WO2022052051A1 - 光学成像系统、取像模组和电子装置 - Google Patents

光学成像系统、取像模组和电子装置 Download PDF

Info

Publication number
WO2022052051A1
WO2022052051A1 PCT/CN2020/114842 CN2020114842W WO2022052051A1 WO 2022052051 A1 WO2022052051 A1 WO 2022052051A1 CN 2020114842 W CN2020114842 W CN 2020114842W WO 2022052051 A1 WO2022052051 A1 WO 2022052051A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
optical axis
optical
Prior art date
Application number
PCT/CN2020/114842
Other languages
English (en)
French (fr)
Inventor
谭怡翔
刘秀
党绪文
李明
Original Assignee
欧菲光集团股份有限公司
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲精密光学制品有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/114842 priority Critical patent/WO2022052051A1/zh
Publication of WO2022052051A1 publication Critical patent/WO2022052051A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components

Definitions

  • the invention relates to optical imaging technology, in particular to an optical imaging system, an imaging module and an electronic device.
  • the embodiments of the present application provide an optical imaging system, which sequentially includes from the object side to the image side: a first lens, having a negative refractive power; a second lens, having a refractive power; a third lens, having a refractive power; and a fourth lens, It has positive refractive power, the object side of the fourth lens is convex at the optical axis, and the image side of the fourth lens is convex at the optical axis; the fifth lens has a negative refractive power; the sixth lens has a positive refractive power refractive power, the image side of the sixth lens is convex at the optical axis; the seventh lens has negative refractive power, the object side of the seventh lens is convex at the optical axis, and the image side of the seventh lens It is concave at the optical axis; the optical imaging system satisfies the following conditional formula: Almax ⁇ 30°; wherein, the object side and the image side of the first lens to the seventh lens of the optical imaging
  • the optical imaging system of the embodiment of the present application through the above-mentioned reasonable configuration of the lens, while satisfying the miniature design, the field of view angle is increased, the field of view angle is larger than that of the conventional lens, the relative brightness is improved, and the viewing area is increased, and the optical imaging The system can achieve higher pixels and good image quality.
  • the optical imaging system satisfies the following conditional formula:
  • FOV is the maximum angle of view of the optical imaging system
  • FNO is the aperture number of the optical imaging system
  • the optical imaging system 10 can achieve ultra-wide-angle imaging and increase the viewing area to obtain more image information; on the other hand, it can also ensure good luminous flux, thereby improving optical imaging quality.
  • the optical imaging system satisfies the following conditional formula:
  • SD1 is the vertical distance from the edge of the optically effective area on the object side of the first lens to the optical axis
  • ImgH is half of the image height corresponding to the maximum field of view of the optical imaging system.
  • Satisfying the above formula can make the aperture of the object side of the first lens relatively small, thereby achieving the characteristics of a small head while satisfying the ultra-wide angle, effectively reducing the cavity area required for the optical imaging system to be used in electronic equipment, reducing This reduces the cost and processing difficulty, thereby improving the yield and making the electronic equipment more beautiful.
  • the optical imaging system satisfies the following conditional formula:
  • FOV is the maximum angle of view of the optical imaging system
  • f is the focal length of the optical imaging system
  • the optical imaging system can provide a field of view angle of over 110°, which can effectively increase the viewing area of the screen. Further, the field of view angle can reach 124°, the effective focal length is reduced, and the optical imaging system has a certain macro capability while accommodating more image acquisition areas; through reasonable refractive force configuration, the system can improve the capture of low-frequency details. ability to meet high-quality design requirements.
  • the optical imaging system satisfies the following conditional formula:
  • SD1 is the vertical distance from the edge of the optical effective area of the object side of the first lens to the optical axis
  • AT12 is the distance between the image side of the first lens and the object side of the second lens on the optical axis.
  • SD1 represents the head size of the optical imaging system 10, which affects the structure arrangement, assembly yield, etc.; satisfying the above formula, effectively compressing SD1 can reduce the head size and the width of the optical imaging system perpendicular to the optical axis direction. It reduces the overall volume to a greater extent, improves the compactness of the optical imaging system, and reduces the risk of ghost images; on the other hand, it reduces the difficulty of structural arrangement and improves the assembly molding yield.
  • the optical imaging system satisfies the following conditional formula:
  • R62 is the radius of curvature of the image side of the sixth lens at the optical axis
  • R72 is the radius of curvature of the image side of the seventh lens at the near optical axis
  • f is the focal length of the optical imaging system.
  • the combined structure of the sixth lens and the seventh lens can offset the distortion and coma generated by most of the front lens; by setting a reasonable radius of curvature, it can avoid introducing large spherical aberration and vertical chromatic aberration, which is beneficial to the primary image Reasonable distribution of the difference on each lens, reducing tolerance sensitivity.
  • the optical imaging system satisfies the following conditional formula:
  • f6 is the focal length of the second lens
  • f7 is the focal length of the third lens
  • f is the focal length of the optical imaging system.
  • reasonably configuring the size of the sixth lens and the seventh lens and the focal length of the optical imaging system can avoid the large spherical aberration generated by the rear lens group and improve the overall resolution of the optical imaging system; at the same time, it is beneficial to reduce the fifth lens group.
  • the complexity of the surface shape helps to improve the yield of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula:
  • CT3 is the thickness of the third lens on the optical axis
  • CT4 is the thickness of the fourth lens on the optical axis
  • CT5 is the thickness of the fifth lens on the optical axis
  • BF is the thickness of the sixth lens The minimum distance between the lens and the image plane in the direction of the optical axis.
  • the optical imaging system satisfies the following conditional formula:
  • R71 is the radius of curvature of the object side of the seventh lens at the optical axis
  • f7 is the focal length of the seventh lens.
  • the surface complexity of the seventh lens can be reduced, and the increase of field curvature and distortion in the T direction can be suppressed to a certain extent, which is beneficial to reduce the difficulty of forming and improve the overall image quality.
  • the optical imaging system satisfies the following conditional formula:
  • AT45 is the distance between the image side of the fourth lens and the object side of the fifth lens on the optical axis
  • ET45 is the thickness of the edge of the optical effective area of the fifth lens in the direction of the optical axis.
  • the fourth lens and the fifth lens form a certain matching shape
  • the fifth lens has a negative refractive power
  • the fourth lens has a refractive power
  • the cooperation of the fourth lens and the fifth lens has a very good correction effect on chromatic aberration, At the same time, it also has a good correction effect on spherical aberration, which can improve the resolution of the system.
  • the reduction in size facilitates the compactness and compressed optical length of the lifting system.
  • the first lens, the second lens, the third lens, the fourth lens, the fifth lens, the sixth lens and the seventh lens are all made of plastic.
  • the plastic material lens can reduce the weight of the optical imaging system and reduce the production cost.
  • the optical imaging system further includes a diaphragm, and the diaphragm is provided between the third lens and the fourth lens.
  • the design of the center diaphragm makes it possible to realize a large viewing angle. Moreover, the central diaphragm makes the structure of the optical imaging system have a certain symmetry, so that the optical distortion can be better controlled.
  • An embodiment of the present invention provides an imaging module, including the optical imaging system described in any one of the embodiments; and a photosensitive element, and the photosensitive element is disposed on the image side of the optical imaging system.
  • the imaging module of the embodiment of the present invention includes an optical imaging system. Through the above-mentioned reasonable lens configuration, the angle of view is increased while satisfying the miniature design. The angle of view is larger than that of the conventional lens, the relative brightness is improved, and the In order to reduce the viewing area, the imaging module can achieve higher pixels and good image quality.
  • An embodiment of the present invention provides an electronic device, comprising: a casing and the imaging module of the above-mentioned embodiment, wherein the imaging module is mounted on the casing.
  • the electronic device of the embodiment of the present invention includes the above-mentioned imaging module and an optical imaging system in the imaging module.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the first embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present invention.
  • FIG. 4 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present invention.
  • FIG. 6 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the fourth embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of spherical aberration (mm), astigmatism (mm) and distortion (%) of the optical imaging system in the fifth embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an image capturing module according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the first lens L1 The first lens L1
  • the third lens L3 is the third lens L3
  • the sixth lens L6 is the sixth lens L6
  • the seventh lens L7 The seventh lens L7
  • first and second are only used for description purposes, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined with “first” and “second” may explicitly or implicitly include one or more of the features.
  • “multiple” means two or more , unless otherwise specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be a mechanical connection, an electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “beneath” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level less than the second feature.
  • the optical imaging system 10 of the embodiment of the present invention sequentially includes, from the object side to the image side, a first lens L1 with negative refractive power, a second lens L2 with refractive power, a third lens L3 with refractive power, A fourth lens L4 having a positive refractive power, a fifth lens L5 having a negative refractive power, a sixth lens L6 having a positive refractive power, and a seventh lens L7 having a negative refractive power.
  • the image plane S17 can be the receiving plane of the photosensitive element.
