
    Figure PCTCN2020096253-appb-100003
    表示第k个多维力传感器,在自身坐标系统o kx ky kz k下,施加在其坐标原点o k的包括三个力和三个力矩的广义力;
    Figure PCTCN2020096253-appb-100004
    表示从坐标系o kx ky kz k到坐标系oxyz的广义力矢量变换;
    Figure PCTCN2020096253-appb-100005
    为绕坐标系oxyz的旋转变换;
    Figure PCTCN2020096253-appb-100006
    表示坐标系o kx ky kz k与坐标系oxyz的三个坐标轴的夹角;
    Figure PCTCN2020096253-appb-100007
    为反对称变 换矩阵,相当于矢量叉乘;
    Figure PCTCN2020096253-appb-100008
    表示坐标系o kx ky kz k与坐标系oxyz的三个坐标轴的原点距离;
    通过公式(1),利用所有多维力传感器测量得到的多维力计算出系统所受到的外部负载多维力;
    在多维力测量过程中,受到外力作用时,多维力传感器坐标系统在大地坐标系统中的位姿会发生较大的改变,第k个多维力传感器自身坐标系统在大地坐标系统oxyz的实际位姿坐标系统由o kx ky kz k变为o k'x k'y k'z k';
    公式(1)改写为:
    Figure PCTCN2020096253-appb-100009
    其中,
    Figure PCTCN2020096253-appb-100010
    中左上角的k'指坐标系o k'x k'y k'z k';左下角的o k'指坐标系o k'x k'y k'z k'原点,右上角k指第k个多维力传感器,该测量值
    Figure PCTCN2020096253-appb-100011
    由第k个多维力传感器准确获得;
    Figure PCTCN2020096253-appb-100012
    中右上角g指大地坐标系统oxyz,右下角k'指坐标系o k'x k'y k'z k';
    此时,需要准确获得多维力传感器当前在大地坐标系统中准确的位姿参数
    Figure PCTCN2020096253-appb-100013
    Figure PCTCN2020096253-appb-100014
    利用位移传感器测量多维力传感器相对于大地的受力状态下位移:
    对应第k个多维力传感器有l个位移传感器对其空间位姿变化进行监测;第k=(1,…K)个多维力传感器的局部坐标系统为:o kx ky kz k,其与大地坐标系统oxyz原点之间的距离为
    Figure PCTCN2020096253-appb-100015
    两者对应坐标轴的夹角为
    Figure PCTCN2020096253-appb-100016
    第k个多维力传感器共有L个位移传感器对其空间位姿进行测量,其中第l=(1,…L)个位移传感器的坐标系统为o k,lx k,ly k,lz k,l,其与大地坐标系统oxyz原点之间的距离为
    Figure PCTCN2020096253-appb-100017
    两者对应坐标轴的夹角为
    Figure PCTCN2020096253-appb-100018
    坐标系统o k,lx k,ly k,lz k,l与坐标系统o kx ky kz k的原点之间的距离为
    Figure PCTCN2020096253-appb-100019
    两者对应坐标轴的夹角为
    Figure PCTCN2020096253-appb-100020
    第(k,l)个位移传感器在o k,lx k,ly k,lz k,l中局部微位移与第k个多维力传感器支撑平台在o kx ky kz k中微位移的协调关系方程组写为:
    Figure PCTCN2020096253-appb-100021
    其中,
    Figure PCTCN2020096253-appb-100022
    指第(k,l)个位移传感器与原点o k,l重合点在位移传感器局部坐标系统o k,lx k,ly k,lz k,l中的微位移,
    Figure PCTCN2020096253-appb-100023
