WO2021128156A1 - 滑阀 - Google Patents

滑阀 Download PDF

Info

Publication number
WO2021128156A1
WO2021128156A1 PCT/CN2019/128629 CN2019128629W WO2021128156A1 WO 2021128156 A1 WO2021128156 A1 WO 2021128156A1 CN 2019128629 W CN2019128629 W CN 2019128629W WO 2021128156 A1 WO2021128156 A1 WO 2021128156A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
shoulder
valve
shaft
spool
Prior art date
Application number
PCT/CN2019/128629
Other languages
English (en)
French (fr)
Inventor
李瑞锋
Original Assignee
博世力士乐(常州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世力士乐(常州)有限公司 filed Critical 博世力士乐(常州)有限公司
Priority to PCT/CN2019/128629 priority Critical patent/WO2021128156A1/zh
Priority to CN201980103279.7A priority patent/CN114829815B/zh
Priority to DE212019000520.9U priority patent/DE212019000520U1/de
Publication of WO2021128156A1 publication Critical patent/WO2021128156A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/06Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements
    • F16K11/065Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members
    • F16K11/07Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides
    • F16K11/0708Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only sliding valves, i.e. sliding closure elements with linearly sliding closure members with cylindrical slides comprising means to avoid jamming of the slide or means to modify the flow

