WO2022011550A1 - 光学成像系统、取像模组和电子装置 - Google Patents

光学成像系统、取像模组和电子装置 Download PDF

Info

Publication number
WO2022011550A1
WO2022011550A1 PCT/CN2020/101888 CN2020101888W WO2022011550A1 WO 2022011550 A1 WO2022011550 A1 WO 2022011550A1 CN 2020101888 W CN2020101888 W CN 2020101888W WO 2022011550 A1 WO2022011550 A1 WO 2022011550A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
optical axis
object side
Prior art date
Application number
PCT/CN2020/101888
Other languages
English (en)
French (fr)
Inventor
谭怡翔
刘秀
李明
Original Assignee
欧菲光集团股份有限公司
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲精密光学制品有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/101888 priority Critical patent/WO2022011550A1/zh
Publication of WO2022011550A1 publication Critical patent/WO2022011550A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application relates to optical imaging technology, and in particular, to an optical imaging system, an imaging module and an electronic device.
  • the embodiments of the present application provide an optical imaging system, which sequentially includes from the object side to the image side:
  • the first lens has a positive refractive power, and its object side is convex at the optical axis and convex at the circumference;
  • the second lens has refractive power
  • the third lens has refractive power
  • the fourth lens with refractive power
  • the fifth lens has refractive power, the object side is convex at the optical axis, the image side is concave at the optical axis, and the circumference is concave;
  • the sixth lens has refractive power, and its object side is concave at the optical axis, and is concave at the circumference, and its image side is convex at the circumference;
  • the seventh lens has refractive power, and its image side surface is convex at the circumference;
  • optical imaging system satisfies the following conditional formula:
  • CT56 is the distance between the image side of the fifth lens and the object side of the sixth lens on the optical axis
  • TTL is the distance between the object side of the first lens and the image plane of the optical imaging system on the optical axis on the distance.
  • optical imaging system of the embodiment of the present application through the above-mentioned reasonable lens configuration, while satisfying the miniature design, the focal length is increased, the field angle is smaller than that of the conventional lens, the relative brightness is improved, and the optical imaging system 10 can achieve higher pixels and good image quality.
  • An optical imaging system can be used to capture distant views and can increase the magnification.
  • the front and rear lens groups can be relatively concentrated, and a fixed distance can be achieved by adding a thick spacer ring between the two lens groups, reducing the number of each lens.
  • the components between them reduce the tolerance, reduce the difficulty of assembly to a certain extent, and improve the overall image quality and yield in the production process.
  • the optical imaging system satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • ImgH is the image height corresponding to the maximum angle of view of the optical imaging system.
  • This conditional formula is the equivalent focal length calculated by the optical imaging system based on the full frame.
  • the equivalent focal length is greater than 50mm to have a certain telephoto capability; if the above formula is satisfied, the optical imaging system of this embodiment has It has a magnification capacity of more than 2.5 times and a larger ImgH, which can be adapted to larger-sized and higher-pixel photosensitive elements. Through reasonable lens size and refractive power configuration, distant objects can achieve close-up imaging effects.
  • the optical imaging system satisfies the following conditional formula:
  • SL15 is the distance on the optical axis from the object side of the first lens to the image side of the fifth lens.
  • the length of the front lens group is appropriately allocated relative to the whole, which can minimize the complexity of the lens structure arrangement, improve the stability of the optical imaging system structure, and help reduce the sensitivity of the optical imaging system; and , which is conducive to highlighting the characteristics of telephoto on the basis of maintaining the miniaturization of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • HFOV is half of the maximum angle of view of the optical imaging system.
  • Satisfying the above formula can enable the optical imaging system with a higher effective focal length to obtain a large angle of view.
  • the use of the optical imaging system with the lens aspheric surface enables the effective focal length and field of view to be improved simultaneously, which is beneficial for the optical imaging system to balance aberrations such as chromatic aberration, spherical aberration and distortion, and obtain good imaging quality.
  • the optical imaging system satisfies the following conditional formula:
  • R62 is the radius of curvature of the image side of the sixth lens near the optical axis
  • R72 is the radius of curvature of the image side of the seventh lens near the optical axis
  • f is the effective focal length of the optical imaging system.
  • the combined structure of the sixth lens and the seventh lens can offset the distortion and coma generated by most of the front lens; the reasonable setting of the radius of curvature can avoid the introduction of large spherical aberration and vertical chromatic aberration, which is beneficial to Reasonable distribution of primary aberrations on each lens to reduce tolerance sensitivity.
  • the optical imaging system satisfies the following conditional formula:
  • f6 is the effective focal length of the sixth lens
  • f7 is the effective focal length of the seventh lens
  • f is the effective focal length of the optical imaging system.
  • reasonably configuring the size of the sixth lens and the seventh lens and the focal length of the optical imaging system can avoid the large spherical aberration generated by the rear lens group and improve the overall resolution of the optical imaging system; at the same time, it is beneficial to reduce the fifth lens group.
  • the complexity of the surface shape helps to improve the yield of optical lenses.
  • the optical imaging system satisfies the following conditional formula:
  • R41 is the radius of curvature of the object side of the fourth lens at the optical axis
  • R51 is the radius of curvature of the object side of the fifth lens at the optical axis.
  • the fourth lens with positive refractive power will increase the spherical aberration of the system components, and the fifth lens is provided with multiple inflection points, which reasonably distribute the refractive power in the vertical direction and control the overall aberration of the optical imaging system; and, there are Contributes to the reduction of speckle size.
  • the optical imaging system satisfies the following conditional formula:
  • ct23 is the distance between the image side of the second lens and the object side of the third lens on the optical axis
  • ct45 is the distance between the image side of the fourth lens and the object side of the fifth lens on the optical axis distance in the direction.
  • the third lens and the fourth lens are arranged in a compact position and become the transition part of the light refraction of the system, so that the distribution of optical power is less, and the overall sensitivity of the system is reduced.
  • the optical imaging system satisfies the following conditional formula:
  • R61 is the curvature radius of the object side of the sixth lens at the optical axis
  • f6 is the effective focal length of the sixth lens.
  • the reasonable setting of the optical power and curvature radius of the sixth lens can make the surface complexity of the sixth lens low, and restrain the increase of field curvature and distortion in the T direction to a certain extent; it is beneficial to reduce the difficulty of forming and improve the overall image. quality.
  • the optical imaging system satisfies the following conditional formula:
  • f3 is the effective focal length of the third lens
  • f4 is the effective focal length of the fourth lens
  • f5 is the effective focal length of the fifth lens
  • f is the effective focal length of the optical system.
  • reasonably configuring the size and refractive power of the third lens, the fourth lens and the fifth lens can avoid the large spherical aberration generated by the front lens group and improve the overall resolution of the optical lens; Dimensional compression, which facilitates the formation of small-sized optical images.
  • the embodiments of the present application provide an image capturing module, including the optical imaging system described in any one of the embodiments; and a photosensitive element, and the photosensitive element is disposed on the image side of the optical imaging system.
  • the imaging module of the embodiment of the present application includes an optical imaging system, and the optical imaging system, through the above-mentioned reasonable configuration of the lens, increases the focal length while satisfying the miniature design, the field of view angle is smaller than that of the conventional lens, and the relative brightness is improved , the optical imaging system can achieve higher pixels and good image quality.
  • the optical imaging system can be used to shoot distant scenes and can improve the magnification; through the reasonable spacing between the fifth lens and the sixth lens, the front and rear lens groups can be relatively concentrated, which reduces the tolerance, reduces the assembly difficulty to a certain extent, and improves the overall image quality. Yield during production.
