WO2021212494A1 - 粘弹性测量方法和超声测量系统 - Google Patents

粘弹性测量方法和超声测量系统 Download PDF

Info

Publication number
WO2021212494A1
WO2021212494A1 PCT/CN2020/086774 CN2020086774W WO2021212494A1 WO 2021212494 A1 WO2021212494 A1 WO 2021212494A1 CN 2020086774 W CN2020086774 W CN 2020086774W WO 2021212494 A1 WO2021212494 A1 WO 2021212494A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear wave
interest
region
ultrasonic
viscosity
Prior art date
Application number
PCT/CN2020/086774
Other languages
English (en)
French (fr)
Inventor
李双双
兰帮鑫
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202080053473.1A priority Critical patent/CN114173670A/zh
Priority to PCT/CN2020/086774 priority patent/WO2021212494A1/zh
Priority to CN202080054692.1A priority patent/CN114173672A/zh
Priority to PCT/CN2020/090343 priority patent/WO2021212577A1/zh
Priority to PCT/CN2020/090356 priority patent/WO2021212578A1/zh
Publication of WO2021212494A1 publication Critical patent/WO2021212494A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • This application relates to the technical field of ultrasonic measurement, and more specifically to a viscoelasticity measurement method and an ultrasonic measurement system.
  • Ultrasound elastography technology uses the extraction of tissue hardness-related information to perform imaging. It is related to the non-invasive auxiliary diagnosis of major diseases such as breast cancer and liver cirrhosis. It has been a research hotspot in the field of ultrasound imaging in the past two decades. After years of development, ultrasound elastography technology has gradually matured. In recent years, it has been more widely used in clinical research and auxiliary diagnosis of various parts of the human body such as liver, breast, thyroid, musculoskeletal, blood vessels, prostate, and cervix.
  • Ultrasound elastography technology can qualitatively reflect the difference in softness and hardness of the lesion relative to the surrounding tissue, or quantitatively reflect the hardness-related physical parameters of the target tissue, such as Young's modulus, shear modulus, etc., and is widely welcomed by doctors.
  • ultrasound elastography techniques include strain elastography, shear wave elastography, instantaneous elastography and so on.
  • the shear wave elastography technology generates acoustic radiation force by emitting special pulses into the tissue to generate the propagation of shear waves, and then detects and records the propagation process of shear waves through ultrasound, and further calculates the propagation speed of shear waves.
  • the elastic modulus parameter reflecting the hardness of the tissue is obtained, and quantitative elastography is realized. This technology has greatly expanded the clinical application field of elastography and has aroused great research interest.
  • tissue are regarded as pure elastic bodies, and the elastography technology is mainly based on the assumption of pure elastic bodies for imaging. Especially for quantitative elastography technology, usually only the elastic modulus is calculated for display.
  • Elasticity in addition to elasticity (Elasticity), human tissues also have viscous (Viscosity) characteristics. Elasticity and viscosity together affect the propagation speed of shear waves in the tissue.
  • tissue adhesion may be related to the progression of hepatitis and other diseases. Therefore, when performing elastography, if the information related to viscosity can be extracted at the same time, it will have great clinical potential value.
  • the first aspect of the embodiments of the present application provides a viscoelasticity measurement method, including:
  • the second aspect of the embodiments of the present application provides a viscoelasticity measurement method, including:
  • the viscosity information reflecting the viscosity of the region of interest is determined according to at least two of the phase velocities.
  • the third aspect of the embodiments of the present application is an elasticity measurement method, the method includes:
  • the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency.
  • a fourth aspect of the embodiments of the present application provides an elasticity measurement method, the method including:
  • the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency.
  • a fifth aspect of the embodiments of the present application provides an ultrasonic measurement system, including:
  • the transmitting/receiving circuit is used to excite the ultrasonic probe to transmit acoustic radiation force pulses to the measured object to generate shear waves in the area of interest of the measured object; and to excite the ultrasonic probe to the area of interest Transmitting the first ultrasonic wave tracking the shear wave, and receiving the first ultrasonic echo of the region of interest to obtain the first ultrasonic echo data;
  • the output device is used to output the viscosity information.
  • a sixth aspect of the embodiments of the present application provides an ultrasonic measurement system.
  • the ultrasonic measurement system includes a memory and a processor.
  • the memory stores a computer program run by the processor.
  • the computer program is processed by the processor. The following steps are performed while the device is running:
  • the viscosity information reflecting the viscosity of the region of interest is determined according to at least two of the phase velocities.
  • a seventh aspect of the embodiments of the present application provides an ultrasonic measurement system, and the ultrasonic measurement system includes:
  • the transmitting/receiving circuit is used to excite the ultrasonic probe to transmit acoustic radiation force pulses to the measured object to generate shear waves in the area of interest of the measured object; and to excite the ultrasonic probe to the area of interest Transmitting the first ultrasonic wave tracking the shear wave, and receiving the first ultrasonic echo of the region of interest to obtain the first ultrasonic echo data;
  • the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency.
  • the eighth aspect of the embodiments of the present application provides an ultrasonic measurement system.
  • the ultrasonic measurement system includes a memory and a processor.
  • the memory stores a computer program run by the processor. The following steps are performed while the device is running:
  • the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency.
  • the ninth aspect of the embodiments of the present application provides a computer storage medium on which a computer program is stored.
  • the computer program is executed by a computer or a processor, the steps of the viscoelasticity measurement method or the elasticity measurement method provided in the embodiments of the present application are implemented.
  • the shear wave components of different frequencies are extracted from the shear wave signal, and the phase velocity of each shear wave component is obtained, which can be obtained by only one measurement Information that reflects the stickiness of the organization.
  • the elasticity measurement method according to the embodiment of the present application extracts the shear wave component from the shear wave signal and calculates its corresponding phase velocity, which can reflect the elastic information of the tissue.
  • Fig. 1 shows a schematic flowchart of a viscoelasticity measurement method according to an embodiment of the present application
  • Fig. 2 is a frequency spectrum diagram of a shear wave signal according to an embodiment of the present application.
  • Fig. 3 is a frequency spectrum diagram of the shear wave components separated from the shear wave signal shown in Fig. 2;
  • Fig. 4A shows a vibration waveform of a shear wave signal according to an embodiment of the present application
  • 4B and 4C respectively show the vibration waveforms of shear wave components of different frequencies extracted from the shear wave signal shown in FIG. 4A;
  • Fig. 5A shows a basic ultrasound image and a region of interest determined in the basic ultrasound image according to an embodiment of the present application
  • FIG. 5B shows a basic ultrasound image and an elastic image displayed in superimposition according to an embodiment of the present application
  • Figure 5C shows a superimposed basic ultrasound image and a viscous image according to an embodiment of the present application
  • Fig. 6 shows a basic ultrasound image and elastic coefficients and viscosity coefficients according to an embodiment of the present application
  • Fig. 7 shows a schematic flowchart of a viscoelasticity measurement method according to another embodiment of the present application.
  • FIG. 8 shows a schematic flowchart of a method for measuring elasticity according to an embodiment of the present application
  • FIG. 9 shows a schematic flowchart of an elasticity measurement method according to another embodiment of the present application.
  • Fig. 10 shows a schematic block diagram of an ultrasonic measurement system according to an embodiment of the present application
  • Fig. 11 shows a schematic block diagram of an ultrasonic measurement system according to another embodiment of the present application.
  • the embodiments of this application are mainly used to multiplex the ultrasonic echo data obtained in the shear wave elasticity measurement process, separate the shear wave components of different frequencies from the shear wave signal and calculate the corresponding shear wave speeds respectively, and then Get sticky information.
  • FIG. 1 is a schematic flowchart of a viscoelasticity measurement method 100 according to an embodiment of the present application.
  • the viscoelasticity measurement method 100 of an embodiment of the present application includes the following steps:
  • step S110 an acoustic radiation force impulse (ARFI, acoustic radiation force impulse) is emitted to the measured object to generate a shear wave in the region of interest of the measured object;
  • ARFI acoustic radiation force impulse
  • step S120 transmit the first ultrasonic wave tracking the shear wave to the region of interest, and receive the first ultrasonic echo of the region of interest to obtain first ultrasonic echo data;
  • step S130 the shear wave signal of the region of interest is obtained according to the first ultrasonic echo data
  • step S140 extract at least two shear wave components with different frequencies from the shear wave signal
  • step S150 the phase velocity of the shear wave is determined according to the shear wave components of the at least two different frequencies respectively;
  • step S160 the viscosity information reflecting the viscosity of the region of interest is determined according to at least two of the phase velocities;
  • step S170 the viscosity information is output.
  • the viscoelasticity measurement method 100 of the embodiment of the present application adds a link to extract the shear wave components of different frequencies in the shear wave signal on the basis of the conventional shear wave elasticity measurement, and respectively calculates the shear wave components corresponding to different frequencies. The propagation velocity of the shear wave, and then obtain the viscosity information reflecting the viscosity of the tissue. According to the viscoelasticity measurement method 100 of the embodiment of the present application, based on one viscoelasticity measurement, the viscosity information and elasticity information of the tissue can be obtained at the same time.
  • the position of the region of interest is first determined according to the conventional ultrasound image of the object under test.
  • the second ultrasonic wave may be transmitted to the measured object through the ultrasonic probe, and the ultrasonic echo of the second ultrasonic wave may be received, so as to obtain the second ultrasonic echo data.
  • the beam synthesis circuit may perform beam synthesis processing on the second ultrasound echo data, and then send the beam synthesized second ultrasound echo data to the processor for related image processing, thereby obtaining a basic ultrasound image.
  • the processor can perform different processing on the second ultrasound echo signal to obtain ultrasound image data of different modes, and then undergo logarithmic compression, dynamic range adjustment, digital scan conversion, etc.
  • Form basic ultrasound images of different modes such as two-dimensional ultrasound images including B-images and C-images. Conventional ultrasound images can provide relevant information such as lesion morphology and blood flow distribution.
  • the position of the region of interest can be determined based on the basic ultrasound image.
  • determining the position of the region of interest according to a conventional ultrasound image specifically includes: outputting the conventional ultrasound image, and marking the position of the region of interest on the conventional ultrasound image.
  • the basic ultrasound image can be displayed on the display, the user manually selects the region of interest on the basic ultrasound image, and the location of the region of interest is determined according to the detected user input instructions.
  • the location of the region of interest can be automatically determined on the basic ultrasound image based on a related machine recognition algorithm.
  • the region of interest can also be obtained through semi-automatic detection. For example, the position of the region of interest on the basic ultrasound image is first automatically detected based on a machine recognition algorithm, and then the user can further modify or correct it to obtain more The precise location of the region of interest.
  • the acoustic radiation force focusing impact can be performed according to the preset pulse sequence according to the position of the region of interest selected in the above manner.
  • the ultrasonic probe emits a special ultrasonic push pulse to the tissue in the region of interest of the object to be measured to generate shear wave propagation in the tissue based on the acoustic radiation force.
  • the length of the ultrasonic push pulse is generally greater than 100 us. Since the shear wave generated by the acoustic radiation force pulse itself has a small amplitude, and the shear wave will decay rapidly as it propagates, in order to strengthen the intensity and range of the generated shear wave, multiple ultrasonic push pulses are often continuously emitted .
  • the ultrasonic probe continuously transmits a series of first ultrasonic waves that track the shear wave to the tissue of the region of interest for a period of time (usually tens of milliseconds), and receives the ultrasonic echoes thereof to obtain the first ultrasonic echo data.
  • the shear wave signal is obtained according to the first ultrasonic echo data, and the shear wave signal is a signal of the echo signal of the shear wave and is used to characterize the vibration state of the tissue when the shear wave propagates in the tissue.
  • the shear wave signal obtained by the above method is a broadband signal, which includes multiple shear wave components in the range of 0 to 1000 Hz. Each shear wave component of the shear wave signal can be regarded as a characteristic of a shear wave of one frequency. The signal of the vibration state of the tissue caused by the cut wave.
  • the processor of the ultrasonic measurement system may calculate the vibration state of the tissue when the shear wave propagates in the tissue according to the above-mentioned first ultrasonic echo data, and the shear wave signal is a signal that characterizes the vibration state of the tissue over a period of time.
  • the wave characteristics when the shear wave propagates through a certain position in the tissue, the tissue at the corresponding position will vibrate. When the shear wave propagates away from a certain position, the tissue at that position will return to its original state. Therefore, by comparing the ultrasound echoes obtained at different moments, the movement information of the tissue over a period of time can be obtained.
  • the motion information may be the displacement of the tissue relative to the reference time, the motion speed of the tissue, the motion acceleration of the tissue, the strain of the tissue, etc., or data based on the above variables after further processing such as filtering, differentiation, and integration.
  • the correlation comparison can be a comparison calculation between the ultrasonic echo signals obtained at different adjacent times, or a comparison calculation between the ultrasonic echo signals at different times and the echo signal at the same reference time.
  • Algorithms for correlation comparison may include general algorithms for conventional tissue displacement detection, such as a cross-correlation comparison algorithm based on block matching, a calculation method based on Doppler frequency shift, a method based on phase shift detection, and the like.
  • the embodiment of the present application does not limit the specific algorithm used to detect tissue movement information.
  • FIG. 4A shows the tissue movement speed-time curve at a certain position in the tissue for a period of time.
  • step S140 at least two shear wave components of different frequencies are extracted from the shear wave signal.
  • the shear wave components of different frequencies can be regarded as the tissue vibration information caused by the shear waves of different frequencies.
  • the tissue vibration information caused by shear waves of different frequencies can be obtained for the subsequent calculation of viscosity parameters without the need for multiple transmissions and receptions.
  • At least two different frequency shear wave components can be extracted by filtering the shear wave signal.
  • the filtering method can be performed in time domain, frequency domain, or various algorithms.
  • the algorithm can also be convolution operation.
  • the filtering process can also include a series of processing before or after filtering. The process is not specifically limited here.
  • Figure 2 shows a spectrogram of the broadband shear wave signal obtained in step S130.
  • the shear wave signal includes multiple shear wave components in the range of 0 to 1000 Hz, so the spectrogram There is a higher amplitude in a wider frequency band.
  • Figure 3 shows the frequency spectrum of the shear wave component with 300 Hz as the center frequency extracted from the shear wave signal. It can be seen from Figure 3 that the frequency spectrum of the shear wave component only has a relatively high value around 300 Hz. High amplitude.
  • FIG. 4A shows a waveform diagram of a broadband shear wave signal.
  • Fig. 4B is a waveform diagram of a shear wave component with a center frequency of 300 Hz extracted from the broadband shear wave signal shown in Fig. 4A.
  • Fig. 4C is a waveform diagram of a shear wave component with a center frequency of 600 Hz extracted from the broadband shear wave signal shown in Fig. 4A. It can be seen from Figures 4B and 4C that the vibration waveforms of the shear wave components of different frequencies are different, which means that among the shear waves emitted in step S110, the shear waves of different frequencies are caused by the propagation in the tissue. The vibration state of the tissue is different.
  • the shear wave signal can be a time domain signal describing the change of tissue motion information in the region of interest over time, and the filtering of the shear wave signal can be performed in the time domain, that is, the shear wave signal is Time domain filtering.
  • transforming the shear wave signal into a frequency domain signal can be transformted into a frequency domain signal, and perform frequency domain filtering on the frequency domain signal. For example, all the amplitudes of frequency bands other than the required frequency bands in the frequency domain signal can be set to zero, and then the frequency domain signal after frequency domain filtering is inversely transformed into a time domain signal.
  • transforming the shear wave signal from the time domain to the frequency domain can be realized by Fourier transform
  • transforming the shear wave signal from the frequency domain to the time domain can be realized by inverse Fourier transform.
  • the shear wave component in the shear wave signal can be extracted based on various suitable filters.
  • the filter used can be a software filter or a hardware filter that is additionally set in the ultrasonic measurement system. Device.
  • a more accurate filtering method it may be based on at least two band-pass filters of different frequencies, filtering with different frequencies as the center frequency, and respectively extracting the shear wave components at the corresponding frequencies.
  • 300 Hz and 600 Hz band-pass filters can be used to extract shear wave components with 300 Hz and 600 Hz as the center frequency from the 0-1000 Hz broadband shear wave signal. It is understandable that when a band-pass filter is used for filtering, more than two band-pass filters can be used to extract shear wave components of multiple frequencies from the shear wave signal.
