WO2021128306A1 - 光学成像系统、取像装置和光学装置 - Google Patents

光学成像系统、取像装置和光学装置 Download PDF

Info

Publication number
WO2021128306A1
WO2021128306A1 PCT/CN2019/129335 CN2019129335W WO2021128306A1 WO 2021128306 A1 WO2021128306 A1 WO 2021128306A1 CN 2019129335 W CN2019129335 W CN 2019129335W WO 2021128306 A1 WO2021128306 A1 WO 2021128306A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging system
lens
optical imaging
optical
object side
Prior art date
Application number
PCT/CN2019/129335
Other languages
English (en)
French (fr)
Inventor
刘彬彬
李明
邹海荣
张文燕
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to PCT/CN2019/129335 priority Critical patent/WO2021128306A1/zh
Publication of WO2021128306A1 publication Critical patent/WO2021128306A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present disclosure relates to the field of optical imaging technology, and in particular, to an optical imaging system, an imaging device, and an optical device.
  • photosensitive elements such as photocouplers (CCD) and complementary metal oxide semiconductors (CMOS) have improved in performance along with technological advances, providing the possibility of shooting high-quality images, and bringing people higher Picture quality shooting experience. Therefore, the miniaturization and performance improvement of the optical imaging system design have become the key factors for the current camera to improve the shooting quality.
  • CCD photocouplers
  • CMOS complementary metal oxide semiconductors
  • an object of the present disclosure is to provide an optical imaging system that, while meeting the miniature design, has an enlarged light aperture and a larger light input, which can meet the requirements of high-definition images and low-light shooting.
  • the present disclosure also proposes an image capturing device.
  • the present disclosure further proposes an optical device.
  • the optical imaging system from the object side to the image side, the optical imaging system includes:
  • a first lens with positive tortuosity the paraxial area of the object side of the first lens is convex
  • a second lens with positive tortuosity the paraxial area of the object side of the second lens is concave and the paraxial area of the image side is convex;
  • a third lens with negative tortuosity the paraxial area of the object side of the third lens is convex and the paraxial area of the image side is concave;
  • the paraxial area of the object side of the fourth lens is concave
  • the paraxial area of the object side of the fifth lens is convex
  • optical imaging system satisfies the relationship:
  • Fno is the aperture number of the optical lens group
  • TTL is the distance from the object side of the first lens to the imaging surface on the optical axis
  • GTL6 is the shortest distance from the object side of the sixth lens to the image side parallel to the optical axis
  • ITL6 is the sixth The longest distance from the object side of the lens to the position where the image side is parallel to the optical axis.
  • the lens system can meet the design requirements of large aperture and miniaturization, provide sufficient light for shooting, and meet the needs of high-quality and high-definition shooting.
  • the optical imaging system also satisfies the relationship: 0.2 ⁇ GTL6/ITL6 ⁇ 0.3, GTL6 is the shortest (thin) distance from the object side of the sixth lens to the image side parallel to the optical axis, and ITL6 is the shortest (thin) distance from the object side of the sixth lens to the optical axis.
  • the lens thickness ratio is reasonably controlled, so that the lens realizes an ultra-thin design at the optical axis, which can effectively compress the total length of the lens, and can ensure the machinability and molding yield of the lens .
  • the optical imaging system satisfies the following relationship: 1.5 ⁇ TTL/DL ⁇ 3.0.
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis
  • DL is the aperture diameter of the optical imaging system.
  • TTL/DL satisfies the above relationship, can the lens miniaturization design be guaranteed and the amount of light required for lens shooting can be ensured, and high-quality and high-definition shooting effects can be achieved.
  • TTL/DL ⁇ 1.5 the miniaturization design can be satisfied.
  • the light aperture will be too large, which will cause edge light to enter the imaging system and reduce the imaging quality.
  • TTL/DL>3 while meeting the miniaturization, it will cause the aperture of the aperture to be too small, unable to meet the system's throughput, and can not achieve dark light.
  • the scene requires high-definition shooting, so only by meeting 1.5 ⁇ TTL/DL ⁇ 3.0 can we take into account the optimization of optical performance and the miniaturization of the structure.
  • the optical imaging system satisfies the following relationship: 0.5 ⁇ DL/Imgh ⁇ 0.8.
  • DL is the diaphragm aperture diameter of the optical imaging system
  • Imgh is half of the diagonal length of the effective pixel area of the electronic photosensitive element on the imaging surface of the optical imaging system.
  • the diameter of the diaphragm aperture of the optical imaging system determines the amount of light passing through the entire optical imaging system, and the size of the photosensitive surface determines the image clarity and pixel size of the entire imaging system.
  • the optical imaging system satisfies the following relationship: TTL/Imgh ⁇ 1.5.
  • Imgh is half of the diagonal length of the effective pixel area of the electronic photosensitive element on the imaging surface of the optical imaging system
  • TTL is the distance from the object side of the first lens to the imaging surface of the optical imaging system on the optical axis.
  • TTL/Imgh Only when TTL/Imgh satisfies the above relationship can both miniaturization and high-definition shooting be taken into account. If TTL/Imgh>1.5, the miniaturization can not guarantee the high-definition imaging effect.
  • the optical imaging system satisfies the following relationship: 1.0 ⁇ TTL/f ⁇ 2.0; where f is the effective focal length of the optical imaging system, and TTL is the object side of the first lens to the optical imaging system The distance of the imaging surface on the optical axis.
  • the TTL/f satisfies the above-mentioned relational expression, not only the miniaturization of the optical lens can be realized, but also the better concentration of light on the imaging surface can be ensured. If TTL/f ⁇ 1.0, the optical length of the lens group is too short, which will increase the sensitivity of the system, and it is not conducive to the convergence of light on the imaging surface. When TTL/f ⁇ 2, the optical length of the lens group is too long, which will cause the chief ray angle of the light entering the imaging surface to be too large, and the edge light of the system imaging surface cannot be imaged on the photosensitive surface, resulting in incomplete imaging information.
  • the optical imaging system satisfies the following relationship: 0.6 ⁇ f/f1 ⁇ 1; where f1 is the optical effective focal length of the first lens, and f is the effective focal length of the optical imaging system.
  • the first lens provides all the optical information of the lens group from the object space to the image space, and the aperture size and focal length of the first lens determine the acquisition of the optical information in the object space by the optical imaging system.
  • the lens processing technology is simple, and the difficulty of correcting the aberration generated by the first lens is suitable, which can meet the shooting requirement.
  • the sensitivity of the system will increase, the processing technology will be difficult, and the aberration correction generated by the first lens will be difficult to meet the shooting requirements.
  • f/f1 ⁇ 0.6 the focal length ratio of the first lens and the optical system is not appropriate, and the aberration generated by the first lens cannot be corrected.
  • the optical imaging system satisfies the following relationship: -600 ⁇ (R1+R2)/F1 ⁇ 50; wherein, R1 is the curvature radius of the paraxial region of the object side of the first lens, R2 Is the curvature radius of the paraxial region of the image side surface of the first lens, and f1 is the optical effective focal length of the first lens.
  • the first lens provides all the optical information of the lens group from the object space to the image space, and must meet the requirements of large aperture.
  • the optical imaging system satisfies the following relationship: -0.3 ⁇ R5/R6 ⁇ -0.2; where R5 is the curvature radius of the paraxial region of the object side of the third lens, and R6 is the image side of the third lens The radius of curvature of the paraxial region.
  • the curvature radius of the paraxial area on the object side of the third lens and the curvature radius of the paraxial area on the image side are more appropriate.
  • the incident angle can be increased reasonably to meet the image height requirements of the optical imaging system, while reducing the system Sensitivity, improve assembly stability.
  • the optical imaging system satisfies the following relationship: -1.8 ⁇ f3/f ⁇ -1; where f3 is the optical effective focal length of the third lens, and f is the optical imaging system's Effective focal length.
  • the ratio of the focal length of the third lens to the focal length of the system can effectively reduce the total length of the system, which is conducive to the convergence of light on the imaging surface.
  • f3/f ⁇ -1.8 the total length of the system will be too large and the assembly sensitivity will increase.
  • f3/f ⁇ -1 the stray light of the lens will increase, which will affect the image quality.
  • the optical imaging system satisfies the following relationship: 1 ⁇ (R7*R8)/(R7+R8) ⁇ 3; wherein R7 is the curvature of the paraxial region of the object side of the fourth lens Radius, R8 is the curvature radius of the paraxial region of the image side surface of the fourth lens.
  • the curvature radius of the paraxial area on the object side of the fourth lens and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system and improve Distorted aberrations and astigmatism, while reducing system sensitivity and improving assembly stability.
  • the optical imaging system satisfies the following relationship: Fno ⁇ 2; Fno is the aperture number of the optical lens group.
  • the optical imaging system can have enough light input, and the electronic device can shoot high-quality night scenes, starry sky and other object space scenes with low brightness.
  • An image capturing device includes: the optical imaging system and an electronic photosensitive element, and the electronic sensing element is arranged on the image side of the optical imaging system.
  • An electronic device includes a housing and an image capturing device, the housing is provided with a mounting hole, and the image capturing device is disposed in the housing and can capture images.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to an embodiment of the present disclosure
  • Figure 2 is a longitudinal spherical aberration diagram (mm) of an optical imaging system according to an embodiment of the present disclosure
  • Fig. 3 is the astigmatism (mm) of an optical imaging system according to an embodiment of the present disclosure
  • Fig. 4 is a distortion curve (%) of an optical imaging system according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to the second embodiment of the present disclosure.
  • Fig. 6 is a longitudinal spherical aberration diagram (mm) of the optical imaging system in the second embodiment of the present disclosure
  • Fig. 7 is the astigmatism (mm) of the optical imaging system in the second embodiment of the present disclosure.
  • Fig. 8 is a distortion curve (%) of the optical imaging system in the second embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to the third embodiment of the present disclosure.
  • Fig. 10 is a longitudinal spherical aberration diagram (mm) of the third embodiment of the optical imaging system of the present disclosure
  • Fig. 11 is the astigmatism (mm) of the third embodiment of the optical imaging system of the present disclosure.
  • FIG. 12 is a distortion curve (%) of the optical imaging system of the third embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of an optical imaging system according to the fourth embodiment of the present disclosure.
  • Fig. 14 is a longitudinal spherical aberration diagram (mm) of the fourth embodiment of the optical imaging system of the present disclosure.
  • Fig. 16 is a distortion curve (%) of the optical imaging system in the fourth embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of an optical imaging system according to Embodiment 5 of the present disclosure.