  • the first lens L1 has an object side S1 and an image side S2; the second lens L2 has an object side S3 and an image side S4; the third lens L3 has an object side S5 and an image side S6; the fourth lens L4 has an object side S7 and an image side S8, the object side S7 is convex at the optical axis, and the image side S8 is convex at the optical axis; the fifth lens L5 has the object side S9 and the image side S10; the sixth lens L6 has the object side S11 and the image side S12, and the image side S12 is convex at the optical axis; the seventh lens L7 has an object side S13 and an image side S14, the object side S13 is convex at the optical axis, and the image side S14 is concave at the optical axis.
  • optical imaging system 10 satisfies the following conditional formula:
  • the object side surface of the first lens L1 to the seventh lens L7 of the optical imaging system 10 to the seventh lens L7 has tangent planes everywhere in the optical effective area of the image side, and the tangent planes intersect with the plane perpendicular to the optical axis to form an acute angle, Almax is the maximum value of the acute angle included angle.
  • the surface complexity of all lenses in the optical imaging system is low, and the increase of field curvature and distortion in the T direction is suppressed to a certain extent; at the same time, it is beneficial to reduce the difficulty of forming and improve the overall image quality.
  • the optical imaging system 10 of the embodiment of the present application through the above-mentioned reasonable lens configuration, while satisfying the miniature design, the field of view angle is increased, and the field of view angle is larger than that of a conventional lens, the relative brightness is improved, and the viewing area is increased , the optical imaging system 10 can achieve higher pixels and good image quality.
  • the optical imaging system 10 satisfies the following conditional formula:
  • FOV is the maximum angle of view of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10 .
  • the FOV can be 110°, 112°, 116°, 120°, 124°, etc.
  • the FNO can be 2.4, 2.35, 2.3, 2.25, 2.2, etc.
  • the optical imaging system 10 can achieve ultra-wide-angle imaging and increase the viewing area to obtain more image information; on the other hand, it can also ensure good luminous flux, thereby improving optical imaging quality.
  • the optical imaging system satisfies the following conditional formula:
  • SD1 is the vertical distance from the edge of the optically effective area of the object side S1 of the first lens L1 to the optical axis
  • ImgH is half of the image height corresponding to the maximum angle of view of the optical imaging system 10
  • SD1/ImgH can be 0.562 , 0.560, etc.
  • Satisfying the above formula can make the aperture of the object side S1 of the first lens L1 relatively small, so that the characteristics of a small head can be realized while satisfying the ultra-wide angle, and the required amount of the optical imaging system 10 to be used in electronic equipment is effectively reduced.
  • the void area reduces the cost and processing difficulty, thereby improving the yield and making the electronic device more beautiful.
  • the optical imaging system 10 satisfies the following conditional formula:
  • FOV is the maximum field angle of the optical imaging system 10
  • f is the focal length of the optical imaging system
  • FOV/f can be 71.35°/mm, 80.08°/mm, 85.48°/mm, 92.02°/mm , 99.28°/mm, etc.
  • the optical imaging system 10 can provide a viewing angle of over 110°, which can effectively increase the viewing area of the screen. Further, the field of view angle can reach 124°, and the effective focal length is reduced.
  • the optical imaging system 10 has a certain macro capability while accommodating more imaging areas; through a reasonable configuration of the refractive force, the system can improve the low-frequency details. Capture ability to meet high image quality design requirements.
  • the optical imaging system 10 satisfies the following conditional formula:
  • SD1 is the vertical distance from the edge of the optical effective area of the object side S1 of the first lens L1 to the optical axis
  • AT12 is the image side S2 of the first lens L1 and the object side S3 of the second lens L2.
  • the spacing on the optical axis, SD1/AT12 can be 2.962, 4.403, 6.022, 6.055, 3.663, etc.
  • SD1 represents the head size of the optical imaging system 10, which affects the structure arrangement, assembly yield, etc.; satisfying the above formula, effectively compressing SD1 can reduce the head size and reduce the width of the optical imaging system 10 perpendicular to the optical axis direction.
  • the reduction of AT12 compresses the overall volume to a greater extent, improves the compactness of the optical imaging system 10, and reduces the risk of ghost images; on the other hand, reduces the difficulty of structural arrangement and improves the assembly molding yield.
  • the optical imaging system 10 satisfies the following conditional formula:
  • R62 is the radius of curvature of the image side S12 of the sixth lens L6 at the optical axis
  • R72 is the radius of curvature of the image side S14 of the seventh lens L7 at the near optical axis
  • f is the radius of curvature of the optical imaging system 10
  • )/f can be any value in the range of (0.64, 0.94), for example, can be 0.873, 0.642, 0.661, 0.939, 0.785, etc.
  • the combined structure of the sixth lens L6 and the seventh lens L7 can offset the distortion and coma generated by most of the front lens; by setting a reasonable curvature radius, it can avoid introducing large spherical aberration and vertical axis chromatic aberration. , which is conducive to the reasonable distribution of primary aberrations on each lens and reduces tolerance sensitivity.
  • the optical imaging system 10 satisfies the following conditional formula:
  • f6 is the focal length of the second lens
  • f7 is the focal length of the third lens
  • f is the focal length of the optical imaging system
  • )/f can be (1.8, 2.5) Any value within the range, such as 2.435, 1.890, 1.930, 2.399, 2.251, etc.
  • reasonably configuring the size of the sixth lens L6 and the seventh lens L7 and the focal length of the optical imaging system 10 can avoid the large spherical aberration generated by the rear lens group and improve the overall resolution of the optical imaging system 10; at the same time, it is beneficial to reduce the The complexity of the surface shape of the fifth lens group helps to improve the yield of the optical imaging system 10 .
  • the optical imaging system 10 satisfies the following conditional formula:
  • CT3 is the thickness of the third lens L3 on the optical axis
  • CT4 is the thickness of the fourth lens L4 on the optical axis
  • CT5 is the thickness of the fifth lens L5 on the optical axis
  • BF is the The minimum distance between the sixth lens L6 and the image plane S17 in the optical axis direction.
  • )/BF can be any value in the range of (1.3, 1.8), for example, 1.377, 1.591, 1.533, 1.669, 1.719 and so on.
  • the optical imaging system 10 satisfies the following conditional formula:
  • R71 is the curvature radius of the object side surface S13 of the seventh lens L7 at the optical axis
  • f7 is the focal length of the seventh lens L7.
  • can be any value in the range of (0.59, 1.1), such as 0.802, 0.643, 0.670, 1.104, 0.590, and so on.
  • the surface complexity of the seventh lens L7 can be reduced, and the increase of the field curvature and distortion in the T direction can be suppressed to a certain extent; it is beneficial to reduce the molding difficulty, Improve overall image quality.
  • the optical imaging system 10 satisfies the following conditional formula:
  • AT45 is the distance between the image side S8 of the fourth lens L4 and the object side S9 of the fifth lens L5 on the optical axis
  • ET45 is the optical axis direction at the edge of the optical effective area of the fifth lens L5 upper thickness.
  • AT45/ET45 can be 0.761, 0.953, 0.932, 0.838, 1.288, etc.
  • the fourth lens L4 and the fifth lens L5 form a certain matching shape
  • the fifth lens L5 has a negative refractive power
  • the fourth lens L4 has a refractive power
  • the cooperation of the fourth lens L4 and the fifth lens L5 has a positive effect on chromatic aberration. It has a very good correction effect, and also has a good correction effect on spherical aberration, which can improve the resolution of the system.
  • the reduction in size facilitates the compactness and compressed optical length of the lifting system.
  • the optical imaging system 10 further includes a stop STO.
  • the stop STO may be disposed before the first lens L1, after the seventh lens L7, between any two lenses, or on the surface of any one lens.
  • Aperture STO is used to reduce stray light and help improve image quality.
  • the stop STO is disposed between the third lens L3 and the fourth lens L4.
  • the design of the center diaphragm makes it possible to realize a large viewing angle.
  • the central diaphragm makes the structure of the optical imaging system 10 have a certain symmetry, so that the optical distortion can be better controlled.
  • the optical imaging system 10 further includes an infrared filter L8, and the infrared filter L8 has an object side S15 and an image side S16.
  • the infrared filter L8 is arranged on the image side S14 of the seventh lens L7 to filter out light in other wavelength bands such as visible light, and only let the infrared light pass through, so that the optical imaging system 10 can be used in dark environments and other special applications The scene can also be imaged.
  • the light emitted or reflected by the object enters the optical imaging system 10 from the object side direction, and passes through the first lens L1, the second lens L2, the third lens L3, and the fourth lens in sequence L4 , the fifth lens L5 , the sixth lens L6 , the seventh lens L7 and the infrared filter L8 finally converge on the image plane S17 .
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 are all made of plastic.
  • the plastic lens can reduce the weight of the optical imaging system 10 and the production cost.
  • each lens can also be made of glass, or any combination of plastic and glass.
  • At least one surface of at least one lens in the optical imaging system 10 is aspherical, which is conducive to correcting aberrations and improving imaging quality.
  • the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 , the fifth lens L5 , the sixth lens L6 and the seventh lens L7 in the optical imaging system 10 are all is aspherical.
  • the aspherical lens can achieve more light refraction angles, so that the entire optical imaging system 10 can achieve high pixel requirements.
  • the shape of the aspheric surface is determined by the following formula:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the surface vertex
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric vertex (at the optical axis)
  • k is the cone Constant
  • Ai is the coefficient corresponding to the i-th high-order term in the aspheric surface formula.
  • the optical imaging system 10 can effectively reduce the size of the optical imaging system 10 by adjusting the curvature radius and aspheric coefficient of each lens surface, effectively correct the aberrations, and improve the imaging quality.
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is concave at the circumference.
  • the object side S13 of the seventh lens L7 is concave at the circumference, and the image side S14 is convex at the circumference. In this way, the surface shape of the lens at the circumference is reasonably arranged to improve the good image quality.
  • the optical imaging system 10 of the first embodiment sequentially includes a first lens L1 with negative refractive power, a second lens L2 with positive refractive power, and a negative refractive power lens from the object side to the image side
  • FIG. 2 is a spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical imaging system 10 in the first embodiment, wherein the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength of 587.5618 nm .
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is concave at the optical axis, and the image side S4 is convex at the optical axis;
