WO2021128083A1 - 超声粘弹性测量方法、装置和存储介质 - Google Patents

超声粘弹性测量方法、装置和存储介质 Download PDF

Info

Publication number
WO2021128083A1
WO2021128083A1 PCT/CN2019/128399 CN2019128399W WO2021128083A1 WO 2021128083 A1 WO2021128083 A1 WO 2021128083A1 CN 2019128399 W CN2019128399 W CN 2019128399W WO 2021128083 A1 WO2021128083 A1 WO 2021128083A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
different
target object
measurement
viscosity
Prior art date
Application number
PCT/CN2019/128399
Other languages
English (en)
French (fr)
Inventor
李双双
李金洋
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201980099937.XA priority Critical patent/CN114340506B/zh
Priority to PCT/CN2019/128399 priority patent/WO2021128083A1/zh
Priority to CN202410298330.7A priority patent/CN118078332A/zh
Publication of WO2021128083A1 publication Critical patent/WO2021128083A1/zh
Priority to US17/849,511 priority patent/US20230131340A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target

Definitions

  • This application relates to the technical field of instantaneous elasticity measurement, and more specifically to an ultrasonic viscoelasticity measurement method, device and storage medium.
  • Liver fibrosis is a pathological process from various chronic liver diseases to cirrhosis.
  • transient elasticity TE
  • instantaneous elasticity has the characteristics of non-invasive, simple, fast, easy to operate, reproducible, safe and tolerable. It has been called an important means for clinical evaluation of related liver fibrosis. .
  • Transient elastography mainly uses external vibrations, such as motor vibration, to generate shear waves in the tissue, observe the propagation process of shear waves in the tissue through ultrasonic echo, detect the propagation speed of shear waves, and further estimate the elastic modulus of the tissue , which reflects the degree of liver fibrosis.
  • the external vibration of the existing instantaneous elastography method is a fixed excitation, which regards the tested object as conforming to the ideal elastic model.
  • the elasticity and viscosity of most biological tissues often coexist during the deformation process, that is, they do not conform to the ideal elastic model. Therefore, such an instantaneous elastography method will lead to inaccurate measurement results.
  • This application provides an ultrasonic viscoelasticity measurement solution, which performs ultrasonic viscoelasticity measurement on a target based on external vibrations of different excitations, which can effectively improve the accuracy and stability of the measurement result.
  • an ultrasonic viscoelasticity measurement method includes: outputting a first transmitting/receiving sequence to a transducer of an ultrasonic probe, controlling the transducer to transmit a first ultrasonic wave to a target object, and receiving The echo of the first ultrasonic wave, and obtain a first ultrasonic echo signal based on the echo of the first ultrasonic wave; generate and display an ultrasonic image based on the first ultrasonic echo signal, and obtain the ultrasonic image Output different drive signals to the vibrator of the ultrasonic probe, and the transducer is driven by the vibrator to implement different mechanical vibrations on the target object based on at least two different vibration signals; The transducer outputs a second transmit/receive sequence, controls the transducer to transmit a second ultrasonic wave to the region of interest, receives the echo of the second ultrasonic wave, and is based on the echo of the second ultrasonic wave Acquiring a second ultrasonic echo signal; and acquiring
  • an ultrasonic viscoelasticity measurement method includes: acquiring a tissue image of a target object and displaying it; detecting a region of interest selected by a user on the tissue image; based on at least two differences
  • the vibration signal applies different mechanical vibrations to the target object to generate shear waves in the region of interest; after the mechanical vibration is generated, ultrasonic waves are transmitted to the region of interest, and echoes of the ultrasonic waves are received, and Obtain ultrasonic echo signals based on the echo of the ultrasound; and obtain and display at least one of the elastic parameters and viscous parameters of the region of interest based on the ultrasonic echo signals of the region of interest under the different mechanical vibrations One.
  • an ultrasonic viscoelasticity measurement method includes: applying different mechanical vibrations to a target object based on at least two different vibration signals; transmitting ultrasonic waves to the target object, and receiving the ultrasonic waves And obtain the ultrasonic echo signal based on the echo of the ultrasonic wave; and obtain the elastic parameter and the viscosity parameter of the target object based on the ultrasonic echo signal of the target object under the different mechanical vibrations.
  • an ultrasonic viscoelasticity measuring device includes an ultrasonic probe, the ultrasonic probe includes a vibrator and a transducer, and the vibrator is used to drive the transducer to vibrate.
  • the vibration generates a shear wave that propagates in the depth direction inside the target object;
  • the transducer includes a plurality of array elements, at least part of the array elements are used to transmit to the target object before the transducer vibrates.
  • the first ultrasonic wave receives the echo of the first ultrasonic wave, and obtains the first ultrasonic echo signal based on the echo of the first ultrasonic wave, at least after the transducer vibrates, it is directed to the region of interest of the target object Transmit a second ultrasonic wave, receive the echo of the second ultrasonic wave, and obtain a second ultrasonic echo signal based on the echo of the second ultrasonic wave;
  • a transmitting/receiving sequence controller is used for before the transducer vibrates Output the first transmit/rece
  • Vibrate and output a second transmit/receive sequence to the transducer at least after the transducer vibrates, control the transducer to transmit a second ultrasonic wave, receive the echo of the second ultrasonic wave, and based on all The echo of the second ultrasound obtains a second ultrasound echo signal;
  • a processor is configured to generate an ultrasound image based on the first ultrasound echo signal, obtain a region of interest on the ultrasound image, and based on the different The second ultrasonic echo signal of the region of interest under mechanical vibration acquires the elastic parameters and viscosity parameters of the region of interest; and a display device for displaying the elastic parameters and viscosity parameters of the region of interest.
  • an ultrasonic viscoelasticity measuring device includes an ultrasonic probe, the ultrasonic probe includes a vibrator and a transducer, and the vibrator is used to drive the transducer to vibrate.
  • the vibration generates a shear wave that propagates toward the inner depth of the target object;
  • the transducer includes one or more array elements, and at least part of the array elements is used for at least after the transducer vibrates toward the
  • the region of interest of the target object emits ultrasound, receives the echo of the ultrasound, and obtains the ultrasound echo signal based on the echo of the ultrasound;
  • the transmit/receive sequence controller is used to determine the backward direction in the region of interest
  • the vibrator outputs different driving signals, and the vibrator is controlled to drive the transducer to implement different mechanical vibrations on the target object based on at least two different vibration signals, and at least after the transducer vibrates
  • the transducer outputs a transmit/receive sequence, controls the transducer to transmit ultrasonic waves, receives a
  • an ultrasonic viscoelasticity measuring device includes a vibrator, an ultrasonic probe, a scanning controller, and a processor. Applying different mechanical vibrations to the target object; the scan controller is used to excite the ultrasonic probe to transmit ultrasonic waves to the target object, receive echoes of the ultrasonic waves, and obtain ultrasonic echo signals based on the echoes of the ultrasonic waves; The processor is configured to obtain the elastic parameter and the viscosity parameter of the target object based on the ultrasonic echo signal of the target object under the different mechanical vibrations.
  • an ultrasonic viscoelasticity measurement device includes a memory and a processor.
  • the memory stores a computer program run by the processor, and the computer program is being processed by the processor. Perform the above-mentioned ultrasonic viscoelasticity measurement method when the device is running.
  • a storage medium is provided, and a computer program is stored on the storage medium, and the computer program executes the above-mentioned ultrasonic viscoelasticity measurement method during operation.
  • the ultrasonic viscoelasticity measurement method, device, and storage medium perform ultrasonic viscoelasticity measurement on a target object based on external vibrations of different excitations, and can obtain the elastic parameters and viscous parameters of the region of interest of the target object, which solves the problem of adopting ideal
  • the inaccuracy and instability of the measurement results caused by the elastic model improves the accuracy and stability of the measurement results.
  • Figure 1 shows a schematic diagram of a transient elastography method.
  • Figure 2 shows a schematic diagram of the "frequency dispersion" phenomenon of the elastic measured value under different excitations of the pure elastic model.
  • Figure 3 shows a schematic diagram of the elasticity measurement value and the viscosity measurement value under different excitations of the viscoelastic model.
  • Figure 4 shows a schematic diagram of a simplified viscoelastic model.
  • Fig. 5 shows a schematic flowchart of an ultrasonic viscoelasticity measurement method according to an embodiment of the present application.
  • Fig. 6 shows a schematic flowchart of multiple measurements on a target object in an ultrasonic viscoelasticity measurement method according to an embodiment of the present application.
  • Fig. 7 shows a schematic flowchart of an ultrasonic viscoelasticity measurement method according to another embodiment of the present application.
  • Fig. 8 shows a schematic flowchart of an ultrasonic viscoelasticity measurement method according to another embodiment of the present application.
  • Fig. 9 shows a schematic block diagram of an ultrasonic viscoelasticity measuring device according to an embodiment of the present application.
  • Fig. 10 shows a schematic block diagram of an ultrasonic viscoelasticity measuring device according to another embodiment of the present application.
  • Fig. 11 shows a schematic block diagram of an ultrasonic viscoelasticity measuring device according to another embodiment of the present application.
  • Fig. 12 shows a schematic diagram of the system framework of the ultrasonic viscoelasticity measuring device according to an embodiment of the present application when performing ultrasonic viscoelasticity measurement.
  • Fig. 13 shows a schematic block diagram of an ultrasonic viscoelasticity measuring device according to another embodiment of the present application.
  • Transient elastography mainly uses external vibrations, such as motor vibration, to generate shear waves in the tissue, observe the propagation process of shear waves in the tissue through ultrasonic echo, detect the propagation speed of shear waves, and further estimate the elastic modulus of the tissue ,
  • external vibrations such as motor vibration
  • Figure 1 the external vibration is equivalent to the "signal source" of the shear wave, and the shear wave propagating in the tissue generated by its excitation plays a decisive role in the final elastic measurement result.
  • the external vibration is a fixed excitation. This excitation not only has a little requirement for the test conditions, but also has certain assumptions for the test object, that is, the test object conforms to the ideal elastic model.
  • the mechanical model includes two aspects: elasticity and viscosity.
  • the stress obeys Hooke's law, the stress only depends on the strain, and the strain recovers after the external force is removed.
  • the corresponding substance is called Hooke's solid.
  • the stress obeys Newtonian fluid law. The stress only depends on the strain rate. The strain changes with time, and the deformation cannot be recovered after the external force is removed. The corresponding substance is called Newtonian liquid.
  • the test object (such as the liver) is regarded as an ideal elastic model in the existing instantaneous elasticity imaging solution, which leads to obvious differences in the elasticity measurement results and a certain pattern under different excitations of external vibrations.
  • This phenomenon is called "frequency dispersion", as shown in Figure 2.
  • the reason for this phenomenon is that the model is too ideal and does not match the actual situation, which increases the instability of the measurement results to a certain extent.
  • is the density
  • the corresponding viscosity coefficient and elastic coefficient can be estimated.
  • the present application provides an ultrasonic viscoelasticity measurement solution, which performs ultrasonic viscoelasticity measurement on a target based on external vibrations of different excitations, which can effectively improve the accuracy and stability of the measurement result.
  • the ultrasonic viscoelasticity measurement scheme of the present application will be described in detail below with reference to FIG. 5 to FIG. 13.
  • FIG. 5 shows an ultrasonic viscoelasticity measurement method 500 according to an embodiment of the present application.
  • the ultrasonic viscoelasticity measurement method 500 may include the following steps:
  • step S510 the first transmitting/receiving sequence is output to the transducer of the ultrasonic probe, the transducer is controlled to transmit the first ultrasonic wave to the target object, receive the echo of the first ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the first ultrasonic wave. Ultrasonic echo signal.
  • the first transmission/reception sequence output to the transducer of the ultrasound probe is for the purpose of obtaining ultrasound images.
  • the transducer of the ultrasonic probe Based on the first transmitting/receiving sequence, transmits the first ultrasonic wave to the target object (for example, biological tissue), and converts the echo of the received first ultrasonic wave into an electrical signal, that is, obtains the first ultrasonic echo signal .
  • the target object for example, biological tissue
  • the echo of the received first ultrasonic wave into an electrical signal, that is, obtains the first ultrasonic echo signal.
  • step S520 an ultrasound image is generated and displayed based on the first ultrasound echo signal, and a region of interest on the ultrasound image is acquired.
  • the first ultrasound echo signal obtained in step S510 it can be processed to generate ultrasound image data, such as B image data, C image data, or a superposition of the two.
  • ultrasound image data such as B image data, C image data, or a superposition of the two.
  • an ultrasound image can be obtained.
  • the region of interest of the target object for example, the liver region to be measured for viscoelasticity
  • the ultrasound image can also be displayed, and the user manually selects the region of interest of the target object on the ultrasound image, and detects user input to obtain the region of interest selected by the user.
  • the region of interest can also be obtained through semi-automatic detection.
  • the semi-automatic detection can be: first the user selects a rough area, and then automatically detects a more accurate area in the user selected rough area based on a certain algorithm to obtain the region of interest; or, first, automatically detects the ultrasound based on a certain algorithm
  • the region of interest on the image is modified or corrected by the user to obtain a more accurate region of interest.
  • step S530 different driving signals are output to the vibrator of the ultrasonic probe, and the vibrator drives the transducer to implement different mechanical vibrations on the target object based on at least two different vibration signals.
  • the ultrasonic probe itself includes a vibrator as an example for description, but it should be understood that the vibrator and the ultrasonic probe may also be independent devices.
  • a driving signal for driving the vibrator to vibrate may be output to the vibrator of the ultrasonic probe to implement viscoelasticity measurement.
  • a fixed driving signal ie, a fixed excitation
  • a different driving signal is used to drive the vibrator to perform the measurement.
  • the different driving signals output to the vibrator enable the vibrator to implement different mechanical vibrations on the target object based on at least two different vibration signals.
  • the difference between the vibration signals may be expressed as: the vibration waveforms of different vibration signals are different from each other; the frequencies of different vibration signals are different from each other; or any other possible difference.
  • Using different driving signals to drive the vibrator to perform viscoelastic measurement can make the vibrator perform different mechanical vibrations under different vibration signals, so as to obtain shear wave data of the target object's interest area under different mechanical vibrations, and then based on The shear wave data of the region of interest of the target object under different mechanical vibrations can obtain stable and more accurate elastic measurement results and viscosity measurement results.
  • step S540 the second transmitting/receiving sequence is output to the transducer, the transducer is controlled to transmit the second ultrasonic wave to the region of interest, receive the echo of the second ultrasonic wave, and obtain the second ultrasonic echo based on the echo of the second ultrasonic wave. Wave signal.
  • the second transmitting/receiving sequence output to the transducer of the ultrasound probe is for the purpose of detecting the viscoelasticity result of the region of interest.
  • the transducer of the ultrasonic probe Based on the second transmitting/receiving sequence, transmits a second ultrasonic wave to the target object, and converts the echo of the received second ultrasonic wave into an electrical signal, that is, obtains the second ultrasonic echo signal.
  • the "second transmit/receive sequence", “second ultrasonic wave” and “second ultrasonic echo signal” in this article are only used to be compatible with the "first transmit/receive sequence” and “second ultrasonic echo signal” described above.
  • First ultrasound and “first ultrasound echo signal” are distinguished from each other and named as such, without any restrictive meaning.
  • the transducer may output the second transmitting/receiving sequence after the vibrator generates mechanical vibration to perform ultrasonic scanning on the region of interest.
  • the transducer may also start to output the second transmitting/receiving sequence before the vibrator generates mechanical vibration, for example, after determining the region of interest, and start ultrasonic scanning of the region of interest.
  • the transducer may also output the second transmitting/receiving sequence while the vibrator generates mechanical vibration.
  • step S550 based on the second ultrasonic echo signals of the region of interest under different mechanical vibrations, the elastic parameters and viscosity parameters of the region of interest are acquired and displayed.
  • the second ultrasonic echo signals of the region of interest under different mechanical vibrations can be processed separately to obtain the elasticity measurement value and the viscosity measurement value of the region of interest under different mechanical vibrations, and based on these elasticities
  • the measured value and the viscosity measured value obtain the final elastic measurement result (ie elastic parameter) and viscosity measurement result (ie viscosity parameter) of the region of interest.
  • the average value, weighted average value, any value, minimum value, maximum value, and average value of any number of elasticity measurement values can be used as the final elasticity measurement result as required.
  • the average value, weighted average value, any value, minimum value, maximum value, average value of any number of values, etc. of all viscosity measurement values can be used as the final viscosity measurement result as required.
  • directly use these elasticity measurement values and viscosity measurement values as the final viscoelasticity measurement results.
  • the vibrator outputs M different mechanical vibrations (M ⁇ 2). Based on the second ultrasonic echo signal of the region of interest under each mechanical vibration, one elastic detection data and one viscous detection data can be calculated. Repeat M times based on The calculation of the second ultrasonic echo signal can obtain multiple elastic detection data and multiple viscosity detection data.
  • the statistical results of multiple elasticity detection data can be calculated, and the statistical result value can be used as the elasticity measurement value. For example, the average value, weighted average, any value, and minimum value of multiple elasticity detection data can be calculated. , Maximum value, average value of any number of values, etc.
  • the viscosity measurement value can be calculated based on at least two viscosity detection data of a plurality of viscosity detection data; for example, the slope can be determined based on at least two viscosity detection data in combination with the legend of viscosity in FIG. The slope value is used as the viscosity measurement value.
  • the difference or ratio between the viscosity detection data can also be calculated based on at least two viscosity detection data, and the difference or ratio is used as the viscosity measurement value.
  • a measurement can be performed on the target object.
  • This measurement applies mechanical vibration to the target object based on a plurality of different vibration signals, each vibration signal corresponds to an ultrasonic echo signal; obtain the elastic parameters of the region of interest and Viscosity parameters include calculating a set of elastic measurement values and viscosity measurement values based on multiple ultrasonic echo signals corresponding to multiple different vibration signals, so that the elastic parameters and viscosity parameters can be obtained respectively based on the set of elastic measurement values and viscous measurement values.
  • "one measurement” can be defined as a measurement performed by a user pressing a button or inputting an instruction or other one operation. Based on this, in this example, the user only needs a simple operation to obtain a set of measurement results of elastic parameters and viscosity parameters.
  • a measurement can be performed on the target object.
  • the measurement includes multiple sets of sub-measurements.
  • Each set of sub-measurements applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to an ultrasonic echo.
  • Wave signal; obtaining elastic parameters and viscosity parameters of the region of interest includes: calculating multiple sets of elastic parameters and viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals in each group of sub-measurements.
  • the user still only needs to press the key once or input the command once in other ways.
  • this measurement includes multiple sets of sub-measurements, and the multiple sets of elasticity measurements obtained based on the multiple sets of sub-measurements are directly used. Values and multiple sets of viscous measurement values are used as viscoelastic measurement results, so multiple sets of measurement results of elastic parameters and viscous parameters can be obtained.
  • a measurement can be performed on the target object.
  • the measurement includes multiple sets of sub-measurements.
  • Each set of sub-measurements applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to an ultrasonic echo.
  • Wave signal; obtaining the elastic and viscous parameters of the region of interest includes: calculating the elastic parameters and the viscous parameters based on multiple sets of elastic and viscous measured values, each set of elastic and viscous measured values is based on each set of sub-measurements
  • the multiple ultrasonic echo signals corresponding to multiple different vibration signals in are calculated.
  • the user still only needs to press a key once or input an instruction in other ways.
  • the difference from the previous example is that this measurement includes multiple sets of sub-measurements.
  • the viscoelasticity results in this example are based on multiple sets of elasticity measurements.
  • the value and multiple sets of viscosity measurement values are further calculated, and the obtained elastic parameter and viscosity parameter measurement results are more accurate.
  • the multiple sets of sub-measurements may be multiple sets of sub-measurements continuously performed in one measurement.
  • This continuous implementation means that after the previous group of sub-measurements are completed, the next group of sub-measurements are automatically started after a predetermined time interval, without the user having to input the start instruction again between the two groups of sub-measurements.
  • the same number of mechanical vibrations can be applied to the target object in each of the multiple sets of sub-measurements.
  • each of the multiple sets of sub-measurements may generate a set of different vibration signals based on the same driving signal.
  • each group of sub-measurements applying the same number of mechanical vibrations to the target object and/or generating a group of different vibration signals based on the same driving signal can make each group of sub-measurements be measured under the same external conditions, which can be more accurate Measurement results.