  • Fig. 18 is a longitudinal spherical aberration diagram (mm) of the fifth embodiment of the optical imaging system of the present disclosure.
  • Figure 19 is the astigmatism (mm) of the fifth embodiment of the optical imaging system of the present disclosure.
  • Fig. 20 is a distortion curve (%) of the optical imaging system of the fifth embodiment of the present disclosure.
  • 21 is a schematic diagram of the structure of an optical imaging system according to the sixth embodiment of the present disclosure.
  • Fig. 22 is a longitudinal spherical aberration diagram (mm) of the sixth embodiment of the optical imaging system of the present disclosure
  • Figure 23 is the astigmatism (mm) of the sixth embodiment of the optical imaging system of the present disclosure.
  • Fig. 24 is a distortion curve (%) of the optical imaging system of the sixth embodiment of the present disclosure.
  • FIG. 25 is a schematic structural diagram of an optical imaging system according to Embodiment 7 of the present disclosure.
  • Fig. 26 is a longitudinal spherical aberration diagram (mm) of the seventh embodiment of the present disclosure optical imaging system
  • Figure 27 is the astigmatism (mm) of the seventh embodiment of the optical imaging system of the present disclosure.
  • FIG. 28 is a distortion curve (%) of the optical imaging system in the seventh embodiment of the present disclosure.
  • Infrared cut filter 110 the object side of the infrared cut filter S13; the image side of the infrared cut filter S14;
  • the embodiment of the present invention provides an optical imaging system, including: a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, a fifth lens L5, and a sixth lens L6, the six lenses are arranged in sequence from the object side to the image side.
  • the first lens L1 has a positive refractive power, the paraxial area of the object side S1 of the first lens L1 is convex, and the paraxial area of the image side S2 is convex or concave.
  • the second lens L2 has a positive refractive power, the paraxial region of the object side surface S3 of the second lens L2 is concave, and the paraxial region of the image side surface S4 of the second lens L2 is convex.
  • the third lens L3 has a negative refractive power, the paraxial area of the object side surface S5 of the third lens L3 is convex, and the paraxial area of the image side surface S6 of the third lens L3 is concave.
  • the fourth lens L4 has a negative refractive power, the paraxial region of the object side surface S7 of the fourth lens L4 is concave, and the paraxial region of the image side surface S8 of the fourth lens L4 is concave or convex.
  • the fifth lens L5 has positive refractive power, the paraxial area of the object side surface S9 of the fifth lens L5 is convex, and the paraxial area of the image side surface S10 of the fifth lens L5 is concave or convex.
  • the sixth lens L6 has a negative refractive power, the paraxial area of the object side surface S11 of the sixth lens L6 is concave or convex, and the paraxial area of the image side surface S12 is concave.
  • the optical imaging system satisfies the relationship: Fno/TTL ⁇ 0.4, and 0.2 ⁇ GTL6/ITL6 ⁇ 0.3.
  • Fno is the aperture number of the optical lens group
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S15 on the optical axis
  • GTL6 is the position where the object side S11 to the image side S12 of the sixth lens L6 are parallel to the optical axis
  • the shortest distance, ITL6, is the longest distance from the object side S11 of the sixth lens L6 to the image side S12 parallel to the optical axis.
  • the optical imaging system satisfies the relationship: Fno/TTL ⁇ 0.4.
  • the optical imaging system that meets the relationship can take into account the large aperture and miniaturization design requirements of the lens system at the same time, providing sufficient light flux for camera shooting and meeting high image quality High-definition shooting is required. Therefore, only by satisfying Fno/TTL ⁇ 0.4 can the characteristics of large aperture and miniaturized structure be satisfied at the same time. If Fno/TTL>0.4, while taking into account the miniaturization, the light flux of the optical system will be insufficient, and the clarity of the captured picture will decrease.
  • the optical imaging system also satisfies the relationship: 0.2 ⁇ GTL6/ITL6 ⁇ 0.3.
  • the lens that satisfies this relational expression is an ultra-thin design at the optical axis, which can effectively compress the total length of the optical imaging system and realize the ultra-thin design concept.
  • the thickest part and the thinnest part of the lens should satisfy a certain ratio to ensure the machinability and forming yield. If GTL6/ITL6>0.3, the ultra-thin design requirements cannot be achieved; when GTL6/ITL6 ⁇ 0.2, it will cause the center to be too thin to meet the production and processing requirements and ensure the forming yield.
  • the optical imaging system of the present disclosure can take into account both miniaturization and large light flux, so that high-definition pictures can be taken, and the overall length can be further reduced, so that it can be better The ground conforms to the miniaturization design concept.
  • the optical imaging system satisfies the following relationship: 1.5 ⁇ TTL/DL ⁇ 3.0.
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S15 of the optical imaging system on the optical axis
  • DL is the aperture diameter of the optical imaging system.
  • the miniaturized design of the lens be ensured, and the amount of light required for shooting of the lens can be provided, so as to achieve a high-quality and high-definition shooting effect.
  • TTL/DL the light aperture will be too large to meet the miniaturization design, causing edge light to enter the optical imaging system, reducing the imaging quality of the optical imaging system; if TTL/DL>3, while meeting the miniaturization, It will cause the aperture of the aperture to be too small, which cannot meet the light flux requirements of the optical imaging system, and cannot achieve the high-definition shooting requirements of dark light scenes.
  • the optical imaging system satisfies the following relationship: 0.5 ⁇ DL/Imgh ⁇ 0.8.
  • DL is the diaphragm aperture diameter of the optical imaging system
  • Imgh is half of the diagonal length of the effective pixel area of the electronic photosensitive element on the imaging surface.
  • the aperture diameter of the optical imaging system diaphragm determines the amount of light passing through the entire optical imaging system, and the size of the photosensitive surface determines the image clarity and pixel size of the entire camera system. Only a reasonable cooperation between the two can ensure sufficient light passing and ensure shooting. Image clarity. If DL/Imgh>0.8, the optical imaging system will be overexposed and the brightness will be too high, which will affect the picture quality of the electronic equipment; if DL/Imgh ⁇ 0.5, it will cause insufficient light transmission of the optical imaging system and the relative brightness of the light When it is not enough, the picture clarity of the electronic device will decrease.
  • the optical imaging system satisfies the following relationship: TTL/Imgh ⁇ 1.5.
  • Imgh is half of the diagonal length of the effective pixel area of the electronic photosensitive element on the imaging surface
  • TTL is the distance from the object side of the first lens L1 to the imaging surface of the optical imaging system on the optical axis.
  • the optical imaging system satisfies the following relationship: 1.0 ⁇ TTL/f ⁇ 2.0; where f is the effective focal length of the optical imaging system, and TTL is the imaging from the object side S1 of the first lens L1 to the optical imaging system The distance of the surface S15 on the optical axis.
  • the optical imaging system can reasonably control the focal length and the total length of the optical lens, which can not only realize the miniaturization of the optical lens, but also ensure that the light is better concentrated on the imaging surface S15. If TTL/f ⁇ 1.0, the optical length of the lens group is too short, which will increase the sensitivity of the system, and it is not conducive to the convergence of light on the imaging surface. When TTL/f ⁇ 2, the optical length of the lens group is too long, which will cause the chief ray angle of light entering the imaging surface to be too large. The edge light of the imaging surface S15 of the optical imaging system cannot be imaged on the photosensitive surface, resulting in incomplete imaging information.
  • the optical imaging system satisfies the following relationship: 0.6 ⁇ f/f1 ⁇ 1; where f1 is the effective optical focal length of the first lens L1, and f is the effective focal length of the optical imaging system.
  • the first lens L1 provides all the optical information of the lens group from the object space to the image space.
  • the aperture size and focal length of the first lens L1 determine the acquisition of the optical information in the object space by the optical imaging system.
  • the lens processing technology is simple, and the difficulty of correcting the aberration generated by the first lens L1 is suitable, which can meet the shooting requirement. If f/f1 ⁇ 1, the sensitivity of the system will increase, the processing technology will be difficult, and the aberration correction produced by the first lens L1 will be difficult to meet the user's shooting needs; when f/f1 ⁇ 0.6 , The ratio of the first lens L1 to the focal length of the optical system is inappropriate, and the aberration generated by the first lens L1 cannot be corrected.
  • the optical imaging system satisfies the following relationship: -600 ⁇ (R1+R2)/f1 ⁇ 50; where R1 is the curvature radius of the paraxial region of the object side S1 of the first lens L1, and R2 is the first lens L1. The curvature radius of the paraxial region of the image side surface S2 of the lens L1, and f1 is the optical effective focal length of the first lens L1.
  • the first lens L1 provides all the optical information of the lens group from the object space to the image space, and must meet the large-diameter requirement.
  • the optical imaging system satisfies the following relationship: -0.3 ⁇ R5/R6 ⁇ -0.2; where R5 is the radius of curvature of the paraxial region of the object side S5 of the third lens L3, and R6 is the radius of curvature of the third lens L3 The radius of curvature of the paraxial region of the image side S6.
  • the curvature radius of the paraxial area of the object side S5 of the third lens L3 and the curvature radius of the paraxial area of the image side S6 are more appropriate, and the incident angle can be reasonably increased to satisfy the optical imaging system. Image high requirements, while reducing system sensitivity and improving assembly stability.
  • the optical imaging system satisfies the following relationship: -1.8 ⁇ f3/f ⁇ -1; where f3 is the effective optical focal length of the third lens L3, and f is the effective focal length of the optical imaging system.
  • the ratio of the focal length of the third lens L3 to the focal length of the system can effectively reduce the total length of the system, which is beneficial to the convergence of light on the imaging surface. If f3/f ⁇ -1.8, the total length of the optical imaging system will be too large, and the assembly sensitivity will increase; when f3/f ⁇ -1, the lens stray light will increase, which will affect the imaging quality of the optical imaging system.
  • the optical imaging system satisfies the following relationship: 1 ⁇ (R7*R8)/(R7+R8) ⁇ 3; where R7 is the curvature radius of the paraxial region of the object side S7 of the fourth lens L4, R8 Is the curvature radius of the paraxial region of the image side surface S8 of the fourth lens L4.
  • the curvature radius of the paraxial region of the object side surface S7 of the fourth lens L4 and the paraxial region curvature radius of the image side surface S8 are more appropriate, which can reasonably correct the optical
  • the spherical aberration of the imaging system improves distortion and astigmatism, while reducing system sensitivity and improving assembly stability.
  • the optical imaging system satisfies the following relationship: Fno ⁇ 2; Fno is the number of apertures of the optical lens group.