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is convex at the optical axis, and the image side S12 is convex at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is convex at the circumference, and the image side S6 is concave at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is convex at the circumference;
  • the object side S9 of the fifth lens L5 It is concave at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is concave at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided between the third lens L3 and the fourth lens L4.
  • )/f 0.873, (
  • )/f 2.435, (
  • )/BF 1.377 ,
  • the reference wavelength in the first embodiment is 587 nm, and the optical imaging system 10 in the first embodiment satisfies the conditions of the following table.
  • the elements from the object plane to the image plane are arranged in the order of the elements from top to bottom in Table 1.
  • Surface numbers 1 and 2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius in Table 1 is the curvature radius of the object side or image side of the corresponding surface number at the optical axis.
  • the first value in the "thickness" parameter column of the first lens is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the following lens on the optical axis.
  • Table 2 is a table of relevant parameters of the aspheric surfaces of each lens in Table 1, wherein K is the conic constant, and Ai is the coefficient corresponding to the i-th high-order term in the aspheric surface type formula.
  • f is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 to the image plane S17 of the first lens L1. distance on the optical axis.
  • the optical imaging system 10 of the second embodiment sequentially includes a first lens L1 with negative refractive power, a second lens L2 with positive refractive power, and a The third lens L3, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the seventh lens L7 with negative refractive power.
  • 4 is a spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical imaging system 10 in the second embodiment, wherein the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength of 587.5618 nm .
  • the object side S1 of the first lens L1 is concave at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is convex at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is a concave surface at the optical axis, and the image side S10 is a concave surface at the optical axis;
  • the object side S11 of the sixth lens L6 is a convex surface at the optical axis, and the image side S12 is convex at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is convex at the circumference;
  • the object side S9 of the fifth lens L5 It is concave at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided between the third lens L3 and the fourth lens L4.
  • )/f 0.642, (
  • )/f 1.890, (
  • )/BF 1.591 ,
  • the reference wavelength in the second embodiment is 587 nm, and the optical imaging system 10 in the second embodiment satisfies the conditions of the following table.
  • the definition of each parameter can be obtained from the first embodiment, which is not repeated here.
  • f is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 to the image plane S17 of the first lens L1. distance on the optical axis.
  • the optical imaging system 10 of the third embodiment sequentially includes a first lens L1 with positive refractive power, a second lens L2 with negative refractive power, and a The third lens L3, the fourth lens L4 with negative refractive power, the fifth lens L5 with positive refractive power, the sixth lens L6 with negative refractive power, and the seventh lens L7 with positive refractive power.
  • 6 is a spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical imaging system 10 in the third embodiment, wherein the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength of 587.5618 nm .
  • the object side S1 of the first lens L1 is convex at the optical axis, and the image side S2 is convex at the optical axis;
  • the object side S3 of the second lens L2 is concave at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is concave at the optical axis, and the image side S6 is convex at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is convex at the optical axis, and the image side S10 is concave at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is concave at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is convex at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is convex at the circumference; the third lens L3
  • the object side S5 is concave at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is concave at the circumference;
  • the object side S9 of the fifth lens L5 It is convex at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is concave at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided between the third lens L3 and the fourth lens L4.
  • )/f 0.661, (
  • )/f 1.930, (
  • )/BF 1.533 ,
  • the reference wavelength in the third embodiment is 587 nm, and the optical imaging system 10 in the third embodiment satisfies the conditions of the following table.
  • f is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 to the image plane S17 of the first lens L1. distance on the optical axis.
  • the optical imaging system 10 of the fourth embodiment sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a The third lens L3, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the seventh lens L7 with negative refractive power.
  • 8 is a spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical imaging system 10 in the fourth embodiment, wherein the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength of 587.5618 nm .
  • the object side S1 of the first lens L1 is concave at the optical axis, and the image side S2 is convex at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is convex at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is a concave surface at the optical axis, and the object side S11 of the sixth lens L6 is a concave surface at the optical axis, and the image side S12 is a convex surface at the optical axis;
  • the object side S13 of the seventh lens L7 is convex at the
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is convex at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is convex at the circumference;
  • the object side S9 of the fifth lens L5 It is concave at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is convex at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided between the third lens L3 and the fourth lens L4.
  • )/f 0.939, (
  • )/f 2.399, (
  • )/BF 1.669 ,
  • the reference wavelength in the fourth embodiment is 587 nm, and the optical imaging system 10 in the fourth embodiment satisfies the conditions of the following table.
  • f is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 to the image plane S17 of the first lens L1. distance on the optical axis.
  • the optical imaging system 10 of the fifth embodiment sequentially includes a first lens L1 with negative refractive power, a second lens L2 with negative refractive power, and a The third lens L3, the fourth lens L4 with positive refractive power, the fifth lens L5 with negative refractive power, the sixth lens L6 with positive refractive power, and the seventh lens L7 with negative refractive power.
  • 10 is a spherical aberration diagram (mm), an astigmatism diagram (mm) and a distortion diagram (%) of the optical imaging system 10 in the fifth embodiment, wherein the astigmatism diagram and the distortion diagram are data diagrams at a reference wavelength of 587.5618 nm .
  • the object side S1 of the first lens L1 is concave at the optical axis, and the image side S2 is concave at the optical axis;
  • the object side S3 of the second lens L2 is convex at the optical axis, and the image side S4 is concave at the optical axis;
  • the object side S5 of the third lens L3 is convex at the optical axis, and the image side S6 is convex at the optical axis;
  • the object side S7 of the fourth lens L4 is convex at the optical axis, and the image side S8 is convex at the optical axis;
  • the object side S9 of the fifth lens L5 is concave at the optical axis, and the image side S10 is convex at the optical axis;
  • the object side S11 of the sixth lens L6 is concave at the optical axis, and the image side S12 is convex at the optical axis;
  • the object side S1 of the first lens L1 is convex at the circumference, and the image side S2 is concave at the circumference; the object side S3 of the second lens L2 is concave at the circumference, and the image side S4 is concave at the circumference; the third lens L3
  • the object side S5 is convex at the circumference, and the image side S6 is convex at the circumference; the object side S7 of the fourth lens L4 is convex at the circumference, and the image side S8 is convex at the circumference;
  • the object side S9 of the fifth lens L5 It is concave at the circumference, and the image side S10 is concave at the circumference; the object side S11 of the sixth lens L6 is convex at the circumference, and the image side S12 is concave at the circumference; the object side S13 of the seventh lens L7 is at the circumference. Concave, like side S14 is convex at the circumference.
  • the stop STO is provided between the third lens L3 and the fourth lens L4.
  • )/f 0.785, (
  • )/f 2.251, (
  • )/BF 1.719 ,
  • the reference wavelength in the fifth embodiment is 587 nm, and the optical imaging system 10 in the fifth embodiment satisfies the conditions of the following table.
  • f is the focal length of the optical imaging system 10
  • FNO is the aperture number of the optical imaging system 10
  • FOV is the field of view angle of the optical imaging system 10
  • TTL is the object side S1 to the image plane S17 of the first lens L1. distance on the optical axis.
  • an embodiment of the present invention provides an imaging module 100 , which includes an optical imaging system 10 and a photosensitive element 20 , and the photosensitive element 20 is disposed on the image side of the optical imaging system 10 .
  • the photosensitive element 20 can be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device).
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the optical imaging system 10 in the imaging module 100 according to the embodiment of the present invention through the above-mentioned reasonable configuration of the lens, while satisfying the miniature design, the field of view angle is increased, the field of view angle is larger than that of the conventional lens, and the relative brightness is improved. In addition, the viewing area is increased, and the optical imaging system 10 can achieve higher pixels and good image quality.
  • the electronic device 1000 includes a casing 200 and an imaging module 100 , and the imaging module 100 is installed on the casing 200 .
  • the electronic device 1000 of the embodiment of the present invention includes, but is not limited to, a smart phone, a tablet computer, a notebook computer, an electronic book reader, a portable multimedia player (PMP), a portable phone, a video phone, a digital still camera, and a mobile medical device , wearable devices and other electronic devices that support imaging.
  • PMP portable multimedia player
  • the optical imaging system 10 in the electronic device 1000 of the above-mentioned embodiment through the above-mentioned reasonable configuration of the lens, increases the field of view angle while satisfying the miniature design, the field of view angle is larger than that of the conventional lens, the relative brightness is improved, and In view of the viewing area, the optical imaging system 10 can achieve higher pixels and good image quality.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像系统(10)、取像模组(100)和电子装置(1000)。光学成像系统(10)由物侧到像侧依次包括:具有负屈折力的第一透镜(L1);具有屈折力的第二透镜(L2)与第三透镜(L3);具有正屈折力的第四透镜(L4),其物侧面于光轴处为凸面,其像侧面于光轴处为凸面;具有负屈折力的第五透镜(L5);具有正屈折力的第六透镜(L6),其像侧面于光轴处为凸面;具有负屈折力的第七透镜(L7),其物侧面于光轴处为凸面,其像侧面于光轴处为凹面。光学成像系统(10)满足以下条件式:Almax≤30°;其中,光学成像系统(10)的第一透镜(L1)至第七透镜(L7)的物侧面和像侧面的光学有效区域内各处具有切面,切面与垂直于光轴的平面相交形成锐角夹角,Almax为锐角夹角的最大值。