  • the number and/or waveforms of vibration signals used in each set of sub-measurements may be different.
  • at least one of the following parameters of the respective driving signals of the multiple different vibration signals is different: frequency, amplitude, phase, and number of cycles, different At least one of the following parameters of the vibration signal is different: frequency, amplitude, phase, and number of cycles.
  • the driving signal and the actual vibration waveform are not equal, and the relationship between the two can be differential under the ideal model.
  • multiple measurements can be performed on the target object, and each measurement applies mechanical vibration to the target object based on multiple different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal; obtain the region of interest
  • the elastic parameters and the viscosity parameters include: calculating multiple sets of the elastic parameters and the viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals measured each time. That is, each measurement outputs a set of measurement results of elastic parameters and viscosity parameters.
  • “multiple measurement” can be defined as a measurement performed by the user pressing multiple keys or inputting multiple instructions or other multiple operations.
  • the user needs to operate multiple times to obtain multiple sets of elasticity measurement values and viscosity measurement values, and obtain the final multiple sets of elasticity parameters and viscosity parameters based on multiple sets of elasticity measurement values and multiple sets of viscosity measurement values.
  • multiple measurements can be performed on the target object, and each measurement applies mechanical vibration to the target object based on multiple different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal; obtain the region of interest
  • Elastic parameters and viscous parameters include: calculating elastic and viscous parameters based on multiple sets of elastic and viscous measured values, and each set of elastic and viscous measured values is calculated based on multiple ultrasonic echo signals obtained in each measurement.
  • “multiple measurement” can be defined as a measurement performed by a user pressing multiple keys or inputting multiple instructions or other multiple operations.
  • the user needs to operate multiple times to obtain multiple sets of elasticity measurement values and viscosity measurement values, and obtain the final elasticity parameters and viscosity parameters based on multiple sets of elasticity measurement values and multiple sets of viscosity measurement values.
  • the above-mentioned multiple measurement process can be understood in conjunction with Figure 6.
  • Figure 6 it exemplarily shows the execution of N measurements (where N is a natural number), and each measurement uses M vibration waveforms (where M is a natural number), and finally N sets of elastic measurement values and viscosity measurement values are obtained. Perform statistics on the measured values to get the final measurement results.
  • the number and/or waveform of the vibration signal used for each measurement may be different.
  • at least one of the following parameters of the respective driving signals of the multiple different vibration signals is different: frequency, amplitude, phase and number of cycles, different vibrations
  • At least one of the following parameters of the signal is different: frequency, amplitude, phase, and number of cycles.
  • the driving signal and the actual vibration waveform are not equal, and the relationship between the two can be differential under the ideal model.
  • multiple measurements can be performed on the target object, and each measurement applies mechanical vibration to the target object based on a single vibration signal, and the vibration signal of each measurement is different under multiple measurements, and the vibration signal of each measurement corresponds to
  • Obtaining the elastic parameters and viscosity parameters of the region of interest includes: calculating a set of elastic parameters and the viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals of multiple measurements.
  • “multiple measurement” can be defined as a measurement performed by a user pressing multiple keys or inputting multiple instructions or other multiple operations.
  • the user needs to operate multiple times to obtain a set of elasticity measurement values and viscosity measurement values, and obtain the final elasticity and viscosity parameters based on the set of elasticity measurement values and viscosity measurement values, for example, Set the elasticity measurement value and the viscosity measurement value as the elasticity parameter and the viscosity parameter.
  • each measurement may be performed on the target object based on receiving a user input instruction including at least viscoelasticity measurement, or each measurement may be performed based on other preset conditions.
  • the target object may be mechanically vibrated based on one vibration signal and the corresponding ultrasonic echo signal may be obtained, and after cooling for a predetermined time, the target object may be mechanically vibrated based on another vibration signal. , So you can get more accurate measurement results.
  • the obtained elasticity measurement results and viscosity measurement results may be displayed.
  • each group of elasticity measurement values and viscosity measurement values may be displayed, or only the elasticity measurement results and viscosity measurement results calculated based on the elasticity measurement values and the viscosity measurement values may be displayed.
  • the ultrasound image may be generated based on the first ultrasound echo signal or based on the second ultrasound echo signal.
  • the ultrasound image can be an image acquired in real time during the viscoelasticity measurement process, or an image acquired every certain time interval during the viscoelasticity measurement process, or it can be a non-updated image that is not updated before and after each viscoelasticity measurement.
  • Real-time image For example, the elastic parameter/measurement value and viscosity parameter/viscosity measurement value of the region of interest can be displayed at a suitable position (for example, the lower right corner or the region of interest, etc.) in the ultrasound image.
  • the elastic parameter/measurement value and viscosity parameter/viscosity measurement value of the region of interest can be displayed on the non-image area close to the image on the display, for example, displayed side by side with the ultrasound image.
  • the above exemplarily shows the ultrasonic viscoelasticity measurement method 500 according to an embodiment of the present application.
  • the ultrasonic viscoelasticity measurement method 500 according to the embodiment of the present application performs ultrasonic viscoelasticity measurement on a target object based on external vibrations of different excitations, can obtain the elastic parameters and viscosity parameters of the region of interest of the target object, and solves the problem of using The problem of inaccurate and unstable measurement results brought by the ideal elastic model improves the accuracy and stability of the measurement results.
  • FIG. 7 shows a schematic flowchart of an ultrasonic viscoelasticity measurement method 700 according to another embodiment of the present invention.
  • the ultrasonic viscoelasticity measurement method 700 may include the following steps:
  • step S710 a tissue image of the target object is acquired and displayed.
  • step S720 the region of interest selected by the user on the tissue image is detected.
  • step S730 different mechanical vibrations are applied to the target object based on at least two different vibration signals to generate shear waves in the region of interest.
  • step S740 after the mechanical vibration is generated, ultrasonic waves are transmitted to the region of interest, the echoes of the ultrasonic waves are received, and ultrasonic echo signals are obtained based on the echoes of the ultrasonic waves.
  • step S750 based on the ultrasonic echo signals of the region of interest under different mechanical vibrations, at least one of the elastic parameter and the viscosity parameter of the region of interest is acquired and displayed.
  • the ultrasonic viscoelasticity and/or elasticity measurement method 700 according to another embodiment of the present application described with reference to FIG. 7 is substantially similar to the ultrasonic viscoelasticity measurement method 500 according to the embodiment of the present application described with reference to FIG. The difference, for the sake of brevity, will not repeat the same details here.
  • the tissue image of the target object can be an ultrasound image, MRI image, CT image, etc., which can reflect the tissue structure; the tissue image of the target object can be acquired in real time or from Obtained from the storage medium of the ultrasound imaging system or the storage medium of other external equipment.
  • the tissue image of the target object can be an ultrasound image, MRI image, CT image, etc., which can reflect the tissue structure; the tissue image of the target object can be acquired in real time or from Obtained from the storage medium of the ultrasound imaging system or the storage medium of other external equipment.
  • the region of interest on the tissue image is acquired based on user input for generating shear waves in the region of interest.
  • the ultrasound probe that can implement this embodiment can be a single array element, and the ultrasound echo signal obtained in step S740 can correspond to M data; the ultrasound probe that can implement this embodiment can also be With multiple array elements, the ultrasonic echo signal obtained in step S740 may correspond to M data or B data.
  • the ultrasonic viscoelasticity measurement of the target object is still based on different vibration signals, which can solve the problem of inaccurate and unstable measurement results caused by adopting the ideal elastic model, and improve the measurement result. Accuracy and stability.
  • step S750 only the elastic parameter or the viscous parameter may be calculated, or only one of the two may be displayed after the elastic parameter and the viscous parameter are calculated.
  • different vibration signals are generated based on different driving signals.
  • at least one of the following parameters of the respective driving signals of different vibration signals is different: frequency, amplitude, phase, and number of cycles.
  • different vibration signals have different vibration waveforms from each other.
  • different vibration waveforms have different frequencies from each other.
  • FIG. 8 shows a schematic flowchart of an ultrasonic viscoelasticity measurement method 800 according to another embodiment of the present invention.
  • the ultrasonic viscoelasticity measurement method 800 may include the following steps:
  • step S810 different mechanical vibrations are applied to the target object based on at least two different vibration signals.
  • step S820 the ultrasonic wave is transmitted to the target object, the echo of the ultrasonic wave is received, and the ultrasonic echo signal is obtained based on the echo of the ultrasonic wave.
  • step S830 at least one of the elastic parameter and the viscosity parameter of the target object is acquired based on the ultrasonic echo signals of the target object under different mechanical vibrations.
  • the core ideas in the ultrasonic viscoelasticity measurement method 800 according to another embodiment of the present application described with reference to FIG. 8 and the ultrasonic viscoelasticity measurement method 500 according to the embodiment of the present application described with reference to FIG. 5 are similar, and both are based on different
  • the vibration signal of the target object is used for ultrasonic viscoelasticity measurement.
  • the manner of obtaining the region of interest of the target object is not limited, and the region of interest of the target object may be obtained in any suitable manner to perform the above-mentioned viscoelasticity measurement.
  • the different vibration signals described in step S810 are generated based on different driving signals, and at least one of the following parameters of the different driving signals is different: frequency, amplitude, phase, and number of cycles.
  • different vibration signals have different vibration waveforms from each other.
  • different vibration waveforms have different frequencies from each other.
  • a measurement can be performed on the target object.
  • This measurement applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal; obtain the elastic parameters and viscosity of the target object
  • the parameters include: calculating a set of elastic parameters and viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals.
  • "one measurement” can be defined as a measurement performed by a user pressing a button or inputting an instruction or other one operation. Based on this, in this example, the user only needs a simple operation to obtain a set of measurement results of elastic parameters and viscosity parameters.
  • a measurement can be performed on the target object.
  • the measurement includes multiple sets of sub-measurements.
  • Each set of sub-measurements applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to an ultrasonic echo.
  • Wave signal; obtaining the elastic and viscous parameters of the target object includes: calculating the elastic parameters and the viscosity parameters based on multiple sets of elastic and viscous measured values, each set of elastic and viscous measured values is based on each group of sub-measurements Multiple ultrasonic echo signals corresponding to multiple different vibration signals are calculated; or multiple sets of elastic parameters and the viscosity parameters are calculated based on multiple ultrasonic echo signals corresponding to multiple different vibration signals in each group of sub-measurements.
  • this measurement includes multiple sets of sub-measurements, and the multiple sets of elasticity measurements obtained based on the multiple sets of sub-measurements are directly used.
  • multiple sets of viscoelasticity measurement results are used as viscoelasticity measurement results, multiple sets of elastic and viscous parameters measurement results can be obtained; when the viscoelasticity measurement results are further calculated based on multiple sets of elasticity measurement values and viscous measurement values obtained from multiple sub-measurements , Can improve the calculation accuracy of elastic parameters and viscosity parameters.
  • the multiple sets of sub-measurements are multiple sets of sub-measurements continuously performed in one measurement.
  • the same number of mechanical vibrations are applied to the target object in each of the multiple sets of sub-measurements.
  • each of the multiple sets of sub-measurements generates a set of different vibration signals based on the same driving signal.
  • multiple measurements can be performed on the target object, and each measurement applies mechanical vibration to the target object based on multiple different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal; obtain the region of interest
  • the elastic parameters and the viscosity parameters include: calculating multiple sets of the elastic parameters and the viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals measured each time. That is, each measurement outputs a set of measurement results of elastic parameters and viscosity parameters.
  • “multiple measurement” can be defined as a measurement performed by the user pressing multiple keys or inputting multiple instructions or other multiple operations.
  • the user needs to perform multiple operations to obtain multiple sets of elasticity measurement values and viscosity measurement values, and obtain multiple sets of elasticity and viscosity measurement values based on multiple sets of elasticity measurement values and multiple sets of viscosity measurement values.
  • multiple measurements can be performed on the target object, and each measurement applies mechanical vibration to the target object based on multiple different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal; obtain the region of interest
  • Elastic parameters and viscous parameters include: calculating elastic and viscous parameters based on multiple sets of elastic and viscous measured values, and each set of elastic and viscous measured values is calculated based on multiple ultrasonic echo signals obtained in each measurement.
  • “multiple measurement” can be defined as a measurement performed by a user pressing multiple keys or inputting multiple instructions or other multiple operations.
  • the user needs to operate multiple times to obtain multiple sets of elasticity measurement values and viscosity measurement values, and obtain the final elasticity parameters and viscosity parameters based on multiple sets of elasticity measurement values and multiple sets of viscosity measurement values.
  • the number and/or waveform of the vibration signal used for each measurement is different.
  • the elastic parameter is equal to the average value/weighted average of part or all of the plurality of elasticity measurement values or equal to one of the plurality of elasticity measurement values
  • the viscosity parameter is equal to part or all of the plurality of viscosity measurement values
  • the average value/weighted average value of is equal to one of the multiple viscosity measurements.
  • At least one of the following parameters of the respective driving signals of the multiple different vibration signals is different: frequency, amplitude, phase and number of cycles, different vibrations
  • At least one of the following parameters of the signal is different: frequency, amplitude, phase, and number of cycles.
  • each measurement may be performed on the target object based on receiving a user input instruction including at least a viscoelasticity measurement, or each measurement may be performed based on other preset conditions.
  • the target object after the target object is mechanically vibrated based on one vibration signal and the corresponding ultrasonic echo signal is obtained, the target object may be mechanically vibrated based on another vibration signal after cooling for a predetermined time.
  • At least one of an elastic parameter and a viscosity parameter may be displayed; or multiple sets of elastic measurement values and viscosity measurement values, as well as elastic parameters and viscosity parameters may be displayed.
  • the above exemplarily shows the ultrasonic viscoelasticity measurement method according to the embodiment of the present invention.
  • these methods perform ultrasonic viscoelasticity measurements on the target object based on external vibrations of different excitations, which can obtain the elastic and viscous parameters of the region of interest of the target object, and solve the inaccurate and inaccurate measurement results caused by the ideal elastic model.
  • the problem of instability improves the accuracy and stability of the measurement results.
  • the ultrasonic viscoelasticity measuring device according to the embodiment of the present application is described below in conjunction with FIGS. 9 to 13, which can be used to implement the ultrasonic viscoelasticity measurement method according to the embodiment of the present invention described above.
  • FIG. 9 shows a schematic block diagram of an ultrasonic viscoelasticity measuring device 900 according to an embodiment of the present application.
  • the ultrasonic viscoelasticity measuring apparatus 900 may include a transmission/reception sequence controller 910, an ultrasonic probe 920, a processor 930, and a display device 940.
  • the ultrasonic viscoelasticity measuring device 900 according to the embodiment of the present application may be used to execute the ultrasonic viscoelasticity measuring method 500/600/700 according to the embodiment of the present application described above.
  • the ultrasonic probe 920 includes a vibrator and a transducer (not shown).
  • the vibrator is used to drive the transducer to vibrate, and under the excitation of the vibration, a shear wave that propagates to the depth of the target object is generated;
  • the transducer may include multiple Array elements, at least part of the array elements are used to transmit the first ultrasonic wave to the target object before the transducer vibrates, receive the echo of the first ultrasonic wave, and obtain the first ultrasonic echo signal based on the echo of the first ultrasonic wave, After the transducer vibrates, the second ultrasonic wave is transmitted to the region of interest of the target object, the echo of the second ultrasonic wave is received, and the second ultrasonic echo signal is obtained based on the echo of the second ultrasonic wave.
  • the transmit/receive sequence controller 910 is used to output the first transmit/receive sequence to the transducer before the transducer vibrates, control the transducer to transmit the first ultrasonic wave, receive the echo of the first ultrasonic wave, and control the wave based on the first ultrasonic wave.
  • the echo acquires the first ultrasonic echo signal, outputs different driving signals to the vibrator after the region of interest is determined, and controls the vibrator to drive the transducer to implement different mechanical vibrations on the target object based on at least two different vibration signals, and Output the second transmitting/receiving sequence to the transducer at least after the transducer vibrates, controlling the transducer to transmit the second ultrasonic wave, receive the echo of the second ultrasonic wave, and obtain the second ultrasonic echo based on the echo of the second ultrasonic wave signal.
  • the processor 930 is configured to generate an ultrasound image based on the first ultrasound echo signal, obtain a region of interest on the ultrasound image, and obtain the elastic parameters and parameters of the region of interest based on the second ultrasound echo signal of the region of interest under different mechanical vibrations. Sticky parameters.
  • the display device 940 is used to display the elastic parameter and the viscosity parameter of the region of interest.
  • the vibrator of the ultrasonic probe 920 is installed on the ultrasonic probe 920, for example, installed on the outer shell of the ultrasonic probe 920, or arranged in the outer shell of the ultrasonic probe 920, and assembled with the transducer and other probe components Integrated ultrasound probe.
  • the transmitting/receiving sequence controller 910 can output a driving signal to control the vibrator.
  • the vibrator itself can vibrate according to the vibration sequence and drive the transducer to vibrate, or the vibrator itself does not vibrate, but drives the transducer to vibrate through a telescopic component. This vibration causes deformation of the target object when the ultrasonic probe 920 contacts the target object, and generates a shear wave propagating in the depth direction of the inner target object.
  • the transducer of the ultrasound probe 920 includes a plurality of array elements arranged in an array. Multiple array elements are arranged in a row to form a linear array; or arranged in a two-dimensional matrix to form an area array; multiple array elements can also form a convex array.
  • the array element is used to transmit ultrasonic waves according to excitation electrical signals, or to transform received ultrasonic waves into electrical signals. Therefore, each element can be used to transmit ultrasonic waves to biological tissues in the region of interest, and can also be used to receive ultrasonic echoes returned through the tissues.
  • the transmit/receive sequence controller 910 can control which array elements are used to transmit ultrasonic waves and which array elements are used to receive ultrasonic waves, or control the array elements to be used to transmit ultrasonic waves or receive ultrasonic waves in time slots.
  • the array elements participating in the ultrasonic emission can be excited by electrical signals at the same time, thereby simultaneously emitting ultrasonic waves; or the array elements participating in the ultrasonic beam emission can also be excited by several electrical signals with a certain time interval, so as to continuously emit ultrasonic waves with a certain time interval.
  • the transmitting/receiving sequence controller 910 is used to generate a transmitting sequence and a receiving sequence.
  • the transmitting sequence is used to control part or all of the multiple array elements to transmit ultrasonic waves to the target object.
  • the transmission sequence parameters include transmission parameters.
  • the position of the array element, the number of array elements and the ultrasonic transmission parameters (such as amplitude, frequency, number of waves, transmission interval, wave angle, waveform, focus position, etc.).
  • the receiving sequence is used to control some or all of the multiple array elements to receive the echo after the ultrasound is organized.
  • the receiving sequence parameters include the position of the receiving array element, the number of array elements, and the receiving parameters of the echo (such as receiving angle, depth, etc.). Wait).
  • the ultrasonic parameters in the transmitting sequence and the echo parameters in the receiving sequence are also different.
  • the transmission/reception sequence output by the transmission/reception sequence controller 910 to the transducer of the ultrasound probe 920 includes a first transmission/reception sequence and a second transmission/reception sequence.
  • the first transmitting/receiving sequence is for the purpose of obtaining ultrasound images, that is, the ultrasonic transmitting parameters and receiving parameters are determined according to the requirements of generating ultrasound images.
  • the first transmitting/receiving sequence can be output before the transducer vibrates, or it can be After the transducer vibrates, the output is used to control the transducer to emit the first ultrasonic wave and receive the echo of the first ultrasonic wave.