  • An embodiment of the present application provides an electronic device, which includes: a casing and the imaging module of the above-mentioned embodiment, where the imaging module is mounted on the casing.
  • the electronic device of the embodiment of the present application includes the above-mentioned imaging module, which, while satisfying the miniature design, increases the focal length, improves the relative brightness, and can achieve higher pixels and good image quality.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to a first embodiment of the present application.
  • FIG. 2 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the first embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present application.
  • FIG. 4 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present application.
  • FIG. 6 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the third embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present application.
  • FIG. 8 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the fourth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present application.
  • Fig. 10 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the fifth embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of an imaging module according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the first lens L1 The first lens L1
  • the third lens L3 is the third lens L3
  • the sixth lens L6 is the sixth lens L6
  • the seventh lens L7 The seventh lens L7
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “multiple” is two or more , unless otherwise specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level less than the second feature.
  • the optical imaging system 10 of the embodiment of the present application includes, from the object side to the image side, a first lens L1 with positive refractive power, a second lens L2 with refractive power, a third lens L3 with refractive power, The fourth lens L4 having refractive power, the fifth lens L5 having refractive power, the sixth lens L6 having refractive power, and the seventh lens L7 having refractive power.
  • the image plane S17 can be the receiving plane of the photosensitive element.
  • the first lens L1 has an object side S1 and an image side S2, the object side S1 is convex at the optical axis, and is convex at the circumference;
  • the second lens L2 has an object side S3 and an image side S4;
  • the third lens L3 has an object side S5 And like side S6;
  • the 4th lens L4 has object side S7 and like side S8;
  • the fifth lens L5 has object side S9 and like side S10, its object side S9 is a convex surface at the optical axis, and its like side S10 is at the optical axis It is a concave surface, which is concave at the circumference;
  • the sixth lens L6 has an object side S11 and an image side S12, and its object side S11 is concave at the optical axis, and is concave at the circumference, and its image side S12 is convex at the circumference;
  • the seven-lens L7 has an object side surface S13 and an image side surface
  • optical imaging system 10 satisfies the following conditional formula:
  • CT56 is the distance between the image side S10 of the fifth lens L5 and the object side S11 of the sixth lens L6 on the optical axis
  • TTL is the distance between the object side S1 of the first lens L1 and the optical imaging system The distance of the image plane S17 of 10 on the optical axis.
  • the optical imaging system 10 of the embodiment of the present application through the above-mentioned reasonable lens configuration, while satisfying the miniature design, the focal length is increased, the field of view angle is smaller than that of the conventional lens, and the relative brightness is improved, and the optical imaging system 10 can achieve higher High pixels and good image quality.
  • the optical imaging system 10 can be used for capturing distant scenes and can increase the magnification.
  • the optical imaging system 10 satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system 10
  • ImgH is the image height corresponding to the maximum angle of view of the optical imaging system 10 .
  • This conditional formula is the equivalent focal length calculated by the optical imaging system 10 on the basis of the full frame.
  • the equivalent focal length greater than 50mm means that the optical imaging system 10 has a certain telephoto capability; satisfying the above formula, the optical imaging system 10 of this embodiment has an imaging ratio of 25mm.
  • the lens has a magnification capacity of more than 2.5 times, and the ImgH is larger, which can be adapted to larger-sized and higher-pixel photosensitive elements. Through reasonable lens size and refractive power configuration, distant objects can obtain close-up imaging effects.
  • the optical imaging system 10 satisfies the following conditional formula:
  • SL15 is the distance on the optical axis from the object side S1 of the first lens L1 to the image side S10 of the fifth lens L5.
  • the length of the front lens group is appropriately allocated relative to the whole, which can minimize the complexity of the lens structure arrangement, improve the structural stability of the optical imaging system 10, and help reduce the sensitivity of the optical imaging system 10. And, it is beneficial to highlight the telephoto characteristics on the basis of maintaining the miniaturization of the optical imaging system 10 .
  • the optical imaging system 10 satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system 10
  • HFOV is half of the maximum field angle of the optical imaging system 10 .
  • the optical imaging system 10 with a high effective focal length can also obtain a large angle of view.
  • the use of the optical imaging system 10 with the lens aspheric surface enables the effective focal length and the field of view to be simultaneously improved, which is beneficial for the optical imaging system 10 to balance aberrations such as chromatic aberration, spherical aberration and distortion, and obtain good imaging quality.
  • the optical imaging system 10 satisfies the following conditional formula:
  • R62 is the radius of curvature of the image side S12 of the sixth lens L6 near the optical axis
  • R72 is the radius of curvature of the image side S14 of the seventh lens L7 near the optical axis
  • f is the effective value of the optical imaging system 10 focal length.
  • the combined structure of the sixth lens L6 and the seventh lens L7 can offset the distortion and coma generated by most of the front lenses; a reasonable setting of the radius of curvature can avoid the introduction of large spherical aberration and vertical axis chromatic aberration, thus It is conducive to the reasonable distribution of primary aberrations on each lens and reduces the tolerance sensitivity.
  • the optical imaging system 10 satisfies the following conditional formula:
  • f6 is the effective focal length of the sixth lens L6
  • f7 is the effective focal length of the seventh lens L7
  • f is the effective focal length of the optical imaging system 10 .
  • reasonably configuring the size of the sixth lens L6 and the seventh lens L7 and the focal length of the optical imaging system 10 can avoid the large spherical aberration generated by the rear lens group and improve the overall resolution of the optical imaging system 10; at the same time, it is beneficial to reduce The complexity of the surface shape of the fifth lens group helps to improve the yield of optical lenses.
  • the optical imaging system 10 satisfies the following conditional formula:
  • R41 is the radius of curvature of the object side S7 of the fourth lens L4 at the optical axis
  • R51 is the radius of curvature of the object side S9 of the fifth lens L5 at the optical axis.
  • the optical imaging system 10 satisfies the following conditional formula:
  • ct23 is the distance between the image side S4 of the second lens L2 and the object side S5 of the third lens L3 on the optical axis
  • ct45 is the image side S8 of the fourth lens L4 and the fifth lens The distance of the object side surface S9 of L5 in the direction of the optical axis.
  • the optical imaging system 10 satisfies the following conditional formula:
  • R61 is the curvature radius of the object side surface S11 of the sixth lens L6 at the optical axis
  • f6 is the effective focal length of the sixth lens L6.
  • the optical imaging system 10 satisfies the following conditional formula:
  • f3 is the effective focal length of the third lens L3
  • f4 is the effective focal length of the fourth lens L4
  • f5 is the effective focal length of the fifth lens L5
  • f is the effective focal length of the optical imaging system 10 .
  • reasonably configuring the size and refractive power of the third lens L3, the fourth lens L4 and the fifth lens L5 can avoid the large spherical aberration generated by the front lens group and improve the overall resolution of the optical lens; at the same time, it is beneficial to the first five
  • the size of the lens group is compressed, which facilitates the formation of small-sized optical images.
  • the optical imaging system 10 further includes a stop STO.
  • the stop STO may be disposed before the first lens L1, after the seventh lens L7, between any two lenses, or on the surface of any one lens.
  • Aperture STO is used to reduce stray light and help improve image quality.
  • the optical imaging system 10 further includes an infrared filter L8, and the infrared filter L8 has an object side S15 and an image side S16.