Definitions

  • This application relates to a valve, in particular to a spool valve.
  • the spool valve is a diverter valve that uses the valve core to slide on the sealing surface to change the position of the fluid inlet and outlet channels to control the flow of fluid.
  • a plurality of chambers are arranged in the valve body of the spool valve to connect with the inlet and outlet respectively. During the movement of the spool valve, the communication between the individual chambers is allowed to establish the pressure between the inlet and the outlet.
  • a short-term fluid retention phenomenon occurs in an individual chamber, that is, the fluid leaves after a few turns in the chamber.
  • One aspect of this application is to provide a spool valve, which includes:
  • the valve body includes a plurality of chambers
  • valve core is inside the valve body and is movable relative to the valve body, the valve core further comprising:
  • At least two shoulders on the shaft including a first shoulder located on the outermost side and a second shoulder adjacent to the first shoulder, the first shoulder and the A first groove is formed between the second shoulders, and
  • the at least one step is in the first groove, wherein the ratio of the distance from the at least one step to the second shoulder to the axial length of the first groove is 15%-40% , Wherein the ratio of the distance from the at least one step to the second shoulder to the axial length of the first groove is 20%-30%, and the at least one step has a peripheral portion;
  • the axial length of at least one of the plurality of chambers is set such that when the valve core moves to the peripheral portion and enters the at least one chamber, the axial length of the at least one chamber is greater than that of the The sum of the staggered distance between the first step and the cavity and the distance from the at least one step to the second shoulder.
  • the valve core provided with a step can prevent fluid from stagnating in a specific chamber, and guide the fluid to directly flow out through the channel, thereby reducing energy loss. After testing, the pressure drop of the valve can be reduced by about 40%.
  • the step is provided between the chambers respectively connected to the outlet and the return port, and in the vicinity of the outlet chamber. In this way, after the valve core is actuated, the steps can enter the outlet cavity within a certain period of time to limit the gradually increasing opening space of the outlet cavity.
  • the step just enters the outlet chamber to guide the fluid to leave quickly.
  • the step may be a ring that completely surrounds the axis of the valve core, or an incomplete ring.
  • the steps may have a variety of cross-sectional shapes, such as trapezoid (such as isosceles trapezoid), rectangle, cone, or other shapes that facilitate the flow of fluid out of the cavity, and the shape is easy to process.
  • the valve core has a symmetrical shape with respect to the center line, so there is one step on each side of the center line.
  • Fig. 1 shows a schematic diagram of an embodiment of the spool of the spool valve involved in the present application
  • Figure 2 shows a schematic diagram of another embodiment of the spool of the spool valve involved in the present application
  • FIG. 3 shows a schematic diagram of another embodiment of the spool of the spool valve involved in the present application
  • Figure 4 shows the working state of an embodiment of the spool valve involved in the present application, where the spool valve is in the zero position;
  • Figure 5 shows a working state of the spool valve in Figure 4 at a limit position
  • Figure 6 is a partial enlarged view of Figure 5;
  • FIG. 7 shows the working state of the slide valve in FIG. 4 at another extreme position.
  • Fig. 1 shows a schematic diagram of an embodiment of a valve core for a spool valve involved in the present application.
  • the spool includes a shaft 12 and a plurality of shoulders on the shaft.
  • the shaft 12 in FIG. 1 is symmetrical about the centerline l. From the left side, there are a first shoulder 22, a second shoulder 24, and a third shoulder 26, respectively. Since the center line l is symmetrical, from the right side, it is also the first shoulder 22, the second shoulder 24, and the third shoulder 26, respectively.
  • the two third shoulders 26 are closest to the centerline 1, the two first shoulders 22 are at the outermost position, and the two second shoulders 24 are respectively between the first shoulder 22 and the third shoulder 26 .
  • Each of these shoulders has a flat surface 32 for sealing to cooperate with the cavity wall of the valve body of the spool valve, not shown, so as to function as a seal between the cavities to block the fluid between these cavities. flow.
  • the position of the shoulder relative to the chamber changes, so that the seal between the chambers is eliminated, thereby communicating with each other.
  • a first groove 34 is formed between the first shoulder 22 and the second shoulder 24, and the step 36 is provided in the first groove 34, thereby dividing the first groove 34 into two small grooves.
  • the height of the first shoulder 22, the second shoulder 24 and the third shoulder 26 may be the same, and the height of the step 36 is lower than the height of these shoulders.
  • the ratio n/m of the distance n from the step 36 to the second shoulder 24 to the axial length m of the first groove 34 is 15%-40%.