  • the second transmitting/receiving sequence aims at detecting the viscoelastic results of the region of interest, that is, the ultrasonic transmitting parameters and receiving parameters are determined according to the requirements of detecting the transient viscoelastic results of the region of interest, such as the ultrasonic transmitting angle, receiving angle and depth , Transmitting frequency and other parameters will be determined according to the region of interest.
  • the transmitting/receiving sequence controller 910 outputs a second transmitting/receiving sequence to the transducer after the transducer vibrates, for controlling the transducer to transmit the second ultrasonic wave and receive the echo of the second ultrasonic wave.
  • the ultrasonic viscoelasticity measuring device 900 may also include a transmitting circuit and a receiving circuit (not shown), which may be connected between the ultrasonic probe 920 and the transmitting/receiving sequence controller 910, It transmits the transmission/reception sequence output by the transmission/reception sequence controller 910 to the ultrasound probe 920.
  • the ultrasonic viscoelasticity measuring device 900 may further include an echo processing module (not shown), and the receiving circuit may also be used to transmit the ultrasonic echo received by the ultrasonic probe 920 to the echo processing module.
  • the echo processing module is used to process the ultrasonic echo, such as filtering, amplifying, and beam forming the ultrasonic echo.
  • the ultrasonic echo in the embodiment of the present application may include the echo of the second ultrasonic wave used to detect the instantaneous viscoelasticity, and also include the echo of the first ultrasonic wave used to generate the ultrasonic image.
  • the ultrasound image may be, for example, a B image or a C image, or a superposition of the two.
  • the echo processing module may also be included in the processor 930.
  • the processor 930 adopts a corresponding algorithm to obtain the required parameters or images based on the echo signal processed by the echo processing module or the ultrasonic echo signal obtained by the ultrasonic probe 920.
  • the processor 930 processes the first ultrasound echo signal to generate ultrasound image data.
  • the processor 930 processes the second ultrasonic echo signal to calculate the viscoelastic result of the region of interest.
  • different driving signals are used to drive the vibrator to vibrate, so as to implement viscoelasticity measurement.
  • the different driving signals output to the vibrator enable the vibrator to implement different mechanical vibrations on the target object based on at least two different vibration signals.
  • the difference between the vibration signals may be expressed as: the vibration waveforms of different vibration signals are different from each other; the frequencies of different vibration signals are different from each other; or any other possible difference.
  • Using different driving signals to drive the vibrator can make the vibrator perform different mechanical vibrations under different vibration signals, so that the shear wave data of the target object's interest area under different mechanical vibrations can be obtained, so based on different mechanical vibrations
  • the shear wave data of the region of interest of the target object can obtain stable and more accurate elastic and viscous measurement results.
  • the processor 930 may control the implementation of a measurement on the target object, and this measurement applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal; acquiring the region of interest
  • the elastic and viscous parameters include calculating a set of elastic and viscous measured values based on multiple ultrasonic echo signals corresponding to multiple different vibration signals, so that the elastic and viscous measured values can be obtained based on the set of elastic and viscous measured values, respectively.
  • Sticky parameters In the embodiments of the present application, from the perspective of clinical operation, "one measurement" can be defined as a measurement performed by a user pressing a button or inputting an instruction or other one operation. Based on this, in this example, the user only needs a simple operation to obtain a set of measurement results of elastic parameters and viscosity parameters.
  • the processor 930 may control to perform a measurement on the target object.
  • the measurement includes multiple sets of sub-measurements.
  • Each set of sub-measurements applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to
  • Obtaining the elastic parameters and viscosity parameters of the region of interest includes: calculating multiple sets of elastic parameters and the viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals in each group of sub-measurements .
  • the user still only needs to press the key once or input the command once in other ways.
  • This measurement includes multiple sets of sub-measurements, and the multiple sets of elasticity measurements obtained based on the multiple sets of sub-measurements are directly used. Values and multiple sets of viscous measurement values are used as viscoelastic measurement results, so multiple sets of measurement results of elastic parameters and viscous parameters can be obtained.
  • the processor 930 may control to perform a measurement on the target object.
  • the measurement includes multiple sets of sub-measurements.
  • Each set of sub-measurements applies mechanical vibration to the target object based on a plurality of different vibration signals, and each vibration signal corresponds to In an ultrasonic echo signal;
  • obtaining the elastic parameters and viscosity parameters of the region of interest includes: calculating the elastic parameters and the viscosity parameters based on multiple sets of elastic measurement values and viscosity measurement values, each set of elasticity measurement values and viscosity measurement values It is calculated based on multiple ultrasonic echo signals corresponding to multiple different vibration signals in each group of sub-measurements.
  • the user still only needs to press a key once or input an instruction in other ways.
  • this measurement includes multiple sets of sub-measurements.
  • the viscoelasticity results in this example are based on multiple sets of elasticity measurements.
  • the value and multiple sets of viscosity measurement values are further calculated, and the obtained elastic parameter and viscosity parameter measurement results are more accurate.
  • the multiple sets of sub-measurements may be multiple sets of sub-measurements continuously performed in one measurement.
  • the continuous implementation means that after the previous group of sub-measurements are completed, the next group of sub-measurements are automatically started after a predetermined time interval, without the need for the user to input the start command again between the two groups of sub-measurements.
  • the same number of mechanical vibrations are applied to the target object in each of the multiple sets of sub-measurements.
  • each of the multiple sets of sub-measurements generates a set of different vibration signals based on the same driving signal.
  • each group of sub-measurements applying the same number of mechanical vibrations to the target object and/or generating a group of different vibration signals based on the same driving signal can make each group of sub-measurements be measured under the same external conditions, which can be more accurate Measurement results.
  • the number and/or waveforms of vibration signals used in each set of sub-measurements may be different.
  • at least one of the following parameters of the respective driving signals of the multiple different vibration signals is different: frequency, amplitude, phase, and number of cycles, different At least one of the following parameters of the vibration signal is different: frequency, amplitude, phase, and number of cycles.
  • the driving signal and the actual vibration waveform are not equal, and the relationship between the two can be differential under the ideal model.
  • the processor 930 may control to perform multiple measurements on the target object, and each measurement applies mechanical vibration to the target object based on multiple different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal;
  • the elastic parameters and viscosity parameters of the region of interest include: calculating multiple sets of the elastic parameters and the viscosity parameters based on multiple ultrasonic echo signals corresponding to multiple different vibration signals measured each time. That is, each measurement outputs a set of measurement results of elastic parameters and viscosity parameters.
  • “multiple measurement” can be defined as a measurement performed by the user pressing multiple keys or inputting multiple instructions or other multiple operations.
  • the user needs to operate multiple times to obtain multiple sets of elasticity measurement values and viscosity measurement values, and obtain the final multiple sets of elasticity parameters and viscosity parameters based on multiple sets of elasticity measurement values and multiple sets of viscosity measurement values.
  • the processor 930 may control to perform multiple measurements on the target object, and each measurement applies mechanical vibration to the target object based on multiple different vibration signals, and each vibration signal corresponds to an ultrasonic echo signal;
  • the elastic parameters and viscosity parameters of the region of interest include: calculating the elastic parameters and the viscosity parameters based on multiple sets of elastic measurement values and viscosity measurement values, and each set of elasticity measurement values and viscosity measurement values is based on the multiplicity obtained from each measurement.
  • One ultrasonic echo signal is calculated.
  • "multiple measurement" can be defined as the measurement performed by the user pressing multiple keys.
  • the user needs to operate multiple times to obtain multiple sets of elasticity measurement values and viscosity measurement values, and obtain the final elasticity parameters and viscosity parameters based on multiple sets of elasticity measurement values and multiple sets of viscosity measurement values.
  • the number and/or waveform of the vibration signal used for each measurement may be different.
  • at least one of the following parameters of the respective driving signals of the multiple different vibration signals is different: frequency, amplitude, phase and number of cycles, different vibrations
  • At least one of the following parameters of the signal is different: frequency, amplitude, phase, and number of cycles.
  • the driving signal and the actual vibration waveform are not equal, and the relationship between the two can be differential under the ideal model.
  • the processor 930 may perform each measurement on the target object based on receiving a user input instruction including at least a viscoelasticity measurement, or may perform each measurement based on other preset conditions.
  • the target object may be mechanically vibrated based on one vibration signal and the corresponding ultrasonic echo signal may be obtained, and after cooling for a predetermined time, the target object may be controlled based on another vibration signal. The object undergoes mechanical vibration, so that more accurate measurement results can be obtained.
  • the display device 940 may display an ultrasound image based on the ultrasound image data generated by the processor 930.
  • the user can manually select the region of interest of the target object on the ultrasound image based on the input device (not shown).
  • the processor 930 may automatically detect the region of interest of the target object on the ultrasound image based on a related algorithm.
  • the user first selects a rough area, and then the processor 930 automatically detects a more accurate area of interest in the rough area selected by the user based on a certain algorithm; or, first, the processor 930 automatically detects the ultrasound image based on a certain algorithm.
  • the user can modify or correct the region of interest to obtain a more accurate region of interest.
  • the display device 940 may display the obtained elasticity measurement result and/or viscosity measurement result.
  • the display device 940 may display each set of elasticity measurement values and viscosity measurement values, or may only display elastic parameter results and viscosity parameter results calculated based on the elasticity measurement values and viscosity measurement values.
  • the display device 940 may display an ultrasound image while displaying the elastic parameters and/or viscosity parameters of the region of interest, the ultrasound image being generated based on the first ultrasonic echo signal or based on the second ultrasonic echo signal .
  • the display device 940 can display the elastic parameter/measurement value and the viscosity parameter/measurement value of the region of interest in an appropriate position in the ultrasound image (such as the lower right corner or the region of interest, etc.), or display it in a non-image area, such as Displayed side-by-side with ultrasound images.
  • the above exemplarily shows the ultrasonic viscoelasticity measuring device 900 according to an embodiment of the present application.
  • the ultrasonic viscoelasticity measuring device 900 according to the embodiment of the present application performs ultrasonic viscoelasticity measurement on the target object based on external vibrations of different excitations, can obtain the elastic parameters and viscosity parameters of the region of interest of the target object, and solves the problem of using The problem of inaccurate and unstable measurement results brought by the ideal elastic model improves the accuracy and stability of the measurement results.
  • the ultrasonic viscoelasticity measurement device 1000 may include a transmission/reception sequence controller 1010, an ultrasonic probe 1020, a processor 1030, and a human-computer interaction device 1040.
  • the ultrasonic viscoelasticity measurement device 1000 according to the embodiment of the present application can be used to implement the ultrasonic viscoelasticity measurement method 700 according to the embodiment of the present application described above.
  • the ultrasonic probe 1020 includes a vibrator and a transducer (not shown), the vibrator is used to drive the transducer to vibrate, and the vibration is excited to generate a shear wave that propagates to the depth of the target object; the transducer includes one or A plurality of array elements, at least part of the array elements are used to transmit ultrasonic waves to a region of interest of the target object at least after the transducer vibrates, receive ultrasonic echoes, and obtain ultrasonic echo signals based on the ultrasonic echoes.
  • the transmitting/receiving sequence controller 1010 is used to output different driving signals to the vibrator after the region of interest is determined, and control the vibrator to drive the transducer to implement different mechanical vibrations on the target object based on at least two different vibration signals, and at least After the transducer vibrates, it outputs a transmitting/receiving sequence to the transducer, controls the transducer to transmit ultrasonic waves, receive ultrasonic echoes, and obtain ultrasonic echo signals based on the ultrasonic echoes.
  • the processor 1030 is configured to obtain a tissue image of a target object, obtain a region of interest on the tissue image, and obtain elastic parameters and viscosity parameters of the region of interest based on ultrasonic echo signals of the region of interest under different mechanical vibrations.
  • the human-computer interaction device 1040 is used to detect the region of interest selected by the user on the tissue image, and display the elastic parameters and viscosity parameters of the region of interest.
  • the tissue image of the target object may be acquired in real time, or may be acquired from a storage medium.
  • the human-computer interaction device 1040 detects the user's region of interest in the tissue image selection for generating shear waves in the region of interest.
  • the human-computer interaction device 1040 is not a necessary component, and the region of interest can also be determined on the tissue image through methods such as automatic image recognition.
  • the human-computer interaction device 1040 may include a display and an input device.
  • the input device may be, for example, a keyboard, operation buttons, mouse, trackball, etc., or may be a touch screen integrated with the display.
  • the input device is a keyboard or an operation button
  • the user can directly input operation information or operation instructions through the input device.
  • the input device is a mouse, trackball or touch screen
  • the user can use the input device together with the soft keys, operation icons, menu options, etc. on the display interface to complete the input of operation information or operation instructions.
  • the mark, frame, etc. complete the input of operation information.
  • the operation instruction may be an instruction to enter the ultrasonic image measurement mode, or an instruction to enter the viscoelasticity measurement mode, or an instruction to enter the viscoelasticity and ultrasonic image simultaneous measurement mode.
  • the display and the input device cooperate to realize the selection of the region of interest. For example, a display is used to display an ultrasound image on a display interface, and an input device is used to select a region of interest on the ultrasound image according to a user's operation.
  • the display is also used to display viscoelasticity measurement results.
  • the ultrasonic image and the viscoelasticity measurement result are displayed on the display interface at the same time, or only the viscoelasticity measurement result is displayed after the viscoelasticity result is detected, and the ultrasonic image is no longer displayed.
  • the viscoelasticity measurement results only the viscous parameter or the elastic parameter can be displayed, or both the viscous parameter and the elastic parameter can be displayed at the same time.
  • the ultrasonic viscoelasticity measurement of the target object is still based on different vibration signals, which can solve the problem of inaccurate and unstable measurement results caused by adopting the ideal elastic model, and improve the measurement result. Accuracy and stability.
  • the ultrasonic viscoelasticity measuring device 1100 may include a vibrator 1110, an ultrasonic probe 1120, a scan controller 1130, and a processor 1140.
  • the ultrasonic viscoelasticity measuring device 1100 according to the embodiment of the present application may be used to execute the ultrasonic viscoelasticity measuring method 800 according to the embodiment of the present application described above.
  • the vibrator 1110 is used to apply different mechanical vibrations to the target object based on at least two different vibration signals.
  • the scan controller 1130 is used to excite the ultrasonic probe 1120 to transmit ultrasonic waves to the target object, receive ultrasonic echoes, and obtain ultrasonic echo signals based on the ultrasonic echoes.
  • the processor 1140 is configured to obtain the elastic parameters and viscosity parameters of the target object based on the ultrasonic echo signals of the target object under different mechanical vibrations.
  • the vibration signal of the vibrator 1110 may be generated according to different driving signals.
  • the different driving signals may be generated by a vibration controller (not shown), or may be controlled by scanning. ⁇ 1130.
  • the ultrasonic viscoelasticity measuring device 1100 may also include a pressure sensor (not shown), and the output end of the pressure sensor is connected to the scan controller 1130 for feedback of the pressure and vibration intensity of the vibrator to the target object.
  • the scan controller 1130 Further, the scan controller 1130 is also used to control the vibrator 1110 to vibrate when the value of the pressure is within a preset range.
  • the viscoelasticity measurement process of the ultrasonic viscoelasticity measurement device 1100 can be understood in conjunction with FIG. 12.
  • the ultrasonic viscoelasticity measurement of the target object is still based on different vibration signals, which can solve the problem of inaccurate and unstable measurement results caused by adopting the ideal elastic model, and improve the measurement result. Accuracy and stability.
  • Fig. 12 depicts a schematic block diagram of an ultrasonic viscoelasticity measuring device according to another embodiment of the present application.
  • the ultrasonic viscoelasticity measuring device includes an ultrasonic probe, a front-end control and processing unit, a processor, a scanning controller and a display.
  • the ultrasonic viscoelasticity measuring device according to the embodiment of the present application can be used to execute the ultrasonic viscoelasticity measuring method 500, 700, or 800 according to the embodiment of the present application described above.
  • the ultrasonic probe may include a transducer and a vibrator, and the transducer of the ultrasonic probe transmits ultrasonic waves to a target object under the control of the scan controller, receives echoes of the ultrasonic waves, and obtains ultrasonic echo signals based on the echoes of the ultrasonic waves.
  • the vibrator is used to apply different mechanical vibrations to the target object based on at least two different vibration signals under the control of the scan controller, thereby generating shear waves in the region of interest of the target object.
  • the scanning controller may include a transmitting/receiving sequence controller.
  • the transducer can perform ultrasonic scanning by outputting the transmitting/receiving sequence
  • the vibrator can control the vibrator to apply mechanical vibration by outputting a driving signal.
  • the transmitting/receiving sequence controller please refer to the foregoing description, and the description will not be repeated here.
  • the front-end control and processing unit may include a filter circuit, an amplifying circuit, an analog-to-digital conversion circuit, a wave speed synthesis module, etc., which can perform processing such as filtering, amplifying, and beam synthesis on the ultrasonic echo signal obtained by the ultrasonic probe.
  • the ultrasonic echo signal after beam synthesis is sent to the processor, and the processor can process the ultrasonic echo signal of beam synthesis according to different imaging modes, for example, processing the ultrasonic echo signal of beam synthesis to obtain B image, C image or M For images, etc., the processor may also process the ultrasonic echo signals synthesized by the beam under different mechanical vibrations to obtain the viscosity parameters and/or elastic parameters of the region of interest.
  • the ultrasonic probe may be further provided with a pressure sensor for detecting the pressure between the ultrasonic probe and the target object.
  • the pressure may include the initial pressure before the measurement starts and the pressure during the measurement process.
  • the processor may, according to the pressure signal output by the pressure sensor, Judge the validity of the viscoelasticity measurement results obtained. Among them, the processor can determine the validity of the viscoelasticity measurement result according to whether the pressure signal falls within the preset pressure range.
  • FIG. 13 shows a schematic block diagram of an ultrasonic viscoelasticity measuring device 1300 according to an embodiment of the present application.
  • the ultrasonic viscoelasticity measuring device 1300 includes a memory 1310 and a processor 1320.
  • the memory 1310 stores programs for implementing the corresponding steps in the ultrasonic viscoelasticity measurement methods 500, 700, and 800 according to the embodiments of the present application.
  • the processor 1320 is configured to run a program stored in the memory 1310 to execute the corresponding steps of the ultrasonic viscoelasticity measurement methods 500, 700, and 800 according to the embodiments of the present application.
  • a storage medium is also provided, and program instructions are stored on the storage medium, and the program instructions are used to execute the ultrasonic viscoelasticity in the embodiments of the present application when the program instructions are run by a computer or a processor.
  • the storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory (CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • a computer program is also provided, and the computer program can be stored in a cloud or a local storage medium.
  • the computer program is run by a computer or a processor, it is used to execute the corresponding steps of the ultrasonic viscoelasticity measurement method of the embodiment of the present application.
  • the ultrasonic viscoelasticity measurement method, device and storage medium perform ultrasonic viscoelasticity measurement on the target object based on external vibrations of different excitations, and can obtain the elastic parameters and viscosity parameters of the region of interest of the target object , It solves the problem of inaccuracy and instability of the measurement results when the ideal elastic model is adopted, and improves the accuracy and stability of the measurement results.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present application.
  • This application can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for implementing the present application may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声粘弹性测量方法、装置和存储介质,该方法包括:向超声探头的换能器输出第一发射/接收序列,控制换能器向目标对象发射第一超声波并获取第一超声回波信号(S510);基于第一超声回波信号生成超声图像并进行显示并获取超声图像上的感兴趣区域(S520);向超声探头的振动器输出不同的驱动信号以实施粘弹性测量,由振动器驱动换能器基于至少两个不同的振动信号对目标对象实施不同的机械振动(S530);向换能器输出第二发射/接收序列,控制换能器向感兴趣区域发射第二超声波并获取第二超声回波信号(S540);基于不同的机械振动下感兴趣区域的第二超声回波信号获取并显示感兴趣区域的弹性参数和粘性参数(S550)。该方法和装置能够有效提高测量结果的准确性和稳定性。

