WO2021212577A1 - 超声弹性成像方法、超声频散测量方法、装置和存储介质 - Google Patents

超声弹性成像方法、超声频散测量方法、装置和存储介质 Download PDF

Info

Publication number
WO2021212577A1
WO2021212577A1 PCT/CN2020/090343 CN2020090343W WO2021212577A1 WO 2021212577 A1 WO2021212577 A1 WO 2021212577A1 CN 2020090343 W CN2020090343 W CN 2020090343W WO 2021212577 A1 WO2021212577 A1 WO 2021212577A1
Authority
WO
WIPO (PCT)
Prior art keywords
shear wave
dispersion
ultrasonic
interest
region
Prior art date
Application number
PCT/CN2020/090343
Other languages
English (en)
French (fr)
Inventor
李双双
郭跃新
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN202080054692.1A priority Critical patent/CN114173672A/zh
Publication of WO2021212577A1 publication Critical patent/WO2021212577A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings

Definitions

  • This application relates to the technical field of ultrasonic dispersion measurement, and more specifically to an ultrasonic dispersion measurement method, device, and storage medium.
  • Ultrasound elastography technology uses the extraction of tissue hardness-related information to perform imaging. It is related to the non-invasive auxiliary diagnosis of major diseases such as breast cancer and liver cirrhosis. It has been a research hotspot in the field of ultrasound imaging in the past two decades. After years of development, ultrasound elastography technology has gradually matured. In recent years, it has been more widely used in clinical research and auxiliary diagnosis of various parts of the human body, such as: liver, breast, thyroid, musculoskeletal, blood vessels, prostate, and cervix Wait. It can qualitatively reflect the difference between the softness and hardness of the lesion relative to the surrounding tissue, or quantitatively reflect the hardness-related physical parameters of the target tissue, such as Young's modulus, shear modulus, etc., which is widely welcomed by doctors.
  • ultrasound elastography techniques include strain elastography, instantaneous elastography, and shear wave elastography.
  • shear wave elastography technology is currently the latest elastography technology. It generates acoustic radiation force by emitting special pulses into the tissue, generating shear wave propagation, and then detects and records the shear wave propagation process through ultrasound, and further calculates the shear wave propagation speed, and finally obtains a reflection of the hardness of the tissue Elastic modulus parameters to realize quantitative elastography.
  • This technology has greatly expanded the clinical application field of elastography and has aroused great research interest.
  • tissue is regarded as a pure elastic body, and the elastography technology is mainly based on the assumption of pure elastic body for imaging. In particular, quantitative elastography technology only calculates the elastic modulus for display.
  • Elasticity in addition to elasticity (Elasticity), human tissues also have viscous (Viscosity) characteristics. Elasticity and viscosity together affect the propagation speed of shear waves in the tissue. Viscosity can cause shear waves in the tissue. The dispersion effect. Therefore, in shear wave elastography, if the information related to shear wave dispersion can be extracted, it will have great clinical potential value.
  • This application provides an ultrasonic dispersion measurement solution, which generates shear wave propagation in a region of interest of a target object, obtains shear wave information of the region of interest, and extracts the shear wave information of different frequency components in the shear wave information. Wave signal to obtain information related to shear wave dispersion.
  • an ultrasonic dispersion measurement method includes: controlling an ultrasonic probe to transmit a first ultrasonic wave to a target object, receiving the echo of the first ultrasonic wave, and based on the echo of the first ultrasonic wave.
  • a first ultrasonic echo signal Acquire a first ultrasonic echo signal; generate and display a first ultrasonic image based on the first ultrasonic echo signal, and acquire a region of interest on the first ultrasonic image; control the ultrasonic probe to the sensor
  • the region of interest transmits a second ultrasonic wave to generate shear wave propagation in the region of interest; controls the ultrasonic probe to transmit a third ultrasonic wave to the region of interest, receives the echo of the third ultrasonic wave, and Obtain a third ultrasonic echo signal based on the echo of the third ultrasound; obtain shear wave information of the region of interest based on the third ultrasonic echo signal; and extract at least two pieces from the shear wave information
  • the shear wave signals with different frequency components are obtained and the shear wave dispersion results are obtained and displayed based on the respective propagation speeds of the at least two shear wave signals with different frequency components.
  • an ultrasonic dispersion measurement method includes: obtaining a region of interest of a target object; controlling the propagation of shear waves generated in the region of interest;
  • the region of interest transmits ultrasound, receives the echo of the ultrasound, and obtains an ultrasound echo signal based on the echo of the ultrasound; obtains shear wave information of the region of interest based on the ultrasound echo signal; and Extract at least two shear wave signals with different frequency components from the shear wave information, and obtain a shear wave dispersion result based on the respective propagation speeds of the at least two shear wave signals with different frequency components.
  • an ultrasonic dispersion measurement method includes: obtaining the current shear wave dispersion result obtained by performing ultrasonic dispersion measurement on the target tissue of the target object; Ultrasonic dispersion measures the historical shear wave dispersion results of the target tissue of the target object before; generating statistical shear wave frequencies based on the current shear wave dispersion results and the historical shear wave dispersion results The dispersion result, the statistical shear wave dispersion result reflects the shear wave dispersion result of the target tissue of the target object in different periods.
  • an ultrasonic dispersion measuring device comprising: an ultrasonic probe, a transmitting/receiving sequence controller, a processor, and a display device, wherein: the transmitting/receiving sequence controller is used to control The ultrasonic probe transmits a first ultrasonic wave to a target object, receives the echo of the first ultrasonic wave, and obtains a first ultrasonic echo signal based on the echo of the first ultrasonic wave; the processor is configured to obtain a first ultrasonic echo signal based on the first ultrasonic wave.