  • the infrared filter L8 is arranged on the image side S14 of the seventh lens L7 to filter out light in other wavelength bands such as visible light, and only allow infrared light to pass through, so that the optical imaging system 10 can be used in dark environments and other special applications The scene can also be imaged.
  • the light emitted or reflected by the object enters the optical imaging system 10 from the object side direction, and passes through the first lens L1, the second lens L2, the third lens L3, and the fourth lens in sequence L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 and the infrared filter L8 finally converge on the image plane S17 .
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all made of plastic.
  • the plastic lens can reduce the weight of the optical imaging system 10 and the production cost.
  • each lens can also be made of glass, or any combination of plastic and glass.
  • At least one surface of at least one lens in the optical imaging system 10 is aspherical, which is conducive to correcting aberrations and improving imaging quality.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 in the optical imaging system 10 are all is aspherical.
  • the shape of the aspheric surface is determined by the following formula:
  • Z is the longitudinal distance between any point on the aspheric surface and the vertex of the surface
  • r is the distance from any point on the aspheric surface to the optical axis
  • c is the vertex curvature (the reciprocal of the radius of curvature)
  • k is the conic constant
  • Ai is the i-th order of the aspheric surface Correction factor.
  • the optical imaging system 10 can effectively reduce the size of the optical imaging system 10 by adjusting the curvature radius and aspheric coefficient of each lens surface, effectively correct the aberrations, and improve the imaging quality.
  • the optical imaging system 10 of the first embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a negative refractive power lens from the object side to the image side.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is concave at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is convex at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is convex at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is concave at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided on the object side surface S1 of the first lens L1.
  • )/f 1.63, (
  • )/f 24.76,
  • 0.32, (
  • )/f 15.02.
  • EFL is the effective focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 to the image plane S17 of the first lens L1 distance on the optical axis.
  • the reference wavelength in the first embodiment is 587 nm, and the optical imaging system 10 in the first embodiment satisfies the conditions of the following table.
  • the elements from the object plane to the image plane are arranged in the order of the elements from top to bottom in Table 1.
  • Surface numbers 2 and 3 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • the first value in the "thickness" parameter column of the first lens is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the following lens on the optical axis.
  • Table 2 is a table of relevant parameters of the aspheric surfaces of each lens in Table 1, wherein K is the conic constant, and Ai is the coefficient corresponding to the i-th high-order term in the aspheric surface type formula.
  • the optical imaging system 10 of the second embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a The third lens L3, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the seventh lens L7 with negative refractive power.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is convex at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is convex at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference; the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is concave at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • )/f 4.18, (
  • )/f 21.76,
  • 0.37, (
  • )/f 7.57.
  • the reference wavelength in the second embodiment is 587 nm, and the optical imaging system 10 in the second embodiment satisfies the conditions of the following table.
  • the definition of each parameter can be obtained from the first embodiment, which is not repeated here.
  • the optical imaging system 10 of the third embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a The third lens L3, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the seventh lens L7 with positive refractive power.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis;
  • the object side S3 of the second lens L2 is concave at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is convex at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is concave at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is concave at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided on the object side surface S1 of the first lens L1.
  • )/f 6.15, (
  • )/f 9.95,
  • 1.96, (
  • )/f 18.05.
  • the reference wavelength in the third embodiment is 587 nm, and the optical imaging system 10 in the third embodiment satisfies the conditions of the following table.
  • the optical imaging system 10 of the fourth embodiment sequentially includes a first lens L1 having a positive refractive power, a second lens L2 having a negative
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis;
  • the object side S3 of the second lens L2 is concave at the optical axis, and the image side S4 is convex at the optical axis;
  • the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is concave at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is concave at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is concave at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is concave at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided on the object side surface S1 of the first lens L1.
  • )/f 89.79, (
  • )/f 34.61,
  • 2.59, (
  • )/f 5.49.
  • the reference wavelength in the fourth embodiment is 587 nm, and the optical imaging system 10 in the fourth embodiment satisfies the conditions of the following table.
  • the optical imaging system 10 of the fifth embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, and a negative refractive power lens from the object side to the image side.
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is concave at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is convex at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference; the object side S7 of the fourth lens L4 is concave at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is concave at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Convex, like side S14 is convex at the circumference.
  • the stop STO is provided on the object side surface S1 of the first lens L1.
  • )/f 2.45, (
  • )/f 22.66,
  • 0.41, (
  • )/f 7.16.
  • the reference wavelength in the fifth embodiment is 587 nm, and the optical imaging system 10 in the fifth embodiment satisfies the conditions of the following table.
  • an embodiment of the present application provides an imaging module 100 , which includes an optical imaging system 10 and a photosensitive element 20 , and the photosensitive element 20 is disposed on the image side of the optical imaging system 10 .
  • the photosensitive element 20 can be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device).
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the optical imaging system 10 in the imaging module 100 increases the focal length and improves the relative brightness while satisfying the miniature design, and the optical imaging system 10 can achieve higher pixels and good image quality.
  • the optical imaging system 10 can be used to shoot distant scenes, which can improve the magnification; through the reasonable spacing between the fifth lens L5 and the sixth lens L6, the front and rear lens groups can be relatively concentrated, the tolerance is reduced, the assembly difficulty is reduced to a certain extent, and the overall Image quality and yield during production.
  • the electronic device 1000 includes a casing 200 and an imaging module 100 , and the imaging module 100 is installed on the casing 200 .
  • the electronic device 1000 in the embodiment of the present application includes, but is not limited to, a smart phone, a tablet computer, a notebook computer, an electronic book reader, a portable multimedia player (PMP), a portable phone, a video phone, a digital still camera, and a mobile medical device , wearable devices and other electronic devices that support imaging.
  • PMP portable multimedia player
  • the optical imaging system 10 in the electronic device 1000 of the above-mentioned embodiment increases the focal length and improves the relative brightness while satisfying the miniature design. image quality.
  • the optical imaging system 10 can be used for shooting distant scenes, which can improve the magnification; and, through the reasonable spacing between the fifth lens L5 and the sixth lens L6, the front and rear lens groups can be relatively concentrated, the tolerance is reduced, and the assembly difficulty is reduced to a certain extent. Improve the overall image quality and yield in the production process.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统(10)、取像模组(100)和电子装置(1000),光学成像系统(10)由物侧到像侧依次包括第一透镜(L1),具有正屈折力,其物侧面(S1)于光轴处为凸面;第二透镜(L2),具有屈折力;第三透镜(L3),具有屈折力;第四透镜(L4),具有屈折力;第五透镜(L5),具有屈折力,其物侧面(S9)于光轴处为凸面,其像侧面(S10)于光轴处为凹面;第六透镜(L6),具有屈折力,其物侧面(S11)于光轴处为凹面;第七透镜(L7),具有屈折力,其像侧面(S14)于圆周处为凸面;光学成像系统(10)满足:CT56/TTL>0.34;其中,CT56为第五透镜(L5)的像侧面(S10)与第六透镜(L6)的物侧面(S11)于光轴上的距离,TTL为第一透镜(L1)的物侧面(S1)到光学成像系统(10)的像面(S17)于光轴上的距离。光学成像系统(10)在满足微型设计的同时,能够实现较高的像素和良好的像质。