  • the distance n from the step 36 to the second shoulder 24 is the distance between the opposite end surfaces of the step 36 and the second shoulder;
  • the axial length m of the first groove 34 is the first shoulder 22 and the second shoulder.
  • the relative distance of 24, that is, the distance between the opposite end faces of the two shoulders, is shown in Figure 1. Further, the ratio of the distance from the step 36 to the second shoulder 24 to the axial length is 20%-30%. The ratio of the step diameter to the valve core diameter is 1/2 to 4/5.
  • the step 36 is shaped to extend a distance in the circumferential direction of the shaft 12. As shown in Fig. 1, the step 36 extends 360° on the shaft 12, that is, it extends a complete circle. Or, as shown in Fig. 2, the step 36' extends on the shaft 12 for more than half a turn, that is, it extends for an incomplete turn.
  • the step may extend at least 1/4 of the circumference on one half-circumferential side of the shaft.
  • the half-circumferential side may be set as the entrance of the half-circumferential side of the valve core to the chamber when the valve core is in a non-rotating state, so the step is close to the entrance.
  • the steps 36, 36' have a trapezoidal cross-section.
  • the step 36" has a rectangular cross section. It is conceivable that the step may also have a cross section of other shapes, such as a triangle or an irregular shape.
  • the volume of the step 36 cannot be set too large, and of course it cannot be set too small, which will be mentioned in the following description.
  • the step 36 may be integrally formed with the shaft 12, such as manufactured by a casting process. Alternatively, the step 36 can also be manufactured separately from the shaft 12 and then installed at the above-mentioned position of the shaft 12.
  • FIG. 4 shows a schematic diagram of the valve core installed in the valve body of the spool valve, and this figure also shows that the valve core is in the zero position of the valve body.
  • the valve body 41 includes a first cavity A located in the center and connected to the inlet, second cavities B1 and B2 respectively located on both sides of the first cavity A and connected to the outlet, and respectively located on both sides of the second cavity B1 and B2 and connected to the return flow.
  • the above-mentioned ports are not shown in detail in the figure.
  • the outlets of the cavities B1 and B2 are different working outlets, and the return port drains the fluid back to the oil storage tank.
  • the third shoulder 56 is located in the passage between the first cavity A and the second cavity B1, the first cavity A and the second cavity B2, and the circumferential plane of the third shoulder 56 It is closely attached to the channel wall to seal the first cavity A and the second cavity B1, B2, so that the inlet and the outlet are not connected.
  • the second shoulder 54 is located in the second cavities B1, B2.
  • the first shoulder 52 is on the outermost side, and its circumferential plane functions to seal the third cavities C1 and C2 with the other parts 44 of the valve body.
  • the other part 44 of the valve body may be provided with an actuating mechanism that drives the valve core 42 to move.
  • the third cavities C1 and C2 are respectively communicated with the second cavities B1 and B2, that is, the return port and the two outlets are both connected.
  • the third cavities C1 and C2 are also communicated with each other through a channel 43.
  • the first step 66 and the second step 68 are located between the second cavity B1, B2 and the third cavity C1, C2, respectively.
  • Figure 5 shows a schematic diagram of the spool after it has moved, and the figure also shows that the spool is in a maximum position.
  • the spool 42 faces one direction when actuated, and moves to the right as shown by the arrow in the figure.
  • the third shoulder 56 gradually enters the second cavity B2, so that the first cavity A and the second cavity B2 are no longer sealed, and the fluid from the inlet can flow from the first cavity A to the second cavity B2 And eventually flow into the outlet.
  • the second shoulder 54 on the other side moves between the first cavity A and the second cavity B1, and its circumferential plane acts to seal the two cavities.
  • the fluid from the inlet cannot flow from the first cavity.
  • One cavity A flows to the second cavity B1.
  • the opening space of the second chamber B1 gradually increases.
  • the opening space of the second chamber B1 is the largest, indicating that the valve core 42 has moved to the limit at this time.
  • the first step 66 moves into the second cavity B1 and occupies a part of the open space of the second cavity B1. Since the partially open space is occupied, the fluid in the second chamber B1 quickly flows to the third chamber C1 in the direction shown in the figure. If the first step 66 is not provided, the second cavity B1 has too much open space, and the fluid stays in the second cavity B1 for a while. For example, it flows around the cavity of the second cavity B1 for a few times before flowing to the third cavity C1. This will produce an undesirable pressure drop. In contrast, the first step 66 can solve this problem by directing the fluid to flow directly to the third cavity C1 to avoid unnecessary pressure drop, thereby avoiding energy loss.