    指第k个多维力传感器原点o k重合点在坐标系统o kx ky kz k中的微位移,
    Figure PCTCN2020096253-appb-100024
    指从坐标系统o kx ky kz k到坐标系统o k,lx k,ly k,lz k,l的空间矢量变换矩阵;
    Figure PCTCN2020096253-appb-100025
    中的元素分别为在位移传感器坐标系统o k,lx k,ly k,lz k,l中沿三个坐标轴的直线微位移和绕三个坐标轴的转角位移;
    Figure PCTCN2020096253-appb-100026
    中的元素分别为在多维力传感器坐标系统o kx ky kz k中沿三个坐标轴的直线微位移和绕三个坐标轴的转角位移;
    Figure PCTCN2020096253-appb-100027
    位移传感器微位移与支撑平台微位移的协调关系方程组
    Figure PCTCN2020096253-appb-100028
    具体写为:
    Figure PCTCN2020096253-appb-100029
    方程组中
    Figure PCTCN2020096253-appb-100030
    简写为β x
    Figure PCTCN2020096253-appb-100031
    简写为β y
    Figure PCTCN2020096253-appb-100032
    简写为β z
    Figure PCTCN2020096253-appb-100033
    简写为r x
    Figure PCTCN2020096253-appb-100034
    简写为r y
    Figure PCTCN2020096253-appb-100035
    简写为r z,sβ=sin(β),cβ=cos(β);
    对所有的
    Figure PCTCN2020096253-appb-100036
    Figure PCTCN2020096253-appb-100037
    当分布式多维力传感系统结构确定后,均为已知量,因此方程组(4)简写为
    Figure PCTCN2020096253-appb-100038
    简化方程组的所有参数a,包括
    Figure PCTCN2020096253-appb-100039
    Figure PCTCN2020096253-appb-100040
    均由相应第(k,l)个位移传感器的位置参数
    Figure PCTCN2020096253-appb-100041
    Figure PCTCN2020096253-appb-100042
    获得,均为已知量;其中:
    Figure PCTCN2020096253-appb-100043
    位移传感器的测量敏感轴为坐标系o k,lx k,ly k,lz k,l下沿x k,l轴方向,测量得到
    Figure PCTCN2020096253-appb-100044
    将其作为可观测量,因此方程(5).(a)为具有可观测量方程;采用多种非接触或微力接触位移传感器进行测量,传感器测量敏感轴线沿/绕坐标系o k,lx k,ly k,lz k,l的任意轴线,则沿/绕相应轴线的微位移成为可观测量,相应方程组(5)中的方程(a)~(f)成为具有可观测量方程;
    对所有l=(1,…,L),提取具有可观测量方程,组成第P个多维力传感器位移求解方程组
    Figure PCTCN2020096253-appb-100045
    方程组(6)中左侧所有参数a与相应方程组(5)中抽取的具有可观测量的方程中左侧参数完全一致,即都视为已知量;
    方程组(6)中右侧所有δ均与相应方程组(5)中右侧可观测量完全一致,通过相应位移传感器测量得到,通过该方程组直接计算出多维力传感器的微位移
    Figure PCTCN2020096253-appb-100046
    对于六维力传感器,需要保证P≥6,且由可观测量所确定的负载平台微位移求解方程组为非病态方程组;
    当获得多维力传感器的微位移
    Figure PCTCN2020096253-appb-100047
    后,求解该微位移相对于大地坐标系统oxyz的微位 移
    Figure PCTCN2020096253-appb-100048