Description

光学成像系统、取像模组和电子装置 技术领域
本申请涉及光学成像技术,特别涉及一种光学成像系统、取像模组和电子装置。
背景技术
随着手机、平板电脑、无人机、计算机等电子产品在生活中的广泛应用,各种科技改进推陈出新。其中,电子产品中摄像镜头拍摄效果的改进创新成为人们关注的重心之一,同时成为科技改进的一项重要内容,能否使用微型摄像元件拍摄出高画质感、高分辨率、高清晰度,甚至暗光条件下能拍摄出画质清晰的图片成为现代人选择何种电子产品的关键因素。因此,光学系统设计的微型化及性能改进成为目前摄像头提升拍摄质量的关键因素。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:现有的光学成像系统难以在保持光学成像系统的微型化的同时实现高清成像。
发明内容
鉴于以上内容,有必要提出一种光学成像系统、取像模组和电子装置,以解决上述问题。
本申请的实施例提供一种光学成像系统,由物侧到像侧依次包括:
第一透镜,具有正屈折力,其物侧面于光轴处为凸面,于圆周处为凸面;
第二透镜,具有屈折力;
第三透镜,具有屈折力;
第四透镜,具有屈折力;
第五透镜,具有屈折力,其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,于圆周处为凹面;
第六透镜,具有屈折力,其物侧面于光轴处为凹面,于圆周处为凹面,其 像侧面于圆周处为凸面;
第七透镜,具有屈折力,其像侧面于圆周处为凸面;
所述光学成像系统满足以下条件式:
CT56/TTL>0.34;
其中,CT56为所述第五透镜的像侧面与所述第六透镜的物侧面于光轴上的距离,TTL为所述第一透镜的物侧面到所述光学成像系统的像面于光轴上的距离。
本申请实施例的光学成像系统中,通过上述合理的透镜的配置,在满足微型设计的同时,增大了焦距,视场角小于常规镜头,提升了相对亮度,光学成像系统10能够实现较高的像素和良好的像质。光学成像系统可用于拍摄远景,能够提升放大倍率。
同时,满足上式,通过第五透镜与第六透镜合理的间距设置,可使前后镜片组相对集中,仅需在两镜片组之间添加一个厚间隔环就能达到固定间距,减少每个镜片之间的组件,降低了公差,一定程度降低了组装难度,提升整体像质以及生产过程中的良品率。
在一些实施例中,所述光学成像系统满足以下条件式:
f*43/ImgH>69;
其中,f为所述光学成像系统的有效焦距,ImgH为为所述光学成像系统的最大视场角所对应的像高。
此条件式为光学成像系统以全画幅为基准计算的等效焦距,一般等效焦距大于50mm为具备一定的长焦能力;满足上式,本实施例的光学成像系统相较于25mm成像镜头具有超过2.5倍的放大能力,ImgH较大,可适配更大尺寸和更高像素的感光元件,通过合理的镜片尺寸与屈折力配置,让远距离物体获得近距离成像效果。
在一些实施例中,所述光学成像系统满足以下条件式:
SL15/TTL<0.41;
其中,SL15为所述第一透镜的物侧面到所述第五透镜的像侧面于光轴上的距离。
满足上式,前透镜组的长度相对于整体来说分配合适,可最大限度减小镜片结构排布的复杂度,提高光学成像系统结构的稳定性,有利于降低光学成像系统的敏感性;并且,有利于在维持光学成像系统小型化的基础上,突出远摄的特性。
在一些实施例中,所述光学成像系统满足以下条件式:
f/HFOV<0.23mm/°;
其中,f为所述光学成像系统的有效焦距,HFOV为所述光学成像系统最大视场角的一半。
满足上式,可使具有较高有效焦距的光学成像系统也能获得大视场角度。光学成像系统搭配透镜非球面的使用,使得有效焦距和视场角可以同步提升,利于光学成像系统平衡色差、球差与畸变等像差,获得良好的成像品质。
在一些实施例中,所述光学成像系统满足以下条件式:
1<(|R62|+|R72|)/f<90;
其中,R62为所述第六透镜的像侧面于光轴附近的曲率半径,R72为所述第七透镜的像侧面于光轴附近的曲率半径,f为所述光学成像系统的有效焦距。
满足上式,第六透镜和第七透镜的组合结构可抵消绝大部分前透镜产生的畸变和彗差;合理的曲率半径设置可避免本身引入较大的球差和垂轴色差,从而有利于初级像差在各镜片上的合理分配,降低公差敏感性。
在一些实施例中,所述光学成像系统满足以下条件式:
9<(|f6|+|f7|)/f<35;
其中,f6为所述第六透镜的有效焦距,f7为所述第七透镜的有效焦距,f为所述光学成像系统的有效焦距。
满足上式,合理配置第六透镜、第七透镜的尺寸与光学成像系统的焦距,可避免后透镜组产生的较大球差,提升光学成像系统整体的解像力;同时,利于降低第五透镜组的面型复杂程度,有助于提高生产光学镜头的良品率。
在一些实施例中,所述光学成像系统满足以下条件式:
|R41/R51|>1;
满足上式,其中,R41为所述第四透镜的物侧面于光轴处的曲率半径,R51 为所述第五透镜的物侧面于光轴处的曲率半径。
正屈折力的第四透镜会增加系统组件的球差,第五透镜上设置有多个反曲点,合理地分配了垂直方向的屈折力,控制了光学成像系统的整体像差;并且,有助于弥散斑尺寸的降低。
在一些实施例中,所述光学成像系统满足以下条件式:
25<TTL/(ct23+ct45)<35;
其中,ct23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离,ct45为所述第四透镜的像侧面与所述第五透镜的物侧面于光轴方向上的距离。
满足上式,使第三透镜和第四透镜位置排布紧凑,成为系统光线折转的过渡部分,从而光焦度分配较少,降低了系统的整体敏感性。
在一些实施例中,所述光学成像系统满足以下条件式:
0.3<|R61|/|f6|<2.6;
其中,R61为所述第六透镜的物侧面于光轴处的曲率半径,f6为所述第六透镜的有效焦距。
满足上式,第六透镜合理的光焦度与曲率半径设置,可使得第六透镜的面型复杂度低,一定程度抑制了T方向场曲、畸变的增加;利于降低成型难度,提升整体像质。
在一些实施例中,所述光学成像系统满足以下条件式:
4<(|f3|+|f4|+|f5|)/f<19;
其中,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距,f5为所述第五透镜的有效焦距,f为所述光学系统的有效焦距。
满足上式,合理配置第三透镜、第四透镜、第五透镜的尺寸与屈折力,可避免前透镜组产生的较大球差,提升光学镜头整体的解像力;同时,利于前五透镜组的尺寸压缩,有助于形成小尺寸的光学成像。
本申请的实施例提出一种取像模组,包括任意一实施例所述的光学成像系统;和感光元件,所述感光元件设置于所述光学成像系统的像侧。
本申请实施例的取像模组包括光学成像系统,所述光学成像系统通过上述 合理的透镜的配置,在满足微型设计的同时,增大了焦距,视场角小于常规镜头,提升了相对亮度,光学成像系统能够实现较高的像素和良好的像质。光学成像系统可用于拍摄远景,能够提升放大倍率;通过第五透镜与第六透镜合理的间距设置,可使前后镜片组相对集中,降低了公差,一定程度降低了组装难度,提升整体像质以及生产过程中的良品率。
本申请的实施例提出一种电子装置,包括:壳体和上述实施例的取像模组,所述取像模组安装在所述壳体上。
本申请实施例的电子装置包括上述取像模组,所述取像模组在在满足微型设计的同时,增大了焦距,提升了相对亮度,能够实现较高的像素和良好的像质。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施例的描述中变得明显和容易理解,其中:
图1是本申请第一实施例的光学成像系统的结构示意图。
图2是本申请第一实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图3是本申请第二实施例的光学成像系统的结构示意图。
图4是本申请第二实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图5是本申请第三实施例的光学成像系统的结构示意图。
图6是本申请第三实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图7是本申请第四实施例的光学成像系统的结构示意图。
图8是本申请第四实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图9是本申请第五实施例的光学成像系统的结构示意图。
图10是本申请第五实施例中光学成像系统的球差(mm)、像散(mm)和 畸变(%)示意图。
图11是本申请实施例的取像模组的结构示意图。
图12是本申请实施例的电子装置的结构示意图。
主要元件符号说明
电子装置                 1000
取像模组                 100
光学成像系统             10
第一透镜                 L1
第二透镜                 L2
第三透镜                 L3
第四透镜                 L4
第五透镜                 L5
第六透镜                 L6
第七透镜                 L7
红外滤光片               L8
光阑                     STO
物侧面                   S1、S3、S5、S7、S9、S11、S13、S15
像侧面                   S2、S4、S6、S8、S10、S12、S14、S16
像面                     S17
感光元件                 20
壳体                     200
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申 请保护的范围。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本申请提供了的各种特 定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本申请实施例的光学成像系统10从物侧至像侧依次包括具有正屈折力的第一透镜L1、具有屈折力的第二透镜L2、具有屈折力的第三透镜L3、具有屈折力的第四透镜L4、具有屈折力的第五透镜L5、具有屈折力的第六透镜L6及具有屈折力的第七透镜L7。光学成像系统10的像侧还有一像面S17,优选地,像面S17可以为感光元件的接收面。
第一透镜L1具有物侧面S1及像侧面S2,物侧面S1于光轴处为凸面,于圆周处为凸面;第二透镜L2具有物侧面S3及像侧面S4;第三透镜L3具有物侧面S5及像侧面S6;第四透镜L4具有物侧面S7及像侧面S8;第五透镜L5具有物侧面S9及像侧面S10,其物侧面S9于光轴处为凸面,其像侧面S10于光轴处为凹面,于圆周处为凹面;第六透镜L6具有物侧面S11及像侧面S12,其物侧面S11于光轴处为凹面,于圆周处为凹面,其像侧面S12于圆周处为凸面;第七透镜L7具有物侧面S13及像侧面S14,其像侧面S14于圆周处为凸面。
光学成像系统10满足以下条件式:
CT56/TTL>0.34;
其中,CT56为所述第五透镜L5的像侧面S10与所述第六透镜L6的物侧面S11于光轴上的距离,TTL为所述第一透镜L1的物侧面S1到所述光学成像系统10的像面S17于光轴上的距离。满足上式,通过第五透镜L5与第六透镜L6合理的间距设置,可使前后镜片组相对集中,仅需在两镜片组之间添加一个厚间隔环就能达到固定间距,减少每个镜片之间的组件,降低了公差,一定程度降低了组装难度,提升整体像质以及生产过程中的良品率。
本申请实施例的光学成像系统10中,通过上述合理的透镜的配置,在满足微型设计的同时,增大了焦距,视场角小于常规镜头,提升了相对亮度,光学成像系统10能够实现较高的像素和良好的像质。光学成像系统10可用于拍摄远景,能够提升放大倍率。
在一些实施例中,光学成像系统10满足以下条件式:
f*43/ImgH>69;
其中,f为光学成像系统10的有效焦距,ImgH为光学成像系统10的最大视场角所对应的像高。
此条件式为光学成像系统10以全画幅为基准计算的等效焦距,一般等效焦距大于50mm为具备一定的长焦能力;满足上式,本实施例的光学成像系统10相较于25mm成像镜头具有超过2.5倍的放大能力,ImgH较大,可适配更大尺寸和更高像素的感光元件,通过合理的镜片尺寸与屈折力配置,让远距离物体获得近距离成像效果。
在一些实施例中,光学成像系统10满足以下条件式:
SL15/TTL<0.41;
其中,SL15为所述第一透镜L1的物侧面S1到所述第五透镜L5的像侧面S10于光轴上的距离。满足上式,前透镜组的长度相对于整体来说分配合适,可最大限度减小镜片结构排布的复杂度,提高光学成像系统10结构的稳定性,有利于降低光学成像系统10的敏感性;并且,有利于在维持光学成像系统10小型化的基础上,突出远摄的特性。
在一些实施例中,光学成像系统10满足以下条件式:
f/HFOV<0.23mm/°;
其中,f为光学成像系统10的有效焦距,HFOV为光学成像系统10最大视场角的一半。满足上式,可使高的有效焦距的光学成像系统10也能获得大视场角度。光学成像系统10搭配透镜非球面的使用,使得有效焦距和视场角可以同步提升,利于光学成像系统10平衡色差、球差与畸变等像差,获得良好的成像品质。
在一些实施例中,光学成像系统10满足以下条件式:
1<(|R62|+|R72|)/f<90;
其中,R62为所述第六透镜L6的像侧面S12于光轴附近的曲率半径,R72为所述第七透镜L7的像侧面S14于光轴附近的曲率半径,f为光学成像系统10的有效焦距。
满足上式,第六透镜L6和第七透镜L7的组合结构可抵消绝大部分前透镜产生的畸变和彗差;合理的曲率半径设置可避免本身引入较大的球差和垂轴色差,从而有利于初级像差在各镜片上的合理分配,降低公差敏感性。
在一些实施例中,光学成像系统10满足以下条件式:
9<(|f6|+|f7|)/f<35;
其中,f6为所述第六透镜L6的有效焦距,f7为所述第七透镜L7的有效焦距,f为光学成像系统10的有效焦距。满足上式,合理配置第六透镜L6、第七透镜L7的尺寸与光学成像系统10的焦距,可避免后透镜组产生的较大球差,提升光学成像系统10整体的解像力;同时,利于降低第五透镜组的面型复杂程度,有助于提高生产光学镜头的良品率。
在一些实施例中,光学成像系统10满足以下条件式:
|R41/R51|>1;
其中,R41为所述第四透镜L4的物侧面S7于光轴处的曲率半径,R51为所述第五透镜L5的物侧面S9于光轴处的曲率半径。满足上式,正屈折力的第四透镜L4会增加系统组件的球差,第五透镜L5上设置有多个反曲点,合理地分配了垂直方向的屈折力,控制了光学成像系统10的整体像差;并且,有助于弥散斑尺寸的降低。