  • the ultrasound echo signal generates a first ultrasound image, and acquires a region of interest on the first ultrasound image; the transmit/receive sequence controller is also used to control the ultrasound probe to transmit a second ultrasound to the region of interest , In order to generate shear wave propagation in the region of interest; the transmit/receive sequence controller is also used to control the ultrasound probe to transmit a third ultrasonic wave to the region of interest, and receive the third ultrasonic wave And obtain a third ultrasound echo signal based on the echo of the third ultrasound; the processor is further configured to obtain shear wave information of the region of interest based on the third ultrasound echo signal, Extracting at least two shear wave signals with different frequency components from the shear wave information, and obtaining a shear wave dispersion result based on the respective propagation speeds of the at least two shear wave signals with different frequency components; The display device is used to display the first ultrasound image and the shear wave dispersion result.
  • an ultrasonic dispersion measurement device includes an ultrasonic probe, a transmitting/receiving sequence controller, a processor, and a display device, wherein: the processor is used to obtain a region of interest of a target object , And control the propagation of shear waves generated in the region of interest; the transmit/receive sequence controller is used to control the ultrasound probe to transmit ultrasound to the region of interest, receive the echo of the ultrasound, and based on the ultrasound The echo signal of the ultrasonic wave; the processor is further configured to obtain the shear wave information of the region of interest based on the ultrasonic echo signal, and extract at least two different frequencies from the shear wave information Component shear wave signal, and the shear wave dispersion result is obtained based on the respective propagation speeds of the shear wave signals of the at least two different frequency components; the display device is used to display the shear wave dispersion result .
  • an ultrasound elastography method which includes: acquiring a region of interest of a target object; controlling the propagation of shear waves generated in the region of interest; and controlling the ultrasound probe to emit tracking to the region of interest
  • the shear wave ultrasound receives the echo of the ultrasound, and obtains an ultrasound echo signal based on the echo of the ultrasound; obtains the shear wave information of the region of interest based on the ultrasound echo signal; and
  • the shear wave signal of at least one frequency component is extracted from the shear wave information.
  • an ultrasonic frequency dispersion measurement device includes a memory and a processor.
  • the memory stores a computer program run by the processor. Perform the above-mentioned ultrasonic dispersion measurement method when the device is running.
  • a storage medium is provided, and a computer program is stored on the storage medium, and the computer program executes the above-mentioned ultrasonic dispersion measurement method during operation.
  • the ultrasonic dispersion measurement method, device and storage medium generate shear wave propagation in the region of interest of the target object, obtain shear wave information of the region of interest, and extract different frequencies in the shear wave information It is possible to obtain information related to shear wave dispersion based on shear wave signals of different frequency components.
  • Fig. 1 shows a schematic flowchart of a method for measuring ultrasonic dispersion according to an embodiment of the present application.
  • Figure 2 shows a schematic diagram of the frequency spectrum of a broadband shear wave.
  • 3A and 3B respectively show schematic diagrams of the shear wave vibration waveforms of the first frequency component and the second frequency component.
  • Fig. 4 shows a schematic diagram of the frequency spectrum of the shear wave signal obtained by extracting the first frequency component from the broadband shear wave according to the ultrasonic dispersion measurement method of the embodiment of the present application.
  • FIG. 5 shows a schematic diagram of an example of shear wave dispersion results obtained by the ultrasonic dispersion measurement method according to an embodiment of the present application.
  • 6A and 6B show schematic diagrams of another example of shear wave dispersion results obtained by the ultrasonic dispersion measurement method according to an embodiment of the present application.
  • FIG. 7 shows an example of the display result obtained by the ultrasonic dispersion measurement method according to the embodiment of the present application.
  • Fig. 8 shows a schematic flowchart of a method for measuring ultrasonic dispersion according to another embodiment of the present application.
  • Fig. 9 shows a schematic flowchart of a method for measuring ultrasonic dispersion according to still another embodiment of the present application.
  • Fig. 10 shows a schematic block diagram of an ultrasonic dispersion measuring device according to an embodiment of the present application.
  • Fig. 11 shows a schematic block diagram of an ultrasonic dispersion measuring device according to another embodiment of the present application.
  • Fig. 12 shows a schematic flow chart of an ultrasonic dispersion measurement method according to another embodiment of the present application.
  • Fig. 13 shows a schematic flowchart of an ultrasound elastography method according to another embodiment of the present application.
  • Fig. 1 shows a method 100 for measuring ultrasonic dispersion according to an embodiment of the present application.
  • the ultrasonic dispersion measurement method 100 may include the following steps:
  • step S110 the ultrasonic probe is controlled to transmit the first ultrasonic wave to the target object, receive the echo of the first ultrasonic wave, and obtain the first ultrasonic echo signal based on the echo of the first ultrasonic wave.
  • the purpose of transmitting the first ultrasonic wave to the target object is to obtain an ultrasound image of the target part or target tissue of the target object, so as to obtain the target part of the target object or the region of interest of the target tissue according to the ultrasound image, such as a lesion. area.
  • the first ultrasonic wave is so named to distinguish it from the second ultrasonic wave and the third ultrasonic wave described below, and has no other limiting meaning.
  • the target part of the target object or the region of interest of the target tissue may also be directly known. In this case, this step and the following step S120 may be omitted.
  • step S120 a first ultrasound image is generated and displayed based on the first ultrasound echo signal, and a region of interest on the first ultrasound image is acquired.
  • an ultrasonic image of the target part or target tissue of the target object that is, the first ultrasonic image may be generated.
  • the first ultrasound image it is named the first ultrasound image to reflect that it is generated based on the first ultrasound echo signal, and has no other limiting meaning.
  • the first ultrasound image may be a B image or a C image.
  • step S130 the ultrasound probe is controlled to emit a second ultrasonic wave to the region of interest, so as to generate shear wave propagation in the region of interest.
  • the purpose of transmitting the second ultrasonic wave to the region of interest of the target object is to generate shear wave propagation in the region of interest of the target object, so as to obtain shear wave information for subsequent calculations.