  • the optical imaging system can have enough light input to shoot high-quality night scenes, starry sky and other object space scenes with low brightness.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S1 is convex on the optical axis, and the paraxial area of the image side S2 is concave; the paraxial area of the object side S1 is concave on the circumference, and the paraxial area of the image side S2 is convex. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is convex. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is concave on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S7 is concave, and the paraxial region of the image side S8 is concave; the paraxial region of the object side S7 is concave on the circumference, and the paraxial region of the image side S8 is convex. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic material.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is convex; the paraxial area of the object side S8 on the circumference is concave, and its image
  • the paraxial area of the side surface S10 is convex. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is convex, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is concave, and the paraxial area of the image side S12 is convex.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • the radius is more appropriate, and the incident angle can be increased reasonably to meet the image height requirements of the optical imaging system, while reducing system sensitivity and improving assembly stability.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 1 and Table 2.
  • the object side or image side of the optical imaging system lens can be aspherical, and the formula for the aspherical surface is:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric apex (at the optical axis)
  • k is the cone Constant
  • Ai is the coefficient corresponding to the higher order term of the i-th term in the aspheric surface formula.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S1 is convex on the optical axis, and the paraxial area of the image side S2 is concave; the paraxial area of the object side S1 is concave on the circumference, and the paraxial area of the image side S2 is convex. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is convex. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is convex on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S7 is concave, and the paraxial region of the image side S8 is concave; the paraxial region of the object side S7 is concave on the circumference, and the paraxial region of the image side S8 is convex. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is concave; the paraxial area of the object side S8 on the circumference is concave, and its image
  • the paraxial area of the side surface S10 is convex. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is convex, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is concave, and the paraxial area of the image side S12 is convex.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • the radius is more appropriate, and the incident angle can be increased reasonably to meet the image height requirements of the optical imaging system, while reducing system sensitivity and improving assembly stability.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 3 and Table 4.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S1 is convex on the optical axis, and the paraxial area of the image side S2 is concave; the paraxial area of the object side S1 is concave on the circumference, and the paraxial area of the image side S2 is convex. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is convex. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is concave on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S7 is concave, and the paraxial region of the image side S8 is convex; the paraxial region of the object side S7 is concave on the circumference, and the paraxial region of the image side S8 is convex. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic material.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is convex; the paraxial area of the object side S8 on the circumference is concave, and its image
  • the paraxial area of the side surface S10 is convex. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is convex, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is concave, and the paraxial area of the image side S12 is convex.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • TTL/DL 2.40
  • the miniaturized design of the lens can be ensured and the amount of light required for lens shooting can be ensured to achieve high-quality and high-definition shooting effects.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 5 and Table 6.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S1 is convex on the optical axis, and the paraxial area of the image side S2 is convex; the paraxial area of the object side S1 is concave on the circumference, and the paraxial area of the image side S2 is convex. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is convex. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is concave on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S7 is concave, and the paraxial region of the image side S8 is concave; the paraxial region of the object side S7 is concave on the circumference, and the paraxial region of the image side S8 is convex. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic material.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is convex; the paraxial area of the object side S8 on the circumference is concave, and its image
  • the paraxial area of the side surface S10 is convex. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is convex, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is concave, and the paraxial area of the image side S12 is convex.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 7 and Table 8.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S1 is convex, and the paraxial region of the image side S2 is concave; on the circumference, the paraxial region of the object side S1 is convex, and the paraxial region of the image side S2 is concave. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is concave. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is convex on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S7 is concave, and the paraxial area of the image side S8 is concave; the paraxial area of the object side S7 is convex on the circumference, and the paraxial area of the image side S8 is concave. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is convex; the paraxial area of the object side S8 on the circumference is convex, the image
  • the paraxial area of the side surface S10 is concave. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is convex, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is convex, and the paraxial area of the image side S12 is concave.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • TTL/DL 2.05
  • the miniaturized design of the lens can be ensured and the amount of light required for lens shooting can be ensured to achieve high-quality and high-definition shooting effects.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 9 and Table 10.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S1 is convex on the optical axis, and the paraxial area of the image side S2 is concave; the paraxial area of the object side S1 is concave on the circumference, and the paraxial area of the image side S2 is convex. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is convex. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is convex on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S7 is concave, and the paraxial region of the image side S8 is concave; the paraxial region of the object side S7 is concave on the circumference, and the paraxial region of the image side S8 is convex. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic material.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is convex; the paraxial area of the object side S8 on the circumference is concave, and its image
  • the paraxial area of the side surface S10 is convex. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is concave, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is concave, and the paraxial area of the image side S12 is convex.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • the radius is more appropriate, and the incident angle can be increased reasonably to meet the image height requirements of the optical imaging system, while reducing system sensitivity and improving assembly stability.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 11 and Table 12.
  • the optical imaging system sequentially includes aperture S0, first lens L1, second lens L2, third lens L3, fourth lens L4, fifth lens L5, sixth lens L6, and infrared cut filter 110 from the object side to the image side. And the imaging surface S15.
  • the first lens L1 has positive refractive power and is made of plastic.
  • the paraxial area of the object side S1 is convex on the optical axis, and the paraxial area of the image side S2 is concave; the paraxial area of the object side S1 is concave on the circumference, and the paraxial area of the image side S2 is convex. They are all aspherical.
  • the second lens L2 has positive refractive power and is made of plastic.
  • the paraxial region of the object side S3 is concave, and the paraxial region of the image side S4 is convex; the paraxial region of the object side S3 is convex on the circumference, and the paraxial region of the image side S4 is convex. They are all aspherical.
  • the third lens L3 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S5 is convex, and the paraxial region of the image side S6 is concave; the paraxial region of the object side S5 is concave on the circumference, and the paraxial region of the image side S6 is concave. They are all aspherical.
  • the fourth lens L4 has negative refractive power and is made of plastic.
  • the paraxial region of the object side S7 is concave, and the paraxial region of the image side S8 is concave; the paraxial region of the object side S7 is concave on the circumference, and the paraxial region of the image side S8 is convex. They are all aspherical.
  • the fifth lens L5 has positive refractive power and is made of plastic material.
  • the paraxial area of the object side S8 with the optical axis is convex, and the paraxial area of the image side S10 is convex; the paraxial area of the object side S8 on the circumference is concave, and its image
  • the paraxial area of the side surface S10 is convex. They are all aspherical.
  • the sixth lens L6 has negative refractive power and is made of plastic.
  • the paraxial area of the object side S11 on the optical axis is convex, and the paraxial area of the image side S12 is concave; the paraxial area of the object side S11 on the circumference is concave, and the paraxial area of the image side S12 is convex.
  • the infrared cut filter 110 is made of glass material, which is disposed between the sixth lens L6 and the imaging surface S15 and does not affect the focal length of the optical imaging system.
  • the total length of the imaging system realizes the ultra-thin design concept.
  • the radius is more appropriate, and the incident angle can be increased reasonably to meet the image height requirements of the optical imaging system, while reducing system sensitivity and improving assembly stability.
  • the curvature radius of the paraxial area on the object side and the curvature radius of the paraxial area on the image side are more appropriate, which can reasonably correct the spherical aberration of the optical imaging system, improve distortion and astigmatism, reduce system sensitivity, and improve assembly stability.
  • the optical imaging system of this embodiment satisfies the following conditional expressions in Table 13 and Table 14.
  • the imaging device includes: an optical imaging system and an electronic photosensitive element.
  • the electronic sensing element is arranged on the imaging surface of the optical imaging system. Through the integrated arrangement of the optical imaging system and the electronic photosensitive element, the optical imaging system and the electronic photosensitive element can be integrated The image formed by the optical imaging system is collected and transmitted to the image capturing device through the electronic sensing element, so as to realize the image capturing of the image capturing device.
  • An electronic device includes a housing and an image capturing device, the housing is provided with a mounting hole, the image capturing device is provided in the housing and can capture images, by providing the mounting hole and the image capturing device on the electronic device, Enables electronic equipment to obtain images.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统,光学成像系统由物侧至像侧依次包括:具有正曲折力的第一透镜(L1)(L1),且物侧面(S1)近轴区域为凸面;具有正曲折力的第二透镜(L2),且物侧面(S3)近轴区域为凹面、像侧面(S4)近轴区域为凸面;具有负曲折力的第三透镜(L3),且物侧面(S5)近轴区域为凸面、像侧面(S6)近轴区域为凹面;具有负曲折力的第四透镜(L4),且物侧面(S7)近轴区域为凹面;具有正曲折力的第五透镜(L5),且物侧面(S9)近轴区域为凸面;具有负曲折力的第六透镜(L6),且像侧面(S12)近轴区域为凹面。光学成像系统满足关系式:Fno/TTL<0.4、0.2<GTL6/ITL6<0.3。本公开进一步地提出了一种取像装置和光学装置。