  • a low-pass filter and a high-pass filter can be used to filter the shear wave signal, so as to extract the low-frequency component and the high-frequency component of the shear wave signal respectively.
  • a 500 Hz high-pass filter and a low-pass filter can be used to extract 0-500 Hz low-frequency components and 500-1000 Hz high-frequency components from 0-1000 Hz broadband shear wave signals.
  • the shear wave component of each frequency separated does not necessarily include only the single frequency of the center frequency, but includes the preset frequency
  • the point is a frequency band with a preset bandwidth at the center frequency.
  • the frequency distribution of the extracted shear wave component may be a frequency range dominated by 300 Hz, such as 250-350 Hz, or 200-400 Hz.
  • the center frequency of the shear wave component is at 300 Hz, and it also contains a certain bandwidth of the shear wave component.
  • step S150 the phase velocity of the shear wave is determined according to the shear wave components of at least two different frequencies.
  • the propagation velocity of the shear wave can be calculated. Since the shear wave source has wider frequency band information, the shear wave propagation velocity calculated from the original shear wave signal is the comprehensive propagation velocity of shear waves of multiple frequencies, which is called the shear wave group velocity.
  • the shear wave propagation velocity calculated by using the separated shear wave components is the shear wave propagation velocity at this frequency, so it is called the phase velocity of the shear wave.
  • the calculation of the phase velocity of the shear wave can adopt various methods of determining the propagation velocity of the shear wave used in conventional shear wave elasticity measurement, for example, by calculating the shear wave at two different positions separated by a certain distance in the tissue. To calculate the propagation velocity of the shear wave at the time of arrival of the The propagation time of the wave between these two positions, and the ratio of the distance between the two positions to the propagation time is the propagation velocity of the shear wave.
  • the propagation velocity of the shear wave is also calculated through the inversion of the wave equation, and the embodiment of the present application does not limit the calculation method of the propagation velocity of the shear wave.
  • step S160 the viscosity information reflecting the viscosity of the region of interest is determined according to at least two of the phase velocities.
  • the shear wave propagation speed is mainly affected by elastic parameters.
  • the shear wave velocity is affected by both elasticity and viscosity. Due to the influence of viscous factors, the propagation speed of shear waves in the tissue will exhibit a dispersion effect, that is, the propagation speed of shear waves of different frequencies is different. Therefore, the viscosity parameter of the region of interest can be determined according to the relationship between the viscosity parameter and the phase velocity determined in step S150 and the corresponding shear wave frequency, as the viscosity information reflecting the viscosity of the tissue in the region of interest.
  • the viscosity parameter can be determined based on the ultrasonic measurement data obtained in one transmission and reception process, or the viscosity parameter and the elastic parameter can be obtained at the same time, without repeating the acoustic radiation force impact and echo acquisition process multiple times.
  • the viscosity parameter can be determined according to a variety of theoretical models.
  • the relationship between the phase velocity c ⁇ of the shear wave and the viscosity parameter is as follows:
  • is the tissue density
  • ⁇ 1 is the shear elasticity of the tissue
  • ⁇ 2 is the shear viscosity of the tissue
  • is the angular frequency of the shear wave.
  • the angular frequency of the shear wave can be based on The center frequency of the shear wave component is determined. Specifically, the angular frequency is 2 ⁇ times the center frequency.
  • the propagation velocity of two different frequency shear wave components at least, that is, the viscosity parameter of the tissue can be calculated.
  • the propagation velocities of multiple shear wave components of different frequencies can be calculated, and then the above formulas can be used for fitting to obtain the best value for the viscosity parameters. Best estimate.
  • multiple shear wave components of different frequencies can be separated and extracted from the shear wave signal obtained from the acoustic radiation impact and echo collection process, or they can be extracted from the multiple acoustic radiation impact and echo collection process. The resulting shear wave signal is separated and extracted.
  • the difference in the phase velocities of the above-mentioned shear wave components at different frequencies can be directly used to reflect the viscosity of the tissue, that is, the shear wave at different frequencies
  • the phase velocities determined by the wave components are compared to obtain a comparison result, and the comparison result is used as the viscosity information reflecting the viscosity of the region of interest.
  • the relative parameters such as the difference of the phase velocities of the shear wave components of different frequencies, the ratio of the phase velocities, and the slope of the phase velocity with the shear wave frequency can be calculated to reflect the viscosity.
  • linear fitting can be performed to obtain a phase velocity-frequency straight line, and the slope of the straight line can be obtained.
  • the slope of this straight line reflects the relationship between the shear wave velocity and the shear wave frequency when the shear wave passes through the same tissue location, and can qualitatively reflect the viscosity characteristics of the tissue. That is, the greater the slope, the greater the tissue viscosity; conversely, the smaller the slope, the smaller the tissue viscosity.
  • the first elastic parameter of the region of interest can be calculated based on the relationship between the phase velocity and the viscosity parameter ⁇ 2 , the elastic parameter ⁇ 1 and the shear wave frequency. (That is, the elastic parameter ⁇ 1 ).
  • the first elastic parameter is different from the elastic modulus calculated according to the shear wave group velocity (ie, the second elastic parameter described below), but the first elastic parameter can also reflect the elastic characteristics of the tissue. Therefore, in an embodiment, the elasticity parameter ⁇ 1 may also be output as an elasticity measurement result that reflects the elasticity of the tissue.
  • the viscoelasticity measurement method 100 of the embodiment of the present application can also reuse the same set of first ultrasonic echo data to obtain conventional elasticity measurement results.
  • the group velocity of the shear wave can be determined according to the first ultrasonic echo data, and the second elastic parameter of the region of interest can be obtained according to the group velocity.
  • the second elastic parameter may be the elastic modulus of the tissue, such as Young's modulus, shear modulus, and the like.
  • Young's modulus the elastic modulus of the tissue
  • the elastic modulus of the tissue can also be calculated based on the phase velocity of the shear wave component of at least one frequency obtained by separation.
  • the corresponding shear modulus or Young's modulus can be calculated according to the phase velocity of the shear wave.
  • the shear wave phase velocity is used to replace the shear wave group velocity c s to calculate the above-mentioned shear modulus.
  • G or Young's modulus E Since the elastic modulus calculated by using the shear wave phase velocity corresponds to a fixed shear wave frequency, the stability of elasticity measurement can be improved.
  • step S170 the viscosity information is output.
  • the output viscosity information may include the value and/or image of the output viscosity parameter.
  • the viscosity parameter can be obtained for multiple positions in the region of interest, and the distribution of the viscosity parameter in the region of interest can be displayed. For example, after determining the viscosity parameters at multiple locations in the region of interest, they can be displayed at corresponding locations in a conventional ultrasound image to form a viscosity parameter distribution map to visually display tissue viscosity differences.
  • the output value of the viscosity parameter may be the value of the statistical result of the viscosity parameter, as an estimate of the overall viscosity of the region of interest.
  • the statistical result of the viscosity information of the region of interest can be obtained according to the viscosity information at one or more positions within the region of interest, and the value of the statistical result can be output.
  • the statistical result of the viscosity information may include at least one of the following: an average value, a median value, a standard deviation, a quartile, a maximum value, or a minimum value of a plurality of the viscosity information.
  • the statistical result of the viscosity information is not limited to the statistical result of the viscosity information at multiple positions obtained by one viscoelasticity measurement, and may also include the statistical result of the viscosity information obtained by multiple viscoelasticity measurements.
  • the statistical result of the viscosity information obtained by multiple viscoelasticity measurements may also include the average value, median, standard deviation, quartile, maximum or minimum value of the viscosity information obtained by multiple viscoelasticity measurements. Wait.
  • the viscosity information at multiple positions within the region of interest can be acquired to generate a viscosity image of the region of interest, and the viscosity image can be displayed on a display interface.
  • the viscosity parameters can be processed by gray-scale or color coding to generate a viscosity image, which is superimposed or fused with a conventional ultrasound image and displayed together.
  • the elastic information can also output elastic information about the organization of the region of interest.
  • the elastic information can be displayed synchronously with the viscosity information, for example, displayed on the same display interface; or, the elastic information can also be displayed separately from the viscosity information.
  • the elastic information may include the first elastic parameter, the second elastic parameter, or the elastic modulus calculated by using the phase velocity, and outputting the elastic information may include outputting the first elastic parameter, the second elastic parameter, and/or adopting the phase velocity. The value and/or image of the calculated elastic modulus.
  • information related to shear wave velocity can also be output.
  • the relevant information of the shear wave velocity includes shear wave group velocity information and shear wave phase velocity information. Specifically, it may include the value and/or image of the shear wave group velocity, and/or the value and sum of the shear wave group velocity. / Or image.
  • outputting the numerical value of shear wave group velocity or shear wave phase velocity it can also include outputting the numerical distribution of shear wave group velocity or phase velocity at multiple locations, or outputting shear waves at multiple locations The statistical result of the numerical value of group velocity or phase velocity.
  • the conventional ultrasound image may be generated based on the first ultrasound echo data or based on the second ultrasound echo data.
  • Conventional ultrasound images can be real-time images acquired during viscoelasticity measurement, images acquired at regular intervals during viscoelasticity measurement, or images acquired before and after each viscoelasticity measurement. Non-real-time image.
  • the values of viscosity information and elasticity information can be displayed at a suitable position of a conventional ultrasound image, for example, as shown in FIG. 6, can be displayed in the lower right corner of the conventional ultrasound image , Or it can be displayed inside the area of interest.
  • the viscosity image and the elasticity image may be superimposed and displayed with the conventional ultrasound image, for example, superimposed and displayed at the region of interest of the conventional ultrasound image.
  • Figure 5A shows the region of interest selected in the conventional ultrasound image
  • Figure 5B shows the elastic image superimposed on the region of interest of the conventional ultrasound image
  • Figure 5C shows the superimposed display Viscous image of the region of interest in conventional ultrasound images.
  • the above exemplarily shows the viscoelasticity measurement method 100 according to an embodiment of the present application.
  • the viscoelasticity measurement method 100 extracts the shear wave components of different frequencies in the shear wave signal, and calculates the phase velocities of the shear wave components of different frequencies, and performs one measurement. Obtain viscosity information reflecting the viscosity of the tissue.
  • FIG. 7 shows a schematic flowchart of a method 700 for measuring viscoelasticity according to another embodiment of the present application.
  • the viscoelasticity measurement method 700 described with reference to FIG. 7 is substantially similar to the viscoelasticity measurement method 100 described above, and some of the same details are omitted.
  • the viscoelasticity measurement method 700 includes the following steps:
  • Step S710 Obtain the shear wave signal of the region of interest of the measured object
  • Step S720 extracting at least two shear wave components of different frequencies from the shear wave signal
  • Step S730 Determine the phase velocity of the shear wave according to the shear wave components of the at least two different frequencies respectively;
  • Step S740 Determine viscosity information reflecting the viscosity of the region of interest according to at least two of the phase velocities.
  • the shear wave components of different frequencies are also extracted from the shear wave signal, and the phase velocity determined based on the shear wave components of at least two frequencies is determined to reflect the region of interest. Sticky sticky information.
  • the viscoelasticity measurement method 700 does not limit the way in which the shear wave signal is obtained: for example, the shear wave signal may be obtained in real time, or may be extracted from a storage medium; The shear wave can be generated by impulse impact of acoustic radiation force as described above, or can be generated by applying external mechanical vibration, or can be generated by any other suitable method.
  • the viscoelasticity measurement method 700 extracts the shear wave components of different frequencies in the shear wave signal, and calculates the phase velocities of the shear wave components of different frequencies. A measurement that reflects the viscosity of the tissue can be obtained. Sticky information.
  • FIG. 8 shows a schematic flowchart of an elasticity measurement method 800 according to an embodiment of the present application.
  • the elasticity measurement method 800 may include the following steps:
  • step S810 an acoustic radiation force pulse is emitted to the measured object to generate a broadband shear wave in the region of interest of the measured object;
  • step S820 transmit the first ultrasonic wave tracking the shear wave to the region of interest, and receive the first ultrasonic echo of the region of interest to obtain first ultrasonic echo data;
  • step S830 the shear wave signal of the region of interest is obtained according to the first ultrasonic echo data
  • step S840 a shear wave component of at least one frequency is extracted from the shear wave signal
  • step S850 the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency.
  • the link of extracting the shear wave components of different frequencies in the shear wave signal is added, and the shear wave components are calculated according to the separated shear wave components.
  • the phase velocity of the shear wave which can be used to determine the elasticity or viscosity information of the tissue.
  • the position of the region of interest is first determined according to the conventional ultrasound image of the object to be measured.
  • the second ultrasonic wave may be transmitted to the measured object through the ultrasonic probe, and the ultrasonic echo of the second ultrasonic wave may be received, so as to obtain the second ultrasonic echo data.
  • the beam synthesis circuit may perform beam synthesis processing on the second ultrasound echo data, and then send the beam synthesized second ultrasound echo data to the processor for related image processing, thereby obtaining a basic ultrasound image.
  • the position of the region of interest can be determined based on the basic ultrasound image.
  • determining the position of the region of interest according to a conventional ultrasound image specifically includes: outputting the conventional ultrasound image, and marking the position of the region of interest on the conventional ultrasound image.
  • the acoustic radiation force focusing impact can be performed according to the preset pulse sequence according to the position of the region of interest selected in the above manner.
  • the ultrasonic probe emits a special ultrasonic push pulse to the tissue in the region of interest of the object to be measured to generate shear wave propagation in the tissue based on the acoustic radiation force.
  • the length of the ultrasonic push pulse is generally greater than 100 us, and in order to strengthen the intensity and range of the generated shear wave, multiple ultrasonic push pulses are often emitted continuously.
  • the ultrasonic probe continuously transmits a series of first ultrasonic waves that track the shear wave to the tissue of the region of interest for a period of time, and receives the ultrasonic echoes thereof to obtain the first ultrasonic echo data, and according to the first ultrasonic echo
  • the data obtains a shear wave signal, which is used to characterize the vibration state of the tissue when the shear wave propagates in the tissue.
  • the shear wave signal obtained by the above method is a broadband signal, which includes shear wave components of multiple frequencies within 0 ⁇ 1000Hz. Each shear wave component of the shear wave signal is equivalent to a signal of one frequency The state of tissue vibration caused by shear waves.
  • step S840 filter the shear wave signal to extract a shear wave component of at least one frequency.
  • the shear wave components of different frequencies can be regarded as tissue vibration information caused by the shear waves of different frequencies.
  • the shear wave signal may be a time domain signal describing the change of tissue motion information in the region of interest with time, and the filtering of the shear wave signal may be performed in the time domain, that is, the shear wave signal is filtered in the time domain.
  • a band-pass filter may be used to perform filtering with a selected frequency as the center frequency to extract the shear wave component at the corresponding frequency.
  • a low-pass filter and/or a high-pass filter can also be used to filter the shear wave signal, respectively.
  • each separated shear wave component does not necessarily include only the single frequency of the center frequency, but includes a frequency band with a preset bandwidth with a preset frequency point as the center frequency.
  • the bandwidth of the extracted shear wave components can be changed. The more concentrated the separated and extracted shear wave components, the more accurately the tissue motion information at the current frequency can be obtained. However, correspondingly, since more shear wave components are filtered out, the signal-to-noise ratio of the obtained signal will decrease. Therefore, the desired balance can be obtained between the accuracy of tissue motion information and the signal-to-noise ratio of the signal by adjusting the filter parameters.
  • the phase velocity of the shear wave is determined according to the shear wave component.
  • the calculation of the phase velocity of the shear wave can adopt various methods of determining the propagation velocity of the shear wave used in conventional shear wave elasticity measurement, for example, by calculating the shear wave at two different positions separated by a certain distance in the tissue. To calculate the propagation velocity of the shear wave.