Description

光学成像系统、取像模组和电子装置 技术领域
本发明涉及光学成像技术,特别涉及一种光学成像系统、取像模组和电子装置。
背景技术
随着手机、平板电脑、无人机、计算机等电子产品在生活中的广泛应用,各种具有拍摄功能的电子产品不断地推陈出新。其中,电子产品中摄像镜头拍摄效果的改进创新成为人们关注的重心之一,同时成为科技改进的一项重要内容,能否使用微型摄像元件拍摄出高画质感、高分辨率、高清晰度,甚至暗光条件下能拍摄出画质清晰的图片成为现代人选择电子产品的关键考量因素。因此,光学系统设计的微型化及性能改进成为目前摄像头提升拍摄质量的关键因素。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:现有的光学成像系统难以在保持微型化的情况下,同时实现较大的视场角和较好的像质。
发明内容
鉴于以上内容,有必要提出一种光学成像系统、取像模组和电子装置,以解决上述问题。
本申请的实施例提供一种光学成像系统,由物侧到像侧依次包括:第一透镜,具有负屈折力;第二透镜,具有屈折力;第三透镜,具有屈折力;第四透镜,具有正屈折力,所述第四透镜的物侧面于光轴处为凸面,所述第四透镜的像侧面于光轴处为凸面;第五透镜,具有负屈折力;第六透镜,具有正屈折力,所述第六透镜的像侧面于光轴处为凸面;第七透镜,具有负屈折力,所述第七透镜的物侧面于光轴处为凸面,所述第七透镜的像侧面于光轴处为凹面;所述光学成像系统满足以下条件式:Almax≤30°;其中,所述光学成像系统的第一透镜至第七透镜的物侧面和像侧面的光学有效区域内各处具有切面,所述切面与垂直于光轴的平面相交形成锐角夹角,Almax为所述锐角夹角的最大值。
满足上式,通过合理的面型弯曲程度设置,使得所述光学成像系统中的所有透镜的面型复杂度低,在一定程度上抑制了T方向场曲、畸变的增加;同时,利于降低成型难度,提升整体像质。本申请实施例的光学成像系统通过上述合理的透镜的配置,在满足微型设计的同时,增大了视场角,视场角大于常规镜头,提升了相对亮度,且提升了取景面积,光学成像系统能够实现较高的像素和良好的像质。
在一些实施例中,所述光学成像系统满足以下条件式:
FOV≥110°,且FNO≤2.4;
其中,FOV为所述光学成像系统的最大视场角,FNO为所述光学成像系统的光圈数。
满足上式,一方面,光学成像系统10能实现超广角取像,并提升取景面积以获取更多的图像信息,另一方面,还能保证良好的光通量,进而提高光学成像质量。
在一些实施例中,所述光学成像系统满足以下条件式:
SD1/ImgH<0.57;
其中,SD1为第一透镜的物侧面的光学有效区域边缘到光轴的垂直距离,ImgH为所述光学成像系统于最大视场角所对应的像高的一半。
满足上式,可使第一透镜物侧面的口径相对较小,从而在满足超广角的同时实现小头部的特性,有效地减小了光学成像系统用于电子设备所需要的空洞面积,降低了成本及加工难度,进而提高了良率,也使电子设备更加美观。
在一些实施例中,所述光学成像系统满足以下条件式:
FOV/f>71°/mm;
其中,FOV为所述光学成像系统的最大视场角,f为所述光学成像系统的焦距。
满足上式,光学成像系统可提供超110°的视场角,可有效提升画面的取景面积。进一步地,视场角可达124°,有效焦距缩小,光学成像系统在容纳更多取像面积的同时,具备一定的微距能力;通过合理的屈折力配置,可提升系统对低频细节的捕捉能力,满足高像质设计需求。
在一些实施例中,所述光学成像系统满足以下条件式:
SD1/AT12<6.1;
其中,SD1为所述第一透镜的物侧面的光学有效区域边缘到光轴的垂直距离,AT12为所述第一透镜的像侧面与所述第二透镜的物侧面于光轴上的间距。
SD1代表光学成像系统10的头部大小,影响结构排布、组装良率等;满足上式,有效地压缩SD1,可降低头部大小,缩小光学成像系统垂直于光轴方向的宽度,配合AT12的减小,更大程度压缩整体体积,提升光学成像系统的紧凑性,降低鬼像风险;另一方面,降低结构排布难度,提升装配成型良率。
在一些实施例中,所述光学成像系统满足以下条件式:
0.64<(|R62|+|R72|)/f<0.94;
其中,R62为所述第六透镜的像侧面于光轴处的曲率半径,R72为所述第七透镜的像侧面于近光轴处的曲率半径,f为所述光学成像系统的焦距。
第六透镜和第七透镜的组合结构可抵消绝大部分前透镜产生的畸变和彗差;通过合理的曲率半径设置,可避免本身引入较大的球差和垂轴色差,从而有利于初级像差在各镜片上的合理分配,降低公差敏感性。
在一些实施例中,所述光学成像系统满足以下条件式:
1.8<(|f6|+|f7|)/f<2.5;
其中,f6为所述第二透镜的焦距,f7为所述第三透镜的焦距,f为所述光学成像系统的焦距。
满足上式,合理配置第六透镜、第七透镜的尺寸与光学成像系统的焦距,可避免后透镜组产生的较大球差,提升光学成像系统整体的解像力;同时,利于降低第五透镜组的面型复杂程度,有助于提高生产光学成像系统的良品率。
在一些实施例中,所述光学成像系统满足以下条件式:
1.3<(|CT3|+|CT4|+|CT5|)/BF<1.8;
其中,CT3为所述第三透镜于光轴上的厚度,CT4为所述第四透镜于光轴上的厚度,CT5为所述第五透镜于光轴上的厚度,BF为所述第六透镜与像面在光轴方向上的最小距离。
满足上式,可确保光学成像系统10与感光元件有足够的配合空间,利于装配良率的提升。同时,CT3、CT4、CT5的合理配置可缩小光学长度,有助于形成对称性,降低光学畸变。
在一些实施例中,所述光学成像系统满足以下条件式:
0.59<|R71|/|f7|<1.1;
其中,R71为所述第七透镜的物侧面于光轴处的曲率半径,f7为所述第七透镜的焦距。
通过第七透镜合理的光焦度与曲率半径设置,可使得第七透镜的面型复杂度低,一定程度抑制了T方向场曲、畸变的增加;利于降低成型难度,提升整体像质。
在一些实施例中,所述光学成像系统满足以下条件式:
AT45/ET45<1.3;
其中,AT45为所述第四透镜像侧面与所述第五透镜物侧面于光轴上的间距,ET45为所述第五透镜的光学有效区域边缘处在光轴方向上的厚度。
满足上式,第四透镜和第五透镜形成一定的配合状,第五透镜具有负屈折力,第四透镜具有屈折力,第四透镜与第五透镜的配合对色差有非常好的校正效果,同时对球差也有不错的修正效果,可使系统有不错的解像力提升。另外,尺寸的缩减为提升系统的紧凑型和压缩光学长度提供了便利。
所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜及所述第七透镜均为塑料材质。
如此,塑料材质的透镜能够减少光学成像系统的重量并降低生成成本。
在一些实施例中,所述光学成像系统还包括光阑,所述光阑设于所述第三透镜和所述第四透镜之间。
中置光阑的设计为大视角的实现提供了可能。并且,中置光阑使得光学成像系统的结构呈一定对称性,让光学畸变得到了较好的控制。
本发明的实施例提出一种取像模组,包括任意一实施例所述的光学成像系统;和感光元件,所述感光元件设置于所述光学成像系统的像侧。
本发明实施例的取像模组包括光学成像系统,通过上述合理的透镜的配置,在满足微型设计的同时,增大了视场角,视场角大于常规镜头,提升了相对亮度,且提升了取景面积,取像模组能够实现较高的像素和良好的像质。
本发明的实施例提出一种电子装置,包括:壳体和上述实施例的取像模组,所述取像模组安装在所述壳体上。
本发明实施例的电子装置包括上述取像模组,取像模组中的光学成像系统,通过上述合理的透镜的配置,在满足微型设计的同时,能够实现较高的像素和良好的像质。
附图说明
本发明的上述和/或附加的方面和优点可以从结合下面附图对实施例的描述中变得明显和容易理解,其中:
图1是本发明第一实施例的光学成像系统的结构示意图。
图2是本发明第一实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图3是本发明第二实施例的光学成像系统的结构示意图。
图4是本发明第二实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图5是本发明第三实施例的光学成像系统的结构示意图。
图6是本发明第三实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图7是本发明第四实施例的光学成像系统的结构示意图。
图8是本发明第四实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图9是本发明第五实施例的光学成像系统的结构示意图。
图10是本发明第五实施例中光学成像系统的球差(mm)、像散(mm)和畸变(%)示意图。
图11是本发明实施例的取像模组的结构示意图。
图12是本发明实施例的电子装置的结构示意图。
主要元件符号说明
电子装置                   1000
取像模组                   100
光学成像系统               10
第一透镜                   L1
第二透镜                   L2
第三透镜                   L3
第四透镜                   L4
第五透镜                   L5
第六透镜                   L6
第七透镜                   L7
红外滤光片                 L8
光阑                       STO
物侧面                     S1、S3、S5、S7、S9、S11、S13、S15
像侧面                     S2、S4、S6、S8、S10、S12、S14、S16
像面                       S17
感光元件                   20
壳体                       200
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
请参阅图1,本发明实施例的光学成像系统10从物侧至像侧依次包括具有负屈折力的第一透镜L1、具有屈折力的第二透镜L2、具有屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5、具有正屈折力的第六透镜L6及具有负屈折力的第七透镜L7。光学成像系统10的像侧还有一像面S17,优选地,像面S17可以为感光元件的接收面。
第一透镜L1具有物侧面S1及像侧面S2;第二透镜L2具有物侧面S3及像侧面S4; 第三透镜L3具有物侧面S5及像侧面S6;第四透镜L4具有物侧面S7及像侧面S8,物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5具有物侧面S9及像侧面S10;第六透镜L6具有物侧面S11及像侧面S12,像侧面S12于光轴处为凸面;第七透镜L7具有物侧面S13及像侧面S14,物侧面S13于光轴处为凸面,像侧面S14于光轴处为凹面。
光学成像系统10满足以下条件式:
Almax≤30°;
其中,所述光学成像系统10的第一透镜L1至第七透镜L7的物侧面和像侧面的光学有效区域内各处具有切面,所述切面与垂直于光轴的平面相交形成锐角夹角,Almax为所述锐角夹角的最大值。
满足上式,通过合理的面型弯曲程度设置,使得所述光学成像系统中所有透镜的面型复杂度低,一定程度抑制了T方向场曲、畸变的增加;同时,利于降低成型难度,提升整体像质。