Description

光学成像系统、取像装置和光学装置 技术领域
本公开涉及光学成像技术领域,尤其是涉及一种光学成像系统、取像装置和光学装置。
背景技术
随着手机、平板电脑、无人机、计算机等电子产品在生活中的广泛应用,各种科技改进推陈出新。其中,新型电子产品改进中摄像镜头拍摄效果的改进创新成为人们关注的重心之一,同时成为科技改进的一项重要内容,能否使用微型摄像元件拍摄出高画质感、高分辨率、高清晰度,甚至暗光条件下能拍摄出画质清晰的图片成为现代人选择何种电子产品的关键因素。另一方面,光电耦合器(CCD)及互补金属氧化物半导体(CMOS)等感光元件伴随着科技进步在性能上的改进,为拍摄高质量的像质提供了可能,给人们带来了更高画质感的拍摄体验。因此,光学成像系统设计的微型化及性能改进成为目前摄像头提升拍摄质量的关键因素。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种光学成像系统,在满足微型设计的同时,增大了通光口径,有更大的进光量,可满足高清晰图像及暗光拍摄的需求。
本公开还提出了一种取像装置。
本公开进一步提出了一种光学装置。
根据本公开第一方面实施例的光学成像系统,由物侧至像侧依次包括:
一具有正曲折力的第一透镜,所述第一透镜的物侧面近轴区域为凸面;
一具有正曲折力的第二透镜,所述第二透镜的物侧面近轴区域为凹面且像侧面近轴区域为凸面;
一具有负曲折力的第三透镜,所述第三透镜的物侧面近轴区域为凸面且像侧面近轴区域为凹面;
—具有负曲折力的第四透镜,所述第四透镜的物侧面近轴区域为凹面;
—具有正曲折力的第五透镜,所述第五透镜的物侧面近轴区域为凸面;
—具有负曲折力的第六透镜,所述第六透镜的像侧面近轴区域为凹面;
所述光学成像系统满足关系式:
Fno/TTL<0.4,0.2<GTL6/ITL6<0.3;
其中,Fno为光学透镜组光圈数,TTL为第一透镜物侧面至成像面于光轴上的距离,GTL6为第六透镜物侧面到像侧面平行于光轴处最短的距离,ITL6为第六透镜物侧面到像侧面平行于光轴处最长的距离。
当Fno/TTL>0.4,兼顾小型化的同时会造成光学系统通光量不足,拍摄出的画面清晰度下降。 根据本公开的光学成像系统,当Fno/TTL<0.4时,可以使镜头系统可以满足大光圈及小型化设计要求,为摄像提供足够的通光量,满足高画质高清晰拍摄需要。此外,所述光学成像系统还满足关系式:0.2<GTL6/ITL6<0.3,GTL6为第六透镜物侧面到像侧面平行于光轴处最短(薄)的距离,ITL6为第六透镜物侧面到像侧面平行于光轴处最长(厚)的距离。当GTL6/ITL6满足该上述关系式时,即合理的控制了透镜厚薄比,使该镜片实现光轴处超薄设计,可有效压缩镜头总长度,并且可以保证镜片的可加工性及成型良率。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:1.5<TTL/DL<3.0。其中,TTL为第一透镜物侧面至光学成像系统成像面于光轴上的距离,DL为光学成像系统光阑孔径直径大小。
当TTL/DL满足上述关系式时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,当TTL/DL<1.5时,满足小型化设计时通光口径会过大,造成边缘光线进入成像系统,降低成像质量,如果TTL/DL>3,满足小型化的同时,会造成光阑通光口径过小,无法满足系统通光量,实现不了暗光场景高清晰拍摄要求,因此只有满足1.5<TTL/DL<3.0才能同时兼顾光学性能最优化,结构小型化。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:0.5<DL/Imgh<0.8。其中,DL为所述光学成像系统的光阑孔径直径,Imgh为光学成像系统成像面上电子感光元件有效像素区域对角线长的一半。光学成像系统光阑孔径直径大小决定了整个光学成像系统通光量大小,感光面尺寸大小决定了整个摄像系统画面清晰度及像素大小。
当DL/Imgh满足上述关系式时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。如果DL/Imgh>0.8,则会造成曝光过大,光亮度太高,影响画面质量,DL/Imgh<0.5,则会造成通光量不足,光线相对亮度不够时会造成画面清晰度下降。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:TTL/Imgh<1.5。其中,Imgh为光学成像系统成像面上电子感光元件有效像素区域对角线长的一半,TTL为第一透镜物侧面至光学成像系统成像面于光轴上的距离。
当TTL/Imgh满足以上关系式时,才能同时兼顾小型化及高清晰拍摄。如果TTL/Imgh>1.5,则实现小型化的同时无法保证高清晰成像效果。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:1.0<TTL/f<2.0;其中,f为所述光学成像系统的有效焦距,TTL为第一透镜物侧面至光学成像系统成像面于光轴上的距离。
当TTL/f满足该上述关系式时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。如果TTL/f≤1.0时,透镜组光学长度太短,会造成系统敏感度加大,同时不利于光线在成像面上的汇聚。当TTL/f≥2时,透镜组光学长度太长,会造成光线进入成像面主光线角度太大,系统成像面边缘光线无法成像在感光面上,造成成像信息不全。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:0.6<f/f1<1;其中,f1为第一透镜的光学有效焦距,f为所述光学成像系统的有效焦距。第一透镜提供透镜组由物空间到像空间全部光学信息,第一透镜的口径大小及焦距决定了光学成像系统对物空间光信息的获取。
当f/f1满足该上述关系式时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜, 可以满足拍摄需求。当f/f1≥1时,会造成系统敏感度加大,加工工艺困难,并且由第一透镜产生的像差修正难度加大,难以满足拍摄需求。f/f1≤0.6时,第一透镜与光学系统焦距配比不合适,无法校正由第一透镜所产生的像差。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:-600<(R1+R2)/F1<50;其中,R1为所述第一透镜的物侧面近轴区域曲率半径,R2为第一透镜的像侧面近轴区域曲率半径,f1为所述第一透镜的光学有效焦距。第一透镜提供透镜组由物空间到像空间全部光学信息,且要满足大口径要求。
当(R1+R2)/F1满足该上述关系式时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。当(R1+R2)/f1≥50时,会加大光学系统敏感度,不利于加工;(R1+R2)/f1≤-600时,不利于光学系统对物空间光信息获取,成像效果无法达到设计预想要求。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:-0.3<R5/R6<-0.2;其中,R5为第三透镜物侧面近轴区域曲率半径,R6为第三透镜像侧面近轴区域曲率半径。
当R5/R6满足上述关系式时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:-1.8<f3/f<-1;其中,f3为所述第三透镜的光学有效焦距,f为所述光学成像系统的有效焦距。
当f3/f满足上述关系式时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。当f3/f≤-1.8时,致使系统总长过大,组装敏感性增大。当f3/f≥-1时,可导致镜头杂散光增多,影响成像质量。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:1<(R7*R8)/(R7+R8)<3;其中,R7为所述第四透镜的物侧面近轴区域曲率半径,R8为所述第四透镜的像侧面近轴区域曲率半径。
当(R7*R8)/(R7+R8)满足上述关系式时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
根据本公开的一些实施例,所述光学成像系统满足下列关系式:Fno<2;Fno为光学透镜组光圈数。
当Fno满足上述关系式时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
根据本公开第二方面实施例的取像装置,包括:所述的光学成像系统和电子感光元件,所述电子感应元件设置于所述光学成像系统的像侧。
根据本公开第三方面实施例的电子设备,包括:外壳和取像装置,所述外壳设置有安装孔,所述取像装置设置于所述外壳且可获取图像。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通 过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本公开实施例一光学成像系统的结构示意图;
图2是本公开实施例一光学成像系统的纵向球差图(mm);
图3是本公开实施例一光学成像系统的像散(mm);
图4是本公开实施例一光学成像系统的畸变曲线(%);
图5是本公开实施例二光学成像系统的结构示意图;
图6是本公开实施例二光学成像系统的纵向球差图(mm);
图7是本公开实施例二光学成像系统的像散(mm);
图8是本公开实施例二光学成像系统的畸变曲线(%);
图9是本公开实施例三光学成像系统的结构示意图;
图10是本公开实施例三光学成像系统的纵向球差图(mm);
图11是本公开实施例三光学成像系统的像散(mm);
图12是本公开实施例三光学成像系统的畸变曲线(%);
图13是本公开实施例四光学成像系统的结构示意图;
图14是本公开实施例四光学成像系统的纵向球差图(mm);
图15是本公开实施例四光学成像系统的像散(mm);
图16是本公开实施例四光学成像系统的畸变曲线(%);
图17是本公开实施例五光学成像系统的结构示意图;
图18是本公开实施例五光学成像系统的纵向球差图(mm);
图19是本公开实施例五光学成像系统的像散(mm);
图20是本公开实施例五光学成像系统的畸变曲线(%);
图21是本公开实施例六光学成像系统的结构示意图;
图22是本公开实施例六光学成像系统的纵向球差图(mm);
图23是本公开实施例六光学成像系统的像散(mm);
图24是本公开实施例六光学成像系统的畸变曲线(%);
图25是本公开实施例七光学成像系统的结构示意图;
图26是本公开实施例七光学成像系统的纵向球差图(mm);
图27是本公开实施例七光学成像系统的像散(mm);
图28是本公开实施例七光学成像系统的畸变曲线(%)。
附图标记:
光圈S0;
第一透镜L1;第一透镜的物侧面S1;第一透镜L1的像侧面S2;
第二透镜L2;第二透镜的物侧面S3;第二透镜的像侧面S4;
第三透镜L3;第三透镜的物侧面S5;第三透镜的像侧面S6;
第四透镜L4;第四透镜的物侧面S7;第四透镜的像侧面S8;
第五透镜L5;第五透镜的物侧面S9;第五透镜的像侧面S10;
第六透镜L6;第六透镜的物侧面S11;第六透镜的像侧面S12;
红外截止滤光片110;红外截止滤光片的物侧面S13;红外截止滤光片的像侧面S14;
成像面S15。
具体实施方式
下面详细描述本公开的实施例,参考附图描述的实施例是示例性的,下面详细描述本公开的实施例。
下面参考图1-图28描述根据本公开实施例的光学成像系统。
如图1所示,本实用新型的实施方式提供了一种光学成像系统,包括:第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5和第六透镜L6,该六个透镜从物侧至像侧依次排布。
第一透镜L1具有正曲折力,第一透镜L1的物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凸面或凹面。第二透镜L2具有正曲折力,第二透镜L2的物侧面S3近轴区域为凹面,而且第二透镜L2的像侧面S4近轴区域为凸面。第三透镜L3具有负曲折力,第三透镜L3的物侧面S5近轴区域为凸面,而且第三透镜L3的像侧面S6近轴区域为凹面。第四透镜L4具有负曲折力,第四透镜L4的物侧面S7近轴区域为凹面,而且第四透镜L4的像侧面S8近轴区域为凹面或凸面。第五透镜L5具有正曲折力,第五透镜L5的物侧面S9近轴区域为凸面,而且第五透镜L5的像侧面S10近轴区域为凹面或凸面。第六透镜L6具有负曲折力,第六透镜L6的物侧面S11近轴区域为凹面或凸面,像侧面S12近轴区域为凹面。
光学成像系统满足关系式:Fno/TTL<0.4,以及0.2<GTL6/ITL6<0.3。其中,Fno为光学透镜组光圈数,TTL为第一透镜L1的物侧面S1至成像面S15于光轴上的距离,GTL6为第六透镜L6的物侧面S11到像侧面S12平行于光轴处最短的距离,ITL6为第六透镜L6的物侧面S11到像侧面S12平行于光轴处最长的距离。
具体地,光学成像系统满足关系式:Fno/TTL<0.4,满足该关系式的光学成像系统可同时兼顾镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要。因此,只有满足Fno/TTL<0.4才能同时满足大光圈及小型化结构的特点。如果Fno/TTL>0.4,兼顾小型化的同时会造成光学系统通光量不足,拍摄出的画面清晰度下降。
此外,光学成像系统还满足关系式:0.2<GTL6/ITL6<0.3。满足该关系式的该透镜为光轴处超薄设计,这样可有效压缩光学成像系统的总长度,实现超薄的设计理念,但如果中心处太薄,无 法满足生产加工要求,以及无法保证成型良率,因此该透镜最厚处及最薄处应满足一定比例关系才能保证可加工性及成型良率。如果当GTL6/ITL6>0.3,则无法实现超薄设计要求;当GTL6/ITL6<0.2,会导致中心处太薄,无法实现生产加工要求,保证成型良率。
由此,通过同时满足上述两个关系式,本公开的光学成像系统可以兼顾小型化和大通光量,从而可以拍摄出高清晰度的画面,而且还可以进一步地减小总长度,从而可以更好地符合小型化设计理念。
在某些实施方式中,光学成像系统满足下列关系式:1.5<TTL/DL<3.0。其中,TTL为第一透镜L1的物侧面S1至光学成像系统的成像面S15于光轴上的距离,DL为光学成像系统光阑孔径直径大小。
具体地,当TTL/DL满足上述关系式时才能保证镜头小型化设计,并且提供镜头拍摄所需的通光量,从而实现高画质高清晰的拍摄效果。如果当TTL/DL<1.5时,满足小型化设计时通光口径会过大,造成边缘光线进入光学成像系统,降低光学成像系统的成像质量;如果TTL/DL>3,满足小型化的同时,会造成光阑通光口径过小,无法满足光学成像系统的通光量要求,实现不了暗光场景高清晰拍摄要求。