Description

超声粘弹性测量方法、装置和存储介质
说明书
技术领域
本申请涉及瞬时弹性测量技术领域,更具体地涉及一种超声粘弹性测量方法、装置和存储介质。
背景技术
肝纤维化是各种慢性肝脏疾病向肝硬化发展的病理过程,临床中,通过瞬时弹性技术(Transient Elastography,TE)检测肝脏硬度值,从而反映肝纤维化程度。相对于有创的肝脏活检病理学检测,瞬时弹性具有无创、简便、快速、易于操作、可重复性、安全性和耐受性好的特点,目前已称为相关肝纤维化临床评估的重要手段。
瞬时弹性成像主要通过外部振动,如电机振动,在组织中产生剪切波,通过超声回波观察剪切波在组织中传播过程并检测剪切波的传播速度,并进一步估算组织的弹性模量,从而反映肝组织纤维化程度。现有的瞬时弹性成像方法的外部振动是固定激励,这种激励是将被测试对象看作是符合理想弹性模型。然而,多数生物组织在形变过程中弹性和粘性往往是共存的,即不符合理想弹性模型,因此这样的瞬时弹性成像方法将导致测量结果不准确。
发明内容
本申请提供一种超声粘弹性测量方案,其基于不同激励的外部振动对目标进行超声粘弹性测量,能够有效提高测量结果的准确性和稳定性。下面简要描述本申请提出的超声粘弹性测量方案,更多细节将在后续结合附图在具体实施方式中加以描述。
本申请一方面,提供了一种超声粘弹性测量方法,所述方法包括:向超声探头的换能器输出第一发射/接收序列,控制所述换能器向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波 获取第一超声回波信号;基于所述第一超声回波信号生成超声图像并进行显示,并获取所述超声图像上的感兴趣区域;向所述超声探头的振动器输出不同的驱动信号,由所述振动器驱动所述换能器基于至少两个不同的振动信号对所述目标对象实施不同的机械振动;向所述换能器输出第二发射/接收序列,控制所述换能器向所述感兴趣区域发射第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;以及基于所述不同的机械振动下所述感兴趣区域的所述第二超声回波信号获取并显示所述感兴趣区域的弹性参数和粘性参数。
本申请另一方面,提供了一种超声粘弹性测量方法,所述方法包括:获取目标对象的组织图像并进行显示;检测用户在所述组织图像上选择的感兴趣区域;基于至少两个不同的振动信号对所述目标对象施加不同的机械振动,以在所述感兴趣区域内产生剪切波;在产生机械振动后向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;以及基于所述不同的机械振动下所述感兴趣区域的所述超声回波信号获取并显示所述感兴趣区域的弹性参数和粘性参数的至少一个。
本申请再一方面,提供了一种超声粘弹性测量方法,所述方法包括:基于至少两个不同的振动信号对目标对象施加不同的机械振动;向所述目标对象发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;以及基于所述不同的机械振动下所述目标对象的超声回波信号获取所述目标对象的弹性参数和粘性参数。
本申请又一方面,提供了一种超声粘弹性测量装置,所述装置包括:超声探头,所述超声探头包括振动器和换能器,所述振动器用于驱动所述换能器振动,所述振动产生向目标对象内部纵深方向传播的剪切波;所述换能器包括多个阵元,所述阵元中的至少部分用于在所述换能器振动前向所述目标对象发射第一超声波、接收所述第一超声波的回波、并基于所述第一超声波的回波获取第一超声回波信号,至少在所述换能器振动后向所述目标对象的感兴趣区域发射第二超声波、接收所述第二超声波的回波、并基于所述第二超声波的回波获取第二超声回波信号;发射/接收序列控制器,用于在所述换能器振动前向所述换能器输出第一发射/接收序列,控制 所述换能器发射第一超声波、接收所述第一超声波的回波、并基于所述第一超声波的回波获取第一超声回波信号,在所述感兴趣区域确定后向所述振动器输出不同的驱动信号,控制所述振动器驱动所述换能器基于至少两个不同的振动信号对所述目标对象实施不同的机械振动,并至少在所述换能器振动后向所述换能器输出第二发射/接收序列,控制所述换能器发射第二超声波、接收所述第二超声波的回波、并基于所述第二超声波的回波获取第二超声回波信号;处理器,用于基于所述第一超声回波信号生成超声图像,获取所述超声图像上的感兴趣区域,并基于所述不同的机械振动下所述感兴趣区域的所述第二超声回波信号获取所述感兴趣区域的弹性参数和粘性参数;以及显示设备,用于显示所述感兴趣区域的弹性参数和粘性参数。
本申请再一方面,提供了一种超声粘弹性测量装置,所述装置包括:超声探头,所述超声探头包括振动器和换能器,所述振动器用于驱动所述换能器振动,所述振动产生向目标对象内部纵深方向传播的剪切波;所述换能器包括一个或多个阵元,所述阵元中的至少部分用于至少在所述换能器振动后向所述目标对象的感兴趣区域发射超声波、接收所述超声波的回波、并基于所述超声波的回波获取超声回波信号;发射/接收序列控制器,用于在所述感兴趣区域确定后向所述振动器输出不同的驱动信号,控制所述振动器驱动所述换能器基于至少两个不同的振动信号对所述目标对象实施不同的机械振动,并至少在所述换能器振动后向所述换能器输出发射/接收序列,控制所述换能器发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;处理器,用于获取所述目标对象的组织图像,获取所述组织图像上的感兴趣区域,并基于所述不同的机械振动下所述感兴趣区域的所述超声回波信号获取所述感兴趣区域的弹性参数和粘性参数;以及人机交互设备,用于检测用户在所述组织图像上选择的所述感兴趣区域,并显示所述感兴趣区域的弹性参数和粘性参数。
本申请又一方面,提供了一种超声粘弹性测量装置,所述装置包括:包括振动器、超声探头、扫描控制器以及处理器,其中:所述振动器用于基于至少两个不同的振动信号对目标对象施加不同的机械振动;所述扫描控制器用于激励所述超声探头向所述目标对象发射超声波,接收所述超声 波的回波,并基于所述超声波的回波获取超声回波信号;所述处理器用于基于所述不同的机械振动下所述目标对象的超声回波信号获取所述目标对象的弹性参数和粘性参数。
本申请再一方面,提供了一种超声粘弹性测量装置,所述装置包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行上述超声粘弹性测量方法。
本申请又一方面,提供了一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行上述超声粘弹性测量方法。
根据本申请实施例的超声粘弹性测量方法、装置和存储介质基于不同激励的外部振动对目标对象进行超声粘弹性测量,能够获取目标对象的感兴趣区域的弹性参数和粘性参数,解决了采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高了测量结果的准确性和稳定性。
附图说明
图1示出瞬时弹性成像方法的示意图。
图2示出纯弹性模型不同激励下弹性测值的“频散”现象示意图。
图3示出粘弹性模型不同激励下的弹性测值和粘性测值的示意图。
图4示出粘弹性简化模型的示意图。
图5示出根据本申请一个实施例的超声粘弹性测量方法的示意性流程图。
图6示出根据本申请实施例的超声粘弹性测量方法中对目标对象实施多次测量的流程示意图。
图7示出根据本申请另一个实施例的超声粘弹性测量方法的示意性流程图。
图8示出根据本申请再一个实施例的超声粘弹性测量方法的示意性流程图。
图9示出根据本申请一个实施例的超声粘弹性测量装置的示意性框图。
图10示出根据本申请另一个实施例的超声粘弹性测量装置的示意性框图。
图11示出根据本申请再一个实施例的超声粘弹性测量装置的示意性框 图。
图12示出根据本申请实施例的超声粘弹性测量装置实施超声粘弹性测量时的系统框架示意图。
图13示出根据本申请又一个实施例的超声粘弹性测量装置的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
瞬时弹性成像主要通过外部振动,如电机振动,在组织中产生剪切波,通过超声回波观察剪切波在组织中传播过程并检测剪切波的传播速度,并进一步估算组织的弹性模量,其主要原理如图1所示。在图1所示的环节中,外部振动相当于剪切波的“信号源”,其激励产生的组织中传播的剪切波对最终弹性测量结果起到决定性的作用。现有瞬时弹性成像方案中,外部振动是固定激励,这种激励不仅对测试条件有一点要求,而且对测试对象也存在一定假设,即被测试对象符合理想弹性模型。
力学模型中包括弹性和粘性两个方面。理想弹性模型中应力服从虎克定律,应力只取决于应变,外力去除后应变恢复,相应物质称为虎克固体。理想粘性模型中应力服从牛顿流体定律,应力只取决于应变速率,应变随时间变化,外力去除后形变不可恢复,相应物质称为牛顿液体。而多数物质,包括生物体软组织,在形变过程中弹性和粘性往往是共存的,应力同时依赖于形变和形变速度,具备固、液二性,介于理想弹性和理想粘性之间,这种特性称为粘弹性(viscoelasticity)。
对于瞬时弹性临床应用而言,现有瞬时弹性成像方案仅关注弹性测量,然而,生物组织的粘性亦能提供大量组织信息。
对于瞬时弹性测量而言,现有瞬时弹性成像方案中将测试对象(如肝脏)视为理想弹性模型,这导致在不同激励的外部振动下,弹性测值结果出现较为明显的差异并呈现一定规律,这种现象称为“频散”,如图2所示。造成这种现象的原因就是模型过于理想,与实际情形不匹配,在一定程度上增加了测量结果的不稳定性。申请人发现,若将采用粘弹性模型,可见弹性和粘性在不同激励下均呈现较为稳定的表现,如图3所示。
在理想弹性模型下,弹性测量通常只和相位信息有关,弹性系数μ和剪切波速度ν通常可以简单地表示为如下的公式(1):
μ=3ρν 2    公式(1)
其中,ρ为密度。
粘弹性的测量除了关注剪切波的相位信息外,还需要剪切波的幅度信息,其可以有两种简化模型,如图4的(A)和(B)所示的。该两种模型的弹性系数μ和粘性系数η与剪切波的速度ν和衰减α理想条件下在不同频率ω的关系可分别表示为下面的公式(2)和公式(3):
Figure PCTCN2019128399-appb-000001
Figure PCTCN2019128399-appb-000002
无论何种模型,通过多个频率的剪切波信息,均可以估算出相应粘性系数和弹性系数。
针对上文的描述,本申请提供一种超声粘弹性测量方案,其基于不同激励的外部振动对目标进行超声粘弹性测量,能够有效提高测量结果的准确性和稳定性。下面参照附图5到附图13对本申请的超声粘弹性测量方案进行详细描述。
图5示出根据本申请一个实施例的超声粘弹性测量方法500。如图5所示,超声粘弹性测量方法500可以包括如下步骤:
在步骤S510,向超声探头的换能器输出第一发射/接收序列,控制换能器向目标对象发射第一超声波,接收第一超声波的回波,并基于第一超声波的回波获取第一超声回波信号。
在本申请的实施例中,向超声探头的换能器输出的第一发射/接收序列是以获得超声图像为目的。基于第一发射/接收序列,超声探头的换能器向目标对象(例如生物组织)发射第一超声波,并将接收到第一超声波的回波变换为电信号,即获取第一超声回波信号。应注意,本文中的“第一发射/接收序列”、“第一超声波”以及“第一超声回波信号”仅是为了与下文中将描述的“第二发射/接收序列”、“第二超声波”以及“第二超声回波信号”彼此区分而如此命名,并无任何限制性意义。
在步骤S520,基于第一超声回波信号生成超声图像并进行显示,并获取超声图像上的感兴趣区域。
在本申请的实施例中,基于步骤S510获取的第一超声回波信号,可以对其进行处理以生成超声图像数据,诸如B图像数据、C图像数据或者两者的叠加。基于生成的超声图像数据,可以获得超声图像。在一个示例中,可以基于相关的算法在超声图像上自动检测目标对象的感兴趣区域(例 如待测量粘弹性的肝脏区域),以获取感兴趣区域。在另一个示例中,也可以将超声图像显示出来,由用户来手动选择超声图像上目标对象的感兴趣区域,并检测用户输入,以获取用户选择的感兴趣区域。在其他示例中,还可以通过半自动检测的方式来获取感兴趣区域。其中,半自动检测可以为:首先由用户选择大致的区域,再基于一定的算法在用户选择的大致区域内自动检测更精确的区域,以获取感兴趣区域;或者,首先基于一定的算法自动检测超声图像上的感兴趣区域,再由用户对该感兴趣区域进行修改或校正,以获取更为精确的感兴趣区域。
在步骤S530,向超声探头的振动器输出不同的驱动信号,由振动器驱动换能器基于至少两个不同的振动信号对目标对象实施不同的机械振动。
在本申请的该实施例中,以超声探头本身包括振动器为例来进行描述,但应理解,振动器还可以与超声探头是彼此独立的装置。当超声探头本身包括振动器时,可以向超声探头的振动器输出用于驱动振动器振动的驱动信号以实施粘弹性测量。在本申请的实施例中,不采用固定驱动信号(即固定激励)来驱动振动器实施测量,而是采用不同的驱动信号来驱动振动器实施测量。对振动器输出的不同的驱动信号使得振动器至少基于两个不同的振动信号对目标对象实施不同的机械振动。示例性地,振动信号之间的不同可以表现为:不同的振动信号彼此之间的振动波形是不同的;不同的振动信号彼此之间的频率是不同的;或者其他任何可能的不同。采用不同的驱动信号来驱动振动器实施粘弹性测量,可以使得振动器在不同的振动信号下进行不同的机械振动,从而可以获得不同机械振动下目标对象感兴趣区域的剪切波数据,进而基于不同机械振动下目标对象感兴趣区域的剪切波数据可以获得稳定的、准确度更高的弹性测量结果和粘性测量结果。
在步骤S540,向换能器输出第二发射/接收序列,控制换能器向感兴趣区域发射第二超声波,接收第二超声波的回波,并基于第二超声波的回波获取第二超声回波信号。
在本申请的实施例中,向超声探头的换能器输出的第二发射/接收序列是以检测感兴趣区域的粘弹性结果为目的。基于第二发射/接收序列,超声探头的换能器向目标对象发射第二超声波,并将接收到第二超声波的回波变换为电信号,即获取第二超声回波信号。如前所述的,本文中的“第二 发射/接收序列”、“第二超声波”以及“第二超声回波信号”仅是为了与上文中描述的“第一发射/接收序列”、“第一超声波”以及“第一超声回波信号”彼此区分而如此命名,并无任何限制性意义。
在本申请的实施例中,换能器可以是在振动器产生机械振动后再输出第二发射/接收序列,对感兴趣区域进行超声扫描。其他示例中,换能器也可以是在振动器产生机械振动前,例如在确定感兴趣区域后就开始输出第二发射/接收序列,开始对感兴趣区域进行超声扫描。其他示例中,换能器也可以是在振动器产生机械振动的同时,输出第二发射/接收序列。
在步骤S550,基于不同的机械振动下感兴趣区域的第二超声回波信号获取并显示感兴趣区域的弹性参数和粘性参数。
在本申请的实施例中,可以对不同机械振动下感兴趣区域的第二超声回波信号分别进行处理,以得到不同机械振动下感兴趣区域的弹性测值和粘性测值,并基于这些弹性测值和粘性测值得到感兴趣区域最终的弹性测量结果(即弹性参数)和粘性测量结果(即粘性参数)。例如,可以根据需要,将所有弹性测值的平均值、加权平均值、任一值、最小值、最大值、任意多个值的平均值等作为最终的弹性测量结果。类似地,例如,可以根据需要,将所有粘性测值的平均值、加权平均值、任一值、最小值、最大值、任意多个值的平均值等作为最终的粘性测量结果。或者,直接将这些弹性测值和粘性测值作为最终的粘弹性测量结果。
例如,振动器输出M次(M≥2)不同的机械振动,基于每次机械振动下感兴趣区域的第二超声回波信号可计算得到一个弹性检测数据和一个粘性检测数据,重复M次基于第二超声回波信号的计算可得到多个弹性检测数据和多个粘性检测数据。在本申请的实施例中,可以计算多个弹性检测数据的统计结果,将统计结果值作为弹性测值,例如可计算多个弹性检测数据的平均值、加权平均值、任一值、最小值、最大值、任意多个值的平均值等。在本申请的实施例中,可以基于多个粘性检测数据的至少两个粘性检测数据,计算粘性测值;例如可结合图3中粘性的图例,基于至少两个粘性检测数据确定斜率,将该斜率值作为粘性测值。在一些示例中,也可以基于至少两个粘性检测数据计算粘性检测数据之间的差值或比值,将差值或比值作为粘性测值。
下面详细描述基于上述方法在不同示例中的粘弹性测量过程。
在一个示例中,可以对目标对象实施一次测量,该次测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括基于多个不同的振动信号对应的多个超声回波信号计算一组弹性测值和粘性测值,从而可以基于该组弹性测值和粘性测值分别获得弹性参数和粘性参数。在本申请的实施例中,可以从临床操作的角度将“一次测量”定义为用户按一次按键或输入一次指令或者其他一次操作所实施的测量。基于此,在该示例中,用户仅需简单操作即可获得一组弹性参数和粘性参数的测量结果。
在另一个示例中,可以对目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到多组弹性参数和粘性参数。在该示例中,用户仍然仅需按键一次或以其他方式输入指令一次,不同于上一个示例的是,该次测量中包括多组子测量,直接将基于多组子测量得到的多组弹性测值和多组粘性测值作为粘弹性测量结果,因此可以获得多组弹性参数和粘性参数的测量结果。