在一些实施例中,光学成像系统10满足以下条件式:
25<TTL/(ct23+ct45)<35;
其中,ct23为所述第二透镜L2的像侧面S4与所述第三透镜L3的物侧面S5于光轴上的距离,ct45为所述第四透镜L4的像侧面S8与所述第五透镜L5的物侧面S9于光轴方向上的距离。满足上式,使第三透镜L3和第四透镜L4位置排布紧凑,成为系统光线折转的过渡部分,从而光焦度分配较少,降低了系统的整体敏感性。
在一些实施例中,光学成像系统10满足以下条件式:
0.3<|R61|/|f6|<2.6;
其中,R61为所述第六透镜L6的物侧面S11于光轴处的曲率半径,f6为所述第六透镜L6的有效焦距。满足上式,第六透镜L6合理的光焦度与曲率半径 设置,可使得第六透镜L6的面型复杂度低,一定程度抑制了T方向场曲、畸变的增加;利于降低成型难度,提升整体像质。
在一些实施例中,光学成像系统10满足以下条件式:
4<(|f3|+|f4|+|f5|)/f<19;
f3为所述第三透镜L3的有效焦距,f4为所述第四透镜L4的有效焦距,f5为所述第五透镜L5的有效焦距,f为所述光学成像系统10的有效焦距。满足上式,合理配置第三透镜L3、第四透镜L4、第五透镜L5的尺寸与屈折力,可避免前透镜组产生的较大球差,提升光学镜头整体的解像力;同时,利于前五透镜组的尺寸压缩,有助于形成小尺寸的光学成像。
在一些实施例中,光学成像系统10还包括光阑STO。光阑STO可以设置在第一透镜L1之前、第七透镜L7之后、任意两个透镜之间或任意一个透镜的表面上。光阑STO用以减少杂散光,有助于提升影像质量。
在一些实施例中,光学成像系统10还包括红外滤光片L8,红外滤光片L8具有物侧面S15及像侧面S16。红外滤光片L8设置在第七透镜L7的像侧面S14,以滤除例如可见光等其他波段的光线,而仅让红外光通过,以使光学成像系统10能够在昏暗的环境及其他特殊的应用场景下也能成像。
当光学成像系统10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像系统10,并依次穿过第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和红外滤光片L8,最终汇聚到像面S17上。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7均为塑料材质。此时,塑料材质的透镜能够减少光学成像系统10的重量并降低生成成本。在其他实施例中,各透镜也可为玻璃材质,或塑料材质和玻璃材质的任意组合。
在一些实施例中,光学成像系统10中至少有一个透镜的至少一个表面为非球面,有利于校正像差,提高成像质量。例如,在第一实施例中,光学成像系统10中的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7均为非球面。
非球面的面型由以下公式决定:
Figure PCTCN2020101888-appb-000001
其中,Z是非球面上任一点与表面顶点的纵向距离,r是非球面上任一点到光轴的距离,c的顶点曲率(曲率半径的倒数),k是圆锥常数,Ai是非球面第i-th阶的修正系数。
如此,光学成像系统10可以通过调节各透镜表面的曲率半径和非球面系数,有效减小光学成像系统10的尺寸,并有效地修正像差,提高成像质量。
第一实施例
请参照图1和图2,第一实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5具有正屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凹面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凹面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凹面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第一透镜L1的物侧面S1。
在第一实施例中,光学成像系统10的EFL=7.2mm,FNO=1.95,FOV=33.37°,TTL=6.7mm,CT56/TTL=0.37,f*43/ImgH=70.36,SL15/TTL=0.39,f/HFOV=0.22mm/°,(|R62|+|R72|)/f=1.63,(|f6|+|f7|)/f=24.76,|R41/R51|=2.58,TTL/(ct23+ct45)=32.90,|R61|/|f6|=0.32,(|f3|+|f4|+|f5|)/f=15.02。
需要说明的是,EFL为光学成像系统10的有效焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为第一透镜L1的物侧面S1至像面S17于光轴上的距离。
第一实施例中的参考波长为587nm,且第一实施例中的光学成像系统10满足下面表格的条件。由物面至像面的各元件依次按照表1从上至下的各元件的顺序排列。面序号2和3分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。第一透镜的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。表2为表1中各透镜的非球面表面的相关参数表,其中K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表1
Figure PCTCN2020101888-appb-000002
Figure PCTCN2020101888-appb-000003
表2
Figure PCTCN2020101888-appb-000004
第二实施例
请参照图3和图4,第二实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5具有负屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凸面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凹面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
在第二实施例中,光学成像系统10的EFL=7.15mm,FNO=2,FOV=34.2°,TTL=6.65mm,CT56/TTL=0.36,f*43/ImgH=69.88,SL15/TTL=0.39,f/HFOV=0.21mm/°,(|R62|+|R72|)/f=4.18,(|f6|+|f7|)/f=21.76,|R41/R51|=1.66,TTL/(ct23+ct45)=25.85,|R61|/|f6|=0.37,(|f3|+|f4|+|f5|)/f=7.57。
第二实施例中的参考波长为587nm,且第二实施例中的光学成像系统10满足下面表格的条件。其中各参数的定义可由第一实施例得出,在此不再赘述。
表3
Figure PCTCN2020101888-appb-000005
Figure PCTCN2020101888-appb-000006
表4
Figure PCTCN2020101888-appb-000007
第三实施例