在某些实施方式中,光学成像系统满足下列关系式:0.5<DL/Imgh<0.8。其中,DL为光学成像系统的光阑孔径直径,Imgh为成像面上电子感光元件有效像素区域对角线长的一半。
具体地,光学成像系统光阑孔径直径大小决定了整个光学成像系统通光量大小,感光面尺寸大小决定了整个摄像系统画面清晰度及像素大小,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。如果DL/Imgh>0.8,则会造成光学成像系统曝光过大,光亮度太高,影响电子设备的画面质量;如果DL/Imgh<0.5,则会造成光学成像系统的通光量不足,光线相对亮度不够时会造成电子设备的画面清晰度下降。
在某些实施方式中,光学成像系统满足下列关系式:TTL/Imgh<1.5。其中,Imgh为成像面上电子感光元件有效像素区域对角线长的一半,TTL为第一透镜L1物侧面至光学成像系统成像面于光轴上的距离。
具体地,当TTL/Imgh满足以上关系式时才能同时兼顾小型化及高清晰拍摄,满足以上关系式时才能同时兼顾小型化及高清晰拍摄。如果TTL/Imgh>1.5,则实现小型化的同时无法保证高清晰成像效果,造成电子设备的性能较差。
在某些实施方式中,光学成像系统满足下列关系式:1.0<TTL/f<2.0;其中,f为光学成像系统的有效焦距,TTL为第一透镜L1的物侧面S1至光学成像系统的成像面S15于光轴上的距离。
具体地,当TTL/f满足该上述关系式时,光学成像系统可以合理控制焦距以及光学镜头总长度,不仅能实现光学镜头小型化,同时也能保证光线更好的汇聚于成像面S15上。如果TTL/f≤1.0时,透镜组光学长度太短,会造成系统敏感度加大,同时不利于光线在成像面上的汇聚。当TTL/f≥2时,透镜组光学长度太长,会造成光线进入成像面主光线角度太大,光学成像系统的成像面S15边缘光线无法成像在感光面上,造成成像信息不全。
在某些实施方式中,光学成像系统满足下列关系式:0.6<f/f1<1;其中,f1为第一透镜L1的 光学有效焦距,f为光学成像系统的有效焦距。第一透镜L1提供透镜组由物空间到像空间全部光学信息,第一透镜L1的口径大小及焦距决定了光学成像系统对物空间光信息的获取。
具体地,当f/f1满足该上述关系式时,透镜加工工艺简单,并且由第一透镜L1产生的像差修正难度适宜,可以满足拍摄需求。如果当f/f1≥1时,会造成系统敏感度加大,加工工艺困难,并且由第一透镜L1产生的像差修正难度加大,难以满足用户的拍摄需求;当f/f1≤0.6时,第一透镜L1与光学系统焦距配比不合适,无法校正由第一透镜L1所产生的像差。
在某些实施方式中,光学成像系统满足下列关系式:-600<(R1+R2)/f1<50;其中,R1为第一透镜L1的物侧面S1近轴区域曲率半径,R2为第一透镜L1的像侧面S2近轴区域曲率半径,f1为第一透镜L1的光学有效焦距。第一透镜L1提供透镜组由物空间到像空间全部光学信息,且要满足大口径要求。
具体地,当(R1+R2)/f1满足该上述关系式时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。如果当(R1+R2)/f1≥50时,会加大光学成像系统敏感度,不利于光学成像系统对光信息的加工;当(R1+R2)/f1≤-600时,不利于光学系统对物空间光信息的获取,光学成像系统的成像效果无法达到设计预想要求。
在某些实施方式中,光学成像系统满足下列关系式:-0.3<R5/R6<-0.2;其中,R5为第三透镜L3的物侧面S5近轴区域曲率半径,R6为第三透镜L3的像侧面S6近轴区域曲率半径。
具体地,当R5/R6满足上述关系式时,第三透镜L3的物侧面S5近轴区域曲率半径和像侧面S6近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
在某些实施方式中,光学成像系统满足下列关系式:-1.8<f3/f<-1;其中,f3为第三透镜L3的的光学有效焦距,f为光学成像系统的有效焦距。
具体地,当f3/f满足上述关系式时,第三透镜L3的的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。如果当f3/f≤-1.8时,致使光学成像系统总长过大,组装敏感性增大;当f3/f≥-1时,可导致镜头杂散光增多,影响光学成像系统的成像质量。
在某些实施方式中,光学成像系统满足下列关系式:1<(R7*R8)/(R7+R8)<3;其中,R7为第四透镜L4的物侧面S7近轴区域曲率半径,R8为第四透镜L4的像侧面S8近轴区域曲率半径。
具体地,当(R7*R8)/(R7+R8)满足上述关系式时,第四透镜L4的物侧面S7近轴区域曲率半径和像侧面S8近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
在某些实施方式中,光学成像系统满足下列关系式:Fno<2;Fno为光学透镜组光圈数。
具体地,当Fno满足上述关系式时,可以让光学成像系统有足够的进光量,达到拍摄高质量夜景、星空等光亮度不大的物空间场景。
本公开光学成像系统将通过以下具体实施例配合所附附图予以详细说明。
实施例一:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第 四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面;于圆周其物侧面S1近轴区域为凹面,其像侧面S2近轴区域为凸面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凸面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凹面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凹面;于圆周其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凸面;于圆周其物侧面S8近轴区域为凹面,其像侧面S10近轴区域为凸面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凸面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第一实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.31,GTL6/ITL6=0.22。当Fno/TTL=0.31时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.22时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第一实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=1.93。当TTL/DL=1.93时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第一实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.75。当DL/Imgh=0.75时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第一实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.45。当TTL/Imgh=1.45时,才能同时兼顾小型化及高清晰拍摄。
第一实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.25;当TTL/f=1.25时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第一实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.82;当f/f1=0.82时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第一实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=31.33;当 (R1+R2)/F1=31.33时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第一实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=-0.24;当R5/R6=-0.24时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第一实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.54;当f3/f=-1.54时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第一实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=1.86;当(R7*R8)/(R7+R8)=1.86时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
第一实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.8;当Fno=1.8时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
下面请参阅图1至图4,本实施例的光学成像系统满足以下表1和表2的条件式。
表1
Figure PCTCN2019129335-appb-000001
表2
Figure PCTCN2019129335-appb-000002
光学成像系统透镜的物侧面或像侧面可以为非球面,非球面的面型公式为:
Figure PCTCN2019129335-appb-000003
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点(于光轴处)的曲率,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
实施例二:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面;于圆周其物侧面S1近轴区域为凹面,其像侧面S2近轴区域为凸面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凸面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面 S8近轴区域为凹面;于圆周其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凹面;于圆周其物侧面S8近轴区域为凹面,其像侧面S10近轴区域为凸面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凸面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第二实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.31,GTL6/ITL6=0.24。当Fno/TTL=0.31时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.24时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第二实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=1.88。当TTL/DL=1.88时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第二实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.76。当DL/Imgh=0.76时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第二实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.43。当TTL/Imgh=1.43时,才能同时兼顾小型化及高清晰拍摄。
第二实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.26;当TTL/f=1.26时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第二实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.80;当f/f1=0.80时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第二实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=25.81;当(R1+R2)/F1=25.81时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第二实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=-0.23;当R5/R6=-0.23时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第二实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.58;当f3/f=-1.58时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第二实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=1.97;当(R7*R8)/(R7+R8)=1.97时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
第二实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.8;当Fno=1.8时,可以让 光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