  • the first step 66 When the first step 66 is provided as an incomplete ring, such as the aforementioned 1/4 of the circumference, the first step 66 may be located on the back side of the shaft shown in FIG. 5 to move the valve core to the first step.
  • the fluid from the inlet of the second cavity B1 is unable to form a vortex due to the reduced space of the cavity at the inlet, so it flows directly to the third cavity C1.
  • the first step 66 of the 1/4 of the circumference is close to the entrance of the second cavity B1. It may stop rotating when the valve core moves to the limit position shown in FIG. 5, or it may stop rotating when the first step 66 enters any position after the second cavity B1.
  • the first step on the back side of the shaft has a greater impact on the fluid. Because when the fluid leaves the inlet and enters the second chamber B1, the first step close to the inlet plays a guiding role at the first time, so that the fluid is guided out of the chamber. From this, it can be seen that the first step 66 can also extend 180° on the back side of the shaft, that is, it is formed as a half ring, which is beneficial to divert fluid.
  • the setting of the first step 66 is also related to the size of the second cavity B1. As shown in FIG. 6, for clear illustration, the first step 66 and the second cavity B1 in FIG. 5 are enlarged, wherein the first step 66 has A peripheral portion 67 with a width Wg.
  • the peripheral edge portion 67 is a surface portion of the first step 66 in the circumferential direction.
  • the peripheral edge portion 67 in the figure is a trapezoidal surface.
  • the axial length W of the second cavity B1 may be set to be greater than the offset distance Wo between the first step 66 and the second cavity B1, the width Wg of the peripheral portion 67, and the aforementioned distance n from the first step 66 to the second shoulder 54 The sum of W>Wo+Wg+n.
  • the width of the peripheral portion 67 is zero.
  • the offset distance Wo between the first step 66 and the second cavity B1 is greater than zero, the first step 66 functions to restrict fluid flow.
  • the staggered distance Wo is the distance between the top of the first step 66 and the cavity wall of the second cavity B1 when the peripheral edge portion 67 of the first step 66 enters the second cavity B1.
  • the so-called “entering” means that the entire width portion of the peripheral edge portion 67 enters the second cavity B1.
  • the peripheral edge portion 67 has two apexes, and "entering” means that the apex away from the second shoulder 54 enters the second cavity B1. It is conceivable that when the shape of the first step 66 is a triangle or an arc, “entering” means that the vertex of the triangle or the arc (the arc is the top) enters the second cavity B1.
  • the second step 68 is symmetrical to the first step 66. Therefore, the working principle of the second step 68 is the same as that of the first step 66.
  • the spool 42 moves to the left as shown in FIG. 7.
  • the first cavity A is in communication with the second cavity B1, and the fluid from the inlet flows to the outlet via these two cavities.
  • the opening space of the second cavity B2 is gradually maximized, and when it is moved to the position shown in FIG. 7, the second cavity B2 is opened to the maximum.
  • the second step 68 enters the second cavity B2 and occupies a part of the space of the second cavity B2, thereby guiding the fluid in the second cavity B2 to rapidly flow to the third cavity C2 in the direction shown in the figure.
  • the extension distance of the second step 68 in the circumferential direction and the size relationship between the second cavity B2 and the second step 68 may be the same as the aforementioned second cavity B1 and the first step 66.
  • the second step 68 can also be arranged asymmetrically with the first step 66 based on the same principle.
  • the sizes of the first step 66 and the second step 68 are related to the capacities of the second cavities B1, B2.
  • the first step 66 and the second step 68 can just enter the second chambers B1, B2 and occupy a part of the open space to guide the fluid to flow out.
  • the spool involved in the present application can be used in various types of spool valves, such as pilot valves, reversing valves (including valves driven in various ways (such as electromagnetic methods) that those skilled in the art want), and the like.
  • the spool involved in this application is also suitable for three-position four-way reversing valves with Y-type functions based on control logic classification.
  • the valve core with steps involved in this application is used for fluid flow between the return port and the outlet, especially when it moves to the maximum open position, at this time the chamber connected to the outlet is in the maximum open state, and moves into the chamber.
  • the step occupies part of the space, thereby guiding the fluid to flow quickly to the return port.
  • fluid refers to the flowing medium in the valve, such as oil.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sliding Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种滑阀,包括阀体(41)和阀芯(42)。阀体(41)包括多个腔室(A、B1、B2、C1、C2);阀芯(42)在阀体(41)内部并且相对于阀体(41)可移动。阀芯(42)进一步包括轴(12)、在轴(12)上的至少两个肩部(22、24、26、52、54、56)以及至少一个台阶(36、36'、36''、66、68)。至少两个肩部(22、24、26、52、54、56)包括位于最外侧的第一肩部(22、52)和邻近第一肩部(22、52)的第二肩部(24、54),第一肩部(22、52)和第二肩部(24、54)之间形成第一槽(34);至少一个台阶(36、36'、36''、66、68)在第一槽(34)内,至少一个台阶(36、36'、36''、66、68)到第二肩部(24、54)的距离(n)与第一槽(34)的轴向长度(m)的比为15%-40%。可以防止流体在特定的腔室内滞留,并且引导流体直接流出腔室。