请参照图5和图6,第三实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5具有负屈折力的第六透镜L6、及具有正屈折力的第七透镜L7。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凸面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凹面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凸面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凹面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第一透镜L1的物侧面S1。
在第三实施例中,光学成像系统10的EFL=7.22mm,FNO=2.05,FOV=33.29°,TTL=6.5mm,CT56/TTL=0.34,f*43/ImgH=70.56,SL15/TTL=0.40,f/HFOV=0.22mm/°,(|R62|+|R72|)/f=6.15,(|f6|+|f7|)/f=9.95,|R41/R51|=2.57,TTL/(ct23+ct45)=30.23,|R61|/|f6|=1.96,(|f3|+|f4|+|f5|)/f=18.05。
第三实施例中的参考波长为587nm,且第三实施例中的光学成像系统10满足下面表格的条件。
表5
Figure PCTCN2020101888-appb-000008
表6
Figure PCTCN2020101888-appb-000009
Figure PCTCN2020101888-appb-000010
第四实施例
请参照图7和图8,第四实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5具有负屈折力的第六透镜L6、及具有正屈折力的第七透镜L7。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凸面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凹面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凸面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凹面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凹面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第一透镜L1的物侧面S1。
在第四实施例中,光学成像系统10的EFL=7.29mm,FNO=2.1,FOV=33.032°,TTL=6.5mm,CT56/TTL=0.36,f*43/ImgH=71.24,SL15/TTL= 0.40,f/HFOV=0.22mm/°,(|R62|+|R72|)/f=89.79,(|f6|+|f7|)/f=34.61,|R41/R51|=17.44,TTL/(ct23+ct45)=34.21,|R61|/|f6|=2.59,(|f3|+|f4|+|f5|)/f=5.49。
第四实施例中的参考波长为587nm,且第四实施例中的光学成像系统10满足下面表格的条件。
表7
Figure PCTCN2020101888-appb-000011
表8
Figure PCTCN2020101888-appb-000012
Figure PCTCN2020101888-appb-000013
第五实施例
请参照图9和图10,第五实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5具有正屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凹面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凹面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面 S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凹面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凸面,像侧面S14于圆周处为凸面。
光阑STO设置在第一透镜L1的物侧面S1。
在第五实施例中,光学成像系统10的EFL=7.16mm,FNO=2.15,FOV=34.098°,TTL=6.5mm,CT56/TTL=0.36,f*43/ImgH=69.97,SL15/TTL=0.40,f/HFOV=0.21mm/°,(|R62|+|R72|)/f=2.45,(|f6|+|f7|)/f=22.66,|R41/R51|=4.32,TTL/(ct23+ct45)=27.87,|R61|/|f6|=0.41,(|f3|+|f4|+|f5|)/f=7.16。
第五实施例中的参考波长为587nm,且第五实施例中的光学成像系统10满足下面表格的条件。
表9
Figure PCTCN2020101888-appb-000014
表10
Figure PCTCN2020101888-appb-000015
请参照图11,本申请实施例提供一种取像模组100,包括光学成像系统10和感光元件20,感光元件20设置在光学成像系统10的像侧。
具体地,感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)影像感测器或者电荷耦合元件(CCD,Charge-coupled Device)。
本申请实施例的取像模组100中的光学成像系统10通过上述合理的透镜的配置,在满足微型设计的同时,增大了焦距,提升了相对亮度,光学成像系统10能够实现较高的像素和良好的像质。光学成像系统10可用于拍摄远景,能够提升放大倍率;通过第五透镜L5与第六透镜L6合理的间距设置,可使前后镜片组相对集中,降低了公差,一定程度降低了组装难度,提升整体像质以及生 产过程中的良品率。
请参照图12,本申请实施例的电子装置1000包括壳体200和取像模组100,取像模组100安装在壳体200上。
本申请实施例的电子装置1000包括但不限于为智能手机、平板电脑、笔记本电脑、电子书籍阅读器、便携多媒体播放器(PMP)、便携电话机、视频电话机、数码静物相机、移动医疗装置、可穿戴式设备等支持成像的电子装置。
上述实施例的电子装置1000中的光学成像系统10通过上述合理的透镜的配置,在满足微型设计的同时,增大了焦距,提升了相对亮度,光学成像系统10能够实现较高的像素和良好的像质。光学成像系统10可用于拍摄远景,能够提升放大倍率;并且,通过第五透镜L5与第六透镜L6合理的间距设置,可使前后镜片组相对集中,降低了公差,一定程度降低了组装难度,提升整体像质以及生产过程中的良品率。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。
最后应说明的是,以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和范围。