  • the second ultrasonic wave is so named to distinguish it from the first ultrasonic wave described above and the third ultrasonic wave described below, and has no other limiting meaning.
  • shear wave propagation is generated in the region of interest of the target object by means of shear wave elastic imaging (that is, through acoustic radiation force), for example, a special ultrasonic push pulse is emitted to the region of interest of the target object ( The length of the push pulse can generally be greater than 100 microseconds).
  • the shear wave generated by the acoustic radiation force in the region of interest of the target object is usually a broadband signal, as shown in Fig. 2, the broadband signal may include many frequency components in the range of 0 to 1000 Hertz (Hz). In other embodiments, other methods can also be used. Therefore, the shear wave of the region of interest of the target object can be detected, and the shear wave signals of different frequency components can be extracted to obtain the shear wave dispersion result, as will be described in the following steps.
  • step S140 the ultrasonic probe is controlled to transmit a third ultrasonic wave to the region of interest, receive the echo of the third ultrasonic wave, and obtain a third ultrasonic echo signal based on the echo of the third ultrasonic wave.
  • the purpose of transmitting the third ultrasonic wave to the region of interest of the target object is to detect the shear wave propagation of the region of interest of the target object.
  • the third ultrasonic wave is so named to distinguish it from the first ultrasonic wave and the second ultrasonic wave described above, and has no other limiting meaning.
  • step S150 the shear wave information of the region of interest is acquired based on the third ultrasonic echo signal.
  • the shear wave information of the region of interest of the target object can be acquired.
  • the vibration state of the tissue when the shear wave propagates in the tissue can be calculated according to the third ultrasonic echo signal.
  • the wave characteristics when the shear wave propagates through a certain position in the tissue, the tissue at the corresponding position will vibrate.
  • the shear wave propagates away from a certain position, the tissue at that position will return to its original state.
  • the movement information of the tissue over a period of time can be obtained.
  • the motion information may be the displacement of the tissue relative to the reference time, the motion speed of the tissue, the motion acceleration of the tissue, the strain of the tissue, etc., or the data based on the above variables after further processing such as filtering, differentiation, and integration.
  • the correlation comparison may be calculation between ultrasonic echo signals obtained at different adjacent times, or calculation between ultrasonic echo signals at different times and echo signals at the same reference time.
  • the correlation comparison algorithm can use the general algorithm of conventional tissue displacement detection, such as the cross-correlation comparison algorithm based on block matching, the calculation method based on Doppler frequency shift, the method based on phase shift detection, and so on. Finally, the tissue motion data caused by the shear wave at different times can be taken out, and the vibration waveform of the shear wave can be obtained.
  • step S160 extract at least two shear wave signals with different frequency components from the shear wave information, and obtain and display shear waves based on the respective propagation speeds of the at least two shear wave signals with different frequency components. Wave dispersion result.
  • a frequency component can be understood as including a main frequency, and the main frequency has a large energy ratio in the frequency component.
  • a frequency component can be understood as a frequency band with a preset bandwidth with a frequency point as the main frequency.
  • the frequency point may be the center frequency of the frequency band.
  • 3A and 3B respectively show schematic diagrams of the shear wave vibration waveforms of the first frequency component and the second frequency component. Among them, FIG. 3A is the frequency component with 300 Hz as the center frequency, and FIG. 3B is the frequency component with 600 Hz as the center frequency.
  • the extracted shear wave signal of each frequency component does not necessarily include only the single frequency of the center frequency.
  • the frequency distribution may be a frequency range dominated by 300 Hz, such as 250 to 350 Hz, or 200 to 400 Hz.
  • Fig. 4 shows a schematic diagram of the frequency spectrum of the shear wave signal obtained by extracting the first frequency component from the broadband shear wave according to the ultrasonic dispersion measurement method of the embodiment of the present application.
  • the center frequency of the shear wave signal is at 300 Hz, and it also contains frequency components with a certain bandwidth.
  • filtering may be used to extract at least two shear wave signals with different frequency components from the shear wave information.
  • the bandwidth of the extracted frequency components can be adjusted. The more concentrated the separated and extracted frequency components, the more accurately the shear wave motion information at the current frequency can be obtained, but the signal-to-noise ratio of the obtained signal will be reduced, and the energy of the signal will be reduced. Therefore, when extracting frequency components, a trade-off can be made between frequency concentration and signal-to-noise ratio.
  • one frequency component may include a frequency band with a preset bandwidth with one frequency point as the main frequency.
  • At least two shear wave signals with different frequency components can be extracted from the shear wave information through at least two band pass filters.
  • at least one low-pass filter and at least one high-pass filter may be used to extract at least two shear wave signals with different frequency components from the shear wave information.
  • the shear wave propagation speed is mainly affected by elastic parameters.
  • the shear wave propagation speed is affected by elasticity and viscosity at the same time. Due to the influence of viscous factors, the propagation speed of shear waves in the tissue will exhibit a dispersion effect, that is, the propagation speed of shear waves of different frequencies is different. Therefore, the propagation velocity of the shear wave corresponding to the shear wave signals of at least two different frequency components (also described as the propagation velocity of the shear wave signals of different frequency components) can be calculated to reflect the shear wave. Dispersion effect.
  • the propagation velocity corresponding to the shear wave signal of each frequency component may be any one of the following of the propagation velocity of the shear wave at each position in the region of interest: average value , Median, standard deviation, quartile, maximum or minimum.
  • step S150 that is, the step of acquiring shear wave information of the region of interest, may be performed at least twice, and the frequency components extracted each time in the at least two times are the same, and in the
  • the propagation velocity corresponding to the shear wave signal of each frequency component in the extracted frequency components may be any one of the following of the propagation velocity corresponding to the shear wave signal of the same frequency component in the at least two times: average value, medium value Value, standard deviation, quartile, maximum or minimum.
  • acquiring and displaying the shear wave dispersion result based on the respective propagation velocities of the at least two shear wave signals of different frequency components in step S160 may include: based on the at least two shear wave signals.