本申请实施例的光学成像系统10中,通过上述合理的透镜的配置,在满足微型设计的同时,增大了视场角,视场角大于常规镜头,提升了相对亮度,且提升了取景面积,光学成像系统10能够实现较高的像素和良好的像质。
在一些实施例中,光学成像系统10满足以下条件式:
FOV≥110°;
FNO≤2.4。
其中,FOV为所述光学成像系统10的最大视场角,FNO为所述光学成像系统10的光圈数。FOV可为110°、112°、116°、120°、124°等,FNO可为2.4、2.35、2.3、2.25、2.2等。
满足上式,一方面,光学成像系统10能实现超广角取像,并提升取景面积以获取更多的图像信息,另一方面,还能保证良好的光通量,进而提高光学成像质量。
在一些实施例中,所述光学成像系统满足以下条件式:
SD1/ImgH<0.57;
其中,SD1为第一透镜L1的物侧面S1的光学有效区域边缘到光轴的垂直距离,ImgH为所述光学成像系统10最大视场角所对应的像高的一半,SD1/ImgH可为0.562、0.560等。
满足上式,可使第一透镜L1的物侧面S1的口径相对较小,从而在满足超广角的同时实现小头部的特性,有效地减小了光学成像系统10用于电子设备所需要的空洞面积,降低了成本及加工难度,进而提高了良率,也使电子设备更加美观。
在一些实施例中,所述光学成像系统10满足以下条件式:
FOV/f>71°/mm;
其中,FOV为所述光学成像系统10的最大视场角,f为所述光学成像系统的焦距,FOV/f可为71.35°/mm、80.08°/mm、85.48°/mm、92.02°/mm、99.28°/mm等。
满足上式,光学成像系统10可提供超110°的视场角,可有效提升画面的取景面积。进一步地,视场角可达124°,有效焦距缩小,光学成像系统10在容纳更多取像面积的同时,具备 一定的微距能力;通过合理的屈折力配置,可提升系统对低频细节的捕捉能力,满足高像质设计需求。
在一些实施例中,所述光学成像系统10满足以下条件式:
SD1/AT12<6.1;
其中,SD1为所述第一透镜L1的物侧面S1的光学有效区域边缘到光轴的垂直距离,AT12为所述第一透镜L1的像侧面S2与所述第二透镜L2的物侧面S3于光轴上的间距,SD1/AT12可为2.962、4.403、6.022、6.055、3.663等。
SD1代表光学成像系统10的头部大小,影响结构排布、组装良率等;满足上式,有效地压缩SD1,可降低头部大小,缩小光学成像系统10垂直于光轴方向的宽度,配合AT12的减小,更大程度压缩整体体积,提升光学成像系统10的紧凑性,降低鬼像风险;另一方面,降低结构排布难度,提升装配成型良率。
在一些实施例中,所述光学成像系统10满足以下条件式:
0.64<(|R62|+|R72|)/f<0.94;
其中,R62为所述第六透镜L6的像侧面S12于光轴处的曲率半径,R72为所述第七透镜L7的像侧面S14于近光轴处的曲率半径,f为光学成像系统10的焦距,(|R62|+|R72|)/f可为(0.64,0.94)范围内的任意值,例如,可为0.873、0.642、0.661、0.939、0.785等。
满足上式,第六透镜L6和第七透镜L7的组合结构可抵消绝大部分前透镜产生的畸变和彗差;通过合理的曲率半径设置,可避免本身引入较大的球差和垂轴色差,从而有利于初级像差在各镜片上的合理分配,降低公差敏感性。
在一些实施例中,所述光学成像系统10满足以下条件式:
1.8<(|f6|+|f7|)/f<2.5;
其中,f6为所述第二透镜的焦距,f7为所述第三透镜的焦距,f为所述光学成像系统的焦距,(|f6|+|f7|)/f可为(1.8,2.5)范围内的任意值,例如为2.435、1.890、1.930、2.399、2.251等。
满足上式,合理配置第六透镜L6、第七透镜L7的尺寸与光学成像系统10的焦距,可避免后透镜组产生的较大球差,提升光学成像系统10整体的解像力;同时,利于降低第五透镜组的面型复杂程度,有助于提高生产光学成像系统10的良品率。
在一些实施例中,所述光学成像系统10满足以下条件式:
1.3<(|CT3|+|CT4|+|CT5|)/BF<1.8;
其中,CT3为所述第三透镜L3于光轴上的厚度,CT4为所述第四透镜L4于光轴上的厚度,CT5为所述第五透镜L5于光轴上的厚度,BF为所述第六透镜L6与像面S17在光轴方向上的最小距离。(|CT3|+|CT4|+|CT5|)/BF可为(1.3,1.8)范围内的任意值,例如为1.377、1.591、1.533、1.669、1.719等。
满足上式,可确保光学成像系统10与感光元件有足够的配合空间,利于装配良率的提升。同时,CT3、CT4、CT5的合理配置可缩小光学长度,有助于形成对称性,降低光学畸变。
在一些实施例中,所述光学成像系统10满足以下条件式:
0.59<|R71|/|f7|<1.1;
其中,R71为所述第七透镜L7的物侧面S13于光轴处的曲率半径,f7为所述第七透镜L7的焦距。|R71|/|f7|可为(0.59,1.1)范围内的任意值,例如0.802、0.643、0.670、1.104、0.590等。
满足上式,通过第七透镜L7合理的光焦度与曲率半径设置,可使得第七透镜L7的面型复杂度低,一定程度抑制了T方向场曲、畸变的增加;利于降低成型难度,提升整体像质。
在一些实施例中,所述光学成像系统10满足以下条件式:
AT45/ET45<1.3;
其中,AT45为所述第四透镜L4像侧面S8与所述第五透镜L5的物侧面S9于光轴上的间距,ET45为所述第五透镜L5的光学有效区域边缘处的在光轴方向上厚度。AT45/ET45可为0.761、0.953、0.932、0.838、1.288等。
满足上式,第四透镜L4和第五透镜L5形成一定的配合状,第五透镜L5具有负屈折力,第四透镜L4具有屈折力,第四透镜L4与第五透镜L5的配合对色差有非常好的校正效果,同时对球差也有不错的修正效果,可使系统有不错的解像力提升。另外,尺寸的缩减为提升系统的紧凑型和压缩光学长度提供了便利。
在一些实施例中,光学成像系统10还包括光阑STO。光阑STO可以设置在第一透镜L1之前、第七透镜L7之后、任意两个透镜之间或任意一个透镜的表面上。光阑STO用以减少杂散光,有助于提升影像质量。例如,在一些实施例中,光阑STO设置于第三透镜L3和第四透镜L4之间。中置光阑的设计为大视角的实现提供了可能。并且,中置光阑使得光学成像系统10的结构呈一定对称性,让光学畸变得到了较好的控制。
在一些实施例中,光学成像系统10还包括红外滤光片L8,红外滤光片L8具有物侧面S15及像侧面S16。红外滤光片L8设置在第七透镜L7的像侧面S14,以滤除例如可见光等其他波段的光线,而仅让红外光通过,以使光学成像系统10能够在昏暗的环境及其他特殊的应用场景下也能成像。
当光学成像系统10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像系统10,并依次穿过第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6、第七透镜L7和红外滤光片L8,最终汇聚到像面S17上。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7均为塑料材质。此时,塑料材质的透镜能够减少光学成像系统10的重量并降低生成成本。在其他实施例中,各透镜也可为玻璃材质,或塑料材质和玻璃材质的任意组合。
在一些实施例中,光学成像系统10中至少有一个透镜的至少一个表面为非球面,有利于校正像差,提高成像质量。例如,在第一实施例中,光学成像系统10中的第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4、第五透镜L5、第六透镜L6及第七透镜L7均为非球面。非球面透镜可实现更多的光线折射角度,使得整个光学成像系统10实现高像素的要求。
非球面的面型由以下公式决定:
Figure PCTCN2020114842-appb-000001
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点(于光轴处)的曲率,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
如此,光学成像系统10可以通过调节各透镜表面的曲率半径和非球面系数,有效减小光学成像系统10的尺寸,并有效地修正像差,提高成像质量。
在一些实施例中,第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面;第四透镜L4的物侧面S7于圆周处为凸面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。如此,合理配置透镜于圆周处的面型,以提升良好的像质。
第一实施例
请参照图1和图2,第一实施例的光学成像系统10由物侧到像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5具有正屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。图2为第一实施例中光学成像系统10的球差图(mm)、像散图(mm)和畸变图(%),其中像散图和畸变图为参考波长为587.5618nm下的数据图。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凸面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凹面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,像侧面S6于圆周处为凹面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第三透镜L3和第四透镜L4之间。
在第一实施例中,光学成像系统10满足以下条件:FOV=110°,FNO=2.40,f=1.54mm,Almax=30°,SD1/ImgH=0.562,FOV/f=71.35°/mm,SD1/AT12=2.962,(|R62|+|R72|)/f=0.873,(|f6|+|f7|)/f=2.435,(|CT3|+|CT4|+|CT5|)/BF=1.377,|R71|/|f7|=0.802,AT45/ET45=0.761。
第一实施例中的参考波长为587nm,且第一实施例中的光学成像系统10满足下面表格的条件。由物面至像面的各元件依次按照表1从上至下的各元件的顺序排列。面序号1和2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。表1中的Y半径为相应面序号的物侧面或像侧面于光轴处的曲率半径。第一透镜的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。表2为表1中各透镜的非球面表面的相关参数表,其中K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表1
Figure PCTCN2020114842-appb-000002
需要说明的是,f为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为第一透镜L1的物侧面S1至像面S17于光轴上的距离。
表2
Figure PCTCN2020114842-appb-000003
Figure PCTCN2020114842-appb-000004