在另一个示例中,可以对目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到。在该示例中,用户仍然仅需按键一次或以其他方式输入指令一次,不同于上一个示例的是,该次测量中包括多组子测量,该示例中的粘弹性结果是基于多组弹性测值和多组粘性测值进一步计算得到,所得到的弹性参数和粘性参数的测量结果更为准确。
示例性地,多组子测量可以为一次测量中连续实施的多组子测量。该连续实施指在前一组子测量完成后,间隔预定时间后自动启动下一组子测量,无需用户在两组子测量之间再次输入启动指令。示例性地,多组子测 量的每组子测量中可对目标对象施加相同次数的机械振动。示例性地,多组子测量的每组子测量可基于相同的驱动信号产生一组不同的振动信号。每组子测量中对目标对象施加相同次数的机械振动和/或基于相同的驱动信号产生一组不同的振动信号可以使得每组子测量在相同的外界条件下进行测量,从而能够得到更为准确的测量结果。
在其他示例中,在对目标对象实施多组子测量的过程中,每组子测量所采用的振动信号的数量和/或波形可以是不同的。示例性地,在对目标对象实施每组子测量的过程中,多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。一般地,驱动信号和实际振动波形是不相等的,在理想模型下两者之间可以是微分关系。
在再一个示例中,可以对目标对象实施多次测量,每次测量均基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于每次测量的多个不同的振动信号对应的多个超声回波信号计算得到多组所述弹性参数和所述粘性参数。即,每次测量均输出一组弹性参数和粘性参数的测量结果。在该示例中,可以从临床操作的角度将“多次测量”定义为用户按多次按键或输入多次指令或者其他多次操作所实施的测量。基于此,在该示例中,用户需要多次操作方可获得多组弹性测值和粘性测值,并基于多组弹性测值和多组粘性测值获得最终的多组弹性参数和粘性参数。
在再一个示例中,可以对目标对象实施多次测量,每次测量均基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算弹性参数和粘性参数,每组弹性测值和粘性测值是基于每次测量得到的多个超声回波信号计算得到。在本申请的实施例中,可以从临床操作的角度将“多次测量”定义为用户按多次按键或输入多次指令或者其他多次操作所实施的测量。基于此,在该示例中,用户需要多次操作方可获得多组弹性测值和粘性测值,并基于多组弹性测值和多组粘性测值获得最终的弹性参数和粘性参数。可以结合图6理解上述的多次测 量的过程。在图6中,示例性地示出了执行N次测量(其中N为自然数),每个测量采用M个振动波形(其中M为自然数),最终得到N组弹性测值和粘性测值,通过对测值进行统计,可以得到最终的测量结果。
示例性地,在对目标对象实施多次测量的过程中,每次测量所采用的振动信号的数量和/或波形可以是不同的。示例性地,在对目标对象实施每次测量的过程中,多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。一般地,驱动信号和实际振动波形是不相等的,在理想模型下两者之间可以是微分关系。
在再一个示例中,可以对目标对象实施多次测量,每次测量均基于单个振动信号对目标对象施加机械振动,且多次测量下每次测量的振动信号不同,每次测量的振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于多次测量的多个不同的振动信号对应的多个超声回波信号计算得到一组弹性参数和所述粘性参数。在本申请的实施例中,可以从临床操作的角度将“多次测量”定义为用户按多次按键或输入多次指令或者其他多次操作所实施的测量。基于此,在该示例中,用户需要多次操作方可获得一组弹性测值和粘性测值,并基于该一组弹性测值和粘性测值获得最终的弹性参数和粘性参数,例如将该组弹性测值和粘性测值作为弹性参数和粘性参数。
在本申请的实施例中,可以基于接收到用户输入的至少包括粘弹性测量的指令而对目标对象实施每次测量,也可以是基于其他预设条件实施每次测量。此外,示例性地,在每次测量中,可以在基于一个振动信号对目标对象进行机械振动并获取相应的超声回波信号后,冷却预定时间后再基于另一个振动信号对目标对象进行机械振动,这样可以获得更为准确的测量结果。
在本申请的进一步的实施例中,可以将获取的弹性测量结果和粘性测量结果显示出来。示例性地,可以将每一组弹性测值和粘性测值显示出来,也可以仅将基于弹性测值和粘性测值计算得到的弹性测量结果和粘性测量结果显示出来。进一步地,可以在显示感兴趣区域的弹性参数和粘性参数的同时,显示超声图像。超声图像可以是基于第一超声回波信号生成的或 者是基于第二超声回波信号生成的。超声图像可以是在粘弹性测量的过程中实时获取的图像,也可以是在粘弹性测量过程中每间隔一定时间获取的图像,也可以是在每次粘弹性测量前获取后不再更新的非实时图像。例如,可以将感兴趣区域的弹性参数/弹性测值和粘性参数/粘性测值显示在超声图像中的合适位置(例如右下角或者感兴趣区域中等)处。例如,可以将感兴趣区域的弹性参数/弹性测值和粘性参数/粘性测值显示在显示器上靠近图像的非图像区域,例如与超声图像并排显示。
以上示例性地示出了根据本申请一个实施例的超声粘弹性测量方法500。基于上面的描述,根据本申请实施例的超声粘弹性测量方法500基于不同激励的外部振动对目标对象进行超声粘弹性测量,能够获取目标对象的感兴趣区域的弹性参数和粘性参数,解决了采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高了测量结果的准确性和稳定性。
下面参照附图7描述根据本发明另一个实施例的超声粘弹性测量方法。图7示出了根据本发明另一个实施例的超声粘弹性测量方法700的示意性流程图。如图7所示,超声粘弹性测量方法700可以包括如下步骤:
在步骤S710,获取目标对象的组织图像并进行显示。
在步骤S720,检测用户在所述组织图像上选择的感兴趣区域。
在步骤S730,基于至少两个不同的振动信号对目标对象施加不同的机械振动,以在感兴趣区域内产生剪切波。
在步骤S740,在产生机械振动后向感兴趣区域发射超声波,接收超声波的回波,并基于超声波的回波获取超声回波信号。
在步骤S750,基于不同的机械振动下感兴趣区域的超声回波信号获取并显示感兴趣区域的弹性参数和粘性参数的至少之一。
在参考图7描述的根据本申请另一个实施例的超声粘性和/或弹性测量方法700与参考图5描述的根据本申请实施例的超声粘弹性测量方法500大体上类似,仅有一些细微的不同之处,为了简洁,此处不再赘述相同的细节内容。在参考图7描述的实施例中,目标对象的组织图像可以是超声图像、MRI图像、CT图像等任一种可以反映组织结构的图像;目标对象的组织图像可以是实时采集的,也可以从超声成像系统的存储介质或其他外部设备的存储介质获取的。此外,在参考图7描述的实施例中,基于用 户输入获取组织图像上的感兴趣区域,以用于在感兴趣区域内产生剪切波。在参考图7描述的实施例中,可实施该实施例的超声探头可以是单阵元,步骤S740中获得的超声回波信号对应可以为M数据;可实施该实施例的超声探头也可以是多阵元,步骤S740中获得的超声回波信号对应可以为M数据或B数据。在参考图7描述的实施例中,仍然是基于不同的振动信号对目标对象进行超声粘弹性测量,能够解决采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高测量结果的准确性和稳定性。其中,步骤S750可以仅计算弹性参数或粘性参数,也可以在计算弹性参数和粘性参数后仅显示两者之一。其中,不同的振动信号是基于不同的驱动信号产生的。示例性地,不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位、周期数。示例性地,不同的振动信号彼此的振动波形不同。示例性地,不同的振动波形彼此之间的频率不同。
下面参照附图8描述根据本发明再一个实施例的超声粘弹性测量方法。图8示出了根据本发明另一个实施例的超声粘弹性测量方法800的示意性流程图。如图8所示,超声粘弹性测量方法800可以包括如下步骤:
在步骤S810,基于至少两个不同的振动信号对目标对象施加不同的机械振动。
在步骤S820,向目标对象发射超声波,接收超声波的回波,并基于超声波的回波获取超声回波信号。
在步骤S830,基于不同的机械振动下目标对象的超声回波信号获取目标对象的弹性参数和粘性参数的至少一个。
在参考图8描述的根据本申请另一个实施例的超声粘弹性测量方法800与参考图5描述的根据本申请实施例的超声粘弹性测量方法500中的核心思想是类似的,均是基于不同的振动信号对目标对象进行超声粘弹性测量。在参考图8描述的实施例中,不限定目标对象的感兴趣区域的获取方式,可以通过任何合适的方式获取目标对象的感兴趣区域以对其实施上述粘弹性测量。
示例性地,在步骤S810所述的不同的振动信号是基于不同的驱动信号产生的,不同的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。示例性地,不同的振动信号彼此的振动波形不同。示 例性地,不同的振动波形彼此之间的频率不同。
在一个示例中,可以对目标对象实施一次测量,该次测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取目标对象的弹性参数和粘性参数包括:基于多个不同的振动信号对应的多个超声回波信号计算一组弹性参数和粘性参数。在本申请的实施例中,可以从临床操作的角度将“一次测量”定义为用户按一次按键或输入一次指令或者其他一次操作所实施的测量。基于此,在该示例中,用户仅需简单操作即可获得一组弹性参数和粘性参数的测量结果。
在另一个示例中,可以对目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取目标对象的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到;或者基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到多组弹性参数和所述粘性参数。在该示例中,用户仍然仅需按键一次或以其他方式输入指令一次,不同于上一个示例的是,该次测量中包括多组子测量,直接将基于多组子测量得到的多组弹性测值和多组粘性测值作为粘弹性测量结果时,可以获得多组弹性参数和粘性参数的测量结果;基于多组子测量得到的多组弹性测值和粘性测值进一步计算粘弹性测量结果时,可以提高弹性参数和粘性参数的计算准确度。
示例性地,多组子测量为一次测量中连续实施的多组子测量。示例性地,多组子测量的每组子测量中对所述目标对象施加相同次数的机械振动。示例性地,多组子测量的每组子测量基于相同的驱动信号产生一组不同的振动信号。
在再一个示例中,可以对目标对象实施多次测量,每次测量均基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于每次测量的多个不同的振动信号对应的多个超声回波信号计算得到多组所述弹性参数和所述粘性参数。即,每次测量均输出一组弹性参数和粘性参数的测量 结果。在该示例中,可以从临床操作的角度将“多次测量”定义为用户按多次按键或输入多次指令或者其他多次操作所实施的测量。基于此,在该示例中,用户需要多次操作方可获得多组弹性测值和粘性测值,并基于多组弹性测值和多组粘性测值获得多组弹性参数和粘性参数。
在再一个示例中,可以对目标对象实施多次测量,每次测量均基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算弹性参数和粘性参数,每组弹性测值和粘性测值是基于每次测量得到的多个超声回波信号计算得到。在本申请的实施例中,可以从临床操作的角度将“多次测量”定义为用户按多次按键或输入多次指令或者其他多次操作所实施的测量。基于此,在该示例中,用户需要多次操作方可获得多组弹性测值和粘性测值,并基于多组弹性测值和多组粘性测值获得最终的弹性参数和粘性参数。
示例性地,在对目标对象实施多次测量的过程中,每次测量所采用的振动信号的数量和/或波形是不同的。示例性地,弹性参数等于多个弹性测值的部分或全部的平均值/加权平均值或等于多个弹性测值中的其中一个值,所述粘性参数等于多个粘性测值的部分或全部的平均值/加权平均值或等于多个粘性测值中的其中一个值。
示例性地,在对目标对象实施每次测量的过程中,多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。
示例性地,可以基于接收到用户输入的至少包括粘弹性测量的指令而对目标对象实施每次测量,也可以是基于其他预设条件实施每次测量。示例性地,在每次测量中,可以在基于一个振动信号对目标对象进行机械振动并获取相应的超声回波信号后,冷却预定时间后再基于另一个振动信号对目标对象进行机械振动。
示例性地,在本申请的该实施例中,可以显示弹性参数和粘性参数的至少一个;或者显示多组弹性测值和粘性测值以及弹性参数和粘性参数。示例性地,在本申请的该实施例中,还可以基于步骤S820获取的超声回波 信号生成并显示超声图像。
以上示例性地示出了根据本发明实施例的超声粘弹性测量方法。总体上,这些方法基于不同激励的外部振动对目标对象进行超声粘弹性测量,能够获取目标对象的感兴趣区域的弹性参数和粘性参数,解决了采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高了测量结果的准确性和稳定性。
下面结合图9到图13描述根据本申请实施例的超声粘弹性测量装置,其可以用于实施上文中所述的根据本发明实施例的超声粘弹性测量方法。
图9示出了根据本申请一个实施例的超声粘弹性测量装置900的示意性框图。如图9所示,超声粘弹性测量装置900可以包括发射/接收序列控制器910、超声探头920、处理器930和显示设备940。根据本申请实施例的超声粘弹性测量装置900可以用于执行上文中描述的根据本申请实施例的超声粘弹性测量方法500/600/700。
具体地,超声探头920包括振动器和换能器(未示出),振动器用于驱动换能器振动,振动激励下产生向目标对象内部纵深方向传播的剪切波;换能器可包括多个阵元,阵元中的至少部分用于在换能器振动前向目标对象发射第一超声波、接收第一超声波的回波、并基于第一超声波的回波获取第一超声回波信号,在换能器振动后向目标对象的感兴趣区域发射第二超声波、接收第二超声波的回波、并基于第二超声波的回波获取第二超声回波信号。发射/接收序列控制器910用于在换能器振动前向换能器输出第一发射/接收序列,控制换能器发射第一超声波、接收第一超声波的回波、并基于第一超声波的回波获取第一超声回波信号,在感兴趣区域确定后向振动器输出不同的驱动信号,控制振动器驱动换能器基于至少两个不同的振动信号对目标对象实施不同的机械振动,并至少在换能器振动后向换能器输出第二发射/接收序列,控制换能器发射第二超声波、接收第二超声波的回波、并基于第二超声波的回波获取第二超声回波信号。处理器930用于基于第一超声回波信号生成超声图像,获取超声图像上的感兴趣区域,并基于不同的机械振动下感兴趣区域的第二超声回波信号获取感兴趣区域的弹性参数和粘性参数。显示设备940用于显示感兴趣区域的弹性参数和粘性参数。
在本申请的实施例中,超声探头920的振动器安装在超声探头920上,例如安装在超声探头920的外壳上,或者设置在超声探头920的外壳内,和换能器以及其他探头部件组装成一体式的超声探头。发射/接收序列控制器910可以输出驱动信号控制振动器,振动器自身可以根据振动序列振动并带动换能器振动,或者振动器自身不振动,而是通过伸缩部件来驱动换能器振动。该振动在超声探头920接触到目标对象时导致目标对象产生形变,并产生内目标对象内部纵深方向传播的剪切波。
在本申请的实施例中,超声探头920的换能器包括阵列式排布的多个阵元。多个阵元排列成一排构成线阵;或排布成二维矩阵构成面阵;多个阵元也可以构成凸阵列。阵元用于根据激励电信号发射超声波,或将接收的超声波变换为电信号。因此每个阵元可用于向感兴趣区域的生物组织发射超声波,也可用于接收经组织返回的超声波回波。在进行超声检测时,可通过发射/接收序列控制器910控制哪些阵元用于发射超声波,哪些阵元用于接收超声波,或者控制阵元分时隙用于发射超声波或接收超声波。参与超声波发射的阵元可以同时被电信号激励,从而同时发射超声波;或者参与超声波束发射的阵元也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
在本申请的实施例中,发射/接收序列控制器910用于产生发射序列和接收序列,发射序列用于控制多个阵元中的部分或者全部向目标对象发射超声波,发射序列参数包括发射用的阵元位置、阵元数量和超声波发射参数(例如幅度、频率、发波次数、发射间隔、发波角度、波形、聚焦位置等)。接收序列用于控制多个阵元中的部分或者全部接收超声波经组织后的回波,接收序列参数包括接收用的阵元位置、阵元数量以及回波的接收参数(例如接收的角度、深度等)。对超声回波的用途不同或根据超声回波生成的图像不同、检测类型不同,发射序列中的超声波参数和接收序列中的回波参数也有所不同。