  • the respective propagation velocities of the shear wave signals with different frequency components are generated and displayed as a dispersion graph, which reflects the respective propagation velocities of the shear wave signals with different frequency components.
  • the respective propagation velocities of the shear wave signals of different frequency components are represented by a dispersion graph, which can intuitively reflect the dispersion result of the shear wave.
  • FIG. 5 shows an example of the shear wave dispersion result obtained by the ultrasonic dispersion measurement method according to the embodiment of the present application, that is, a schematic diagram of the dispersion curve.
  • a dispersion graph can be generated according to the respective propagation velocities of the shear wave signals of different frequency components, and the dispersion graph can include one or more dispersion curves.
  • the dispersion curve can represent the shear wave dispersion result of a region of interest, that is, the propagation velocity of shear waves of different frequency components in a region of interest varies with frequency. Condition.
  • dispersion curves When multiple dispersion curves are included in the dispersion curve graph, they can correspond to the shear wave dispersion results of different regions of interest, the shear wave dispersion results of different positions in the same region of interest, or the same region of interest. Shear wave dispersion results in different periods.
  • different regions of interest may be different organizations of the target object, or different positions of the same organization; different positions of the same region of interest may be different positions of the same organization.
  • the dispersion effect may be different between different target tissues of the same target object or different positions of the same target tissue. Therefore, by generating and displaying a dispersion curve graph, it can assist in judging the diseased condition of the tissue.
  • the shear wave dispersion results of the same region of interest in different periods can reflect the change of the same tissue of the target object over time, which helps to assist in judging the development trend of the tissue.
  • the shear wave dispersion results of the same target object and the same tissue in each period can be generated and stored according to the ultrasonic dispersion measurement method of the embodiment of the present application, and the previously stored results can be obtained after the shear wave dispersion result is generated for a certain time Perform statistics to obtain shear wave dispersion results in different periods, such as a dispersion graph or other shear wave dispersion results described later (which will be further described in conjunction with FIG. 9 below).
  • acquiring and displaying the shear wave dispersion result based on the respective propagation velocities of the at least two shear wave signals of different frequency components in step S160 may include: based on the at least Calculate the corresponding elastic modulus or calculate the square result of the propagation velocity for the respective propagation velocities of the shear wave signals of two different frequency components, and generate and display a dispersion graph based on the calculated results.
  • the graph reflects the corresponding elastic modulus or the square result of the respective propagation velocity of the shear wave signals of different frequency components.
  • the respective elastic modulus for example, Young's modulus or shear modulus
  • the squared result of the respective corresponding propagation velocity of the shear wave signals of different frequency components are represented by a dispersion curve graph. It can intuitively reflect the dispersion result of the shear wave, and the dispersion curve is similar to that shown in FIG. 5.
  • acquiring and displaying the shear wave dispersion result based on the respective propagation velocities of the shear wave signals of the at least two different frequency components in step S160 may include: The propagation velocities corresponding to the shear wave signals of two different frequency components are compared and calculated, and the result of the comparison calculation is displayed as the shear wave dispersion result.
  • the comparing and calculating the propagation velocities corresponding to the shear wave signals of the at least two different frequency components may include: calculating the propagation velocities corresponding to the shear wave signals of the at least two different frequency components Difference, ratio, or slope with frequency.
  • the comparison calculation result of the propagation velocity corresponding to the shear wave signals of different frequency components is output as the dispersion result, which can more clearly reflect the dispersion result of the shear wave.
  • acquiring and displaying the shear wave dispersion result based on the respective propagation velocities of the shear wave signals of the at least two different frequency components in step S160 may include: based on the at least The respective propagation velocities of the two shear wave signals of different frequency components are generated and displayed respectively corresponding to the propagation velocity spatial distribution diagrams of the shear wave signals of different frequency components, and each of the propagation velocity spatial distribution diagrams reflects a frequency component
  • the shear wave signals have respective corresponding propagation speeds at different positions in the region of interest.
  • the propagation velocity spatial distribution map is generated for the propagation velocity of the shear wave signal of each frequency component at different positions in the region of interest, and different image features (such as no color ) Represents different propagation speeds.
  • FIGS. 6A and 6B show another example of the shear wave dispersion result obtained by the ultrasonic dispersion measurement method according to an embodiment of the present application—a schematic diagram of the propagation velocity spatial distribution diagram.
  • FIGS. 6A and 6B the color on the right Different values on the bars correspond to different color distributions in the graph.
  • FIG. 6A shows the propagation velocity spatial distribution diagram corresponding to the frequency component with 300 Hz as the main frequency
  • FIG. 6B shows the propagation velocity spatial distribution diagram corresponding to the frequency component with 600 Hz as the main frequency.
  • the spatial distribution maps of the propagation velocity corresponding to different frequency components are different from each other.
  • the region of interest described in the foregoing may itself be a target region for performing dispersion measurement.
  • the overall flow of the ultrasonic dispersion measurement method according to the embodiment of the present application may be: controlling the ultrasonic probe to transmit the first ultrasonic wave to the target object, receiving the echo of the first ultrasonic wave, and based on the first ultrasonic wave.
  • the region of interest described in the foregoing may be a region used for elasticity measurement, and the region of interest is a different region from the target region to be measured for dispersion, for example, the target region Located in the area of interest or other circumstances.
  • the ultrasonic dispersion measurement method 100 may further include (not shown): calculating the shear wave group velocity based on the shear wave information of the region of interest, and based on the shear wave group Velocity calculation and display of the elastic result of the region of interest; acquiring a target region for dispersion measurement, and acquiring shear wave information of the target region, and extracting at least two shear wave signals of different frequency components It extracts at least two shear wave signals with different frequency components from the shear wave information of the target area.
  • the region of interest is the region used for elasticity measurement, so the elasticity measurement result of the region of interest needs to be calculated.
  • the calculated shear wave propagation velocity is a comprehensive velocity, which becomes the shear wave group velocity.