Description

滑阀 技术领域
本申请涉及一种阀,具体说涉及一种滑阀。
背景技术
滑阀是利用阀芯在密封面上滑动,以改变流体进出口通道位置以控制流体流向的分流阀。滑阀的阀体内设置有多个腔室以与进出口分别连接,在滑阀移动过程中,允许个别腔室之间连通,从而建立起了进口与出口之间的压力。在当前的滑阀的一种设计中,发现当滑阀打开时,个别腔室内出现短暂的流体滞留现象,即流体在该腔室内打转几圈后离开。
发明内容
本申请涉及的一个方面是提供了一种滑阀,其包括:
阀体,所述阀体包括多个腔室
阀芯,所述阀芯在所述阀体内部并且相对于所述阀体可移动,所述阀芯进一步包括:
轴,
在所述轴上的至少两个肩部,所述至少两个肩部包括位于最外侧的第一肩部和邻近所述第一肩部的第二肩部,所述第一肩部和所述第二肩部之间形成第一槽,以及
至少一个台阶,所述至少一个台阶在所述第一槽内,其中所述至少一个台阶到所述第二肩部的距离与所述第一槽的轴向长度的比为15%-40%,其中所述至少一个台阶到所述第二肩部的距离与所述第一槽的轴向长度的比为20%-30%,所述至少一个台阶具 有周缘部;以及
所述多个腔室中至少一个腔室的轴向长度设置为,当所述阀芯移动到所述周缘部进入所述至少一个腔室时,该至少一个腔室的轴向长度大于所述第一台阶与所述腔室的错开距离和所述至少一个台阶到所述第二肩部的距离的总和。
设置有台阶的阀芯可以防止流体在特定的腔室内滞留,并且引导流体经由通道直接流出,由此可以减少能量损失。经试验,阀的压降可减少约40%。
台阶设置在与出口和回流口分别连接的腔室之间,并且在出口腔室的附近。这样当阀芯动作后,台阶可以在一定的时间内进入到出口腔室内,以限制逐渐增大的出口腔室的打开空间。
当阀芯移动到出口最大位置上时,台阶刚好进入到出口腔室内,以引导流体迅速离开。
台阶可以是完整围绕阀芯的轴的环形,或者是不完整的环形。台阶可以具有多种横截面形状,如梯形(诸如等腰梯形)、矩形、锥形或其他利于引导流体流出出口腔室的形状,该形状易于加工。另外,阀芯具有关于中心线对称的形状,因此台阶在中心线的两侧各有一个。
通过以下参考附图的详细说明,本申请的其他方面和特征变得明显。但是应当知道,该附图仅仅为解释的目的设计,而不是作为本申请的范围的限定,这是因为其应当参考附加的权利要求。还应当知道,附图仅仅意图概念地说明此处描述的结构和流程,除非另外指出,不必要依比例绘制附图。
附图说明
结合附图参阅以下具体实施方式的详细说明,将更加充分地理解 本申请,附图中同样的参考附图标记指代视图中同样的元件,不同附图中相似的参考附图标记指代视图中同样或相似的元件。其中:
图1示出本申请涉及的滑阀的阀芯的一种实施例的示意图;
图2示出本申请涉及的滑阀的阀芯的另一种实施例的示意图;
图3示出本申请涉及的滑阀的阀芯的再一种实施例的示意图;
图4示出本申请涉及的滑阀的一种实施例的工作状态,其中滑阀处于零位置上;
图5示出图4中的滑阀的一个极限位置上的工作状态;
图6是图5的局部放大图;
图7示出图4中的滑阀的另一个极限位置上的工作状态。
具体实施方式
为帮助本领域的技术人员能够确切地理解本申请要求保护的主题,下面结合附图详细描述本申请的具体实施方式。
图1示出了本申请涉及的用于滑阀的阀芯的一种实施例的示意图。该阀芯包括轴12和在轴上的多个肩部。图1中的轴12关于中心线l对称。自左侧起,分别为第一肩部22、第二肩部24和第三肩部26。由于中心线l对称,因此自右侧起,也分别为第一肩部22、第二肩部24和第三肩部26。其中两个第三肩部26最接近中心线l,两个第一肩部22处于最外侧的位置上,两个第二肩部24各自在第一肩部22和第三肩部26之间。这些肩部均具有用于密封的平面32,以与未示出的滑阀的阀体的腔室的腔壁配合,从而起到腔室之间的密封作用从而阻隔这些腔室之间的流体流动。当阀芯移动后,肩部相对于腔室的位置发生改变,从而腔室之间的密封被消除,由此互相连通。
第一肩部22和第二肩部24之间构成第一槽34,台阶36设置于第一槽34内,由此将第一槽34分为两个小槽。第一肩部22、第二肩 部24和第三肩部26的高度可以是相同的,台阶36的高度低于这些肩部的高度。台阶36到第二肩部24的距离n与第一槽34的轴向长度m的比n/m为15%-40%。在这里,台阶36到第二肩部24的距离n为台阶36和第二肩部的相对端面之间的距离;第一槽34的轴向长度m为第一肩部22和第二肩部24的相对距离,即两个肩部的相对端面之间的距离,如图1所示。进一步地,台阶36到第二肩部24的距离与轴向长度的比为20%-30%。台阶直径与阀芯直径之比为1/2~4/5。
台阶36成形为沿轴12的周向延伸一段距离。如图1所示,台阶36在轴12上延伸了360°,即完整地延伸了一圈。或者如图2所示,台阶36'在轴12上延伸了大半圈,即延伸了不完整的一圈。台阶可以在轴的一个半圆周侧上至少延伸1/4的圆周。该半圆周侧可以设置为阀芯在止转状态下该半圆周侧面对腔室的入口,因此台阶靠近该入口。在图1-2示出的两个实施例中,台阶36、36'具有梯形的横截面。
在图3所示的实施例中,台阶36”具有矩形的横截面。可以想到,台阶还可以具有其他形状的横截面,如三角形或不规则形状等。
虽然实施例中均示出了第一槽34内设置了一个台阶36,不过可以想到,还可以在轴向上设置多个台阶。
台阶36的体积不能设置地过大,当然也不能设置地过小,这将在下文的说明中提到。
台阶36可以是与轴12一体成型的,如通过铸造工艺制造出。或者台阶36还可以与轴12分开制造,随后安装在轴12的上述位置上。