    Figure PCTCN2020096253-appb-100049
    第k个多维力传感器在大地坐标系统中的初始位置参数为
    Figure PCTCN2020096253-appb-100050
    Figure PCTCN2020096253-appb-100051
    则多维力传感器受力发生位置偏移,此时将传感器坐标系统o kx ky kz k看做与传感器固联为一体,随传感器偏移而偏移,则受力时o kx ky kz k偏移到o k'x k'y k'z k';坐标系统o kx ky kz k与坐标系统o k'x k'y k'z k'在大地坐标系统oxyz中的微位移则为上述计算得到的
    Figure PCTCN2020096253-appb-100052
    则坐标系统o k'x k'y k'z k'在大地坐标系统中的位置参数写为:
    Figure PCTCN2020096253-appb-100053
    Figure PCTCN2020096253-appb-100054
    每一个六维力传感器的精确空间位姿都由多个位移传感器精确测量得到;
    将公式(2)重新写出:
    Figure PCTCN2020096253-appb-100055
    Figure PCTCN2020096253-appb-100056
    Figure PCTCN2020096253-appb-100057
    其中,
    Figure PCTCN2020096253-appb-100058
    即为第k个六维力传感器测量得到的六维力,该六维力实际上是在o k'x k'y k'z k'坐标系中作用于o k'点;
    Figure PCTCN2020096253-appb-100059
    是指将空间矢量从坐标系统o k'x k'y k'z k'平移到oxyz的空间矢量变换矩阵;
    Figure PCTCN2020096253-appb-100060
    Figure PCTCN2020096253-appb-100061
    Figure PCTCN2020096253-appb-100062
    变换矩阵中的r k'和β k'即为前述通过位移传感器测量得到的多维力传感器在全局坐 标系统oxyz中的实际位姿参数。
  9. 根据权利要求8所述的分布式多维力测力系统的测力方法,其特征在于,所述分布式多维力测力系统的测力方法还包括以下步骤:
    被测物体出现姿偏移时,最终得到的多维力都是在一个与大地固联的坐标系oxyz下,相对于坐标原点o的多维力,要得到在固联于飞行器的坐标系统下的多维力,采用一套与大地固联的测量系统测量被测物体相对于大地的偏移量:
    通过测量系统测量出坐标系统o'x'y'z'与坐标系统oxyz的变化量:r'=[r x',r y',r z'] T,β'=[β x',β y',β z'] T,分别为两个坐标系统的原点距离和坐标轴转角,则:
    Figure PCTCN2020096253-appb-100063
    其中,Q指在固联与大地的坐标系统oxyz下测量得到的广义六维力;Q'指在固联于飞行器的坐标系统o'x'y'z'下的广义六维力;
    Figure PCTCN2020096253-appb-100064
    指从坐标系统oxyz到坐标系统o'x'y'z'的六维力矢量变换,利用r'=[r x',r y',r z'] T和β'=[β x',β y',β z'] T即完成该变换;r'=[r x',r y',r z'] T和β'=[β x',β y',β z'] T用立体视觉系统获得。
  10. 根据权利要求7、8或9所述的分布式多维力测力系统的测力方法,其特征在于,所述位移传感器只测量多维力传感器的支撑平台;或者,只测量多维力传感器的负载平台;或者对多维力传感器的支撑平台和负载平台同时测量。
PCT/CN2020/096253 2019-12-23 2020-06-16 分布式多维力测力系统及测力方法 WO2021128761A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911341094.8A CN113091979B (zh) 2019-12-23 2019-12-23 分布式多维力测力系统及测力方法
CN201911341094.8 2019-12-23