  • the shear wave group velocity can be calculated.
  • Elasticity results such as calculating the elastic modulus of the region of interest based on a specific formula.
  • the shear wave propagation velocity corresponding to the shear wave signal of each different frequency component extracted can be called the shear wave phase velocity, which can be calculated based on the shear wave phase velocity.
  • the shear wave dispersion results are the shear wave dispersion results.
  • acquiring the target area for performing dispersion measurement may include: acquiring the target area for performing dispersion measurement based on the first ultrasound image and the elastic result.
  • the target area for the dispersion measurement is determined based on the first ultrasound image generated in step S120 and the elasticity result of the region of interest calculated above, that is, it is determined that the frequency dispersion needs to be performed based on the elasticity of the region of interest.
  • the target area of the measurement makes the dispersion measurement more targeted.
  • the overall flow of the ultrasonic dispersion measurement method may be: controlling the ultrasonic probe to transmit the first ultrasonic wave to the target object, receiving the echo of the first ultrasonic wave, and based on the first ultrasonic wave.
  • the ultrasonic probe transmits a second ultrasonic wave to the region of interest for the propagation of shear waves in the region of interest; controls the ultrasonic probe to transmit a third ultrasonic wave to the region of interest, and receives the The echo of the third ultrasonic wave, and obtain a third ultrasonic echo signal based on the echo of the third ultrasonic wave; obtain the shear wave information of the region of interest based on the third ultrasonic echo signal; Calculate the shear wave group velocity based on the shear wave information of the region of interest, and calculate and display the elastic result of the region of interest based on the shear wave group velocity; obtain the target for the dispersion measurement in the region of interest Area, and obtain the shear wave information of the target area, extract at least two shear wave signals of different frequency
  • the region of interest for elasticity measurement and the target region for dispersion measurement can be determined together, and the two can be the same region or They are different areas. When the two are different areas, they are usually in a containment relationship.
  • another example of the overall flow of the ultrasonic dispersion measurement method may be: controlling the ultrasonic probe to transmit the first ultrasonic wave to the target object, receiving the echo of the first ultrasonic wave, and based on The echo of the first ultrasonic wave obtains a first ultrasonic echo signal; based on the first ultrasonic echo signal, a first ultrasonic image is generated and displayed, and a sense of elasticity measurement on the first ultrasonic image is obtained.
  • the region of interest and the target region for dispersion measurement controlling the ultrasound probe to emit a second ultrasonic wave to the region of interest for the propagation of shear waves in the region of interest; controlling the ultrasound probe Transmit a third ultrasonic wave to the region of interest, receive an echo of the third ultrasonic wave, and obtain a third ultrasonic echo signal based on the echo of the third ultrasonic wave; obtain a third ultrasonic echo signal based on the third ultrasonic echo signal
  • the shear wave information of the region of interest calculate the shear wave group velocity based on the shear wave information of the region of interest, and calculate and display the elastic result of the region of interest based on the shear wave group velocity; obtain The shear wave information of the target area extracts at least two shear wave signals of different frequency components from the shear wave information of the target area, and is based on the shear wave signals of the at least two different frequency components.
  • the corresponding propagation velocity obtains and displays the shear wave dispersion result in the target area.
  • acquiring the target area for performing dispersion measurement may include: acquiring the target area for performing dispersion measurement based on the first ultrasound image.
  • the target area for the dispersion measurement in the first ultrasound image generated in step S120 may be automatically acquired by the image processing method, or the target area for the dispersion measurement may be specified by the user, that is, Obtain the target area for the dispersion measurement by obtaining user input.
  • the elasticity measurement result of the aforementioned region of interest may be an elasticity result spatial distribution map, and the elasticity result spatial distribution map reflects respective corresponding elasticity results at different positions of the region of interest.
  • the aforementioned first ultrasound image, the elasticity result of the region of interest, the group velocity spatial distribution map, and the shear wave dispersion result of the region of interest (or target region) can be combined At least two of them are displayed on the same interface to assist doctors in multi-dimensional clinical diagnosis.
  • Fig. 7 shows an example of the display result obtained by the ultrasonic dispersion measurement method according to the embodiment of the present application.
  • the first ultrasound image, the elasticity result of the region of interest, and the shear wave dispersion result (dispersion curve graph) of the target region are displayed on the same interface.
  • the region of interest and the target region for performing dispersion measurement are marked in the first ultrasound image.
  • Such display results provide an intuitive multi-dimensional reference for the doctor's diagnosis.
  • the ultrasonic dispersion measurement method according to the embodiment of the present application. Based on the above description, the ultrasonic dispersion measurement method according to the embodiments of the present application generates shear wave propagation in the region of interest of the target object, obtains shear wave information of the region of interest, and extracts different frequencies in the shear wave information It is possible to obtain information related to shear wave dispersion based on shear wave signals of different frequency components.
  • FIG. 8 shows a schematic flowchart of a method 800 for measuring ultrasonic dispersion according to another embodiment of the present application.
  • the ultrasonic dispersion measurement method 800 may include the following steps:
  • step S810 the region of interest of the target object is acquired.
  • step S820 the propagation of shear waves generated in the region of interest is controlled.
  • step S830 the ultrasonic probe is controlled to transmit ultrasonic waves to the region of interest, receive echoes of the ultrasonic waves, and obtain ultrasonic echo signals based on the echoes of the ultrasonic waves.
  • step S840 the shear wave information of the region of interest is acquired based on the ultrasonic echo signal.
  • step S850 extract at least two shear wave signals with different frequency components from the shear wave information, and obtain and display the shear wave signals based on the respective propagation speeds of the at least two shear wave signals with different frequency components. Wave dispersion result.