请参阅图5至图8,本实施例的光学成像系统满足以下表3和表4的条件式。
表3
Figure PCTCN2019129335-appb-000004
表4
Figure PCTCN2019129335-appb-000005
Figure PCTCN2019129335-appb-000006
实施例三:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面;于圆周其物侧面S1近轴区域为凹面,其像侧面S2近轴区域为凸面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凸面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凹面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面;于圆周其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凸面;于圆周其物侧面S8近轴区域为凹面,其像侧面S10近轴区域为凸面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凸面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第三实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.33,GTL6/ITL6=0.22。当Fno/TTL=0.33时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.22时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第三实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=2.40。当TTL/DL=2.40时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第三实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.60。当DL/Imgh=0.60时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第三实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.43。当TTL/Imgh=1.43时,才能同时兼顾小型化及高清晰拍摄。
第三实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.28;当TTL/f=1.28时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第三实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.79;当f/f1=0.79满足该上述关系式时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第三实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=31.59;当(R1+R2)/F1=31.59时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第三实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=0.23;当R5/R6=-0.23时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第三实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.62;当f3/f=-1.62时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第三实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=2.46;当(R7*R8)/(R7+R8)=2.46时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
第三实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.88;当Fno=1.88时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
请参阅图9至图12,本实施例的光学成像系统满足以下表5和表6的条件式。
表5
Figure PCTCN2019129335-appb-000007
Figure PCTCN2019129335-appb-000008
表6
Figure PCTCN2019129335-appb-000009
Figure PCTCN2019129335-appb-000010
实施例四:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凸面;于圆周其物侧面S1近轴区域为凹面,其像侧面S2近轴区域为凸面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凸面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凹面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凹面;于圆周其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凸面;于圆周其物侧面S8近轴区域为凹面,其像侧面S10近轴区域为凸面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凸面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第四实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.27,GTL6/ITL6=0.23。当Fno/TTL=0.27时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.23时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第四实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=1.93。当TTL/DL=1.93时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第四实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.75。当DL/Imgh=0.75时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第四实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.45。当TTL/Imgh=1.45时,才能同时兼顾小型化及高清晰拍摄。
第四实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.25;当TTL/f=1.25时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第四实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.83;当f/f1=0.83时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第四实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=-528.03;当(R1+R2)/F1=-528.03时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第四实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=-0.24;当R5/R6=0.24时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第四实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.71;当f3/f=-1.71时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第四实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=1.86;当(R7*R8)/(R7+R8)=1.86时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
第四实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.55;当Fno=1.55时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
请参阅图13至图16,本实施例的光学成像系统满足以下表7和表8的条件式。
表7
Figure PCTCN2019129335-appb-000011
Figure PCTCN2019129335-appb-000012
表8
Figure PCTCN2019129335-appb-000013
实施例五:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面;于圆周其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凹面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凹面;于圆周其物侧面S7近轴区域为凸面,其像侧面S8近轴区域为凹面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凸面;于圆周其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凹面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第五实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.28,GTL6/ITL6=0.23。当Fno/TTL=0.28时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.23时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第五实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=2.05。当TTL/DL=2.05时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第五实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.71。当DL/Imgh=0.71时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第五实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.45。当TTL/Imgh=1.45时,才能同时兼顾小型化及高清晰拍摄。
第五实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.24;当TTL/f=1.24时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第五实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.82;当f/f1=0.82时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第五实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=34.94;当(R1+R2)/F1=34.94时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第五实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=-0.24;当R5/R6=时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第五实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.51;当f3/f=时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第五实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=1.87;当(R7*R8)/(R7+R8)=1.87时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
第五实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.65;当Fno=1.65时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
请参阅图17至图20,本实施例的光学成像系统满足以下表9和表10的条件式。
表9
Figure PCTCN2019129335-appb-000014
Figure PCTCN2019129335-appb-000015
表10
Figure PCTCN2019129335-appb-000016