  • the propagation velocity of the shear wave is also calculated through the inversion of the wave equation, and the embodiment of the present application does not limit the calculation method of the propagation velocity of the shear wave.
  • the phase velocity of the shear wave can be directly output.
  • the output phase velocity may include the value and/or image of the output phase velocity.
  • Outputting the numerical value of the phase velocity may include outputting the numerical value of the phase velocity at each position of the region of interest, and may also include outputting the statistical result of the numerical value of the phase velocity at a plurality of positions.
  • the output phase velocity image can include the output phase velocity statistical graph or superimpose and display the phase velocity image formed by gray-scale or color coding according to the value of the phase velocity on the conventional ultrasound image, or it can also include the phase velocity with shear wave. Frequency change curve and so on.
  • the third elastic parameter of the region of interest may be determined according to the phase velocity of the shear wave, and the value and/or image of the third elastic parameter may be output.
  • the third elastic parameter may include the elastic modulus calculated by using the phase velocity, and may also include the elastic parameter calculated according to the Voigt model.
  • the output value of the third elastic parameter may be the value of the statistical result of the third elastic parameter, as an estimate of the overall elasticity of the region of interest.
  • the statistical result of the third elastic parameter may include at least one of the following: an average value, a median value, a standard deviation, a quartile, a maximum value, or a minimum value of the plurality of elastic information.
  • the statistical result of the third elastic parameter is not limited to the statistical result of the third elastic parameter at multiple positions obtained by one elastic measurement, and may also include the statistical result of the third elastic parameter obtained by multiple elastic measurements. .
  • the statistical result of the third elastic parameter obtained by multiple elastic measurements may also include the average, median, standard deviation, quartile, maximum, or maximum value of the third elastic parameter obtained from multiple elastic measurements. Minimum value, etc.
  • the third elasticity parameter at multiple positions within the region of interest can be acquired to generate an elasticity image of the region of interest, and display the elasticity on the display interface.
  • the third elastic parameter may be processed by gray-scale or color coding to generate an elastic image, which is superimposed or fused with a conventional ultrasound image and displayed together.
  • the group velocity of the shear wave can also be determined according to the shear wave signal, and the fourth elastic parameter of the region of interest can be obtained according to the group velocity. After that, the The value and/or image of the fourth elastic parameter.
  • the fourth elastic parameter may include the shear modulus or Young's modulus calculated by using the group velocity of the shear wave.
  • the output mode of the fourth elastic parameter can be referred to the output mode of the third elastic parameter above.
  • the above exemplarily shows the elasticity measurement method 800 according to an embodiment of the present application.
  • the elasticity measurement method 800 extracts the shear wave component in the shear wave signal and calculates the phase velocity of the shear wave component.
  • the phase velocity can reflect the elasticity of the tissue in the region of interest or Information such as stickiness.
  • FIG. 9 shows a schematic flowchart of an elasticity measurement method 900 according to another embodiment of the present application.
  • the elasticity measurement method 900 described with reference to FIG. 9 is substantially similar to the elasticity measurement method 800 described above, and some of the same details are omitted.
  • the elasticity measurement method 900 includes the following steps:
  • Step S910 Obtain the shear wave signal of the region of interest of the measured object
  • Step S920 extract a shear wave component of at least one frequency from the shear wave signal
  • Step S930 Determine the phase velocity of the shear wave according to the shear wave component of the at least one frequency.
  • the elasticity measurement method 900 described with reference to FIG. 9 is similar to the elasticity measurement method 8008 described with reference to FIG. 8, both of which determine the phase velocity of the shear wave based on the shear wave component extracted from the shear wave signal.
  • the method of obtaining the shear wave signal is not limited, and the region of interest of the target object can be obtained in any suitable manner to perform the above-mentioned elasticity measurement on it.
  • the shear wave signal can be acquired in real time or extracted from a storage medium; the method of generating the shear wave can be either the acoustic radiation force pulse impact as described above, or the application of external mechanical vibration. Instead, it may be produced in any other suitable manner.
  • the elasticity measurement method 900 extracts the shear wave component in the shear wave signal and calculates the phase velocity of the shear wave component.
  • the phase velocity can reflect information such as the elasticity or viscosity of the tissue in the region of interest.
  • FIG. 10 shows a schematic structural block diagram of an ultrasonic measurement system 1000 according to an embodiment of the present application.
  • the ultrasonic measurement system 1000 includes an ultrasonic probe 1010, a transmitting/receiving circuit 1020, a processor 1030, and an output device 1040. Further, the ultrasonic measurement system may further include a beam combining circuit and a transmission/reception selection switch, and the transmission/reception circuit 1020 may be connected to the ultrasonic probe 1010 through the transmission/reception selection switch.
  • the ultrasonic probe 1010 when performing shear wave elasticity measurement, the ultrasonic probe 1010 emits an acoustic radiation force pulse to the measured object under the control of the processor 1030 to generate a shear wave in the region of interest of the measured object.
  • the ultrasonic probe 1010 is provided with multiple transducers for transmitting ultrasonic waves according to electrical signals or transforming received ultrasonic echoes into electrical signals. Multiple transducers can be arranged in a row to form a linear array, or arranged in a two-dimensional matrix to form an area array. Multiple transducers can also form a convex array, phased array, etc. There is no restriction on the arrangement of array elements.
  • the transducer can transmit ultrasonic waves according to the excitation electrical signal, or convert the received ultrasonic waves into electrical signals. Therefore, each transducer can be used to transmit ultrasonic waves to the tissue in the target area, and can also be used to receive ultrasonic echoes returned through the tissue.
  • the transmitter/receiver circuit 1020 can control which transducers are used to transmit ultrasonic waves and which transducers are used to receive ultrasonic waves, or control the transducers to be used to transmit ultrasonic waves or receive ultrasonic echoes in time slots.
  • All the transducers participating in ultrasonic emission can be excited by electrical signals at the same time, so as to emit ultrasonic waves at the same time; or the transducers participating in ultrasonic emission can also be excited by several electrical signals with a certain time interval, so as to continuously emit ultrasonic waves with a certain time interval. .
  • the region of interest can be selected by the user. For example, when a conventional ultrasound image is displayed on the display, the user can select the region of interest on the conventional ultrasound image, and the ultrasound measurement system 1000 can calculate the transmission and reception sequence according to the selected region of interest. . In some embodiments, the ultrasound measurement system 1000 defaults that the set range under the tissue epidermis contacted by the ultrasound probe 1010 is the region of interest.
  • the ultrasonic probe 1010 may also include a pressure sensor for feeding back the strength of the ultrasonic probe 1010 when it is in contact with the human body, so that the user can control the tightness of the pressing, so that the shear wave generated by the ultrasonic probe 1010 can be better transmitted. organization.
  • the transmitting/receiving circuit 1020 is used to excite the ultrasonic probe 1010 to transmit the ultrasonic wave tracking the shear wave to the target area, and receive the ultrasonic echo corresponding to the ultrasonic wave returned from the target area, so as to obtain ultrasonic echo data. After that, the transmitting/receiving circuit 1020 sends the ultrasonic echo electrical signal to the beam synthesis circuit, and the beam synthesis circuit performs processing such as focus delay, weighting and channel summation on the ultrasonic echo data, and then sends it to the processor 1030.
  • the processor 1030 may be implemented by software, hardware, firmware, or any combination thereof, and may use a circuit, a single or multiple application specific integrated circuits (Application Specific Integrated Circuit, ASIC), a single or multiple general integrated circuits, and a single Or multiple microprocessors, single or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices. Also, the processor 1030 may control other components in the ultrasonic measurement system 1000 to perform desired functions.
  • ASIC Application Specific Integrated Circuit
  • ASIC Application Specific Integrated Circuit
  • the processor 1030 may control other components in the ultrasonic measurement system 1000 to perform desired functions.
  • the processor 1030 performs viscoelastic processing on the received ultrasonic echo data to obtain the viscosity information and elastic information of the region of interest, and can store the obtained viscosity information and elastic information in the memory.
  • the processor may also perform different processing on the ultrasound echo data acquired by the transmitting/receiving circuit 1020 according to the imaging mode required by the user to obtain ultrasound tissue images of different modes.
  • the processor can simultaneously obtain viscosity information, elasticity information, and ultrasound tissue images after processing the same ultrasound echo; in another embodiment, the ultrasound probe 1010 can emit the first ultrasound and the second ultrasound or Transmitting the first ultrasonic wave and the second ultrasonic wave, the processor 1030 can obtain viscosity information and elastic information after processing the first ultrasonic echo of the first ultrasonic wave, and generate it after processing the second ultrasonic echo of the second ultrasonic wave Different modes of ultrasound tissue images.
  • the output device 1040 is connected to the processor 1030 for outputting viscosity information and elasticity information.
  • the output device 1040 may be a display for displaying viscosity information and elasticity information on the display interface.
  • the display can be a touch screen, a liquid crystal display, etc., or can also be an independent display device such as an independent liquid crystal display, a TV, etc.; or, the display can also be a display screen of an electronic device such as a smart phone, a tablet computer, etc. Wait.
  • the number of displays can be one or more.
  • the display can also provide users with a graphical interface for human-computer interaction.
  • One or more controlled objects can be set on the graphical interface, and the user can use the human-computer interaction device to input operating instructions to control these controlled objects.
  • Object to perform the corresponding control operation.
  • an icon is displayed on a graphical interface, and the icon can be operated using a human-computer interaction device to perform a specific function.
  • the output device 1040 may also include a speaker, a printer, and so on.
  • the output device 1040 may also be any other suitable information output device.
  • the ultrasonic measurement system 1000 may also include other human-computer interaction devices, which are connected to the processor 1030.
  • the processor 1030 may be connected to the human-computer interaction device through an external input/output port, and the external input/output port may be
  • the wireless communication module can also be a wired communication module, or a combination of the two.
  • the external input/output ports can also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols.
  • the human-computer interaction apparatus may include an input device for detecting user input information.
  • the input information may be, for example, a selection instruction for a region of interest, or may also include other instruction types.
  • the input device may include one or a combination of a keyboard, a mouse, a scroll wheel, a trackball, a mobile input device (such as a mobile device with a touch display screen, a mobile phone, etc.), a multi-function knob, and so on.
  • the ultrasound measurement system 1000 may also include a memory for storing instructions executed by the processor, storing viscosity information and elasticity information, ultrasound images, and so on.
  • the memory may be a flash memory card, solid state memory, hard disk, etc. It can be a volatile memory and/or a non-volatile memory, a removable memory and/or a non-removable memory, etc.
  • the components included in the ultrasonic measurement system 1000 shown in FIG. 10 are only schematic, and it may include more or fewer components, which is not limited in the present application.
  • the ultrasonic measurement system 1000 is used to implement the viscoelasticity measurement method 100 of the embodiment of the present application, and the transmitting/receiving circuit 1020 is used to excite the ultrasonic probe 1010 to transmit acoustic radiation force pulses to the object to be measured.
  • the region of interest of the measured object generates a shear wave
  • the ultrasound probe 1010 is excited to transmit a first ultrasonic wave tracking the shear wave to the region of interest, and receive the first ultrasonic wave of the region of interest Echo to obtain the first ultrasonic echo data
  • the processor 1030 is configured to: obtain the shear wave signal of the region of interest according to the first ultrasonic echo data; extract at least two signals from the shear wave signal The shear wave components of different frequencies; the phase velocity of the shear wave is determined according to the shear wave components of the at least two different frequencies; the phase velocity of the shear wave is determined according to the at least two phase velocities, and the viscosity reflecting the viscosity of the region of interest is determined Sticky information; the output device 1040 is used to output the sticky information.
  • the ultrasonic measurement system 1000 is used to implement the elasticity measurement method 800 of the embodiment of the present application, and the transmitting/receiving circuit 1020 is used to excite the ultrasonic probe 1010 to transmit acoustic radiation force pulses to the object to be measured.
  • the processor 1030 is configured to: obtain a shear wave signal of the region of interest according to the first ultrasonic echo data; extract at least one frequency from the shear wave signal The shear wave component of the shear wave; the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency; the output device 1040 is used to output the phase velocity of the shear wave.
  • the ultrasonic measurement system 1000 can be used to extract the shear wave components of different frequencies from the shear wave signal to determine the viscosity information of the tissue on the one hand, and can be used to obtain information from the shear wave on the other hand.
  • the shear wave component of at least one frequency is extracted from the wave signal to determine the phase velocity of the tissue.
  • an embodiment of the present application also provides an ultrasonic measurement system 1100, which is used to implement the viscoelasticity measurement method 70 or the elasticity measurement method 900 described above.
  • the ultrasonic measurement system 1100 includes a memory 1110 and a processor 1120, and the memory 1110 stores a computer program run by the processor 1120.
  • the processor 1120 can be implemented by software, hardware, firmware or any combination thereof, and can use circuits, single or multiple application specific integrated circuits, single or multiple general integrated circuits, single or multiple microprocessors, single Or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices, and the processor 1120 may control other components in the ultrasonic measurement system 1100 to perform desired functions.
  • the memory 1110 may include one or more computer program products, and the computer program products may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include random access memory and/or cache memory, for example.
  • the non-volatile memory may include, for example, a read-only memory, a hard disk, a flash memory, and the like.
  • One or more computer program instructions can be stored on the computer-readable storage medium, and the processor 520 can run the program instructions to implement ultrasound imaging or Ultrasound image processing functions and/or various other desired functions.
  • Various application programs and various data such as various data used and/or generated by the application program, can also be stored in the computer-readable storage medium.
  • the computer program stored on the memory 1110 executes the following steps when being run by the processor 1120: acquiring the shear wave signal of the region of interest of the measured object; extracting at least the shear wave signal from the shear wave signal Two shear wave components with different frequencies; respectively determine the phase velocity of the shear wave according to the at least two shear wave components with different frequencies; determine the viscosity of the region of interest according to the at least two phase velocities Sticky information.
  • the computer program stored on the memory 1110 executes the following steps when being run by the processor 1120: acquiring the shear wave signal of the region of interest of the measured object; extracting from the shear wave signal A shear wave component of at least one frequency; the phase velocity of the shear wave is determined according to the shear wave component of the at least one frequency.
  • a storage medium is also provided, and program instructions are stored on the storage medium, and the program instructions are used to perform the viscoelasticity measurement in the embodiments of the present application when the program instructions are run by a computer or a processor.
  • the storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory (CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • a computer program is also provided, and the computer program can be stored in a cloud or a local storage medium.
  • the computer program is run by a computer or a processor, it is used to execute the corresponding steps of the viscoelasticity measurement method or the elasticity measurement method in the embodiments of the present application.
  • the viscoelastic measurement method and ultrasonic measurement system extract the shear wave components of different frequencies from the shear wave signal, and obtain the phase velocity of each shear wave component, only One measurement can obtain information reflecting the viscosity of the tissue.
  • the elasticity measurement method according to the embodiment of the present application extracts the shear wave component from the shear wave signal and calculates its corresponding phase velocity, which can reflect the elastic information of the tissue.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present application.
  • This application can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for implementing the present application may be stored on a computer-readable medium, or may have the form of one or more signals.
  • Such a signal can be downloaded from an Internet website, or provided on a carrier signal, or provided in any other form.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种粘弹性测量方法(100,700)和超声测量系统(1000),粘弹性测量方法(100,700)包括:向被测对象发射声辐射力脉冲,以在被测对象的感兴趣区域产生剪切波(S110);向感兴趣区域发射跟踪剪切波的第一超声波,并接收感兴趣区域的第一超声回波,以获得第一超声回波数据(S120);根据第一超声回波数据获得感兴趣区域的剪切波信号(S130);从剪切波信号中提取至少两种不同频率的剪切波成分(S140);分别根据至少两种不同频率的剪切波成分确定剪切波的相速度(S150);根据至少两个相速度确定反映感兴趣区域粘性的粘性信息(S160);输出粘性信息(S170)。进行一次粘弹性测量即可确定感兴趣区域的粘性信息。