  • the ultrasonic dispersion measurement method 800 according to the embodiment of the present application is substantially similar to the ultrasonic dispersion measurement method 100 according to the foregoing embodiment of the present application, except that: Compared with the dispersion measurement method 100, the method of acquiring the region of interest of the target object in the ultrasonic dispersion measurement method 800 according to the embodiment of the present application can be arbitrary, and is not limited to the acquisition based on the ultrasound image acquired in real time of the target object.
  • the propagation mode of shear waves generated in the region of interest may be arbitrary, and is not limited to the propagation of shear waves generated by acoustic radiation force.
  • the similarities between the ultrasonic dispersion measurement method 800 according to the embodiment of the present application and the ultrasonic dispersion measurement method 100 according to the embodiment of the present application will not be repeated here.
  • the ultrasonic dispersion measurement method 800 generates shear wave propagation in the region of interest of the target object, obtains the shear wave information of the region of interest, and extracts the difference in the shear wave information.
  • the shear wave signal of the frequency component can obtain information related to the shear wave dispersion based on the shear wave signal of different frequency components.
  • FIG. 9 shows a schematic flowchart of a method 900 for measuring ultrasonic dispersion according to still another embodiment of the present application.
  • the ultrasonic dispersion measurement method 900 may include the following steps:
  • step S910 the current shear wave dispersion result obtained by the current ultrasonic dispersion measurement for the target tissue of the target object is obtained.
  • step S920 obtain the historical shear wave dispersion result of the target tissue of the target object before this ultrasonic dispersion measurement.
  • step S930 a statistical shear wave dispersion result is generated based on the current shear wave dispersion result and the historical shear wave dispersion result, and the statistical shear wave dispersion result reflects all the results of the target object.
  • the shear wave dispersion results of the target tissue in different periods are described.
  • the ultrasonic dispersion measurement method 900 realizes that the shear wave dispersion result of the same target object and the same target tissue changes with time.
  • the same target tissue of the same target object is displayed to the user.
  • the results of shear wave dispersion in different periods can reflect the changes in the lesions of the same tissue of the target object over time, and help to assist in judging the development trend of the tissues. Therefore, after a certain shear wave dispersion result is generated, the previous historical shear wave dispersion results of the same target object and the same tissue can be obtained, and the shear wave dispersion results generated this time can be cut with the previous history.
  • the wave dispersion results are combined to generate statistical shear wave dispersion results to obtain the shear wave dispersion results in different periods, showing the change of the shear wave dispersion results of the same target tissue of the same target object over time.
  • the shear wave dispersion results of the same target object and the same tissue in each period can be generated and stored according to the ultrasonic dispersion measurement method of the embodiment of the present application.
  • the current shear wave dispersion results and the historical shear wave dispersion results may both be dispersion graphs, and the dispersion graphs reflect the shear of different frequency components.
  • the generated statistical shear wave dispersion result can be, for example, the dispersion curve graph shown in FIG. 5, and each dispersion curve represents the shear wave dispersion result in a period of time.
  • the current shear wave dispersion result and the historical shear wave dispersion result may both be performed on the propagation velocities corresponding to the shear wave signals of at least two different frequency components. Compare the calculated results.
  • the result of the comparison calculation may include: the difference, the ratio, or the frequency-varying slope of the propagation velocities corresponding to the shear wave signals of the at least two different frequency components.
  • the current shear wave dispersion result and the historical shear wave dispersion result may both be the propagation velocity space corresponding to each of the shear wave signals of at least two different frequency components.
  • Distribution diagrams, each of the propagation velocity spatial distribution diagrams reflects respective propagation velocities of a shear wave signal of one frequency component at different positions of the target tissue.
  • the ultrasonic dispersion measurement method 900 can show the user the change of the shear wave dispersion results of the same target tissue of the same target object over time, which is helpful to assist in judging tissue lesions. development trend.
  • the above exemplarily shows the ultrasonic dispersion measurement method according to the embodiment of the present application.
  • the following describes an ultrasonic dispersion measuring device according to an embodiment of the present application with reference to FIGS. 10 to 11, which can be used to implement the above-mentioned ultrasonic dispersion measuring method according to the embodiment of the present invention.
  • Fig. 10 shows a schematic block diagram of an ultrasonic dispersion measuring device 1000 according to an embodiment of the present application.
  • the ultrasonic dispersion measuring apparatus 1000 may include an ultrasonic probe 1010, a transmission/reception sequence controller 1020, a processor 1030, and a display device 1040.
  • the transmitting/receiving sequence controller 1020 is used to control the ultrasonic probe 1010 to transmit the first ultrasonic wave to the target object, Receive the echo of the first ultrasonic wave, and obtain a first ultrasonic echo signal based on the echo of the first ultrasonic wave;
  • the processor 1030 is configured to generate a first ultrasonic image based on the first ultrasonic echo signal, and obtain The region of interest on the first ultrasound image;
  • the transmit/receive sequence controller 1020 is also used to control the ultrasound probe 1010 to transmit a second ultrasonic wave to the region of interest for generating shear waves in the region of interest
  • the transmission/reception sequence controller 1020 is also used to control the ultrasonic probe 1010 to transmit a third ultrasonic wave to the region of interest, receive the echo of the third ultrasonic wave, and obtain the first ultrasonic wave based on the echo of the third ultrasonic
  • the processor 1030 is used to obtain the region of interest of the target object and control the region of interest. Generate shear wave propagation; the transmit/receive sequence controller 1020 is used to control the ultrasonic probe 1010 to transmit ultrasonic waves to the region of interest, receive echoes of the ultrasonic waves, and obtain ultrasonic echo signals based on the echoes of the ultrasonic waves.
  • the processor 1030 is also configured to obtain shear wave information of the region of interest based on the ultrasonic echo signal, and extract at least two shear wave signals of different frequency components from the shear wave information, and based on The respective propagation velocities of the at least two shear wave signals with different frequency components obtain the shear wave dispersion result; the display device 1040 is used to display the shear wave dispersion result.
  • each frequency component of the at least two different frequency components may include a frequency band with a preset bandwidth with one frequency point as the main frequency.