在本申请的实施例中,发射/接收序列控制器910向超声探头920的换能器输出的发射/接收序列包括第一发射/接收序列和第二发射/接收序列。其中,第一发射/接收序列是以获得超声图像为目的,即超声波发射参数和接收参数是根据生成超声图像的要求而确定,第一发射/接收序列可以在换 能器震动之前输出,也可以在换能器振动之后输出,用于控制换能器发射第一超声波和接收第一超声波的回波。第二发射/接收序列以检测感兴趣区域的粘弹性结果为目的,即超声波发射参数和接收参数是根据检测感兴趣区域的瞬粘弹性结果的要求而确定,比如超声波发射角度、接收角度和深度、发射频率等参数将根据感兴趣区域确定。发射/接收序列控制器910在换能器振动后向换能器输出第二发射/接收序列,用于控制换能器发射第二超声波和接收第二超声波的回波。
进一步地,在本申请的实施例中,超声粘弹性测量装置900还可以包括发射电路和接收电路(未示出),其可以连接在超声探头920和发射/接收序列控制器910之间,用于将发射/接收序列控制器910输出的发射/接收序列传输给超声探头920。此外,超声粘弹性测量装置900还可以包括回波处理模块(未示出),接收电路还可以用于将超声探头920接收的超声回波传输至回波处理模块。回波处理模块用于对超声回波进行处理,例如对超声回波进行滤波、放大、波束合成等处理。在本申请的实施例中的超声回波可以包括用于检测瞬时粘弹性的第二超声波的回波,也包括用于生成超声图像的第一超声波的回波。超声图像例如可以是B图像或C图像,或者两者的叠加。回波处理模块也可以包括在处理器930中。
在本申请的实施例中,处理器930基于回波处理模块处理后的回波信号或者基于超声探头920获取的超声回波信号采用相应算法得到所需要的参数或图像。在本申请的实施例中,处理器930对第一超声回波信号进行处理,以生成超声图像数据。此外,处理器930对第二超声回波信号进行处理,以计算感兴趣区域的粘弹性结果。
在本申请的实施例中,采用不同的驱动信号来驱动振动器振动,从而实施粘弹性测量。对振动器输出的不同的驱动信号使得振动器至少基于两个不同的振动信号对目标对象实施不同的机械振动。示例性地,振动信号之间的不同可以表现为:不同的振动信号彼此之间的振动波形是不同的;不同的振动信号彼此之间的频率是不同的;或者其他任何可能的不同。采用不同的驱动信号来驱动振动器,可以使得振动器在不同的振动信号下进行不同的机械振动,从而可以获得不同机械振动下目标对象感兴趣区域的剪切波数据,因此基于不同机械振动下目标对象感兴趣区域的剪切波数据 可以获得稳定的、准确度更高的弹性和粘性测量结果。
在一个示例中,处理器930可以控制对目标对象实施一次测量,该次测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括基于多个不同的振动信号对应的多个超声回波信号计算一组弹性测值和粘性测值,从而可以基于该组弹性测值和粘性测值分别获得弹性参数和粘性参数。在本申请的实施例中,可以从临床操作的角度将“一次测量”定义为用户按一次按键或输入一次指令或者其他一次操作所实施的测量。基于此,在该示例中,用户仅需简单操作即可获得一组弹性参数和粘性参数的测量结果。
在另一个示例中,处理器930可以控制对目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到多组弹性参数和所述粘性参数。在该示例中,用户仍然仅需按键一次或以其他方式输入指令一次,不同于上一个示例的是,该次测量中包括多组子测量,直接将基于多组子测量得到的多组弹性测值和多组粘性测值作为粘弹性测量结果,因此可以获得多组弹性参数和粘性参数的测量结果。
在另一个示例中,处理器930可以控制对目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到。在该示例中,用户仍然仅需按键一次或以其他方式输入指令一次,不同于上一个示例的是,该次测量中包括多组子测量,该示例中的粘弹性结果是基于多组弹性测值和多组粘性测值进一步计算得到,所得到的弹性参数和粘性参数的测量结果更为准确。
示例性地,多组子测量可以为一次测量中连续实施的多组子测量。该 连续实施指在前一组子测量完成后,间隔预定时间后自动启动下一组子测量,无需用户在两组子测量之间再次输入启动指令。示例性地,多组子测量的每组子测量中对目标对象施加相同次数的机械振动。示例性地,多组子测量的每组子测量基于相同的驱动信号产生一组不同的振动信号。每组子测量中对目标对象施加相同次数的机械振动和/或基于相同的驱动信号产生一组不同的振动信号可以使得每组子测量在相同的外界条件下进行测量,从而能够得到更为准确的测量结果。
在其他示例中,在对目标对象实施多组子测量的过程中,每组子测量所采用的振动信号的数量和/或波形可以是不同的。示例性地,在对目标对象实施每组子测量的过程中,多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。一般地,驱动信号和实际振动波形是不相等的,在理想模型下两者之间可以是微分关系。
在再一个示例中,处理器930可以控制对目标对象实施多次测量,每次测量均基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于每次测量的多个不同的振动信号对应的多个超声回波信号计算得到多组所述弹性参数和所述粘性参数。即,每次测量均输出一组弹性参数和粘性参数的测量结果。在该示例中,可以从临床操作的角度将“多次测量”定义为用户按多次按键或输入多次指令或者其他多次操作所实施的测量。基于此,在该示例中,用户需要多次操作方可获得多组弹性测值和粘性测值,并基于多组弹性测值和多组粘性测值获得最终的多组弹性参数和粘性参数。
在再一个示例中,处理器930可以控制对目标对象实施多次测量,每次测量均基于多个不同的振动信号对目标对象施加机械振动,每个振动信号对应于一个超声回波信号;获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每次测量得到的多个超声回波信号计算得到。在本申请的实施例中,可以从临床操作的角度将“多次测量”定义为用户 按多次按键所实施的测量。基于此,在该示例中,用户需要多次操作方可获得多组弹性测值和粘性测值,并基于多组弹性测值和多组粘性测值获得最终的弹性参数和粘性参数。
示例性地,在对目标对象实施多次测量的过程中,每次测量所采用的振动信号的数量和/或波形可以是不同的。示例性地,在对目标对象实施每次测量的过程中,多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。一般地,驱动信号和实际振动波形是不相等的,在理想模型下两者之间可以是微分关系。
在本申请的实施例中,处理器930可以基于接收到用户输入的至少包括粘弹性测量的指令而对目标对象实施每次测量,也可以是基于其他预设条件实施每次测量。此外,示例性地,在每次测量中,可以在基于一个振动信号对所述目标对象进行机械振动并获取相应的超声回波信号后,冷却预定时间后再基于另一个振动信号对所述目标对象进行机械振动,这样可以获得更为准确的测量结果。
在本申请的实施例中,显示设备940可以基于处理器930生成的超声图像数据显示超声图像。用户可以基于输入设备(未示出)来手动选择超声图像上目标对象的感兴趣区域。或者,处理器930可以基于相关的算法在超声图像上自动检测目标对象的感兴趣区域。或者,用户先选择大致的区域,再由处理器930基于一定的算法在用户选择的大致区域内自动检测更精确的感兴趣区域;或者,先由处理器930基于一定的算法自动检测超声图像上的感兴趣区域,再由用户对该感兴趣区域进行修改或校正,以获取更为精确的感兴趣区域。
在本申请的实施例中,显示设备940可以将获取的弹性测量结果和/或粘性测量结果显示出来。示例性地,显示设备940可以将每一组弹性测值和粘性测值显示出来,也可以仅将基于弹性测值和粘性测值计算得到的弹性参数结果和粘性参数结果显示出来。进一步地,显示设备940可以在显示感兴趣区域的弹性参数和/或粘性参数的同时,显示超声图像,超声图像是基于第一超声回波信号生成的或者是基于第二超声回波信号生成的。例如,显示设备940可以将感兴趣区域的弹性参数/测值和粘性参数/测值显 示在超声图像中的合适位置(例如右下角或者感兴趣区域中等)处,或显示在非图像区域,例如与超声图像并列显示。
以上示例性地示出了根据本申请一个实施例的超声粘弹性测量装置900。基于上面的描述,根据本申请实施例的超声粘弹性测量装置900基于不同激励的外部振动对目标对象进行超声粘弹性测量,能够获取目标对象的感兴趣区域的弹性参数和粘性参数,解决了采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高了测量结果的准确性和稳定性。
下面结合图10描述本申请另一个实施例的超声粘弹性测量装置1000的示意性框图。如图10所示,超声粘弹性测量装置1000可以包括发射/接收序列控制器1010、超声探头1020、处理器1030和人机交互设备1040。根据本申请实施例的超声粘弹性测量装置1000可以用于执行上文中跟描述的根据本申请实施例的超声粘弹性测量方法700。
具体地,超声探头1020包括振动器和换能器(未示出),振动器用于驱动换能器振动,振动激励下产生向目标对象内部纵深方向传播的剪切波;换能器包括一个或多个阵元,阵元中的至少部分用于至少在换能器振动后向目标对象的感兴趣区域发射超声波、接收超声波的回波、并基于超声波的回波获取超声回波信号。发射/接收序列控制器1010用于在感兴趣区域确定后向振动器输出不同的驱动信号,控制振动器驱动换能器基于至少两个不同的振动信号对目标对象实施不同的机械振动,并至少在换能器振动后向换能器输出发射/接收序列,控制换能器发射超声波,接收超声波的回波,并基于超声波的回波获取超声回波信号。处理器1030用于获取目标对象的组织图像,获取组织图像上的感兴趣区域,并基于不同的机械振动下所述感兴趣区域的超声回波信号获取感兴趣区域的弹性参数和粘性参数。人机交互设备1040用于检测用户在组织图像上选择的感兴趣区域,并显示感兴趣区域的弹性参数和粘性参数。
在参考图10描述的根据本申请另一个实施例的超声粘弹性测量装置1000与参考图9描述的根据本申请实施例的超声粘弹性测量装置900,仅有一些细微的不同之处,为了简洁,此处不再赘述相同的细节内容。在参考图10描述的实施例中,目标对象的组织图像可以是实时采集的,也可以从存储介质获取的。此外,在参考图10描述的实施例中,基于人机交互设 备1040检测用户在组织图像选择上的感兴趣区域,以用于在感兴趣区域内产生剪切波。人机交互设备1040并不是必需部件,也可以通过图像的自动识别等方法,在组织图像上确定感兴趣区域。
在一个实施例中,人机交互设备1040可以包括显示器和输入设备。其中,输入设备例如可以是键盘、操作按钮、鼠标、轨迹球等,也可以是与显示器集成在一起的触摸屏。当输入设备是键盘或者操作按钮时,用户可直接通过输入设备输入操作信息或操作指令。当输入设备是鼠标、轨迹球或触摸屏时,用户可以将输入设备与显示界面上的软键、操作图标、菜单选项等一起配合完成操作信息或操作指令的输入,还可以通过在显示界面上所作的标记、框定等完成操作信息的输入。操作指令可以是进入超声图像测量模式的指令,或者是进入粘弹性测量模式的指令,还可以是进入粘弹性和超声图像同时测量模式的指令。在一个实施例中,显示器和输入设备配合实现感兴趣区域的选择。例如,显示器用于在显示界面上显示超声图像,输入设备用于根据用户的操作,在超声图像上选择感兴趣区域。
此外,显示器还用于显示粘弹性测量结果。例如,在显示界面上同时显示超声图像和粘弹性测量结果,或者在检测到粘弹性结果后仅显示粘弹性测量结果,而不再显示超声图像。显示粘弹性测量结果时,可以仅显示粘性参数或弹性参数,也可以同时显示粘性参数和弹性参数。
在参考图10描述的实施例中,仍然是基于不同的振动信号对目标对象进行超声粘弹性测量,能够解决采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高测量结果的准确性和稳定性。
下面结合图11描述本申请再一个实施例的超声粘弹性测量装置1100的示意性框图。如图11所示,超声粘弹性测量装置1100可以包括振动器1110、超声探头1120、扫描控制器1130以及处理器1140。根据本申请实施例的超声粘弹性测量装置1100可以用于执行上文中描述的根据本申请实施例的超声粘弹性测量方法800。
具体地,振动器1110用于基于至少两个不同的振动信号对目标对象施加不同的机械振动。扫描控制器1130用于激励所述超声探头1120向目标对象发射超声波,接收超声波的回波,并基于超声波的回波获取超声回波信号。处理器1140用于基于不同的机械振动下目标对象的超声回波信号获取 目标对象的弹性参数和粘性参数。
在参照图11描述的实施例中,振动器1110的振动信号可以是根据不同的驱动信号产生的,不同的驱动信号可以是由振动控制器(未示出)产生的,也可以是由扫描控制器1130产生的。进一步地,超声粘弹性测量装置1100还可以包括压力传感器(未示出),压力传感器的输出端与扫描控制器1130连接,用于将感知的振动器对目标对象的压力和振动强度反馈给所述扫描控制器1130。进一步地,扫描控制器1130还用于在压力的数值处于预设范围内时控制振动器1110振动。示例性地,可以结合图12理解超声粘弹性测量装置1100的粘弹性测量过程。
在参考图11描述的实施例中,仍然是基于不同的振动信号对目标对象进行超声粘弹性测量,能够解决采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高测量结果的准确性和稳定性。
图12描述本申请再一个实施例的超声粘弹性测量装置的示意性框图。该超声粘弹性测量装置包括超声探头、前端控制及处理单元、处理器、扫描控制器和显示器。根据本申请实施例的超声粘弹性测量装置可以用于执行上文中描述的根据本申请实施例的超声粘弹性测量方法500、700或800。
超声探头可包括换能器和振动器,超声探头的换能器在扫描控制器的控制下向目标对象发射超声波,接收超声波的回波,并基于超声波的回波获取超声回波信号。振动器用于在扫描控制器的控制下基于至少两个不同的振动信号对目标对象施加不同的机械振动,从而在目标对象的感兴趣区域内产生剪切波。扫描控制器可包括发射/接收序列控制器,一方面可通过输出发射/接收序列控制换能器进行超声扫描,另一方面可通过输出驱动信号控制振动器施加机械振动。具体对于发射/接收序列控制器的说明可参见前述说明,在此不再重复描述。
前端控制及处理单元可包括滤波电路、放大电路、模数转换电路、波速合成模块等,可对超声探头获得的超声回波信号进行滤波、放大、波束合成等处理。波束合成后的超声回波信号送入处理器中,处理器可根据不同的成像模式对波束合成的超声回波信号进行处理,例如处理波束合成的超声回波信号获得B图像、C图像或M图像等,处理器还可对不同机械振动下波束合成的超声回波信号进行处理,以获得感兴趣区域的粘性参数和/ 或弹性参数。
超声探头上可进一步设置压力传感器,用于检测超声探头与目标对象之间的压力,该压力可以包括测量开始前的初始压力以及测量过程中的压力,处理器可根据压力传感器输出的压力信号,判断得到的粘弹性测量结果的有效性。其中,处理器可根据压力信号是否落入预设的压力范围内,来判断粘弹性测量结果的有效性。下面结合图13描述本申请又一个实施例的超声粘弹性测量装置的示意性框图。图13示出了根据本申请实施例的超声粘弹性测量装置1300的示意性框图。超声粘弹性测量装置1300包括存储器1310以及处理器1320。
其中,存储器1310存储用于实现根据本申请实施例的超声粘弹性测量方法500、700和800中的相应步骤的程序。处理器1320用于运行存储器1310中存储的程序,以执行根据本申请实施例的超声粘弹性测量方法500、700和800的相应步骤。
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的超声粘弹性测量方法500、700和800的相应步骤。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,根据本申请实施例,还提供了一种计算机程序,该计算机程序可以存储在云端或本地的存储介质上。在该计算机程序被计算机或处理器运行时用于执行本申请实施例的超声粘弹性测量方法的相应步骤。
基于上面的描述,根据本申请实施例的超声粘弹性测量方法、装置和存储介质基于不同激励的外部振动对目标对象进行超声粘弹性测量,能够获取目标对象的感兴趣区域的弹性参数和粘性参数,解决了采用理想弹性模型时带来的测量结果不准确和不稳定的问题,提高了测量结果的准确性和稳定性。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅 仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者装置的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的 每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (61)