Description

粘弹性测量方法和超声测量系统
说明书
技术领域
本申请涉及超声测量技术领域,更具体地涉及一种粘弹性测量方法和超声测量系统。
背景技术
超声弹性成像技术通过提取组织的硬度相关信息进行成像,与乳腺癌、肝硬化等重大疾病的无创辅助诊断相关,是近二十年来超声成像领域的研究热点。经过多年的发展,超声弹性成像技术逐渐成熟,近年来已经更为广泛地被应用到人体中肝脏、乳腺、甲状腺、肌骨、血管、前列腺、宫颈等各个不同部位的临床研究和辅助诊断中。超声弹性成像技术可以定性地反映病灶相对于周围组织的软硬差异,或者定量地反映目标组织的硬度相关物理参数,例如杨氏模量、剪切模量等,广受医生欢迎。
常用的超声弹性成像技术包括应变弹性成像、剪切波弹性成像、瞬时弹性成像等。其中,剪切波弹性成像技术通过向组织内部发射特殊脉冲形成声辐射力,产生剪切波的传播,再通过超声波检测和记录剪切波的传播过程,并进一步计算出剪切波的传播速度,最终得到反映组织硬度的弹性模量参数,实现定量弹性成像。该技术大大拓展了弹性成像的临床应用领域,引起了极大的研究兴趣。
在当前大多数弹性相关研究中,组织都被视为纯弹性体,弹性成像技术也主要是基于纯弹性体的假设来进行成像。尤其是定量的弹性成像技术,通常只计算出弹性模量进行显示。但是越来越多的研究已经表明,人体组织除了弹性(Elasticity)特性以外,还具备粘性(Viscosity)特性,弹性和粘性共同影响剪切波在组织中的传播速度。目前虽然关于组织粘性与疾病相关性的临床研究非常少,但已有研究表明,组织粘性可能与肝炎等疾病的进展有关。因此,在进行弹性成像时,如果能同时提取出粘性相关的信息,将会有非常大的临床潜在价值。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本申请实施例第一方面提供一种粘弹性测量方法,包括:
向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波;
向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少两种不同频率的剪切波成分;
分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息;
输出所述粘性信息。
本申请实施例第二方面提供一种粘弹性测量方法,包括:
获取被测对象的感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少两种不同频率的剪切波成分;
分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
本申请实施例第三方面一种弹性测量方法,所述方法包括:
向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生宽频段剪切波;
向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少一个频率的剪切波成分;
根据所述至少一个频率的剪切波成分确定剪切波的相速度。
本申请实施例第四方面提供一种弹性测量方法,所述方法包括:
获取被测对象的感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少一个频率的剪切波成分;
根据所述至少一个频率的剪切波成分确定剪切波的相速度。
本申请实施例第五方面提供一种超声测量系统,包括:
超声探头;
发射/接收电路,用于激励所述超声探头向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波;以及激励所述超声探头向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
处理器,用于:
根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少两种不同频率的剪切波成分;
分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息;
输出设备,用于输出所述粘性信息。
本申请实施例第六方面提供一种超声测量系统,所述超声测量系统包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
获取被测对象的感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少两种不同频率的剪切波成分;
分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
本申请实施例第七方面提供一种超声测量系统,所述超声测量系统包括:
超声探头;
发射/接收电路,用于激励所述超声探头向被测对象发射声辐射力脉冲, 以在所述被测对象的感兴趣区域产生剪切波;以及激励所述超声探头向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
处理器,用于:
根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少一个频率的剪切波成分;
根据所述至少一个频率的剪切波成分确定所述剪切波的相速度。
本申请实施例第八方面提供一种超声测量系统,所述超声测量系统包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
获取被测对象的感兴趣区域的剪切波信号;
从所述剪切波信号中提取至少一个频率的剪切波成分;
根据所述至少一个频率的剪切波成分确定剪切波的相速度。
本申请实施例第九方面提供一种计算机存储介质,其上存储有计算机程序,所述计算机程序被计算机或处理器执行时实现本申请实施例提供的粘弹性测量方法或弹性测量方法的步骤。
根据本申请实施例的粘弹性测量方法和超声测量系统通过从剪切波信号中提取出不同频率的剪切波成分,并得到每个剪切波成分的相速度,只需一次测量即可获得反映组织粘性的信息。根据本申请实施例的弹性测量方法从剪切波信号中提取剪切波成分并计算其相应的相速度,该相速度可以反映组织的弹性信息。
附图说明
图1示出了根据本申请一个实施例的粘弹性测量方法的示意性流程图;
图2为根据本申请一个实施例的剪切波信号的频谱图;
图3为从图2所示的剪切波信号中分离所得的剪切波成分的频谱图;
图4A示出了根据本申请一个实施例的剪切波信号的振动波形;
图4B、图4C分别示出从图4A所示的剪切波信号中提取的不同频率的剪切波成分的振动波形;
图5A示出了根据本申请一个实施例的基础超声图像和在基础超声图 像中确定的感兴趣区域;
图5B示出了根据本申请一个实施例的叠加显示的基础超声图像和弹性图像;
图5C示出了根据本申请一个实施例的叠加显示的基础超声图像和粘性图像;
图6示出了根据本申请一个实施例的基础超声图像和弹性系数及粘性系数;
图7示出了根据本申请另一个实施例的粘弹性测量方法的示意性流程图;
图8示出了根据本申请一个实施例的弹性测量方法的示意性流程图;
图9示出了根据本申请另一个实施例的弹性测量方法的示意性流程图;
图10示出了根据本申请一个实施例的超声测量系统的示意性框图;
图11示出了根据本申请另一个实施例的超声测量系统的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括 复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
本申请实施例主要用于复用剪切波弹性测量过程中所获得的超声回波数据,从剪切波信号中分离出不同频率的剪切波成分并分别计算相应的剪切波速度,进而获得粘性信息。下面,将参考图1描述根据本申请一个实施例的粘弹性测量方法,图1是本申请一个实施例的粘弹性测量方法100的示意性流程图。
如图1所示,本申请一个实施例的粘弹性测量方法100包括如下步骤:
在步骤S110,向被测对象发射声辐射力脉冲(ARFI,acoustic radiation force impulse),以在所述被测对象的感兴趣区域产生剪切波;
在步骤S120,向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
在步骤S130,根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
在步骤S140,从所述剪切波信号中提取至少两种不同频率的剪切波成分;
在步骤S150,分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
在步骤S160,根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息;
在步骤S170,输出所述粘性信息。
本申请实施例的粘弹性测量方法100在常规剪切波弹性测量的基础上,增加了提取剪切波信号中不同频率的剪切波成分的环节,并分别计算对应不同频率的剪切波成分的剪切波传播速度,进而获得反映组织粘性的粘性信息。根据本申请实施例的粘弹性测量方法100,基于一次粘弹性测量可以同时获得组织的粘性信息和弹性信息。
一般地,在执行步骤S110之前,首先根据被测对象的常规超声图像确定所述感兴趣区域的位置。
具体地,可以通过超声探头向所述被测对象发射第二超声波,并接收第二超声波的超声回波,以得到第二超声回波数据。之后,可以由波束合成电路对第二超声回波数据进行波束合成处理,然后将波束合成后的第二超声回波数据送入处理器进行相关的图像处理,从而得到基础超声图像。其中,根据用户所需成像模式的不同,处理器可以对第二超声回波信号进行不同的处理,获得不同模式的超声图像数据,然后,经对数压缩、动态范围调整、数字扫描变换等处理形成不同模式的基础超声图像,如包括B图像,C图像等二维超声图像。常规超声图像可以提供病灶形态、血流分布等相关信息。
之后,可以根据该基础超声图像确定感兴趣区域的位置。在一个示例中,根据常规超声图像确定所述感兴趣区域的位置具体包括:输出所述常规超声图像,并在所述常规超声图像上标记所述感兴趣区域的位置。例如,可以在显示器上显示该基础超声图像,由用户手动框选出基础超声图像上的感兴趣区域,并根据检测到的用户输入指令确定感兴趣区域的位置。
在另一个示例中,可以基于相关的机器识别算法在基础超声图像上自动确定感兴趣区域的位置。在其他示例中,还可以通过半自动检测的方式来获取感兴趣区域,例如,首先基于机器识别算法自动检测基础超声图像上的感兴趣区域的位置,再由用户进一步修改或校正,以获取更为精确的感兴趣区域的位置。
接着,在步骤S110至步骤S130中,可以根据采用以上方式选定的感兴趣区域位置,按照预先设定的脉冲序列进行声辐射力聚焦冲击。具体地,超声探头向被测对象的感兴趣区域的组织发射特殊的超声推动脉冲,以在 组织中基于声辐射力产生剪切波的传播。超声推动脉冲的长度一般大于100us。由于声辐射力脉冲产生的剪切波本身幅度较小,且剪切波会随着传播迅速衰减,因此,为了加强所产生的剪切波的强度、范围,往往会连续发射多个超声推动脉冲。
接着,由超声探头向感兴趣区域的组织持续一段时间(一般为几十毫秒)连续发射一系列跟踪剪切波的第一超声波,并接收其超声回波,以获得第一超声回波数据,并根据第一超声回波数据获得剪切波信号,所述剪切波信号是剪切波的回波信号的信号,用于表征剪切波在组织中传播时组织的振动状态。利用以上方式所获得的剪切波信号为一个宽频信号,其中包括0~1000Hz内的多个剪切波成分,剪切波信号的每个剪切波成分可以视为表征由一种频率的剪切波引起的组织振动状态的信号。
具体地,可以由超声测量系统的处理器根据上述第一超声回波数据计算得到剪切波在组织中传播时组织的振动状态,剪切波信号为表征组织一段时间内的振动状态的信号。根据波动特性,当剪切波传播经过组织中某位置时,相应位置的组织会发生振动,当剪切波传播远离某位置后,该位置的组织会恢复至原状。因而,通过对不同时刻下所得到的超声回波之间进行相关对比,即可获得组织在一段时间内的运动信息。其中,运动信息可以是组织相对于参考时刻的位移量、组织的运动速度、组织的运动加速度、组织的应变量等,或者是基于上述变量进一步经过滤波、微分、积分等处理之后的数据。
其中,相关对比可以是对相邻的不同时刻所得的超声回波信号之间进行对比计算,也可以是对不同时刻的超声回波与同一个参考时刻的回波信号之间进行对比计算。相关对比的算法可以包括常规组织位移检测的通用算法,例如基于块匹配的互相关比对算法、基于多普勒频移的计算方法、基于相移检测的方法等。本申请实施例对检测组织运动信息所采用的具体算法不做限制。
之后,将不同时刻剪切波引起的组织运动信息进行汇总,即可以观察到剪切波信号的振动波形。图4A示出了组织中某位置处一段时间内的组织运动速度-时间曲线。当然,也可以通过汇总一段时间内上文所述的其他组织运动信息来观察剪切波信号的振动波形,例如通过绘制组织位移-时间 曲线等。
在步骤S140,从所述剪切波信号中提取至少两种不同频率的剪切波成分。不同频率的剪切波成分可以视为由不同频率的剪切波引起的组织振动信息,通过对剪切波信号进行频率不同频率的剪切波成分的提取,仅需进行一次声辐射力脉冲发射和第一超声波发射与第一超声回波接收,即可以获得不同频率的剪切波所引起的组织振动信息,以用于后续粘性参数的计算,而无需进行多次发射和接收。
在一个实施例中,可以通过对剪切波信号进行滤波来提取其中的至少两种不同频率的剪切波成分。需要说明的是,滤波方式可以按照时域,频域或者各种算法等方式进行,算法也可以是卷积运算等,当然,滤波的过程还可以包括滤波外的之前或者之后的一系列的处理过程,此处不做具体限定。
参见图2和图3,图2示出了步骤S130中所获得的宽频段剪切波信号的频谱图,该剪切波信号中包括0~1000Hz内的多个剪切波成分,因而频谱图在较宽的频段内均有较高的幅度。图3示出了从该剪切波信号中提取的以300Hz为中心频率的剪切波成分的频谱图,从图3中可以看出,该剪切波成分的频谱图仅在300Hz附近具有较高的幅度。
参照图4A-图4C,如上所述,图4A示出了宽频段剪切波信号的波形图。图4B为从图4A所示的宽频段剪切波信号中所提取的中心频率为300Hz的剪切波成分的波形图。图4C为从图4A所示的宽频段剪切波信号中所提取的中心频率为600Hz的剪切波成分的波形图。由图4B、图4C可以看出,不同频率的剪切波成分的振动波形不同,即意味着步骤S110中所发射的剪切波中,不同频率的的剪切波在组织中传播所引起的组织的振动状态不同。
如上所述,剪切波信号可以是描述感兴趣区域内组织运动信息随时间变化的时域信号,对剪切波信号进行的滤波可以在时域下进行,即对所述剪切波信号进行时域滤波。
作为另一种实现方式,也可以将剪切波信号变换为频域信号,并对所述频域信号进行频域滤波。例如,可以将频域信号中所需频段以外的频段的幅度全部置零,之后,再将频域滤波后的频域信号逆变换为时域信号。 示例性地,将剪切波信号从时域变换为频域可以通过傅里叶变换来实现,将剪切波信号从频域变换为时域可以通过傅里叶逆变换来实现。