第二实施例
请参照图3和图4,第二实施例的光学成像系统10由物侧到像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5具有正屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。图4为第二实施例中光学成像系统10的球差图(mm)、像散图(mm)和畸变图(%),其中像散图和畸变图为参考波长为587.5618nm下的数据图。
第一透镜L1的物侧面S1于光轴处为凹面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凸面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凸面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第三透镜L3和第四透镜L4之间。
在第二实施例中,光学成像系统10满足以下条件:FOV=112°,FNO=2.35,f=1.40mm,Almax=30°,SD1/ImgH=0.562,FOV/f=80.08°/mm,SD1/AT12=4.403,(|R62|+|R72|)/f=0.642,(|f6|+|f7|)/f=1.890,(|CT3|+|CT4|+|CT5|)/BF=1.591,|R71|/|f7|=0.643,AT45/ET45=0.953。
第二实施例中的参考波长为587nm,且第二实施例中的光学成像系统10满足下面表格的条件。其中各参数的定义可由第一实施例得出,在此不再赘述。
表3
Figure PCTCN2020114842-appb-000005
需要说明的是,f为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为第一透镜L1的物侧面S1至像面S17于光轴上的距离。
表4
Figure PCTCN2020114842-appb-000006
Figure PCTCN2020114842-appb-000007
第三实施例
请参照图5和图6,第三实施例的光学成像系统10由物侧到像侧依次包括具有正屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4、具有正屈折力的第五透镜L5具有负屈折力的第六透镜L6、及具有正屈折力的第七透镜L7。图6为第三实施例中光学成像系统10的球差图(mm)、像散图(mm)和畸变图(%),其中像散图和畸变图为参考波长为587.5618nm下的数据图。
第一透镜L1的物侧面S1于光轴处为凸面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凹面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凹面,像侧面S6于光轴处为凸面;第四透镜L4的物侧面S7于光轴处为凹面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凸面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凹面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凸面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凸面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凹面;第五透镜L5的物侧面S9于圆周处为凸面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凹面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第三透镜L3和第四透镜L4之间。
在第三实施例中,光学成像系统10满足以下条件:FOV=116°,FNO=2.30,f=1.36mm,Almax=30°,SD1/ImgH=0.562,FOV/f=85.48°/mm,SD1/AT12=6.022,(|R62|+|R72|)/f=0.661,(|f6|+|f7|)/f=1.930,(|CT3|+|CT4|+|CT5|)/BF=1.533,|R71|/|f7|=0.670,AT45/ET45=0.932。
第三实施例中的参考波长为587nm,且第三实施例中的光学成像系统10满足下面表格的条件。
表5
Figure PCTCN2020114842-appb-000008
Figure PCTCN2020114842-appb-000009
需要说明的是,f为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为第一透镜L1的物侧面S1至像面S17于光轴上的距离。
表6
Figure PCTCN2020114842-appb-000010
Figure PCTCN2020114842-appb-000011
第四实施例
请参照图7和图8,第四实施例的光学成像系统10由物侧到像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4、具有负屈折力的第五透镜L5具有正屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。图8为第四实施例中光学成像系统10的球差图(mm)、像散图(mm)和畸变图(%),其中像散图和畸变图为参考波长为587.5618nm下的数据图。
第一透镜L1的物侧面S1于光轴处为凹面,像侧面S2于光轴处为凸面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凸面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凹面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凸面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第三透镜L3和第四透镜L4之间。
在第四实施例中,光学成像系统10满足以下条件:FOV=120°,FNO=2.25,f=1.30mm,Almax=30°,SD1/ImgH=0.562,FOV/f=92.02°/mm,SD1/AT12=6.055,(|R62|+|R72|)/f=0.939,(|f6|+|f7|)/f=2.399,(|CT3|+|CT4|+|CT5|)/BF=1.669,|R71|/|f7|=1.104,AT45/ET45=0.838。
第四实施例中的参考波长为587nm,且第四实施例中的光学成像系统10满足下面表格的条件。
表7
Figure PCTCN2020114842-appb-000012
Figure PCTCN2020114842-appb-000013
需要说明的是,f为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为第一透镜L1的物侧面S1至像面S17于光轴上的距离。
表8
Figure PCTCN2020114842-appb-000014
第五实施例
请参照图9和图10,第五实施例的光学成像系统10由物侧到像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有正 屈折力的第四透镜L4、具有负屈折力的第五透镜L5具有正屈折力的第六透镜L6、及具有负屈折力的第七透镜L7。图10为第五实施例中光学成像系统10的球差图(mm)、像散图(mm)和畸变图(%),其中像散图和畸变图为参考波长为587.5618nm下的数据图。
第一透镜L1的物侧面S1于光轴处为凹面,像侧面S2于光轴处为凹面;第二透镜L2的物侧面S3于光轴处为凸面,像侧面S4于光轴处为凹面;第三透镜L3的物侧面S5于光轴处为凸面,像侧面S6于光轴处为凸面;第四透镜L4的物侧面S7于光轴处为凸面,像侧面S8于光轴处为凸面;第五透镜L5的物侧面S9于光轴处为凹面,像侧面S10于光轴处为凸面;第六透镜L6的物侧面S11于光轴处为凹面,像侧面S12于光轴处为凸面;第七透镜L7的物侧面S13于光轴处为凸面,像侧面S14于光轴处为凹面。
第一透镜L1的物侧面S1于圆周处为凸面,像侧面S2于圆周处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,像侧面S4于圆周处为凹面;第三透镜L3的物侧面S5于圆周处为凸面,像侧面S6于圆周处为凸面;第四透镜L4的物侧面S7于圆周处为凸面,像侧面S8于圆周处为凸面;第五透镜L5的物侧面S9于圆周处为凹面,像侧面S10于圆周处为凹面;第六透镜L6的物侧面S11于圆周处为凸面,像侧面S12于圆周处为凹面;第七透镜L7的物侧面S13于圆周处为凹面,像侧面S14于圆周处为凸面。
光阑STO设置在第三透镜L3和第四透镜L4之间。
在第五实施例中,光学成像系统10满足以下条件:FOV=124°,FNO=2.20,f=1.25mm,Almax=30°,SD1/ImgH=0.560,FOV/f=99.28°/mm,SD1/AT12=3.663,(|R62|+|R72|)/f=0.785,(|f6|+|f7|)/f=2.251,(|CT3|+|CT4|+|CT5|)/BF=1.719,|R71|/|f7|=0.590,AT45/ET45=1.288。
第五实施例中的参考波长为587nm,且第五实施例中的光学成像系统10满足下面表格的条件。
表9
Figure PCTCN2020114842-appb-000015
Figure PCTCN2020114842-appb-000016
需要说明的是,f为光学成像系统10的焦距,FNO为光学成像系统10的光圈数,FOV为光学成像系统10的视场角,TTL为第一透镜L1的物侧面S1至像面S17于光轴上的距离。
表10
Figure PCTCN2020114842-appb-000017
请参照图11,本发明实施例提供一种取像模组100,包括光学成像系统10和感光元件20,感光元件20设置在光学成像系统10的像侧。
具体地,感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)影像感测器或者电荷耦合元件(CCD,Charge-coupled Device)。
本发明实施例的取像模组100中的光学成像系统10通过上述合理的透镜的配置,在满足微型设计的同时,增大了视场角,视场角大于常规镜头,提升了相对亮度,且提升了取景面积,光学成像系统10能够实现较高的像素和良好的像质。
请参照图12,本发明实施例的电子装置1000包括壳体200和取像模组100,取像模组100安装在壳体200上。
本发明实施例的电子装置1000包括但不限于为智能手机、平板电脑、笔记本电脑、电子书籍阅读器、便携多媒体播放器(PMP)、便携电话机、视频电话机、数码静物相机、移动医疗装置、可穿戴式设备等支持成像的电子装置。
上述实施例的电子装置1000中的光学成像系统10通过上述合理的透镜的配置,在满足微型设计的同时,增大了视场角,视场角大于常规镜头,提升了相对亮度,且提升了取景面积,光学成像系统10能够实现较高的像素和良好的像质。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (14)