  1. 一种超声粘弹性测量方法,其特征在于,所述方法包括:
    向超声探头的换能器输出第一发射/接收序列,控制所述换能器向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    基于所述第一超声回波信号生成超声图像并进行显示,并获取所述超声图像上的感兴趣区域;
    向所述超声探头的振动器输出不同的驱动信号,由所述振动器驱动所述换能器基于至少两个不同的振动信号对所述目标对象实施不同的机械振动;
    向所述换能器输出第二发射/接收序列,控制所述换能器向所述感兴趣区域发射第二超声波,接收所述第二超声波的回波,并基于所述第二超声波的回波获取第二超声回波信号;以及
    基于所述不同的机械振动下所述感兴趣区域的所述第二超声回波信号获取并显示所述感兴趣区域的弹性参数和粘性参数。
  2. 根据权利要求1所述的方法,其特征在于,所述不同的振动信号彼此的振动波形不同。
  3. 根据权利要求2所述的方法,其特征在于,所述不同的振动波形彼此之间的频率不同。
  4. 根据权利要求1-3中的任一项所述的方法,其特征在于,所述方法包括对所述目标对象实施一次测量,该次测量基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取感兴趣区域的弹性参数和粘性参数包括基于多个不同的振动信号对应的多个超声回波信号计算一组所述弹性参数和所述粘性参数。
  5. 根据权利要求1-3中的任一项所述的方法,其特征在于,所述方法包括对所述目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取感兴趣区域的弹性参数和粘性参数包括:
    基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数, 每组弹性测值和粘性测值是基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到;
    或者,基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到多组所述弹性参数和所述粘性参数。
  6. 根据权利要求5所述的方法,其特征在于,所述多组子测量为一次测量中连续实施的多组子测量。
  7. 根据权利要求5所述的方法,其特征在于,所述多组子测量的每组子测量中对所述目标对象施加相同次数的机械振动。
  8. 根据权利要求5所述的方法,其特征在于,所述多组子测量的每组子测量基于相同的驱动信号产生一组不同的振动信号。
  9. 根据权利要求1-3中的任一项所述的方法,其特征在于,所述方法包括对所述目标对象实施多次测量,每次测量均基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每次测量得到的多个超声回波信号计算得到。
  10. 根据权利要求9所述的方法,其特征在于,在对所述目标对象实施多次测量的过程中,每次测量所采用的振动信号的数量和/或波形是不同的。
  11. 根据权利要求5或9所述的方法,其特征在于,所述弹性参数等于多个弹性测值的部分或全部的加权平均值或等于所述多个弹性测值中的其中一个值,所述粘性参数等于多个粘性测值的部分或全部的加权平均值或等于所述多个粘性测值中的其中一个值。
  12. 根据权利要求5或9所述的方法,其特征在于,所述显示所述感兴趣区域的弹性参数和粘性参数包括:
    显示所述多组弹性测值和粘性测值。
  13. 根据权利要求4-12中的任一项所述的方法,其特征在于,在对所述目标对象实施每次测量的过程中,所述多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,所述不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位 和周期数。
  14. 根据权利要求4-12中任一项所述的方法,其特征在于,所述方法包括接收用户输入的至少包括粘弹性测量的指令实施每次测量。
  15. 根据权利要求1-14中的任一项所述的方法,其特征在于,在基于一个振动信号对所述目标对象进行机械振动并获取相应的超声回波信号后,冷却预定时间后再基于另一个振动信号对所述目标对象进行机械振动。
  16. 根据权利要求1-15中的任一项所述的方法,其特征在于,所述方法还包括:
    在显示所述感兴趣区域的弹性参数和粘性参数的同时,显示超声图像,所述超声图像是基于所述第一超声回波信号生成的或者是基于所述第二超声回波信号生成的。
  17. 一种超声粘弹性测量方法,其特征在于,所述方法包括:
    获取目标对象的组织图像并进行显示;
    检测用户在所述组织图像上选择的感兴趣区域;
    基于至少两个不同的振动信号对所述目标对象施加不同的机械振动,以在所述感兴趣区域内产生剪切波;
    在产生机械振动后向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;以及
    基于所述不同的机械振动下所述感兴趣区域的所述超声回波信号获取并显示所述感兴趣区域的弹性参数和粘性参数的至少一个。
  18. 根据权利要求17所述的方法,其特征在于,所述不同的振动信号是基于不同的驱动信号产生的。
  19. 根据权利要求18所述的方法,其特征在于,所述不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位、周期数。
  20. 根据权利要求17至19任一项所述的方法,其特征在于,所述不同的振动信号彼此的振动波形不同。
  21. 根据权利要求20所述的方法,其特征在于,所述不同的振动波形彼此之间的频率不同。
  22. 一种超声粘弹性测量方法,其特征在于,所述方法包括:
    基于至少两个不同的振动信号对目标对象施加不同的机械振动;
    向所述目标对象发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;以及
    基于所述不同的机械振动下所述目标对象的超声回波信号获取所述目标对象的弹性参数和粘性参数。
  23. 根据权利要求22所述的方法,其特征在于,所述不同的振动信号是基于不同的驱动信号产生的,所述不同的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。
  24. 根据权利要求22或23所述的方法,其特征在于,所述不同的振动信号彼此的振动波形不同。
  25. 根据权利要求24所述的方法,其特征在于,所述不同的振动波形彼此之间的频率不同。
  26. 根据权利要求22-25中的任一项所述的方法,其特征在于,所述方法包括对所述目标对象实施一次测量,该次测量基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取目标对象的弹性参数和粘性参数包括:基于多个不同的振动信号对应的多个超声回波信号计算一组所述弹性参数和所述粘性参数。
  27. 根据权利要求22-25中的任一项所述的方法,其特征在于,所述方法包括对所述目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取目标对象的弹性参数和粘性参数包括:
    基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到;或者
    基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到多组所述弹性参数和所述粘性参数。
  28. 根据权利要求27所述的方法,其特征在于,所述多组子测量为一次测量中连续实施的多组子测量。
  29. 根据权利要求27所述的方法,其特征在于,所述多组子测量的 每组子测量中对所述目标对象施加相同次数的机械振动。
  30. 根据权利要求27所述的方法,其特征在于,所述多组子测量的每组子测量基于相同的驱动信号产生一组不同的振动信号。
  31. 根据权利要求22-25中的任一项所述的方法,其特征在于,所述方法包括对所述目标对象实施多次测量,每次测量均基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取目标对象的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每次测量得到的多个超声回波信号计算得到。
  32. 根据权利要求31所述的方法,其特征在于,在对所述目标对象实施多次测量的过程中,每次测量所采用的振动信号的数量和/或波形是不同的。
  33. 根据权利要求27或32所述的方法,其特征在于,所述弹性参数等于多个弹性测值的部分或全部的加权平均值或等于所述多个弹性测值中的其中一个值,所述粘性参数等于多个粘性测值的部分或全部的加权平均值或等于所述多个粘性测值中的其中一个值。
  34. 根据权利要求26-33中的任一项所述的方法,其特征在于,在对所述目标对象实施每次测量的过程中,所述多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数,所述不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。
  35. 根据权利要求26-33中任一项所述的方法,其特征在于,所述方法包括接收用户输入的至少包括粘弹性测量的指令实施每次测量。
  36. 根据权利要求22-35中的任一项所述的方法,其特征在于,在基于一个振动信号对所述目标对象进行机械振动并获取相应的超声回波信号后,冷却预定时间后再基于另一个振动信号对所述目标对象进行机械振动。
  37. 根据权利要求27或31所述的方法,其特征在于,所述方法还包括:
    显示所述弹性参数和所述粘性参数;或者
    显示所述多组弹性测值和粘性测值以及所述弹性参数和粘性参数。
  38. 根据权利要求22-37中的任一项所述的方法,其特征在于,所述方法还包括:
    基于所述超声回波信号生成并显示超声图像。
  39. 一种超声粘弹性测量装置,其特征在于,所述装置包括:
    超声探头,所述超声探头包括振动器和换能器,所述振动器用于驱动所述换能器振动,所述振动产生向目标对象内部纵深方向传播的剪切波;所述换能器包括多个阵元,所述阵元中的至少部分用于在所述换能器振动前向所述目标对象发射第一超声波、接收所述第一超声波的回波、并基于所述第一超声波的回波获取第一超声回波信号,至少在所述换能器振动后向所述目标对象的感兴趣区域发射第二超声波、接收所述第二超声波的回波、并基于所述第二超声波的回波获取第二超声回波信号;
    发射/接收序列控制器,用于在所述换能器振动前向所述换能器输出第一发射/接收序列,控制所述换能器发射第一超声波、接收所述第一超声波的回波、并基于所述第一超声波的回波获取第一超声回波信号,在所述感兴趣区域确定后向所述振动器输出不同的驱动信号,控制所述振动器驱动所述换能器基于至少两个不同的振动信号对所述目标对象实施不同的机械振动,并至少在所述换能器振动后向所述换能器输出第二发射/接收序列,控制所述换能器发射第二超声波、接收所述第二超声波的回波、并基于所述第二超声波的回波获取第二超声回波信号;
    处理器,用于基于所述第一超声回波信号生成超声图像,获取所述超声图像上的感兴趣区域,并基于所述不同的机械振动下所述感兴趣区域的所述第二超声回波信号获取所述感兴趣区域的弹性参数和粘性参数;以及
    显示设备,用于显示所述感兴趣区域的弹性参数和粘性参数。
  40. 根据权利要求39所述的装置,其特征在于,所述不同的振动信号彼此的振动波形不同。
  41. 根据权利要求40所述的装置,其特征在于,所述不同的振动波形彼此之间的频率不同。
  42. 根据权利要求39-41中的任一项所述的装置,其特征在于,所述处理器用于控制对所述目标对象实施一次测量,该次测量基于多个不同的 振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取感兴趣区域的弹性参数和粘性参数包括基于多个不同的振动信号对应的多个超声回波信号计算一组所述弹性参数和所述粘性参数。
  43. 根据权利要求39-41中的任一项所述的装置,其特征在于,所述处理器用于控制对所述目标对象实施一次测量,该次测量包括多组子测量,每组子测量基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取感兴趣区域的弹性参数和粘性参数包括:
    基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到;
    或者,基于每组子测量中多个不同的振动信号对应的多个超声回波信号计算得到多组所述弹性参数和所述粘性参数。
  44. 根据权利要求43所述的装置,其特征在于,所述多组子测量为一次测量中连续实施的多组子测量。
  45. 根据权利要求43所述的装置,其特征在于,所述多组子测量的每组子测量中对所述目标对象施加相同次数的机械振动。
  46. 根据权利要求43所述的装置,其特征在于,所述多组子测量的每组子测量基于相同的驱动信号产生一组不同的振动信号。
  47. 根据权利要求39-41中的任一项所述的装置,其特征在于,所述处理器用于控制对所述目标对象实施多次测量,每次测量均基于多个不同的振动信号对所述目标对象施加机械振动,每个振动信号对应于一个超声回波信号;
    所述获取感兴趣区域的弹性参数和粘性参数包括:基于多组弹性测值和粘性测值来计算所述弹性参数和所述粘性参数,每组弹性测值和粘性测值是基于每次测量得到的多个超声回波信号计算得到。
  48. 根据权利要求39所述的装置,其特征在于,在对所述目标对象实施多次测量的过程中,每次测量所采用的振动信号的数量和/或波形是不同的。
  49. 根据权利要求43或47所述的装置,其特征在于,所述显示设备还用于显示所述多组弹性测值和粘性测值。
  50. 根据权利要求42-49中的任一项所述的装置,其特征在于,在对所述目标对象实施每次测量的过程中,所述多个不同的振动信号各自的驱动信号的以下参数中的至少一种是不同的:频率、幅度、相位、周期数,所述不同的振动信号的以下参数中的至少一种是不同的:频率、幅度、相位和周期数。
  51. 根据权利要求42-49中的任一项所述的装置,其特征在于,所述处理器用于根据用户输入的至少包括粘弹性测量的指令控制实施每次测量。
  52. 根据权利要求39所述的装置,其特征在于,所述超声探头还包括压力传感器,所述压力传感器的输出端与所述发射/接收序列控制器连接,用于将感知的超声探头对所述目标对象的压力和振动强度反馈给所述发射/接收序列控制器。
  53. 一种超声粘弹性测量装置,其特征在于,所述装置包括:
    超声探头,所述超声探头包括振动器和换能器,所述振动器用于驱动所述换能器振动,所述振动产生向目标对象内部纵深方向传播的剪切波;所述换能器包括一个或多个阵元,所述阵元中的至少部分用于至少在所述换能器振动后向所述目标对象的感兴趣区域发射超声波、接收所述超声波的回波、并基于所述超声波的回波获取超声回波信号;
    发射/接收序列控制器,用于在所述感兴趣区域确定后向所述振动器输出不同的驱动信号,控制所述振动器驱动所述换能器基于至少两个不同的振动信号对所述目标对象实施不同的机械振动,并至少在所述换能器振动后向所述换能器输出发射/接收序列,控制所述换能器发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;
    处理器,用于获取所述目标对象的组织图像,获取所述组织图像上的感兴趣区域,并基于所述不同的机械振动下所述感兴趣区域的所述超声回波信号获取所述感兴趣区域的弹性参数和粘性参数;以及
    人机交互设备,用于检测用户在所述组织图像上选择的所述感兴趣区域,并显示所述感兴趣区域的弹性参数和粘性参数。
  54. 一种超声粘弹性测量装置,其特征在于,所述装置包括振动器、 超声探头、扫描控制器以及处理器,其中:
    所述振动器用于基于至少两个不同的振动信号对目标对象施加不同的机械振动;
    所述扫描控制器用于激励所述超声探头向所述目标对象发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;
    所述处理器用于基于所述不同的机械振动下所述目标对象的超声回波信号获取所述目标对象的弹性参数和粘性参数。
  55. 根据权利要求54所述的装置,其特征在于,所述扫描控制器还用于产生不同的驱动信号,所述装置还包括振动控制器,所述振动控制器用于基于所述不同的驱动信号控制所述振动器产生所述不同的振动信号。
  56. 根据权利要求54所述的装置,其特征在于,所述装置还包括振动控制器,所述振动控制器用于产生不同的驱动信号,并基于所述不同的驱动信号控制所述振动器产生所述不同的振动信号。
  57. 根据权利要求54所述的装置,其特征在于,所述装置还包括压力传感器,所述压力传感器的输出端与所述扫描控制器连接,用于将感知的振动器对所述目标对象的压力和振动强度反馈给所述扫描控制器。
  58. 根据权利要求57所述的装置,其特征在于,所述扫描控制器还用于在所述压力的数值处于预设范围内时控制所述振动器振动。
  59. 根据权利要求54-58中的任一项所述的装置,其特征在于,所述装置还用于执行权利要求24-38中的任一项所述的超声粘弹性测量方法。
  60. 一种超声粘弹性测量装置,其特征在于,所述装置包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行如权利要求1-38中的任一项所述的超声粘弹性测量方法。
  61. 一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行如权利要求1-38中的任一项所述的超声粘弹性测量方法。
PCT/CN2019/128399 2019-12-25 2019-12-25 超声粘弹性测量方法、装置和存储介质 WO2021128083A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980099937.XA CN114340506B (zh) 2019-12-25 2019-12-25 超声粘弹性测量方法、装置和存储介质
PCT/CN2019/128399 WO2021128083A1 (zh) 2019-12-25 2019-12-25 超声粘弹性测量方法、装置和存储介质
CN202410298330.7A CN118078332A (zh) 2019-12-25 2019-12-25 超声粘弹性测量方法、装置和存储介质
US17/849,511 US20230131340A1 (en) 2019-12-25 2022-06-24 Ultrasound viscoelasticity measurement method and apparatus and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/128399 WO2021128083A1 (zh) 2019-12-25 2019-12-25 超声粘弹性测量方法、装置和存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/849,511 Continuation US20230131340A1 (en) 2019-12-25 2022-06-24 Ultrasound viscoelasticity measurement method and apparatus and storage medium