在一个实施例中,可以基于各种合适的滤波器提取剪切波信号中的剪切波成分,所使用的滤波器可以是软件滤波器,也可以是在超声测量系统中额外设置的硬件滤波器。
示例性地,作为一种较为精确的滤波方式,可以基于至少两个不同频率的带通滤波器,以不同频率为中心频率进行滤波,分别提取出相应频率下的剪切波成分。例如,可以分别使用300Hz和600Hz的带通滤波器,从0~1000Hz的宽频段剪切波信号中提取以300Hz和600Hz为中心频率的剪切波成分。可以理解的是,使用带通滤波器进行滤波时,可以使用两个以上的多个带通滤波器,以从剪切波信号中提取多个频率的剪切波成分。
此外,作为一种较为简化的滤波方式,可以分别使用低通滤波器与高通滤波器对剪切波信号进行滤波,从而分别提取出剪切波信号中的低频成分和高频成分。例如,可以使用500Hz的高通滤波器和低通滤波器,从0~1000Hz的宽频段剪切波信号中提取0~500Hz的低频成分和500~1000Hz的高频成分。
进一步地,从图3和图4B、图4C中可以看出,对于分离出来每个频率的剪切波成分,也并不一定仅仅包括中心频率这一单一的频率,而是包括以预设频率点为中心频率的具有预设带宽的频带。
以中心频率为300Hz为例,所提取的剪切波成分的频率分布可以是一个以300Hz为主的频率范围,例如250~350Hz,或者200~400Hz等。如图3所示,该剪切波成分的中心频率在300Hz处,同时包含一定带宽的剪切波成分。通过调整用于进行滤波的滤波器参数,可以改变所提取的剪切波成分的带宽。分离提取的剪切波成分越集中,越能准确获得当前频率下的组织运动信息,然而相应地,由于滤除的剪切波成分较多,所得到的信号的信噪比会降低。因此,可以通过调整滤波器参数,在组织运动信息的准确性和信号的信噪比之间获得预期的平衡。
在步骤S150中,分别根据至少两种不同频率的剪切波成分确定剪切波的相速度。
具体地,根据步骤S130中获得的原始的剪切波信号,或者根据经过频 率分离提取的不同频率的剪切波成分,均可以计算得到剪切波的传播速度。由于剪切波源具备较宽的频带信息,因而根据原始的剪切波信号计算得到的剪切波传播速度是多种频率的剪切波的综合传播速度,称为剪切波群速度。而利用分离所得的剪切波成分所计算得到的剪切波传播速度为该频率下的剪切波传播速度,因而称为剪切波的相速度。
示例性地,计算剪切波的相速度可以采用常规剪切波弹性测量所使用的确定剪切波传播速度的各种方法,例如通过计算组织中两个间隔一定距离的不同位置处剪切波的到达时刻来计算剪切波的传播速度,具体地,可以对组织中两个不同位置处对应的位移-时间曲线进行互相关比较,从而得到二者之间的时间差,该时间差对应着剪切波在这两个位置之间的传播时间,两个位置之间的距离与传播时间之比即为剪切波的传播速度。或者,还通过波动方程的反演计算出剪切波的传播速度等,本申请实施例对剪切波传播速度的计算方法不做限制。
在步骤S160,根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
对于纯弹性体,剪切波传播速度主要受到弹性参数的影响。对于粘弹性体,剪切波速度同时受到弹性和粘性的影响。由于粘性因素的影响,组织中的剪切波传播速度会表现出频散效应,即不同频率的剪切波的传播速度不同。因此,可以根据粘性参数与步骤S150中所确定的相速度和与之对应的剪切波频率之间的关系确定感兴趣区域的粘性参数,以作为反应感兴趣区域组织粘性的粘性信息。根据本申请的实施例,基于一次发射接收过程所得到的超声测量数据即可以确定粘性参数,或者同时获得粘性参数和弹性参数,而无需重复多次声辐射力冲击和回波采集过程。
具体地,可以根据多种理论模型来确定粘性参数。例如,根据Voigt模型,剪切波的相速度c φ与粘性参数之间有如下关系:
Figure PCTCN2020086774-appb-000001
其中,ρ为组织密度,μ 1为组织的弹性参数(shear elasticity),μ 2为组织的粘性参数(shear viscosity),ω为剪切波的角频率,所述剪切波的角频率可以根据所述剪切波成分的中心频率而确定,具体地,角频率为中心 频率的2π倍。
根据以上公式,最少只需要计算出2个不同频率的剪切波成分的传播速度,即可以计算出组织的粘性参数。当然,在一些实施例中,为了更准确地计算出组织的粘性参数,可以计算出多个不同频率的剪切波成分的传播速度,再利用上述公式进行拟合,以获得对粘性参数的最佳估计。其中,多个不同频率的剪切波成分可以是从一次声辐射力冲击和回波采集过程所得的剪切波信号中分离提取的,也可以是从多次声辐射力冲击和回波采集过程所得的剪切波信号中分离提取的。
当然,更简单地,由于剪切波传播速度与组织粘性相关,因而可以直接利用上述不同频率的剪切波成分的相速度的差异来反映组织的粘性,即对根据不同频率的所述剪切波成分所确定的相速度进行比较以获得比较结果,并将所述比较结果作为反映所述感兴趣区域粘性的所述粘性信息。
例如,可以计算出不同频率的剪切波成分的相速度的差值、相速度的比值、相速度随剪切波频率变化的斜率等相关参数来反映粘性。例如,可以根据多个剪切波频率和对应的相速度,进行线性拟合以得到相速度-频率直线,求得直线斜率。此直线斜率反映剪切波经过同一组织位置时相速度与剪切波频率的变化关系,可以定性反映出组织的粘性特征。即,斜率越大,组织粘性越大;反之,斜率越小,组织粘性越小。
此外,根据上述Voigt模型可以发现,除了粘性参数μ 2外,还可以根据相速度与粘性参数μ 2、弹性参数μ 1和剪切波频率之间的关系计算出感兴趣区域的第一弹性参数(即弹性参数μ 1)。该第一弹性参数与根据剪切波群速度计算得到的弹性模量(即下文所述的第二弹性参数)是不同的,但该第一弹性参数也能够反应组织的弹性特征。因此,在一个实施例中,还可以将该弹性参数μ 1作为反应组织弹性的弹性测量结果输出。
除此之外,本申请实施例的粘弹性测量方法100还可以复用同一组第一超声回波数据,以获得常规的弹性测量结果。
具体地,可以根据所述第一超声回波数据确定剪切波的群速度,并根据所述群速度得到所述感兴趣区域的第二弹性参数。其中,所述第二弹性参数可以是组织的弹性模量,例如杨氏模量、剪切模量等。一定条件下,弹性模量越大,意味着组织硬度越大。示例性地,可以基于以下公式计算 出组织的弹性模量:剪切模量G=ρc s 2;杨氏模量E=3ρc s 2;其中,ρ为组织密度,c s为剪切波群速度。
此外,在一些实施例中,还可以根据分离所得的至少一个频率的剪切波成分的相速度计算组织的弹性模量。具体地,可以根据剪切波的相速度计算得到与之对应的剪切模量或杨氏模量,例如采用剪切波相速度替换剪切波群速度c s来计算上述的剪切模量G或杨氏模量E。由于采用剪切波相速度计算所得的弹性模量对应于固定的剪切波频率,因而可以提升弹性测量的稳定性。
在步骤S170,输出所述粘性信息。
其中,输出粘性信息可以包括输出粘性参数的数值和/或图像。
对于输出粘性参数的数值来说,在一个实施例中,可以针对感兴趣区域内的多个位置分别获得粘性参数,并显示感兴趣区域内的粘性参数分布情况。例如,在确定感兴趣区域多个位置处的粘性参数后,可以将其显示在常规超声图像的相应位置处以形成粘性参数分布图,以直观地显示组织粘性差异。
在另一个实施例中,输出的粘性参数的数值可以是粘性参数的统计结果的数值,以作为对感兴趣区域的整体粘性的估计。具体地,可以根据感兴趣区域内的一个或多个位置处的粘性信息获取所述感兴趣区域的粘性信息的统计结果,并输出所述统计结果的数值。其中,所述粘性信息的统计结果可以包括以下至少一项:多个所述粘性信息的平均值、中值、标准差、四分位数、最大值或最小值。
进一步地,所述粘性信息的统计结果不限于一次粘弹性测量所获得的多个位置处的粘性信息的统计结果,还可以包括多次粘弹性测量所得到的粘性信息的统计结果。示例性地,多次粘弹性测量所得到的粘性信息的统计结果也可以包括多次粘弹性测量所得到的粘性信息的平均值、中值、标准差、四分位数、最大值或最小值等。
对于输出粘性信息的图像来说,具体地,可以获取感兴趣区域内多个位置处的粘性信息,以生成所述感兴趣区域的粘性图像,并在显示界面上显示所述粘性图像。例如,可以对粘性参数进行灰阶或彩色编码等处理以生成粘性图像,与常规超声图像进行叠加或融合后一起显示。
除了输出粘性信息以外,还可以输出感兴趣区域组织的弹性信息。弹性信息可以与粘性信息同步显示,例如显示于同一显示界面上;或者,弹性信息也可以与粘性信息分别显示。所述弹性信息可以包括上述的第一弹性参数、第二弹性参数或采用相速度计算的弹性模量,输出弹性信息可以包括输出所述第一弹性参数、第二弹性参数和/或采用相速度计算的弹性模量的数值和/或图像。
此外,在一个实施例中,还可以输出剪切波速度的相关信息。其中,剪切波速度的相关信息包括剪切波群速度信息和剪切波相速度信息,具体可以包括剪切波群速度的数值和/或图像,和/或剪切波相速度的数值和/或图像。当输出剪切波群速度的数值或剪切波相速度的数值时,也可以包括输出多个位置处的剪切波群速度或相速度的数值分布,或者输出多个位置处的剪切波群速度或相速度的数值的统计结果。
进一步地,可以在显示感兴趣区域的粘性信息和/或弹性信息的同时,显示常规超声图像。常规超声图像可以是基于第一超声回波数据生成的或者是基于第二超声回波数据生成的。常规超声图像可以是在粘弹性测量的过程中实时获取的图像,也可以是在粘弹性测量过程中每间隔一定时间获取的图像,也可以是在每次粘弹性测量前获取后不再更新的非实时图像。
例如,当显示粘性信息和弹性信息的数值时,可以将粘性信息和弹性信息的数值显示在常规超声图像的合适位置处,例如,如图6所示的,可以显示在常规超声图像的右下角处,或者也可以显示在感兴趣区域内部。当显示粘性信息和弹性信息的图像时,可以将粘性图像和弹性图像分别与常规超声图像叠加显示,例如,叠加显示在常规超声图像的感兴趣区域处。参照图5A-图5C,其中,图5A示出了在常规超声图像中选中的感兴趣区域,图5B示出了叠加显示于常规超声图像感兴趣区域的弹性图像,图5C示出了叠加显示于常规超声图像感兴趣区域的粘性图像。
以上示例性地示出了根据本申请一个实施例的粘弹性测量方法100。基于上面的描述,根据本申请实施例的粘弹性测量方法100通过提取剪切波信号中的不同频率的剪切波成分,并计算不同频率的剪切波成分的相速度,进行一次测量即可获得反映组织粘性的粘性信息。
下面参照附图7描述根据本申请另一个实施例的粘弹性测量方法。图 7示出了根据本申请另一个实施例的粘弹性测量方法700的示意性流程图。参照图7描述的粘弹性测量方法700与上文所述的粘弹性测量方法100大体上类似,而省略了部分相同的细节内容。如图7所示,粘弹性测量方法700包括以下步骤:
步骤S710,获取被测对象的感兴趣区域的剪切波信号;
步骤S720,从所述剪切波信号中提取至少两种不同频率的剪切波成分;
步骤S730,分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
步骤S740,根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
在参考图7描述的实施例中,同样是对剪切波信号进行不同频率的剪切波成分的提取,并根据基于至少两个频率的剪切波成分所确定的相速度确定反映感兴趣区域粘性的粘性信息。与上述粘弹性测量方法100不同的是,粘弹性测量方法700不限制剪切波信号的获取方式:例如,该剪切波信号可以是实时获取的,也可以是从存储介质中提取的;产生剪切波的方式既可以是如上所述的声辐射力脉冲冲击,也可以是通过施加外部机械振动而产生,或者,也可以是采用任何其他合适的方式而产生。
根据本申请实施例的粘弹性测量方法700通过提取剪切波信号中的不同频率的剪切波成分,并计算不同频率的剪切波成分的相速度,进行一次测量即可获得反映组织粘性的粘性信息。
下面参照附图8描述根据本申请一个实施例的弹性测量方法。图8示出了根据本申请一个实施例的弹性测量方法800的示意性流程图。如图8所示,弹性测量方法800可以包括如下步骤:
在步骤S810,向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生宽频段剪切波;
在步骤S820,向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
在步骤S830,根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
在步骤S840,从所述剪切波信号中提取其中的至少一个频率的剪切波 成分;
在步骤S850,根据所述至少一个频率的剪切波成分确定剪切波的相速度。
本申请实施例的粘弹性测量方法800在常规剪切波弹性测量的基础上,增加了提取剪切波信号中不同频率的剪切波成分的环节,并根据分离所得的剪切波成分计算剪切波的相速度,该相速度可以用于确定组织的弹性信息或粘性信息。
一般地,在执行步骤S810之前,首先根据被测对象的常规超声图像确定所述感兴趣区域的位置。
具体地,可以通过超声探头向所述被测对象发射第二超声波,并接收第二超声波的超声回波,以得到第二超声回波数据。之后,可以由波束合成电路对第二超声回波数据进行波束合成处理,然后将波束合成后的第二超声回波数据送入处理器进行相关的图像处理,从而得到基础超声图像。之后,可以根据该基础超声图像确定感兴趣区域的位置。在一个示例中,根据常规超声图像确定所述感兴趣区域的位置具体包括:输出所述常规超声图像,并在所述常规超声图像上标记所述感兴趣区域的位置。
接着,在步骤S810至步骤S830中,可以根据采用以上方式选定的感兴趣区域位置,按照预先设定的脉冲序列进行声辐射力聚焦冲击。具体地,超声探头向被测对象的感兴趣区域的组织发射特殊的超声推动脉冲,以在组织中基于声辐射力产生剪切波的传播。超声推动脉冲的长度一般大于100us,并且为了加强所产生的剪切波的强度、范围,往往会连续发射多个超声推动脉冲。
接着,由超声探头向感兴趣区域的组织持续一段时间连续发射一系列跟踪剪切波的第一超声波,并接收其超声回波,以获得第一超声回波数据,并根据第一超声回波数据获得剪切波信号,所述剪切波信号用于表征剪切波在组织中传播时组织的振动状态。利用以上方式所获得的剪切波信号为一个宽频信号,其中包括0~1000Hz内的多个频率的剪切波成分,剪切波信号的每个剪切波成分相当于表征由一种频率的剪切波引起的组织振动状态。
在步骤S840,对所述剪切波信号进行滤波,以提取其中的至少一个频 率的剪切波成分。不同频率的剪切波成分可以视为由不同频率的剪切波引起的组织振动信息。剪切波信号可以是描述感兴趣区域内组织运动信息随时间变化的时域信号,对剪切波信号进行的滤波可以在时域下进行,即对所述剪切波信号进行时域滤波。作为另一种实现方式,也可以将剪切波信号变换为频域信号,并对所述频域信号进行频域滤波。之后,再将频域滤波后的频域信号逆变换为时域信号。
示例性地,可以基于带通滤波器,以选定的频率为中心频率进行滤波,以提取出相应频率下的剪切波成分。此外,还可以分别使用低通滤波器和/或高通滤波器对剪切波信号进行滤波。