  • the frequency point of each frequency component may be the center frequency of the frequency band.
  • the processor 1030 extracting at least two shear wave signals with different frequency components from the shear wave information may be implemented by a filtering algorithm.
  • the processor 1030 may include at least two band-pass filters for extracting at least two shear wave signals of different frequency components from the shear wave information.
  • the processor 1030 may include at least one low-pass filter and at least one high-pass filter for extracting at least two shear wave signals with different frequency components from the shear wave information.
  • the processor 1030 obtains the shear wave dispersion result based on the respective propagation velocities of the shear wave signals of the at least two different frequency components, which may include: based on the at least two different frequency components
  • the respective propagation velocities of the shear wave signals generate a dispersion graph, and the dispersion graph reflects the respective propagation velocities of the shear wave signals of different frequency components.
  • the processor 1030 obtains and displays the shear wave dispersion result based on the respective propagation velocities of the shear wave signals of the at least two different frequency components, which may include: based on the at least two different frequency components.
  • the graph reflects the corresponding elastic modulus or the square result of the respective propagation velocity of the shear wave signals of different frequency components.
  • the generated dispersion curve graph may include multiple dispersion curves, and the multiple dispersion curves correspond to shear wave dispersion results of different regions of interest, and within the same region of interest.
  • the processor 1030 obtains and displays the shear wave dispersion result based on the respective propagation velocities of the shear wave signals of the at least two different frequency components, which may include: The propagation velocity corresponding to the shear wave signal of the frequency component is compared and calculated, and the result of the comparison calculation is used as the shear wave dispersion result to be displayed by the display device.
  • the processor 1030 to compare and calculate the propagation velocities corresponding to the at least two shear wave signals with different frequency components may include: calculating the at least two shear wave signals with different frequency components Corresponding propagation velocity difference, ratio or slope with frequency.
  • the processor 1030 obtains the shear wave dispersion result based on the respective propagation velocities of the shear wave signals of the at least two different frequency components, which may include: based on the at least two different frequency components
  • the respective propagation velocities of the shear wave signals generate the respective propagation velocity spatial distribution diagrams of the shear wave signals of different frequency components, and each of the propagation velocity spatial distribution diagrams reflects the shear wave signal of a frequency component in the The corresponding propagation velocity at different locations of the region of interest.
  • the region of interest may be a target region for performing dispersion measurement.
  • the region of interest may be a region for elasticity measurement
  • the processor 1030 may also be used to calculate the shear wave group velocity based on the shear wave information of the region of interest, and The elasticity result of the region of interest is calculated based on the shear wave group velocity and displayed by the display device; the target region for dispersion measurement is acquired, and the shear wave information of the target region is acquired, so The extraction of at least two shear wave signals with different frequency components is to extract at least two shear wave signals with different frequency components from the shear wave information of the target area.
  • the processor 1030 acquiring the target area for performing the dispersion measurement may include: acquiring the target area for performing the dispersion measurement based on the first ultrasound image; or based on the first ultrasound image; An ultrasound image and the elasticity result are used to obtain the target area for performing the dispersion measurement.
  • the target area for performing dispersion measurement may be located in the area of interest.
  • the elasticity result may be displayed as an elasticity result spatial distribution map, and the elasticity result spatial distribution map reflects respective corresponding elasticity results at different positions of the region of interest.
  • the processor 1030 may also be used to generate a group velocity spatial distribution map based on the shear wave group velocity and display it by the display device, and the group velocity spatial distribution map reflects the feeling The shear wave group velocities corresponding to different positions in the region of interest.
  • At least two of the first ultrasound image, the elasticity result, the group velocity spatial distribution map, and the shear wave dispersion result may be displayed on the same interface.
  • the first ultrasound image, the elasticity result, and the shear wave dispersion result can be displayed on the same interface, wherein the first ultrasound image can be marked with the interest Area and the target area for performing dispersion measurement.
  • the propagation velocity corresponding to the shear wave signal of each frequency component in the at least two shear wave signals of different frequency components may be equal to that in the region of interest or used for dispersion measurement. Any one of the following: average, median, standard deviation, quartile, maximum, or minimum of the propagation velocity of the shear wave at each position in the target area.
  • the step of obtaining the shear wave information of the region of interest in the operation of the processor 1030 may be performed at least twice, and the frequency components extracted by the processor 1030 each time are the same in the at least two times.
  • the propagation velocity corresponding to the shear wave signal of each frequency component in the extracted frequency components may be equal to any one of the following of the propagation velocity corresponding to the shear wave signal of the same frequency component in the at least two times: average Value, median, standard deviation, quartile, maximum or minimum.
  • FIG. 11 shows a schematic block diagram of an ultrasonic dispersion measuring device 1100 according to an embodiment of the present application.
  • the ultrasonic dispersion measuring device 1100 includes a memory 1110 and a processor 1120.
  • the memory 1110 stores programs for implementing the corresponding steps in the ultrasonic dispersion measurement methods 200, 800, and 900 according to the embodiments of the present application.
  • the processor 1120 is configured to run a program stored in the memory 1110 to execute the corresponding steps of the ultrasonic dispersion measurement methods 200, 800, and 900 according to the embodiments of the present application.
  • the ultrasonic dispersion measurement method can extract at least two shear wave signals with different frequency components from the shear wave information generated once; or it can also extract the shear wave signals from the shear wave information generated at least twice. Extract shear wave signals of different frequency components.
  • the shear wave signal of one frequency component can be extracted for each shear wave information generated, and each time the shear wave signal is extracted
  • the frequency components are different; for each shear wave information generated, at least two shear wave signals with different frequency components can also be extracted respectively, and the frequency components extracted each time can be the same or different.
  • the shear wave signals of the first frequency component and the second frequency component are extracted for the first shear wave information, and the shear wave signals of the second frequency component are extracted for the second shear wave information and
  • the third shear wave information also extracts the shear wave signals of the first frequency component and the second frequency component.