Publications (1)

Publication Number Publication Date
WO2021128083A1 true WO2021128083A1 (zh) 2021-07-01

Family

ID=76575077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128399 WO2021128083A1 (zh) 2019-12-25 2019-12-25 超声粘弹性测量方法、装置和存储介质

Country Status (3)

Country Link
US (1) US20230131340A1 (zh)
CN (2) CN118078332A (zh)
WO (1) WO2021128083A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
CN102469989A (zh) * 2009-07-07 2012-05-23 株式会社日立医疗器械 超声波诊断装置和超声波测量方法
CN103800038A (zh) * 2012-11-12 2014-05-21 通用电气公司 改善的系统和装置以用于确定目标组织的机械特性
US20160213352A1 (en) * 2015-01-28 2016-07-28 Konica Minolta, Inc. Ultrasound diagnostic device and method for controlling ultrasound diagnostic device
CN106264612A (zh) * 2015-06-02 2017-01-04 爱科森股份有限公司 肝脏病变非侵入性检测装置
CN106725610A (zh) * 2016-11-29 2017-05-31 深圳大学 基于移动声束相干激励剪切波的弹性测量方法及系统
CN109077754A (zh) * 2018-07-06 2018-12-25 深圳大学 一种测量组织力学特性参数的方法及设备
CN109475349A (zh) * 2016-06-30 2019-03-15 不列颠哥伦比亚大学 腹部的超声剪切波振动弹性成像
CN110198672A (zh) * 2017-12-27 2019-09-03 佳能医疗系统株式会社 分析装置
CN110353731A (zh) * 2019-06-12 2019-10-22 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像方法及系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469989A (zh) * 2009-07-07 2012-05-23 株式会社日立医疗器械 超声波诊断装置和超声波测量方法
CN102283679A (zh) * 2011-08-04 2011-12-21 中国科学院深圳先进技术研究院 弹性测量的超声成像系统及测量生物组织弹性的方法
CN103800038A (zh) * 2012-11-12 2014-05-21 通用电气公司 改善的系统和装置以用于确定目标组织的机械特性
US20160213352A1 (en) * 2015-01-28 2016-07-28 Konica Minolta, Inc. Ultrasound diagnostic device and method for controlling ultrasound diagnostic device
CN106264612A (zh) * 2015-06-02 2017-01-04 爱科森股份有限公司 肝脏病变非侵入性检测装置
CN109475349A (zh) * 2016-06-30 2019-03-15 不列颠哥伦比亚大学 腹部的超声剪切波振动弹性成像
CN106725610A (zh) * 2016-11-29 2017-05-31 深圳大学 基于移动声束相干激励剪切波的弹性测量方法及系统
CN110198672A (zh) * 2017-12-27 2019-09-03 佳能医疗系统株式会社 分析装置
CN109077754A (zh) * 2018-07-06 2018-12-25 深圳大学 一种测量组织力学特性参数的方法及设备
CN110353731A (zh) * 2019-06-12 2019-10-22 深圳迈瑞生物医疗电子股份有限公司 超声弹性成像方法及系统

Also Published As

Publication number Publication date
CN114340506A (zh) 2022-04-12
CN118078332A (zh) 2024-05-28
CN114340506B (zh) 2024-04-02
US20230131340A1 (en) 2023-04-27

Similar Documents

Publication Publication Date Title
WO2019205167A1 (zh) 一种超声瞬时弹性测量设备及方法
JP5420884B2 (ja) 超音波診断装置
JP6415920B2 (ja) 超音波診断装置
WO2017071605A1 (zh) 弹性检测方法和设备
JP6214974B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
US20200237343A1 (en) Ultrasound elasticity measuring devices and elasticity comparative measuring methods
US11826202B2 (en) Ultrasound elasticity measurement device and method
JP4693433B2 (ja) 超音波診断装置
JP6637607B2 (ja) 超音波診断システムおよび超音波診断システムの制御方法
CN105073018A (zh) 超声波诊断装置
CN111110275A (zh) 血管力学性能的测量方法、装置、系统及存储介质
JP2007301181A (ja) 超音波診断装置および画像表示方法
JP2019187777A (ja) 超音波診断装置、および、超音波信号処理方法
WO2021128083A1 (zh) 超声粘弹性测量方法、装置和存储介质
JP6081744B2 (ja) 超音波診断装置
WO2021226955A1 (zh) 瞬时弹性测量方法、声衰减参数测量方法和超声成像系统
JP7301587B2 (ja) 超音波診断装置及び表示制御プログラム
US10881381B2 (en) Ultrasonic diagnostic system
JP2015188514A (ja) 超音波診断装置
JP6289225B2 (ja) 超音波診断装置及び制御プログラム
WO2021212494A1 (zh) 粘弹性测量方法和超声测量系统
WO2020213562A1 (ja) 超音波診断装置、超音波診断装置の制御方法および超音波診断装置用プロセッサ
JP2017192479A (ja) 画像生成装置及び画像生成方法
CN114521915A (zh) 瞬时弹性测量方法和超声成像系统
CN117462168A (zh) 超声波诊断装置、医用图像处理装置及计算机可读取介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19957652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19957652

Country of ref document: EP

Kind code of ref document: A1