施例六:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面;于圆周其物侧面S1近轴区域为凹面,其像侧面S2近轴区域为凸面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凸面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凹面;于圆周其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凸面;于圆周其物侧面S8近轴区域为凹面,其像侧面S10近轴区域为凸面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凸面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第六实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.27,GTL6/ITL6=0.23。当Fno/TTL=0.27时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.23时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第六实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=1.90。当TTL/DL=1.90时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第六实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.76。当DL/Imgh=0.76时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第六实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.45。当TTL/Imgh=1.45时,才能同时兼顾小型化及高清晰拍摄。
第六实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.22;当TTL/f=1.22时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第六实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.83;当f/f1=0.83时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第六实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=41.06;当(R1+R2)/F1=41.06时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第六实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=-0.25;当R5/R6=-0.25时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以 满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第六实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.48;当f3/f=-1.48时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第六实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=1.88;当(R7*R8)/(R7+R8)=1.88时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳定性。
第六实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.55;当Fno=1.55时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
请参阅图21至图24,本实施例的光学成像系统满足以下表11和表12的条件式。
表11
Figure PCTCN2019129335-appb-000017
表12
Figure PCTCN2019129335-appb-000018
Figure PCTCN2019129335-appb-000019
实施例七:
光学成像系统由物侧至像侧依次包括光圈S0、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、红外截止滤光片110以及成像面S15。
第一透镜L1具有正屈光力,且为塑胶材质。于光轴其物侧面S1近轴区域为凸面,其像侧面S2近轴区域为凹面;于圆周其物侧面S1近轴区域为凹面,其像侧面S2近轴区域为凸面。并均为非球面。
第二透镜L2具有正屈光力,且为塑胶材质。于光轴其物侧面S3近轴区域为凹面,其像侧面S4近轴区域为凸面;于圆周其物侧面S3近轴区域为凸面,其像侧面S4近轴区域为凸面。并均为非球面。
第三透镜L3具有负屈光力,且为塑胶材质。于光轴其物侧面S5近轴区域为凸面,其像侧面S6近轴区域为凹面;于圆周其物侧面S5近轴区域为凹面,其像侧面S6近轴区域为凹面。并均为非球面。
第四透镜L4具有负屈光力,且为塑胶材质。于光轴其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凹面;于圆周其物侧面S7近轴区域为凹面,其像侧面S8近轴区域为凸面。并均为非球面。
第五透镜L5具有正屈光力,且为塑胶材质,与光轴其物侧面S8近轴区域为凸面,其像侧面S10近轴区域为凸面;于圆周其物侧面S8近轴区域为凹面,其像侧面S10近轴区域为凸面。并均为非球面。
第六透镜L6具有负屈光力,且为塑胶材质。于光轴其物侧面S11近轴区域为凸面,其像侧面S12近轴区域为凹面;于圆周其物侧面S11近轴区域为凹面,其像侧面S12近轴区域为凸面。
红外截止滤光片110为玻璃材质,其设置于第六透镜L6及成像面S15间且不影响光学成像系统的焦距。
第七实施例的光学成像系统中,光学成像系统满足关系式:Fno/TTL=0.25,GTL6/ITL6=0.22。当Fno/TTL=0.25时,可以保证镜头系统大光圈及小型化设计要求,为摄像拍摄提供足够的通光量,满足高画质高清晰拍摄需要;当GTL6/ITL6=0.22时,可有效压缩光学成像系统的总长度,实现超薄的设计理念。
第七实施例的光学成像系统中,光学成像系统满足关系式:TTL/DL=1.91。当TTL/DL=1.91时,才能保证镜头小型化设计并提供镜头拍摄所需的通光量,实现高画质高清晰的拍摄效果,
第七实施例的光学成像系统中,光学成像系统满足关系式:DL/Imgh=0.75。当DL/Imgh=0.75时,两者合理配合才能保证足够的通光量,保证拍摄图像清晰度。
第七实施例的光学成像系统中,光学成像系统满足关系式:TTL/Imgh=1.44。当TTL/Imgh=1.44时,才能同时兼顾小型化及高清晰拍摄。
第七实施例的光学成像系统中,光学成像系统满足下列关系式:TTL/f=1.28;当TTL/f=1.28时,不仅能实现光学镜头小型化,同时能保证光线更好的汇聚于成像面上。
第七实施例的光学成像系统中,光学成像系统满足关系式:f/f1=0.77;当f/f1=0.77时,镜头加工工艺简单,并且由第一透镜产生的像差修正难度适宜,可以满足拍摄需求。
第七实施例的光学成像系统中,光学成像系统满足关系式:(R1+R2)/F=7.94;当(R1+R2)/F1=7.94时,利于加工,并且有利于光学成像系统对物空间光信息获取,可以取得较好的成像效果。
第七实施例的光学成像系统中,光学成像系统满足关系式:R5/R6=-0.23;当R5/R6=-0.23时,第三透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理的增大入射角以满足光学成像系统像高要求,同时降低系统敏感性,提高组装稳定性。
第七实施例的光学成像系统中,光学成像系统满足关系式:f3/f=-1.41;当f3/f=-1.41时,第三透镜的焦距与系统焦距配比可有效的降低系统总长,有利于光线在成像面上的汇聚。
第七实施例的光学成像系统中,光学成像系统满足关系式:(R7*R8)/(R7+R8)=1.91;当(R7*R8)/(R7+R8)=1.91时,第四透镜物侧面近轴区域曲率半径和像侧面近轴区域曲率半径较为合适,可合理修正光学成像系统的球差,改善歪曲像差,像散,同时降低系统敏感性,提高组装稳 定性。
第七实施例的光学成像系统中,光学成像系统满足关系式:Fno=1.45;当Fno=1.45时,可以让光学成像系统有足够的进光量,可以使电子设备能够拍摄高质量夜景、星空等光亮度不大的物空间场景。
请参阅图25至图28,本实施例的光学成像系统满足以下表13和表14的条件式。
表13
Figure PCTCN2019129335-appb-000020
表14
Figure PCTCN2019129335-appb-000021
Figure PCTCN2019129335-appb-000022
根据本公开第二方面实施例的取像装置,包括:的光学成像系统和电子感光元件,电子感应元件设置于光学成像系统的成像面,通过光学成像系统和电子感光元件的集成设置,能够将光学成像系统所成的像通过电子感应元件收集传输给取像装置,从而实现取像装置的取像。
根据本公开第二方面实施例的电子设备,包括:外壳和取像装置,外壳设置有安装孔,取像装置设置于外壳且可获取图像,通过在电子设备上设置安装孔和取像装置,能够使电子设备实现对图像的获取。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种光学成像系统,其特征在于,由物侧至像侧依次包括:
    一具有正曲折力的第一透镜,所述第一透镜的物侧面近轴区域为凸面;
    一具有正曲折力的第二透镜,所述第二透镜的物侧面近轴区域为凹面且像侧面近轴区域为凸面;
    一具有负曲折力的第三透镜,所述第三透镜的物侧面近轴区域为凸面且像侧面近轴区域为凹面;
    —具有负曲折力的第四透镜,所述第四透镜的物侧面近轴区域为凹面;
    —具有正曲折力的第五透镜,所述第五透镜的物侧面近轴区域为凸面;
    —具有负曲折力的第六透镜,所述第六透镜的像侧面近轴区域为凹面;
    所述光学成像系统满足关系式:
    Fno/TTL<0.4;
    0.2<GTL6/ITL6<0.3;
    其中,Fno为光学透镜组光圈数,TTL为所述第一透镜物侧面至成像面于光轴上的距离,GTL6为所述第六透镜物侧面到像侧面平行于光轴处最短的距离,ITL6为所述第六透镜物侧面到像侧面平行于光轴处最长的距离。
  2. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    1.5<TTL/DL<3.0;
    其中,DL为所述光学成像系统的光阑孔径直径。
  3. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    0.5<DL/Imgh<0.8;
    其中,DL为所述光学成像系统的光阑孔径直径,Imgh为所述光学成像系统成像面上有效像素区域对角线长的一半。
  4. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    TTL/Imgh<1.5;
    其中,Imgh为所述光学成像系统成像面上有效像素区域对角线长的一半。
  5. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    1.0<TTL/f<2.0;
    其中,f为所述光学成像系统的有效焦距。
  6. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    0.6<f/f1<1;
    其中,f1为所述第一透镜的光学有效焦距,f为所述光学成像系统的有效焦距。
  7. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    -600<(R1+R2)/F1<50;
    其中,R1为所述第一透镜的物侧面近轴区域曲率半径,R2为所述第一透镜的像侧面近轴区域 曲率半径,f1为所述第一透镜的光学有效焦距。
  8. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:
    -0.3<R5/R6<-0.2;
    其中,R5为所述第三透镜物侧面近轴区域曲率半径,R6为所述第三透镜像侧面近轴区域曲率半径。
  9. 根据权利要求1所述的光学成像系统,其特征在于,
    -1.8<f3/f<-1;
    其中,f3为所述第三透镜的光学有效焦距,f为所述光学成像系统的有效焦距。
  10. 根据权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还满足关系式:1<(R7*R8)/(R7+R8)<3;
    其中,R7为所述第四透镜的物侧面近轴区域曲率半径,R8为所述第四透镜的像侧面近轴区域曲率半径。
  11. 根据权利要求1所述的光学成像系统,其特征在于,Fno<2。
  12. 一种取像装置,其特征在于,包括:
    权利要求1-11中任一项所述的光学成像系统;
    电子感光元件,所述电子感应元件设置于所述光学成像系统的像侧。
  13. 一种电子设备,其特征在于,包括:
    外壳,所述外壳设置有安装孔;
    权利要求12所述的取像装置,所述取像装置设置于所述外壳且可获取图像。
PCT/CN2019/129335 2019-12-27 2019-12-27 光学成像系统、取像装置和光学装置 WO2021128306A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129335 WO2021128306A1 (zh) 2019-12-27 2019-12-27 光学成像系统、取像装置和光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/129335 WO2021128306A1 (zh) 2019-12-27 2019-12-27 光学成像系统、取像装置和光学装置