图4示出了阀芯安装在滑阀的阀体内的示意图,该图也示出了阀芯处于阀体的零位置上。为了清楚示意且由于中心对称,仅示出一半的附图标记。阀体41包括位于中央并且连接进口的第一腔A,分别位于第一腔A的两侧并且连接出口的第二腔B1、B2,以及分别位于 第二腔B1、B2的两侧并且连接回流口的第三腔C1、C2。其中第一腔A和第二腔B1、B2之间,第二腔B1、B2和第三腔C1、C2之间均有通道,上述端口未在图中详细示出,可以知道,连接第二腔B1、B2的出口为不同的工作出口,而回流口将流体泄回到储油箱。
在图4示出的实施例中,第三肩部56处于第一腔A和第二腔B1、第一腔A和第二腔B2之间的通道内,第三肩部56的周向平面与通道壁紧贴,将第一腔A与第二腔B1、B2密封,由此进口与出口不连通。第二肩部54位于第二腔B1、B2内。第一肩部52在最外侧,其周向平面起作用将第三腔C1、C2与阀体的其他部分44密封。阀体的其他部分44可以设置如驱动阀芯42移动的致动机构。第三腔C1、C2分别与第二腔B1、B2连通,即回流口和两个出口均连通。第三腔C1、C2还通过通道43连通。
在零位置上,第一台阶66和第二台阶68分别位于第二腔B1、B2和第三腔C1、C2之间。
图5示出了阀芯移动后的示意图,该图也示出了阀芯处于一个最大位置上。阀芯42在致动下朝一个方向,如图中箭头示出向右移动。在此过程中,第三肩部56逐渐进入第二腔B2中,由此第一腔A和第二腔B2之间不再密封,来自进口的流体可以从第一腔A流向第二腔B2并最终流入出口。与此同时,另一侧上的第二肩部54移动到第一腔A和第二腔B1之间,其周向平面起作用,由此密封这两个腔,来自进口的流体不能从第一腔A流向第二腔B1。随着阀芯42的进一步移动,第二腔B1的打开空间逐渐增大。当移动到图5示出的位置上时,第二腔B1的打开空间是最大的,说明此时阀芯42已经移动到了极限。在这个时候,第一台阶66移动到第二腔B1中,并且占据第二腔B1的部分打开空间。由于部分打开空间被占据,因此第二腔B1内 的流体如图所示方向迅速流向第三腔C1。如果不设置第一台阶66,则第二腔B1由于打开空间过大,流体在第二腔B1内停留片刻,如绕着第二腔B1的腔体打转几圈后才流向第三腔C1,这样会产生不期望的压降。相比之下,第一台阶66可以解决这个问题,其引导流体直接流向第三腔C1,避免产生不必要的压降,由此避免能量损失。
当第一台阶66设置为不完整的环,如前述所述的1/4的圆周时,第一台阶66可以位于图5示出的轴的背侧上,以在阀芯移动到第一台阶66在第二腔B1内时,来自第二腔B1的入口的流体由于入口处的腔室的空间缩小,无法形成涡流,因此直接流向第三腔C1。通过控制阀芯停止周向上的旋转,使得该1/4的圆周的第一台阶66靠近第二腔B1的入口。可以是当阀芯移动到入图5所示的极限位置上时止转,也可以是第一台阶66进入到第二腔B1后的任意一个位置上时止转。比起设置在轴的正面,第一台阶设置在轴的背侧对流体的影响更大。因为流体离开入口进入第二腔B1时,靠近入口的第一台阶在第一时间就起到了引导作用,从而流体被导向流出腔室。由此可知,第一台阶66还可以在轴的背侧上延伸180°,即形成为半个环,有利于导流流体。
第一台阶66的设置还与第二腔B1的尺寸有关,如图6所示,为了清楚示意,将图5中的第一台阶66和第二腔B1的部分放大,其中第一台阶66具有带宽度Wg的周缘部67。周缘部67为第一台阶66的周向上的表面部分。图示中的周缘部67为梯形的表面。第二腔B1的轴向长度W可以设置为大于第一台阶66与第二腔B1的错开距离Wo、周缘部67的宽度Wg、和前述的第一台阶66到第二肩部54的距离n的总和,即W>Wo+Wg+n。当第一台阶66的截面形状设置为其他形状如三角形或弧形时,可以认为周缘部67的宽度为零。当第一台 阶66与第二腔B1的错开距离Wo大于零时,第一台阶66起到限制流体流动的作用。其中错开距离Wo为第一台阶66的周缘部67进入到第二腔B1时第一台阶66的顶部与第二腔B1的腔壁的距离。在这里,所谓的“进入”指周缘部67的的整个宽度部分都进入到第二腔B1中。当第一台阶66为如图中示出的梯形时,周缘部67具有两个顶点,“进入”指远离第二肩部54的那个顶点进入到第二腔B1中。可以想到,当第一台阶66的形状为三角形或弧形时,“进入”指三角形或弧形的顶点(弧形为顶部)进入到第二腔B1中。
第一台阶的直径与阀芯
第二台阶68与第一台阶66对称。因此第二台阶68的工作原理与第一台阶66相同。简言之,阀芯42如图7示出的向左移动。第一腔A与第二腔B1连通,来自进口的流体经由这两个腔流向出口。与此同时,第二腔B2的打开空间逐渐最大,当移动到图7示出的位置上时,第二腔B2打开到最大。在这个时候,第二台阶68进入第二腔B2,并占据第二腔B2的部分空间,由此引导第二腔B2的流体如图所示方向迅速流向第三腔C2。第二台阶68在圆周向的延伸距离、第二腔B2与第二台阶68的尺寸关系可与前述的第二腔B1和第一台阶66相同。当然,第二台阶68也可以基于相同的原理设置成与第一台阶66不对称。
第一台阶66和第二台阶68的大小与第二腔B1、B2的容量相关。当阀芯42移动到最大位置上时,第一台阶66和第二台阶68能够刚好进入到第二腔B1、B2中,并占据一部分的打开空间,以引导流体流出。
本申请涉及的阀芯可以用于多种类型的滑阀中,如先导阀、换向阀(包括以各种本领域技术人员想得到的方式(诸如电磁方式)驱动 的阀)等。本申请涉及的阀芯还适用于基于控制逻辑分类的Y型机能的三位四通换向阀。本申请涉及的具有台阶的阀芯用于回流口与出口之间流体流动,特别是当移动到最大打开位置时,此时与出口连接的腔室处于最大的打开状态,移动到该腔室内的台阶占据了部分的空间,从而引导流体快速流向回流口。在这里,流体指阀内的流动介质,如油等。
虽然已详细地示出并描述了本申请的具体实施例以说明本申请的原理,但应理解的是,本申请可以其它方式实施而不脱离这样的原理。