Claims (12)

  1. 一种光学成像系统,其特征在于,由物侧到像侧依次包括:
    第一透镜,具有正屈折力,其物侧面于光轴处为凸面,于圆周处为凸面;
    第二透镜,具有屈折力;
    第三透镜,具有屈折力;
    第四透镜,具有屈折力;
    第五透镜,具有屈折力,其物侧面于光轴处为凸面,其像侧面于光轴处为凹面,于圆周处为凹面;
    第六透镜,具有屈折力,其物侧面于光轴处为凹面,于圆周处为凹面,其像侧面于圆周处为凸面;
    第七透镜,具有屈折力,其像侧面于圆周处为凸面;
    所述光学成像系统满足以下条件式:
    CT56/TTL>0.34;
    其中,CT56为所述第五透镜的像侧面与所述第六透镜的物侧面于光轴上的距离,TTL为所述第一透镜的物侧面到所述光学成像系统的像面于光轴上的距离。
  2. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    f*43/ImgH>69;
    其中,f为所述光学成像系统的有效焦距,ImgH为所述光学成像系统的最大视场角所对应的像高。
  3. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    SL15/TTL<0.41;
    其中,SL15为所述第一透镜的物侧面到所述第五透镜的像侧面于光轴上的距离。
  4. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满 足以下条件式:
    f/HFOV<0.23mm/°;
    其中,f为所述光学成像系统的有效焦距,HFOV为所述光学成像系统最大视场角的一半。
  5. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    1<(|R62|+|R72|)/f<90;
    其中,R62为所述第六透镜的像侧面于光轴附近的曲率半径,R72为所述第七透镜的像侧面于光轴附近的曲率半径,f为所述光学成像系统的有效焦距。
  6. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    9<(|f6|+|f7|)/f<35;
    其中,f6为所述第六透镜的有效焦距,f7为所述第七透镜的有效焦距,f为所述光学成像系统的有效焦距。
  7. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    |R41/R51|>1;
    其中,R41为所述第四透镜的物侧面于光轴处的曲率半径,R51为所述第五透镜的物侧面于光轴处的曲率半径。
  8. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    25<TTL/(ct23+ct45)<35;
    其中,ct23为所述第二透镜的像侧面与所述第三透镜的物侧面于光轴上的距离,ct45为所述第四透镜的像侧面与所述第五透镜的物侧面于光轴方向上的距离。
  9. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.3<|R61|/|f6|<2.6;
    其中,R61为所述第六透镜的物侧面于光轴处的曲率半径,f6为所述第六透镜的有效焦距。
  10. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    4<(|f3|+|f4|+|f5|)/f<19;
    其中,f3为所述第三透镜的有效焦距,f4为所述第四透镜的有效焦距,f5为所述第五透镜的有效焦距,f为所述光学系统的有效焦距。
  11. 一种取像模组,包括:
    如权利要求1至10中任意一项所述的光学成像系统;和
    感光元件,所述感光元件设置于所述光学成像系统的像侧。
  12. 一种电子装置,包括:
    壳体;和
    如权利要求11所述的取像模组,所述取像模组安装在所述壳体上。
PCT/CN2020/101888 2020-07-14 2020-07-14 光学成像系统、取像模组和电子装置 WO2022011550A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101888 WO2022011550A1 (zh) 2020-07-14 2020-07-14 光学成像系统、取像模组和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101888 WO2022011550A1 (zh) 2020-07-14 2020-07-14 光学成像系统、取像模组和电子装置

Publications (1)

Publication Number Publication Date
WO2022011550A1 true WO2022011550A1 (zh) 2022-01-20

Family

ID=79554423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101888 WO2022011550A1 (zh) 2020-07-14 2020-07-14 光学成像系统、取像模组和电子装置

Country Status (1)

Country Link
WO (1) WO2022011550A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117289437A (zh) * 2023-11-27 2023-12-26 江西联创电子有限公司 光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990079897A (ko) * 1998-04-10 1999-11-05 유무성 소형 줌렌즈
JP2013003174A (ja) * 2011-06-13 2013-01-07 Nikon Corp 望遠レンズ、光学装置、および望遠レンズの製造方法
CN110320640A (zh) * 2018-03-28 2019-10-11 大立光电股份有限公司 取像光学镜头、取像装置及电子装置
CN110858026A (zh) * 2018-08-23 2020-03-03 大立光电股份有限公司 摄像透镜系统、取像装置及电子装置
CN210323543U (zh) * 2019-08-08 2020-04-14 南昌欧菲精密光学制品有限公司 光学系统、镜头模组和电子设备
CN210720856U (zh) * 2019-11-04 2020-06-09 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990079897A (ko) * 1998-04-10 1999-11-05 유무성 소형 줌렌즈
JP2013003174A (ja) * 2011-06-13 2013-01-07 Nikon Corp 望遠レンズ、光学装置、および望遠レンズの製造方法
CN110320640A (zh) * 2018-03-28 2019-10-11 大立光电股份有限公司 取像光学镜头、取像装置及电子装置
CN110858026A (zh) * 2018-08-23 2020-03-03 大立光电股份有限公司 摄像透镜系统、取像装置及电子装置
CN210323543U (zh) * 2019-08-08 2020-04-14 南昌欧菲精密光学制品有限公司 光学系统、镜头模组和电子设备
CN210720856U (zh) * 2019-11-04 2020-06-09 南昌欧菲精密光学制品有限公司 光学系统、取像装置及电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117289437A (zh) * 2023-11-27 2023-12-26 江西联创电子有限公司 光学镜头
CN117289437B (zh) * 2023-11-27 2024-03-08 江西联创电子有限公司 光学镜头

Similar Documents

Publication Publication Date Title
CN111045188B (zh) 光学透镜组、取像模组和电子装置
CN114114650B (zh) 光学镜头及成像设备
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
WO2022222926A1 (zh) 光学镜头及成像设备
CN111999859A (zh) 光学成像系统、取像模组和电子装置
WO2022111437A1 (zh) 光学镜头及成像设备
WO2022105926A1 (zh) 光学镜头及成像设备
CN113376813B (zh) 光学镜头及成像设备
CN113433674B (zh) 光学镜头及成像设备
CN111983785A (zh) 光学成像系统、取像模组和电子装置
CN111077635A (zh) 光学摄像镜头、取像模组和电子装置
WO2022052051A1 (zh) 光学成像系统、取像模组和电子装置
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
WO2022011550A1 (zh) 光学成像系统、取像模组和电子装置
CN112505890A (zh) 光学镜头、摄像头模组及电子装置
CN212723503U (zh) 光学成像系统、取像模组和电子装置
CN110927924A (zh) 光学摄像镜头组、取像模组和电子装置
CN112630944B (zh) 光学镜头及成像设备
CN212540864U (zh) 光学成像系统、取像模组和电子装置
CN114326052A (zh) 光学系统、取像模组及电子设备
CN111736304A (zh) 光学成像系统、取像模组和电子装置
CN113933969A (zh) 光学镜头、摄像模组及电子设备
CN113050251A (zh) 光学成像系统、取像装置和光学装置
WO2022110044A1 (zh) 光学成像系统、取像模组及电子装置
CN113777762B (zh) 光学镜头及成像设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20945110

Country of ref document: EP

Kind code of ref document: A1