Publications (1)

Publication Number Publication Date
WO2021128306A1 true WO2021128306A1 (zh) 2021-07-01

Family

ID=76573506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129335 WO2021128306A1 (zh) 2019-12-27 2019-12-27 光学成像系统、取像装置和光学装置

Country Status (1)

Country Link
WO (1) WO2021128306A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676088A (zh) * 2012-08-28 2014-03-26 索尼公司 图像拾取镜头和图像拾取装置
CN107085280A (zh) * 2016-02-15 2017-08-22 先进光电科技股份有限公司 光学成像系统
CN108089278A (zh) * 2016-11-22 2018-05-29 大立光电股份有限公司 取像光学镜片系统、取像装置及电子装置
WO2019131205A1 (ja) * 2017-12-28 2019-07-04 ソニー株式会社 撮像レンズおよび撮像装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103676088A (zh) * 2012-08-28 2014-03-26 索尼公司 图像拾取镜头和图像拾取装置
CN107085280A (zh) * 2016-02-15 2017-08-22 先进光电科技股份有限公司 光学成像系统
CN108089278A (zh) * 2016-11-22 2018-05-29 大立光电股份有限公司 取像光学镜片系统、取像装置及电子装置
WO2019131205A1 (ja) * 2017-12-28 2019-07-04 ソニー株式会社 撮像レンズおよび撮像装置

Similar Documents

Publication Publication Date Title
WO2021093542A1 (zh) 光学镜头及成像设备
CN106291887B (zh) 一种鱼眼镜头
WO2021120409A1 (zh) 外接镜头
WO2020140604A1 (zh) 光学成像镜头及成像设备
CN111999859A (zh) 光学成像系统、取像模组和电子装置
CN113759527B (zh) 广角镜头
CN113741006A (zh) 光学镜头、摄像模组及电子设备
WO2022266902A1 (zh) 光学镜头、摄像模组及电子设备
WO2022052051A1 (zh) 光学成像系统、取像模组和电子装置
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
CN112505902B (zh) 广角镜头及成像设备
WO2022011550A1 (zh) 光学成像系统、取像模组和电子装置
CN113933969B (zh) 光学镜头、摄像模组及电子设备
CN114153050B (zh) 光学系统和具有其的取像模组、电子装置
CN113703139B (zh) 光学镜头及成像设备
TWI476472B (zh) 成像鏡頭
WO2021128306A1 (zh) 光学成像系统、取像装置和光学装置
CN212723503U (zh) 光学成像系统、取像模组和电子装置
CN112596205B (zh) 一种光学镜组、摄像头模组及电子装置
WO2021142608A1 (zh) 光学成像系统和具有其的取像装置、电子装置
CN113050251A (zh) 光学成像系统、取像装置和光学装置
CN211554453U (zh) 光学成像系统和具有其的取像装置、电子装置
CN210142230U (zh) 低畸变光学系统
CN211905833U (zh) 光学成像系统、取像装置和电子设备
CN111736304A (zh) 光学成像系统、取像模组和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957527

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957527

Country of ref document: EP

Kind code of ref document: A1