进一步地,对于分离出来每个的剪切波成分,也并不一定仅仅包括中心频率这一单一的频率,而是包括以预设频率点为中心频率的具有预设带宽的频带。通过调整用于进行滤波的滤波器参数,可以改变所提取的剪切波成分的带宽。分离提取的剪切波成分越集中,越能准确获得当前频率下的组织运动信息,然而相应地,由于滤除的剪切波成分较多,所得到的信号的信噪比会降低。因此,可以通过调整滤波器参数,在组织运动信息的准确性和信号的信噪比之间获得预期的平衡。
在步骤S850中,根据所述剪切波成分确定剪切波的相速度。示例性地,计算剪切波的相速度可以采用常规剪切波弹性测量所使用的确定剪切波传播速度的各种方法,例如通过计算组织中两个间隔一定距离的不同位置处剪切波的到达时刻来计算剪切波的传播速度。或者,还通过波动方程的反演计算出剪切波的传播速度等,本申请实施例对剪切波传播速度的计算方法不做限制。
之后,可以直接输出所述剪切波的相速度。其中,输出相速度可以包括输出相速度的数值和/或图像。输出相速度的数值可以包括输出感兴趣区域各个位置处的相速度的数值,也可以包括输出多个位置处的相速度的数值的统计结果。输出相速度的图像可以包括输出相速度的统计图或在常规超声图像上叠加显示根据相速度的数值进行灰阶或彩色编码等所形成的相速度图像,或者还可以包括相速度随剪切波频率的变化曲线等等。
在一个实施例中,还可以根据所述剪切波的相速度确定所述感兴趣区域的第三弹性参数,并输出所述第三弹性参数的数值和/或图像。其中,所 述第三弹性参数可以包括采用相速度计算所得的弹性模量,也可以包括根据Voigt模型计算所得的弹性参数。
示例性地,输出的第三弹性参数的数值可以是第三弹性参数的统计结果的数值,以作为对感兴趣区域的整体弹性的估计。其中,所述第三弹性参数的统计结果可以包括以下至少一项:多个所述弹性信息的平均值、中值、标准差、四分位数、最大值或最小值。
进一步地,所述第三弹性参数的统计结果不限于一次弹性测量所获得的多个位置处的第三弹性参数的统计结果,还可以包括多次弹性测量所得到的第三弹性参数的统计结果。示例性地,多次弹性测量所得到的第三弹性参数的统计结果也可以包括多次弹性测量所得到的第三弹性参数的平均值、中值、标准差、四分位数、最大值或最小值等。
对于输出第三弹性参数的图像来说,具体地,可以获取感兴趣区域内多个位置处的第三弹性参数,以生成所述感兴趣区域的弹性图像,并在显示界面上显示所述弹性图像。例如,可以对第三弹性参数进行灰阶或彩色编码等处理以生成弹性图像,与常规超声图像进行叠加或融合后一起显示。
在一个实施例中,还可以根据所述剪切波信号确定所述剪切波的群速度,以及根据所述群速度得到所述感兴趣区域的第四弹性参数,之后,还可以输出所述第四弹性参数的数值和/或图像。第四弹性参数可以包括采用剪切波的群速度计算所得的剪切模量或杨氏模量等。第四弹性参数的输出方式可以参见上文的第三弹性参数的输出方式。
以上示例性地示出了根据本申请一个实施例的弹性测量方法800。基于上面的描述,根据本申请实施例的弹性测量方法800通过提取剪切波信号中的剪切波成分,并计算剪切波成分的相速度,该相速度可以反映感兴趣区域组织的弹性或粘性等信息。
下面参照附图9描述根据本申请另一个实施例的弹性测量方法。图9示出了根据本申请另一个实施例的弹性测量方法900的示意性流程图。参照图9描述的弹性测量方法900与上文所述的弹性测量方法800大体上类似,而省略了部分相同的细节内容。如图9所示,弹性测量方法900包括以下步骤:
步骤S910,获取被测对象的感兴趣区域的剪切波信号;
步骤S920,从所述剪切波信号中提取至少一个频率的剪切波成分;
步骤S930,根据所述至少一个频率的剪切波成分确定剪切波的相速度。
参考图9描述的弹性测量方法900与参考图8描述的弹性测量方法8008类似,均是基于从剪切波信号中提取的剪切波成分确定剪切波的相速度。区别之处在于,在弹性测量方法900中,不限定剪切波信号的获取方式,可以通过任何合适的方式获取目标对象的感兴趣区域以对其实施上述弹性测量。例如,该剪切波信号可以是实时获取的,也可以是从存储介质中提取的;产生剪切波的方式既可以是如上所述的声辐射力脉冲冲击,也可以是通过施加外部机械振动而产生,或者,也可以是采用任何其他合适的方式而产生。
根据本申请实施例的弹性测量方法900通过提取剪切波信号中的剪切波成分,并计算剪切波成分的相速度,该相速度可以反映感兴趣区域组织的弹性或粘性等信息。
以上示例性地示出了根据本申请实施例的弹性测量方法。下面结合图10描述根据本申请实施例的超声测量系统,其可以用于实施上文中所述的根据本申请实施例的粘弹性测量方法或弹性测量方法。图10示出了根据本申请实施例的超声测量系统1000的示意性结构框图。
如图10所示,超声测量系统1000包括超声探头1010、发射/接收电路1020、处理器1030和输出设备1040。进一步地,超声测量系统还可以包括波束合成电路和发射/接收选择开关,发射/接收电路1020可以通过发射/接收选择开关与超声探头1010连接。
其中,在进行剪切波弹性测量时,超声探头1010在处理器1030的控制下向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波。超声探头1010中设置有多个换能器,用于根据电信号发射超声波,或将接收的超声回波变换为电信号。多个换能器可以排列成一排构成线阵,或排布成二维矩阵构成面阵,多个换能器也可以构成凸阵、相控阵等,本申请实施例对多个换能器阵元的排布方式不做限制。
换能器可以根据激励电信号发射超声波,或将接收的超声波变换为电信号,因而每个换能器可用于向目标区域的组织发射超声波,也可用于接收经组织返回的超声波回波。在进行超声测量时,可通过发射/接收电路 1020控制哪些换能器用于发射超声波,哪些换能器用于接收超声波,或者控制换能器分时隙用于发射超声波或接收超声回波。参与超声波发射的所有换能器可以被电信号同时激励,从而同时发射超声波;或者参与超声波发射的换能器也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
其中,感兴趣区域可由用户选定,例如当显示器上显示常规超声图像时,用户可在常规超声图像上选定感兴趣区域,超声测量系统1000可根据选定的感兴趣区域计算发射和接收序列。在一些实施例中,超声测量系统1000默认超声探头1010所接触的组织表皮下设定范围为感兴趣区域。
可选地,所述超声探头1010中还可以包括压力传感器,用于反馈超声探头1010与人体接触时的力度,方便用户控制按压松紧度,使得超声探头1010产生的剪切波较好地传入组织。
发射/接收电路1020用于激励超声探头1010向所述目标区域发射跟踪所述剪切波的超声波,并接收到从目标区域返回的超声波所对应的超声回波,从而获得超声回波数据。之后,发射/接收电路1020将超声回波的电信号送入波束合成电路,波束合成电路对超声回波数据进行聚焦延时、加权和通道求和等处理,然后送入处理器1030。
可选地,处理器1030可以通过软件、硬件、固件或其任意组合来实现,可以使用电路、单个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件。并且,处理器1030可以控制所述超声测量系统1000中的其它组件以执行期望的功能。
处理器1030对其接收到的超声回波数据进行粘弹性处理,以获得所述感兴趣区域的粘性信息和弹性信息,并可以将获得的粘性信息和弹性信息存储在存储器中。作为示例,处理器还可以根据用户所需的成像模式对发射/接收电路1020获取的超声回波数据进行不同的处理,以获得不同模式的超声组织图像。在一实施例中,处理器通过对同一超声回波处理后可同时得到粘性信息、弹性信息和超声组织图像;在另一实施例中,超声探头1010可以先后发射第一超声波和第二超声波或者穿插式地发射第一超 声波和第二超声波,处理器1030可对第一超声波的第一超声回波处理后得到粘性信息和弹性信息,并通过对第二超声波的第二超声回波处理后生成不同模式的超声组织图像。
输出设备1040与处理器1030连接,用于输出粘性信息和弹性信息。在一个实施例中,输出设备1040可以是显示器,用于在显示界面上显示粘性信息和弹性信息。作为示例,显示器可以为触摸显示屏、液晶显示屏等,或者也可以为独立的液晶显示器、电视机等独立显示设备;或者,显示器也可以是智能手机、平板电脑等电子设备的显示屏,等等。其中,显示器的数量可以为一个或多个。
除了可以显示超声图像以外,显示器还可以提供给用户进行人机交互的图形界面,在图形界面上设置一个或多个被控对象,提供给用户利用人机交互装置输入操作指令来控制这些被控对象,从而执行相应的控制操作。例如,图形界面上显示图标,利用人机交互装置可以对该图标进行操作,用来执行特定的功能。
除此之外,输出设备1040还可以包括扬声器、打印机等。输出设备1040也可以是其他任何合适的信息输出设备。
可选地,超声测量系统1000还可以包括其他人机交互装置,其与处理器1030连接,例如,处理器1030可以通过外部输入/输出端口与人机交互装置连接,外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN等总线协议、和/或有线网络协议等来实现。
示例性地,人机交互装置可以包括输入设备,用于检测用户的输入信息,该输入信息例如可以是对感兴趣区域的选择指令,或者还可以包括其他指令类型。输入设备可以包括键盘、鼠标、滚轮、轨迹球、移动式输入设备(比如带触摸显示屏的移动设备、手机等等)、多功能旋钮等等其中之一或者多个的结合。
超声测量系统1000还可以包括存储器,用于存储处理器执行的指令,存储粘性信息和弹性信息、超声图像,等等。存储器可以为闪存卡、固态存储器、硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
应理解,图10所示的超声测量系统1000所包括的部件只是示意性的,其可以包括更多或更少的部件,本申请对此不限定。
在一个实施例中,超声测量系统1000用于实现本申请实施例的粘弹性测量方法100,则发射/接收电路1020用于激励所述超声探头1010向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波,以及激励所述超声探头1010向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;处理器1030用于:根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;从所述剪切波信号中提取至少两种不同频率的剪切波成分;分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息;输出设备1040用于输出所述粘性信息。
在一个实施例中,超声测量系统1000用于实现本申请实施例的弹性测量方法800,则发射/接收电路1020用于激励所述超声探头1010向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波;以及激励所述超声探头1010向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;处理器1030用于:根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;从所述剪切波信号中提取至少一个频率的剪切波成分;根据所述至少一个频率的剪切波成分确定所述剪切波的相速度;输出设备1040用于输出所述剪切波的相速度。
以上示例性地示出了根据本申请实施例的超声测量系统1000。基于上面的描述,根据本申请实施例的超声测量系统1000一方面能够用于从剪切波信号中提取不同频率的剪切波成分从而确定组织的粘性信息,另一方面能够用于从剪切波信号中提取至少一个频率的剪切波成分以确定组织的相速度。
参照图11,本申请实施例还提供了一种超声测量系统1100,用于实现上述粘弹性测量方法70或弹性测量方法900。所述超声测量系统1100包括存储器1110和处理器1120,所述存储器1110上存储有由所述处理器1120运行的计算机程序。
其中,所述处理器1120可以通过软件、硬件、固件或其任意组合来实现,可以使用电路、单个或多个专用集成电路、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件,并且处理器1120可以控制所述超声测量系统1100中的其它组件以执行期望的功能。
所述存储器1110可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器和/或高速缓冲存储器等。所述非易失性存储器例如可以包括只读存储器、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器520可以运行所述程序指令,以实现下文所述的本发明实施例中(由处理器实现)的超声成像或超声图像处理的功能和/或其他各种期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。
在一个实施例中,存储器1110上存储的计算机程序在被所述处理器1120运行时执行以下步骤:获取被测对象的感兴趣区域的剪切波信号;从所述剪切波信号中提取至少两种不同频率的剪切波成分;分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
在另一个实施例中,存储器1110上存储的计算机程序在被所述处理器1120运行时执行以下步骤:获取被测对象的感兴趣区域的剪切波信号;从所述剪切波信号中提取至少一个频率的剪切波成分;根据所述至少一个频率的剪切波成分确定剪切波的相速度。
超声测量系统1100实现的功能的其他具体细节参见上文方法部分的相关描述,在此不做赘述。
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的粘弹性测量方法200、粘弹性测量方法700、弹性测量方法800或弹性测量方法900的相应步骤。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、 可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,根据本申请实施例,还提供了一种计算机程序,该计算机程序可以存储在云端或本地的存储介质上。在该计算机程序被计算机或处理器运行时用于执行本申请实施例的粘弹性测量方法或弹性测量方法的相应步骤。
基于上面的描述,根据本申请实施例的粘弹性测量方法和超声测量系统通过从剪切波信号中提取出不同频率的剪切波成分,并得到每个剪切波成分的相速度,只需一次测量即可获得反映组织粘性的信息。根据本申请实施例的弹性测量方法从剪切波信号中提取剪切波成分并计算其相应的相速度,该相速度可以反映组织的弹性信息。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者装置的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成 对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (52)