Claims (10)

  1. 一种滑阀,其特征是包括:
    阀体(41),所述阀体包括多个腔室;
    阀芯(42),所述阀芯(42)在所述阀体(41)内部并且相对于所述阀体(41)可移动,所述阀芯(42)进一步包括:
    轴,
    在所述轴上的至少两个肩部,所述至少两个肩部包括位于最外侧的第一肩部(52)和邻近所述第一肩部(52)的第二肩部(54),所述第一肩部(52)和所述第二肩部(54)之间形成第一槽,
    至少一个台阶,所述至少一个台阶在所述第一槽内,其中所述至少一个台阶到所述第二肩部的距离与所述第一槽的轴向长度的比为15%-40%,其中所述至少一个台阶到所述第二肩部的距离与所述第一槽的轴向长度的比为20%-30%,所述至少一个台阶具有周缘部;以及
    所述多个腔室中至少一个腔室的轴向长度设置为,当所述阀芯移动到所述周缘部进入所述至少一个腔室时,该至少一个腔室的轴向长度大于所述第一台阶与所述腔室的错开距离和所述至少一个台阶到所述第二肩部的距离的总和。
  2. 根据权利要求1所述的滑阀,其特征是:所述至少一个台阶成形为具有矩形或梯形的横截面,所述周缘部具有宽度,所述至少一个腔室的轴向长度大于所述第一台阶与所述腔室的错开距离、所述宽度和所述至少一个台阶到所述第二肩部的距离的总和。
  3. 根据权利要求1所述的滑阀,其特征是:所述至少一个台阶成形为在所述轴上沿周向延伸一段距离,其中所述至少一个台阶在所述轴 的一个半圆周侧上至少延伸1/4的圆周。
  4. 根据权利要求3所述的滑阀,其特征是:所述至少一个台阶在所述轴上延伸360°。
  5. 根据权利要求1所述的滑阀,其特征是:所述腔室包括连接进口的第一腔,连接出口的至少一个第二腔,和连接回流口的至少一个第三腔;所述至少一个台阶设置在所述至少一个第二腔的附近使得所述至少一个台阶随所述轴移动进入到所述至少一个第二腔中。
  6. 根据权利要求5所述的滑阀,其特征是:当所述阀芯移动到一个最大位置上时,所述至少一个台阶占据所述至少一个第二腔内的部分空间以引导所述至少一个第二腔内的流体朝所述至少一个第三腔流动。
  7. 根据权利要求1所述的滑阀,其特征是:所述至少两个肩部还包括邻近所述第二肩部(54)的第三肩部(56),并且所述第三肩部(56)比所述第二肩部(54)靠近所述阀芯(42)的中心线。
  8. 根据权利要求1-7中任一项所述的滑阀,其特征是:所述至少一个台阶包括关于所述阀芯的中心线设置的对称的台阶(66,68),所述滑阀为Y型机能的三位四通换向阀。
  9. 根据权利要求1-7中任一项所述的滑阀,其特征是:所述至少一个台阶与所述轴分开制造,或与所述轴一体形成。
  10. 根据权利要求5或6所述的滑阀,其特征是:所述第一腔位于所述阀体的中央,所述至少一个第二腔和所述至少一个第三腔各自都有两个,分别设置在所述第一腔的两侧上;当所述阀芯移动时,所述第一腔选择性地与所述至少一个第二腔中的一个连通;所述至少一个第三腔与所述至少一个第二腔连通。
PCT/CN2019/128629 2019-12-26 2019-12-26 滑阀 WO2021128156A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/128629 WO2021128156A1 (zh) 2019-12-26 2019-12-26 滑阀
CN201980103279.7A CN114829815B (zh) 2019-12-26 2019-12-26 滑阀
DE212019000520.9U DE212019000520U1 (de) 2019-12-26 2019-12-26 Schieberventil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128629 WO2021128156A1 (zh) 2019-12-26 2019-12-26 滑阀