Publications (1)

Publication Number Publication Date
WO2021128761A1 true WO2021128761A1 (zh) 2021-07-01

Family

ID=76573723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096253 WO2021128761A1 (zh) 2019-12-23 2020-06-16 分布式多维力测力系统及测力方法

Country Status (2)

Country Link
CN (1) CN113091979B (zh)
WO (1) WO2021128761A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354043A (zh) * 2021-12-29 2022-04-15 徐州徐工挖掘机械有限公司 一种测定回转支承载荷的系统及方法
CN114397052A (zh) * 2022-01-12 2022-04-26 大连理工大学 一种多个力传感器并接使用测力装置
CN114485519A (zh) * 2022-01-10 2022-05-13 同济大学 一种柔性杆式双向水平位移传感器的标定装置和标定方法
CN114858334A (zh) * 2022-04-06 2022-08-05 北京航空航天大学 火箭发动机推力矢量测量装置以及推力矢量测量方法
CN115077773A (zh) * 2022-04-26 2022-09-20 天津大学 一种可用于航天柱状物体空间矢量力的测量装置及方法
CN115371851A (zh) * 2022-08-19 2022-11-22 江苏科技大学 一种浮力调节装置的测试装置及其测试方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114166464B (zh) * 2021-11-12 2023-10-27 浙江省水利河口研究院(浙江省海洋规划设计研究院) 一种风浪流力测量装置及方法
CN114964596B (zh) * 2022-05-23 2024-01-26 马洪文 基于扩展最佳精度空间的多维力传感器及分布式测力系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951510A (en) * 1988-07-14 1990-08-28 University Of Hawaii Multidimensional force sensor
CN102192740A (zh) * 2010-03-05 2011-09-21 精工爱普生株式会社 姿势信息计算装置、姿势信息计算系统及姿势信息计算法
CN102650865A (zh) * 2011-02-23 2012-08-29 通用汽车环球科技运作有限责任公司 对计算机数控机床的全局偏移补偿
CN105841874A (zh) * 2016-05-20 2016-08-10 燕山大学 一种可重构型并联多维力传感器
CN106482874A (zh) * 2016-11-25 2017-03-08 中国科学院合肥物质科学研究院 一种正四面体式三维力柔性触觉传感器阵列
CN206281590U (zh) * 2016-11-25 2017-06-27 中国科学院合肥物质科学研究院 一种正四面体式三维力柔性触觉传感器阵列
CN207763858U (zh) * 2017-11-15 2018-08-24 上海道口松研涂装科技有限公司 一种正四棱台式柔性多维力传感器阵列

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2553912B1 (fr) * 1983-10-21 1985-12-20 Onera (Off Nat Aerospatiale) Procede et appareillage pour determiner l'attitude d'un objet dans l'espace par rapport a un poste d'observation
EP0168508A1 (de) * 1984-07-14 1986-01-22 Carl Schenck Ag Verfahren und Vorrichtung zur Bestimmung von Momenten bei aerodynamischen Messungen an Fahrzeugen auf Windkanalwaagen
WO2003029921A2 (en) * 2001-09-28 2003-04-10 University Of North Carolina At Chapel Hill Methods and systems for three-dimensional motion control and tracking of a mechanically unattached magnetic probe
JP2008164292A (ja) * 2006-12-26 2008-07-17 Tokyo Electron Ltd プローブ検査装置、位置ずれ補正方法、情報処理装置、情報処理方法及びプログラム
TWI466753B (zh) * 2010-12-10 2015-01-01 Factory Automation Technology 動態變形自動修正裝置
CN102519643A (zh) * 2011-12-13 2012-06-27 中国空气动力研究与发展中心设备设计及测试技术研究所 发动机矢量喷管六分量测力系统
GB201219632D0 (en) * 2012-10-31 2012-12-12 Univ Southampton Apparatus for sensing and measuring pressure and shear components of a force at an interface between two surfaces
CN103134428B (zh) * 2013-03-18 2015-09-02 哈尔滨工业大学 一种分布式平面六自由度位姿快速精密测量方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4951510A (en) * 1988-07-14 1990-08-28 University Of Hawaii Multidimensional force sensor
CN102192740A (zh) * 2010-03-05 2011-09-21 精工爱普生株式会社 姿势信息计算装置、姿势信息计算系统及姿势信息计算法
CN102650865A (zh) * 2011-02-23 2012-08-29 通用汽车环球科技运作有限责任公司 对计算机数控机床的全局偏移补偿
CN105841874A (zh) * 2016-05-20 2016-08-10 燕山大学 一种可重构型并联多维力传感器
CN106482874A (zh) * 2016-11-25 2017-03-08 中国科学院合肥物质科学研究院 一种正四面体式三维力柔性触觉传感器阵列
CN206281590U (zh) * 2016-11-25 2017-06-27 中国科学院合肥物质科学研究院 一种正四面体式三维力柔性触觉传感器阵列
CN207763858U (zh) * 2017-11-15 2018-08-24 上海道口松研涂装科技有限公司 一种正四棱台式柔性多维力传感器阵列