  1. 一种光学成像系统,其特征在于,由物侧到像侧依次包括:
    第一透镜,具有负屈折力;
    第二透镜,具有屈折力;
    第三透镜,具有屈折力;
    第四透镜,具有正屈折力,所述第四透镜的物侧面于光轴处为凸面,所述第四透镜的像侧面于光轴处为凸面;
    第五透镜,具有负屈折力;
    第六透镜,具有正屈折力,所述第六透镜的像侧面于光轴处为凸面;
    第七透镜,具有负屈折力,所述第七透镜的物侧面于光轴处为凸面,所述第七透镜的像侧面于光轴处为凹面;
    所述光学成像系统满足以下条件式:
    Almax≤30°;
    其中,所述光学成像系统的第一透镜至第七透镜的物侧面和像侧面的光学有效区域内各处具有切面,所述切面与垂直于光轴的平面相交形成锐角夹角,Almax为所述锐角夹角的最大值。
  2. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    FOV≥110°;
    FNO≤2.4;
    其中,FOV为所述光学成像系统的最大视场角,FNO为所述光学成像系统的光圈数。
  3. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    SD1/ImgH<0.57;
    其中,SD1为所述第一透镜的物侧面的光学有效区域边缘到光轴的垂直距离,ImgH为所述光学成像系统最大视场角所对应的像高的一半。
  4. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    FOV/f>71°/mm;
    其中,FOV为所述光学成像系统的最大视场角,f为所述光学成像系统的焦距。
  5. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    SD1/AT12<6.1;
    其中,SD1为所述第一透镜的物侧面的光学有效区域边缘到光轴的垂直距离,AT12为所述第一透镜的像侧面与所述第二透镜的物侧面于光轴上的间距。
  6. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.64<(|R62|+|R72|)/f<0.94;
    其中,R62为所述第六透镜的像侧面于光轴处的曲率半径,R72为所述第七透镜的像侧面于光轴处的曲率半径,f为所述光学成像系统的焦距。
  7. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    1.8<(|f6|+|f7|)/f<2.5;
    其中,f6为所述第二透镜的焦距,f7为所述第三透镜的焦距,f为所述光学成像系统的焦距。
  8. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    1.3<(|CT3|+|CT4|+|CT5|)/BF<1.8;
    其中,CT3为所述第三透镜于光轴上的厚度,CT4为所述第四透镜于光轴上的厚度,CT5为所述第五透镜于光轴上的厚度,BF为所述第六透镜与像面在光轴方向上的最小距离。
  9. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    0.59<|R71|/|f7|<1.1;
    其中,R71为所述第七透镜的物侧面于光轴处的曲率半径,f7为所述第七透镜的焦距。
  10. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统满足以下条件式:
    AT45/ET45<1.3;
    其中,AT45为所述第四透镜像侧面与所述第五透镜物侧面于光轴上的间距,ET45为所述第五透镜的光学有效区域边缘处在光轴方向上的厚度。
  11. 如权利要求1所述的光学成像系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜、所述第五透镜、所述第六透镜及所述第七透镜均为塑料材质。
  12. 如权利要求1所述的光学成像系统,其特征在于,所述光学成像系统还包括光阑,所述光阑设于所述第三透镜和所述第四透镜之间。
  13. 一种取像模组,其特征在于,包括:
    如权利要求1至12中任意一项所述的光学成像系统;和
    感光元件,所述感光元件设置于所述光学成像系统的像侧。
  14. 一种电子装置,其特征在于,包括:
    壳体;和
    如权利要求13所述的取像模组,所述取像模组安装在所述壳体上。
PCT/CN2020/114842 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置 WO2022052051A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114842 WO2022052051A1 (zh) 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/114842 WO2022052051A1 (zh) 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置