  1. 一种粘弹性测量方法,其特征在于,所述方法包括:
    向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波;
    向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
    根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少两种不同频率的剪切波成分;
    分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
    根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息;
    输出所述粘性信息。
  2. 根据权利要求1所述的粘弹性测量方法,其特征在于,每个所述剪切波成分包括以预设频率点为中心频率的具有预设带宽的频带。
  3. 根据权利要求1所述的粘弹性测量方法,其特征在于,所述从所述剪切波信号中提取至少两种不同频率的剪切波成分包括:基于至少两个不同频率的带通滤波器对所述剪切波信号进行带通滤波,以分别提取相应频率的剪切波成分。
  4. 根据权利要求1所述的粘弹性测量方法,其特征在于,所述从所述剪切波信号中提取至少两种不同频率的剪切波成分包括:分别基于高通滤波器和低通滤波器对所述剪切波信号进行滤波,以提取所述剪切波信号中的高频成分和低频成分。
  5. 根据权利要求1所述的粘弹性测量方法,其特征在于,所述剪切波信号包括描述所述感兴趣区域内组织运动信息随时间变化的时域信号,所述从所述剪切波信号中提取至少两种不同频率的剪切波成分包括:
    对所述剪切波信号进行时域滤波,或者
    将所述剪切波信号变换为频域信号,并对所述频域信号进行频域滤波,以及将所述频域滤波后的所述频域信号逆变换为时域信号。
  6. 根据权利要求1所述的粘弹性测量方法,其特征在于,所述粘性信息包括粘性参数,所述根据至少两个所述相速度确定所述感兴趣区域的粘 性信息,包括:
    根据所述相速度与粘性参数和剪切波频率之间的关系确定所述感兴趣区域的粘性参数,其中,所述剪切波频率根据所述剪切波成分的中心频率而确定。
  7. 根据权利要求6所述的粘弹性测量方法,其特征在于,所述根据剪切波相速度与粘性参数和剪切波频率之间的关系确定所述感兴趣区域的粘性参数包括:
    根据多个所述剪切波频率及其相应的相速度进行拟合,以得到所述粘性参数。
  8. 根据权利要求6所述的粘弹性测量方法,其特征在于,还包括:
    根据所述相速度与粘性参数、第一弹性参数和所述剪切波频率之间的关系计算出所述感兴趣区域的第一弹性参数;
    输出所述第一弹性参数的数值和/或图像。
  9. 根据权利要求1所述的粘弹性测量方法,其特征在于,所述根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息,包括:
    对根据不同频率的所述剪切波成分所确定的所述相速度进行比较以获得比较结果,并将所述比较结果作为反映所述感兴趣区域粘性的所述粘性信息。
  10. 根据权利要求9所述的粘弹性测量方法,其特征在于,所述比较结果包括以下至少一种:不同所述相速度的差值、不同所述相速度的比值、或所述相速度随剪切波频率变化的斜率。
  11. 根据权利要求1所述的粘弹性测量方法,其特征在于,还包括:
    获取所述感兴趣区域内多个位置处的所述粘性信息,以生成所述感兴趣区域的粘性图像;
    所述输出所述粘性信息包括显示所述粘性图像。
  12. 根据权利要求1所述的粘弹性测量方法,其特征在于,还包括:
    根据所述感兴趣区域内的一个或多个位置处的粘性信息获取所述感兴趣区域的粘性信息的统计结果;
    所述输出所述粘性信息包括显示所述统计结果的数值。
  13. 根据权利要求12所述的粘弹性测量方法,其特征在于,所述粘性 信息的统计结果包括以下至少一项:多个所述粘性信息的平均值、中值、标准差、四分位数、最大值或最小值。
  14. 根据权利要求12或13所述的粘弹性测量方法,其特征在于,所述粘性信息的统计结果包括多次粘弹性测量所得到的所述粘性信息的统计结果。
  15. 根据权利要求1或8所述的粘弹性测量方法,其特征在于,在所述向被测对象发射声辐射力脉冲之前,还包括:
    向所述被测对象发射第二超声波,并接收第二超声波的超声回波,以得到第二超声回波数据;
    根据所述第二超声回波数据获得所述被测对象的常规超声图像;
    根据所述常规超声图像确定所述感兴趣区域的位置。
  16. 根据权利要求15所述的粘弹性测量方法,其特征在于,还包括:输出所述常规超声图像,并在所述常规超声图像上标记所述感兴趣区域的位置。
  17. 根据权利要求1或16所述的粘弹性测量方法,其特征在于,还包括:根据所述剪切波信号确定所述剪切波的群速度,以及根据所述群速度得到所述感兴趣区域的第二弹性参数。
  18. 根据权利要求17所述的粘弹性测量方法,其特征在于,还包括:输出下述内容中的至少一种:
    所述第二弹性参数的数值,所述第二弹性参数的图像,所述群速度的数值,所述群速度的图像。
  19. 一种粘弹性测量方法,其特征在于,所述方法包括:
    获取被测对象的感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少两种不同频率的剪切波成分;
    分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
    根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
  20. 一种弹性测量方法,其特征在于,所述方法包括:
    向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生宽频段剪切波;
    向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
    根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少一个频率的剪切波成分;
    根据所述至少一个频率的剪切波成分确定剪切波的相速度。
  21. 根据权利要求20所述的弹性测量方法,其特征在于,还包括:输出所述剪切波的相速度。
  22. 根据权利要求20所述的弹性测量方法,其特征在于,还包括:
    根据所述剪切波的相速度确定所述感兴趣区域的第三弹性参数;
    输出所述第三弹性参数的数值和/或图像。
  23. 根据权利要求20或22所述的弹性测量方法,其特征在于,还包括:
    根据所述剪切波信号确定所述剪切波的群速度,以及根据所述群速度得到所述感兴趣区域的第四弹性参数;
    输出所述第四弹性参数的数值和/或图像。
  24. 根据权利要求20所述的弹性测量方法,其特征在于,在所述向被测对象发射声辐射力脉冲之前,还包括:
    向所述被测对象发射第二超声波,并接收第二超声波的超声回波,以得到第二超声回波数据;
    根据所述第二超声回波数据获得所述被测对象的常规超声图像;
    根据所述常规超声图像确定所述感兴趣区域的位置。
  25. 根据权利要求24所述的弹性测量方法,其特征在于,还包括:
    输出所述常规超声图像,并在所述常规超声图像上标记所述感兴趣区域的位置。
  26. 一种弹性测量方法,其特征在于,所述方法包括:
    获取被测对象的感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少一个频率的剪切波成分;
    根据所述至少一个频率的剪切波成分确定剪切波的相速度。
  27. 一种超声测量系统,其特征在于,包括:
    超声探头;
    发射/接收电路,用于激励所述超声探头向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波;以及激励所述超声探头向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
    处理器,用于:
    根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少两种不同频率的剪切波成分;
    分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
    根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息;
    输出设备,用于输出所述粘性信息。
  28. 根据权利要求27所述的超声测量系统,其特征在于,每个所述剪切波成分包括以预设频率点为中心频率的具有预设带宽的频带。
  29. 根据权利要求27所述的超声测量系统,其特征在于,所述从所述剪切波信号中提取至少两种不同频率的剪切波成分包括:基于至少两个不同频率的带通滤波器对所述剪切波信号进行带通滤波,以分别提取相应频率的剪切波成分。
  30. 根据权利要求27所述的超声测量系统,其特征在于,所述从所述剪切波信号中提取至少两种不同频率的剪切波成分包括:分别基于高通滤波器和低通滤波器对所述剪切波信号进行滤波,以提取所述剪切波信号中的高频成分和低频成分。
  31. 根据权利要求27所述的超声测量系统,其特征在于,所述剪切波信号包括描述所述感兴趣区域内组织运动信息随时间变化的时域信号,所述从所述剪切波信号中提取至少两种不同频率的剪切波成分包括:
    对所述剪切波信号进行时域滤波,或者
    将所述剪切波信号变换为频域信号,并对所述频域信号进行频域滤波,以及将所述频域滤波后的所述频域信号逆变换为时域信号。
  32. 根据权利要求27所述的超声测量系统,其特征在于,所述粘性信息包括粘性参数,所述根据至少两个所述相速度确定所述感兴趣区域的粘性信息,包括:
    根据所述相速度与粘性参数和剪切波频率之间的关系确定所述感兴趣区域的粘性参数,其中,所述剪切波频率根据所述剪切波成分的中心频率而确定。
  33. 根据权利要求32所述的超声测量系统,其特征在于,所述根据剪切波相速度与粘性参数和剪切波频率之间的关系确定所述感兴趣区域的粘性参数包括:
    根据多个所述剪切波频率及其相应的相速度进行拟合,以得到所述粘性参数。
  34. 根据权利要求32所述的超声测量系统,其特征在于,所述处理器还用于:
    根据所述相速度与粘性参数、第一弹性参数和所述剪切波频率之间的关系计算出所述感兴趣区域的第一弹性参数;
    输出所述第一弹性参数的数值和/或图像。
  35. 根据权利要求27所述的超声测量系统,其特征在于,所述根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息,包括:
    对根据不同频率的所述剪切波成分所确定的所述相速度进行比较以获得比较结果,并将所述比较结果作为反映所述感兴趣区域粘性的所述粘性信息。
  36. 根据权利要求35所述的超声测量系统,其特征在于,所述比较结果包括以下至少一种:不同所述相速度的差值、不同所述相速度的比值、或所述相速度随剪切波频率变化的斜率。
  37. 根据权利要求27所述的超声测量系统,其特征在于,所述处理器还用于:
    获取所述感兴趣区域内多个位置处的所述粘性信息,以生成所述感兴趣区域的粘性图像;
    所述输出所述粘性信息包括显示所述粘性图像。
  38. 根据权利要求27所述的超声测量系统,其特征在于,所述处理器还用于:
    根据所述感兴趣区域内的一个或多个位置处的粘性信息获取所述感兴趣区域的粘性信息的统计结果;
    所述显示器用于显示所述统计结果的数值。
  39. 根据权利要求38所述的超声测量系统,其特征在于,所述粘性信息的统计结果包括以下至少一项:多个所述粘性信息的平均值、中值、标准差、四分位数、最大值或最小值。
  40. 根据权利要求38或39所述的超声测量系统,其特征在于,所述粘性信息的统计结果包括多次粘弹性测量所得到的所述粘性信息的统计结果。
  41. 根据权利要求27或34所述的超声测量系统,其特征在于,所述处理器还用于:
    向所述被测对象发射第二超声波,并接收第二超声波的超声回波,以得到第二超声回波数据;
    根据所述第二超声回波数据获得所述被测对象的常规超声图像;
    根据所述常规超声图像确定所述感兴趣区域的位置。
  42. 根据权利要求41所述的超声测量系统,其特征在于,所述显示器还用于:输出所述常规超声图像,并在所述常规超声图像上标记所述感兴趣区域的位置。
  43. 根据权利要求27或42所述的超声测量系统,其特征在于,所述处理器还用于:根据所述剪切波信号确定所述剪切波的群速度,以及根据所述群速度得到所述感兴趣区域的第二弹性参数。
  44. 根据权利要求43所述的超声测量系统,其特征在于,所述显示器还用于输出下述内容中的至少一种:
    所述第二弹性参数的数值,所述第二弹性参数的图像,所述群速度的数值,所述群速度的图像。
  45. 一种超声测量系统,其特征在于,所述超声测量系统包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
    获取被测对象的感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少两种不同频率的剪切波成分;
    分别根据所述至少两种不同频率的剪切波成分确定所述剪切波的相速度;
    根据至少两个所述相速度确定反映所述感兴趣区域粘性的粘性信息。
  46. 一种超声测量系统,其特征在于,包括:
    超声探头;
    发射/接收电路,用于激励所述超声探头向被测对象发射声辐射力脉冲,以在所述被测对象的感兴趣区域产生剪切波;以及激励所述超声探头向所述感兴趣区域发射跟踪所述剪切波的第一超声波,并接收所述感兴趣区域的第一超声回波,以获得第一超声回波数据;
    处理器,用于:
    根据所述第一超声回波数据获得所述感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少一个频率的剪切波成分;
    根据所述至少一个剪切波成分确定所述剪切波的相速度。
  47. 根据权利要求46所述的超声测量系统,其特征在于,所述处理器还用于:
    根据所述剪切波的相速度确定所述感兴趣区域的第三弹性参数;
    所述超声测量系统还包括输出设备,用于:输出所述第三弹性参数的数值和/或图像。
  48. 根据权利要求46或47所述的超声测量系统,其特征在于,所述处理器还用于:
    根据所述剪切波信号确定所述剪切波的群速度,以及根据所述群速度得到所述感兴趣区域的第四弹性参数;
    所述超声测量系统还包括输出设备,用于:输出所述第四弹性参数的数值和/或图像。
  49. 根据权利要求46所述的超声测量系统,其特征在于,在所述向被测对象发射声辐射力脉冲之前,所述处理器还用于:
    向所述被测对象发射第二超声波,并接收第二超声波的超声回波,以得到第二超声回波数据;
    根据所述第二超声回波数据获得所述被测对象的常规超声图像;
    根据所述常规超声图像确定所述感兴趣区域的位置。
  50. 根据权利要求46所述的超声测量系统,其特征在于,所述超声测量系统还包括输出设备,用于:
    输出所述常规超声图像,并在所述常规超声图像上标记所述感兴趣区域的位置。
  51. 一种超声测量系统,其特征在于,所述超声测量系统包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
    获取被测对象的感兴趣区域的剪切波信号;
    从所述剪切波信号中提取至少一个频率的剪切波成分;
    根据所述至少一个频率的剪切波成分确定剪切波的相速度。
  52. 一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被计算机或处理器执行时实现权利要求1至26中任一项所述方法的步骤。
PCT/CN2020/086774 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统 WO2021212494A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202080053473.1A CN114173670A (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统
PCT/CN2020/086774 WO2021212494A1 (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统
CN202080054692.1A CN114173672A (zh) 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质
PCT/CN2020/090343 WO2021212577A1 (zh) 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质
PCT/CN2020/090356 WO2021212578A1 (zh) 2020-04-24 2020-05-14 粘弹性测量方法、弹性测量方法和超声测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/086774 WO2021212494A1 (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统