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114354043A (zh) * 2021-12-29 2022-04-15 徐州徐工挖掘机械有限公司 一种测定回转支承载荷的系统及方法
CN114354043B (zh) * 2021-12-29 2024-04-26 徐州徐工挖掘机械有限公司 一种测定回转支承载荷的系统及方法
CN114485519A (zh) * 2022-01-10 2022-05-13 同济大学 一种柔性杆式双向水平位移传感器的标定装置和标定方法
CN114485519B (zh) * 2022-01-10 2023-08-29 同济大学 一种柔性杆式双向水平位移传感器的标定装置和标定方法
CN114397052A (zh) * 2022-01-12 2022-04-26 大连理工大学 一种多个力传感器并接使用测力装置
CN114858334A (zh) * 2022-04-06 2022-08-05 北京航空航天大学 火箭发动机推力矢量测量装置以及推力矢量测量方法
CN115077773A (zh) * 2022-04-26 2022-09-20 天津大学 一种可用于航天柱状物体空间矢量力的测量装置及方法
CN115077773B (zh) * 2022-04-26 2023-09-15 天津大学 一种可用于航天柱状物体空间矢量力的测量装置及方法
CN115371851A (zh) * 2022-08-19 2022-11-22 江苏科技大学 一种浮力调节装置的测试装置及其测试方法

Also Published As

Publication number Publication date
CN113091979A (zh) 2021-07-09
CN113091979B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2021128761A1 (zh) 分布式多维力测力系统及测力方法
CN112611498B (zh) 基于并联杆系多维力传感器的多维力获取方法
CN109822574B (zh) 一种工业机器人末端六维力传感器标定的方法
WO2021051950A1 (zh) 多维力传感器的负载平台微位移测量方法及测量敏感元件的安装方法
CN107042528B (zh) 一种工业机器人的运动学标定系统及方法
CN107703748B (zh) 一种基于偏置板设计的重载机器人静态刚度辨识方法
CN112873199B (zh) 基于运动学与空间插值的机器人绝对定位精度标定方法
CN101419118B (zh) 一种支座反力式风洞天平体轴系静态校准的方法
CN113927599B (zh) 绝对精度补偿方法及系统、设备和计算机可读存储介质
CN109733638B (zh) 一种长支柱起落架大变形情况下载荷施加方法
CN113063538B (zh) 分布式多维力传感器
CN109093620B (zh) 一种双目相机辅助的空间非合作目标动力学参数辨识方法
Zhou et al. Influence of flexible spherical joints parameters on accuracy of the six-axis force/torque sensor with three-three orthogonal parallel mechanism
CN113197752A (zh) 一种上肢康复机器人的肢体重力动态补偿方法
CN113513999B (zh) 一种航天器结构静力试验大视场实时变形测量系统及方法
Peng et al. Development of a novel integrated automated assembly system for large volume components in outdoor environment
CN202836851U (zh) 一种推力矢量测量系统
CN114993543B (zh) 双多维力测量系统
Zhao et al. Design and calibration experiment of a novel rigid-flexible hybrid parallel three-dimensional force sensor with deformability
CN113091670B (zh) 一种机器人关节刚度的标定装置及标定方法
CN113878586B (zh) 机器人运动学标定装置、方法及系统
JPH0433006A (ja) ロボツトシステムの制御方法
CN109900425B (zh) 一种压电矢量力测试装置的性能评估方法
JPH012104A (ja) ロボットの位置決め誤差補正方法
CN114964596B (zh) 基于扩展最佳精度空间的多维力传感器及分布式测力系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20906936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20906936

Country of ref document: EP

Kind code of ref document: A1