Publications (1)

Publication Number Publication Date
WO2022052051A1 true WO2022052051A1 (zh) 2022-03-17

Family

ID=80632601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114842 WO2022052051A1 (zh) 2020-09-11 2020-09-11 光学成像系统、取像模组和电子装置

Country Status (1)

Country Link
WO (1) WO2022052051A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774728B2 (en) 2020-12-11 2023-10-03 Largan Precision Co., Ltd. Photographing optical lens system, image capturing unit and electronic device
CN117369094A (zh) * 2023-12-07 2024-01-09 联创电子科技股份有限公司 光学镜头

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139372A1 (en) * 2014-11-17 2016-05-19 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
TW201701005A (zh) * 2015-06-25 2017-01-01 佳能企業股份有限公司 光學鏡頭
US20170242220A1 (en) * 2016-02-19 2017-08-24 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN107367819A (zh) * 2016-05-13 2017-11-21 先进光电科技股份有限公司 光学成像系统
CN107589522A (zh) * 2016-07-06 2018-01-16 先进光电科技股份有限公司 光学成像系统
CN107664810A (zh) * 2016-07-28 2018-02-06 大立光电股份有限公司 光学取像系统镜组、取像装置及电子装置
CN108427173A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统
CN108427172A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160139372A1 (en) * 2014-11-17 2016-05-19 Fujifilm Corporation Imaging lens and imaging apparatus equipped with the imaging lens
TW201701005A (zh) * 2015-06-25 2017-01-01 佳能企業股份有限公司 光學鏡頭
US20170242220A1 (en) * 2016-02-19 2017-08-24 Samsung Electronics Co., Ltd. Optical lens assembly and electronic apparatus including the same
CN107367819A (zh) * 2016-05-13 2017-11-21 先进光电科技股份有限公司 光学成像系统
CN107589522A (zh) * 2016-07-06 2018-01-16 先进光电科技股份有限公司 光学成像系统
CN107664810A (zh) * 2016-07-28 2018-02-06 大立光电股份有限公司 光学取像系统镜组、取像装置及电子装置
CN108427173A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统
CN108427172A (zh) * 2017-02-14 2018-08-21 先进光电科技股份有限公司 光学成像系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11774728B2 (en) 2020-12-11 2023-10-03 Largan Precision Co., Ltd. Photographing optical lens system, image capturing unit and electronic device
CN117369094A (zh) * 2023-12-07 2024-01-09 联创电子科技股份有限公司 光学镜头
CN117369094B (zh) * 2023-12-07 2024-03-19 联创电子科技股份有限公司 光学镜头

Similar Documents

Publication Publication Date Title
CN111045188B (zh) 光学透镜组、取像模组和电子装置
WO2022042513A1 (zh) 光学镜头及成像设备
WO2021217664A1 (zh) 光学成像系统、取像模组和电子装置
CN208297813U (zh) 摄像镜头、取像装置及电子装置
CN111983785A (zh) 光学成像系统、取像模组和电子装置
WO2021179207A1 (zh) 光学系统、摄像模组及电子装置
CN111999859A (zh) 光学成像系统、取像模组和电子装置
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
WO2022111437A1 (zh) 光学镜头及成像设备
WO2022199465A1 (zh) 光学镜头及成像设备
CN112526730B (zh) 光学镜头及成像设备
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
WO2022105926A1 (zh) 光学镜头及成像设备
WO2022052051A1 (zh) 光学成像系统、取像模组和电子装置
CN111965789A (zh) 光学镜头、摄像装置及终端
CN112526726A (zh) 光学成像系统、取像模组和电子装置
CN111323891A (zh) 光学组件、取像模组及移动终端
WO2022110066A1 (zh) 光学成像系统、取像模组及电子装置
CN111427133A (zh) 光学成像系统、取像模组和电子装置
CN212540864U (zh) 光学成像系统、取像模组和电子装置
WO2022011550A1 (zh) 光学成像系统、取像模组和电子装置
CN112630944B (zh) 光学镜头及成像设备
CN212723503U (zh) 光学成像系统、取像模组和电子装置
CN211826694U (zh) 光学镜头、取像模组及电子装置
CN213023741U (zh) 一种光学镜头、摄像装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20952839

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 19/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20952839

Country of ref document: EP

Kind code of ref document: A1