Publications (1)

Publication Number Publication Date
WO2021128156A1 true WO2021128156A1 (zh) 2021-07-01

Family

ID=76572882

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128629 WO2021128156A1 (zh) 2019-12-26 2019-12-26 滑阀

Country Status (3)

Country Link
CN (1) CN114829815B (zh)
DE (1) DE212019000520U1 (zh)
WO (1) WO2021128156A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205479502U (zh) * 2015-03-24 2016-08-17 日本电产东测有限公司 滑柱式换向阀装置
CN107850225A (zh) * 2016-05-31 2018-03-27 株式会社小松制作所 滑阀、操作装置和作业车辆
US20190024806A1 (en) * 2017-07-18 2019-01-24 Hamilton Sundstrand Corporation Spool valve
CN109312868A (zh) * 2016-07-21 2019-02-05 株式会社电装 滑阀
CN109372818A (zh) * 2018-12-27 2019-02-22 日本电产东测(浙江)有限公司 液压控制阀装置用滑阀

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969045A (en) * 1959-02-26 1961-01-24 Acf Ind Inc Spool-type valve for use in hydraulic systems
JP3168857B2 (ja) * 1995-03-02 2001-05-21 ダイキン工業株式会社 ショックレス電磁切換弁
CN200971887Y (zh) * 2006-09-19 2007-11-07 赖雷 一种液压滑阀
WO2013090728A2 (en) * 2011-12-15 2013-06-20 Eaton Corporation Flow directing spool for valve
JP5708618B2 (ja) * 2012-11-19 2015-04-30 株式会社デンソー 油圧制御弁

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205479502U (zh) * 2015-03-24 2016-08-17 日本电产东测有限公司 滑柱式换向阀装置
CN107850225A (zh) * 2016-05-31 2018-03-27 株式会社小松制作所 滑阀、操作装置和作业车辆
CN109312868A (zh) * 2016-07-21 2019-02-05 株式会社电装 滑阀
US20190024806A1 (en) * 2017-07-18 2019-01-24 Hamilton Sundstrand Corporation Spool valve
CN109372818A (zh) * 2018-12-27 2019-02-22 日本电产东测(浙江)有限公司 液压控制阀装置用滑阀

Also Published As

Publication number Publication date
CN114829815A (zh) 2022-07-29
CN114829815B (zh) 2024-06-28
DE212019000520U1 (de) 2022-05-30

Similar Documents

Publication Publication Date Title
US9482352B2 (en) Flow directing spool for valve
CA3074295C (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
CN108252977A (zh) 一种用于大流量液压系统的油路分配阀
US10690253B2 (en) Multi-stage, multi-path rotary disc
CN107816561B (zh) 一种换向装置
US2836198A (en) Control valve
CN108368954A (zh) 多级防喘振阀
CN106286912B (zh) 一种压力控制阀
WO2021128156A1 (zh) 滑阀
WO2022148417A1 (zh) 单向阀及具有其的空调机
CN108005982A (zh) 过渡位置无泄漏的大流量电磁球阀
CN109764018A (zh) 具有工作片内卸荷与回油逻辑功能的多路阀
CN102537416B (zh) 特别是对于汽车自动变速器内离合器进行控制的调压阀
US7789373B2 (en) Ball poppet valve with contoured control stem
CN106286892A (zh) 三通电磁阀
CN107152541A (zh) 滑动式切换阀及冷冻循环系统
CN207298031U (zh) 电磁阀
CN106286893B (zh) 三通电磁阀
US4066100A (en) Control valve
CN107178621B (zh) 一种制冷系统用截止阀及其阀杆
WO2017198103A1 (zh) 一种t形阀及其组合式换向阀
CN205956418U (zh) 流体控制阀以及用于流体控制阀的内件组件
CN106286894B (zh) 三通电磁阀
TW201920857A (zh) 閥裝置
CN208634504U (zh) 一种节流阀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957262

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19957262

Country of ref document: EP

Kind code of ref document: A1