Publications (1)

Publication Number Publication Date
WO2021212494A1 true WO2021212494A1 (zh) 2021-10-28

Family

ID=78270883

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/086774 WO2021212494A1 (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统
PCT/CN2020/090343 WO2021212577A1 (zh) 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质
PCT/CN2020/090356 WO2021212578A1 (zh) 2020-04-24 2020-05-14 粘弹性测量方法、弹性测量方法和超声测量系统

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/090343 WO2021212577A1 (zh) 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质
PCT/CN2020/090356 WO2021212578A1 (zh) 2020-04-24 2020-05-14 粘弹性测量方法、弹性测量方法和超声测量系统

Country Status (2)

Country Link
CN (2) CN114173670A (zh)
WO (3) WO2021212494A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104434216A (zh) * 2013-09-24 2015-03-25 美国西门子医疗解决公司 根据分析数据的剪切波估计
CN104622502A (zh) * 2013-11-08 2015-05-20 日立阿洛卡医疗株式会社 超声波诊断装置以及方法
CN106175831A (zh) * 2016-09-28 2016-12-07 重庆理工大学 一种基于剪切波幅度和相位检测的组织粘弹性测量方法
CN106999162A (zh) * 2014-12-08 2017-08-01 株式会社日立制作所 超声波诊断装置以及弹性评价方法
CN108982674A (zh) * 2017-06-05 2018-12-11 郑翊 使用单个激励脉冲和具有不同宽度和形状的多个激励脉冲测量组织剪切波性质
CN110368030A (zh) * 2019-06-28 2019-10-25 深圳中科乐普医疗技术有限公司 超声弹性成像装置及方法
WO2019211336A1 (en) * 2018-05-03 2019-11-07 Koninklijke Philips N.V. Shear wave amplitude reconstruction for tissue elasticity monitoring and display

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277835A1 (en) * 2003-05-30 2005-12-15 Angelsen Bjorn A Ultrasound imaging by nonlinear low frequency manipulation of high frequency scattering and propagation properties
US9237878B2 (en) * 2011-04-22 2016-01-19 Mayo Foundation For Medical Education And Research Generation and assessment of shear waves in elasticity imaging
US10136876B2 (en) * 2012-09-27 2018-11-27 Mayo Foundation For Medical Education And Research System and method for local estimation of nonlinear tissue elasticity with acoustic radiation force
CN103006274A (zh) * 2012-12-21 2013-04-03 深圳大学 一种超声检测角膜粘弹性的方法和系统
DE102014003105A1 (de) * 2013-03-15 2014-09-18 Siemens Medical Solutions Usa, Inc. Fettanteilschatzung mittels ultraschall mit scherwellenausbreitung
US10376242B2 (en) * 2015-04-16 2019-08-13 Siemens Medical Solutions Usa, Inc. Quantitative viscoelastic ultrasound imaging
WO2018023336A1 (zh) * 2016-08-01 2018-02-08 深圳迈瑞生物医疗电子股份有限公司 超声弹性测量显示方法及系统
CN106618635B (zh) * 2017-01-12 2019-11-08 清华大学 剪切波弹性成像方法和装置
CN107049360B (zh) * 2017-01-26 2020-12-08 清华大学 剪切波弹性成像方法和装置
CN106840362B (zh) * 2017-03-20 2019-08-23 西安交通大学 基于声辐射力脉冲响应的激光测振监测hifu损伤粘弹性方法
US11154277B2 (en) * 2017-10-31 2021-10-26 Siemens Medical Solutions Usa, Inc. Tissue viscoelastic estimation from shear velocity in ultrasound medical imaging
CN109171814B (zh) * 2018-07-26 2020-08-28 清华大学 血管超声弹性成像的方法及装置
WO2020042020A1 (zh) * 2018-08-29 2020-03-05 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性检测设备及剪切波弹性成像方法、装置
CN109893172B (zh) * 2019-02-22 2020-06-19 清华大学 基于弹性成像的力学参数的确定方法及装置、计算机设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104434216A (zh) * 2013-09-24 2015-03-25 美国西门子医疗解决公司 根据分析数据的剪切波估计
CN104622502A (zh) * 2013-11-08 2015-05-20 日立阿洛卡医疗株式会社 超声波诊断装置以及方法
CN106999162A (zh) * 2014-12-08 2017-08-01 株式会社日立制作所 超声波诊断装置以及弹性评价方法
CN106175831A (zh) * 2016-09-28 2016-12-07 重庆理工大学 一种基于剪切波幅度和相位检测的组织粘弹性测量方法
CN108982674A (zh) * 2017-06-05 2018-12-11 郑翊 使用单个激励脉冲和具有不同宽度和形状的多个激励脉冲测量组织剪切波性质
WO2019211336A1 (en) * 2018-05-03 2019-11-07 Koninklijke Philips N.V. Shear wave amplitude reconstruction for tissue elasticity monitoring and display
CN110368030A (zh) * 2019-06-28 2019-10-25 深圳中科乐普医疗技术有限公司 超声弹性成像装置及方法

Also Published As

Publication number Publication date
CN114173670A (zh) 2022-03-11
WO2021212578A1 (zh) 2021-10-28
WO2021212577A1 (zh) 2021-10-28
CN114173672A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
US20130023767A1 (en) Low-cost, high fidelity ultrasound system
EP3213108B1 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
EP2881041B1 (en) Apparatus and method for ultrasonic diagnosis
CN101647715B (zh) 自动优化多普勒成像参数的方法和装置
JP6987496B2 (ja) 解析装置
JP6058295B2 (ja) 超音波診断装置、医用画像処理装置、医用画像処理方法、および医用画像処理プログラム
WO2015040710A1 (ja) 超音波診断装置、医用画像処理装置および医用画像処理方法
JPWO2007063619A1 (ja) 超音波診断装置
CN104114101A (zh) 自动多普勒脉动周期选择
JP2004313291A (ja) 超音波診断装置、医用画像解析装置及び医用画像解析方法
CN111110275A (zh) 血管力学性能的测量方法、装置、系统及存储介质
WO2019087741A1 (ja) 超音波診断装置、および、生体組織の物性評価方法
JP6199045B2 (ja) 超音波診断装置
WO2008029728A1 (fr) Échographe
WO2021212494A1 (zh) 粘弹性测量方法和超声测量系统
JP3857256B2 (ja) 超音波映像での媒質の弾性特性の測定装置
JP2010051554A (ja) 超音波診断装置
JP6274489B2 (ja) 超音波診断装置、医用画像処理装置および医用画像処理プログラム
JP5443781B2 (ja) 超音波診断装置
WO2021226955A1 (zh) 瞬时弹性测量方法、声衰减参数测量方法和超声成像系统
EP3308714B1 (en) Ultrasonic imaging apparatus and method for measuring hardness
WO2022141631A1 (zh) 粘弹性测量方法和超声成像系统
JP4679141B2 (ja) 超音波診断装置および超音波診断画像の表示方法
WO2012155153A1 (en) Low-cost, high fidelity ultrasound system
CN114340506B (zh) 超声粘弹性测量方法、装置和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20931736

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20931736

Country of ref document: EP

Kind code of ref document: A1