  • the shear wave signals of the first frequency component and the second frequency component are extracted for the first shear wave information, and the shear wave information for the second time is extracted
  • the shear wave signals of the third frequency component and the fourth frequency component are extracted from the shear wave signals of the fifth frequency component and the sixth frequency component with respect to the third shear wave information.
  • FIG. 12 shows a schematic flowchart of a method 1200 for measuring ultrasonic dispersion according to another embodiment of the present application. As shown in FIG. 12, the ultrasonic dispersion measurement method 1200 may include the following steps:
  • step S1210 the region of interest of the target object is acquired.
  • step S1220 the propagation of shear waves generated at least twice in the region of interest is controlled, and information of the shear waves generated each time in the region of interest is obtained.
  • step S1230 the shear wave signal of at least one frequency component is extracted for the shear wave information acquired each time, and the frequency components of the shear wave signals extracted for the shear wave information acquired each time are different.
  • step S1240 the shear wave dispersion results are acquired and displayed based on the respective propagation speeds of the shear wave signals extracted from the shear wave information obtained in each time.
  • the ultrasonic dispersion measurement method 1200 according to the embodiment of the present application is substantially similar to the ultrasonic dispersion measurement methods 100 and 800 described above according to the embodiment of the present application, except for the difference: Compared with the ultrasonic dispersion measurement method 100 and 800, the ultrasonic dispersion measurement method 1200 according to the embodiment of the present application generates at least two shear waves in the same region of interest, and extracts different shear waves from the generated shear waves each time. The shear wave signal of the frequency component, and the shear wave dispersion result of the region of interest is obtained based on the propagation velocity corresponding to the extracted shear wave signal of the different frequency component.
  • the shear wave signals of the first frequency component and the second frequency component are extracted from the two generated shear waves, and the first frequency component and the second frequency component
  • the center frequencies of the frequency components are different.
  • the shear wave signals of the first frequency component, the second frequency component, and the third frequency component are extracted from the three generated shear waves.
  • the first frequency component, The center frequencies of the second frequency component and the third frequency component are different; and so on.
  • a dispersion graph can be generated (reflecting the respective propagation speeds of the shear wave signals of different frequency components, the elastic modulus corresponding to the shear wave signals of different frequency components, or different The square result of the propagation velocity corresponding to the shear wave signal of the frequency component or other calculation results), the comparison calculation result of the propagation velocity corresponding to the shear wave signal of different frequency components can be obtained, and the shear wave corresponding to different frequency components can also be obtained.
  • the spatial distribution map of the propagation velocity corresponding to the signal can be generated (reflecting the respective propagation speeds of the shear wave signals of different frequency components, the elastic modulus corresponding to the shear wave signals of different frequency components, or different The square result of the propagation velocity corresponding to the shear wave signal of the frequency component or other calculation results), the comparison calculation result of the propagation velocity corresponding to the shear wave signal of different frequency components can be obtained, and the shear wave corresponding to different frequency components can also be obtained.
  • the spatial distribution map of the propagation velocity corresponding to the signal
  • the similarities between the ultrasonic dispersion measurement method 1200 according to the embodiment of the present application and the ultrasonic dispersion measurement methods 100 and 800 of the embodiment of the present application will not be repeated here.
  • both the above-mentioned ultrasonic dispersion measuring apparatuses 1000 and 1100 may be used to execute the ultrasonic dispersion measuring method 1200 according to an embodiment of the present application.
  • the ultrasonic dispersion measurement method 1200 generates at least two shear wave propagations in the region of interest of the target object, and extracts different frequency components from the shear wave information generated each time Based on the shear wave signal of different frequency components, the shear wave dispersion-related information can be obtained.
  • FIG. 13 shows a schematic flowchart of an ultrasound elastography method 1300 according to another embodiment of the present application.
  • the ultrasonic elastography method 1300 may include the following steps:
  • step S1310 the region of interest of the target object is acquired.
  • step S1320 the propagation of shear waves generated in the region of interest is controlled.
  • step S1330 the ultrasonic probe is controlled to transmit the shear wave tracking ultrasonic wave to the region of interest, receive the echo of the ultrasonic wave, and obtain the ultrasonic echo signal based on the echo of the ultrasonic wave.
  • step S1340 the shear wave information of the region of interest is obtained based on the ultrasonic echo signal, and the shear wave information is usually a signal containing a frequency range.
  • step S1350 a shear wave signal of at least one frequency component is extracted from the shear wave information.
  • a shear wave signal of one frequency component can be extracted from the shear wave information; in an example, at least two shear wave signals of different frequency components can be extracted from the shear wave information.
  • a frequency component here can be understood as including a main frequency, and the main frequency has a large energy ratio in the frequency component.
  • the propagation parameter of the shear wave corresponding to the frequency component can be determined based on the shear wave signal of the frequency component. For example, the propagation speed of the shear wave corresponding to the frequency component, the propagation distance of the shear wave, the propagation time of the shear wave, and the displacement when the shear wave passes through a certain position can be determined. Taking the propagation velocity as an example, the propagation velocity of the shear wave corresponding to the frequency component can be called the phase velocity of the shear wave.
  • other transformation operations or calculation of elastic modulus can also be performed based on the propagation parameters of the shear wave.
  • the elastic modulus can be calculated based on the phase velocity of the shear wave, the square sum of the phase velocity of the shear wave, etc. can be calculated.
  • the propagation parameters of the shear wave at the frequency component can be output separately; the shear wave group velocity can also be determined based on the shear wave information, and the elastic result of the region of interest can be obtained, and the elastic result (and/ Or shear wave group velocity) and the propagation parameters of the shear wave under this frequency component.
  • the propagation parameters of shear waves corresponding to different frequency components may be determined based on the extracted shear wave signals. For example, the propagation speed of the shear wave corresponding to different frequency components, the propagation distance of the shear wave, the propagation time of the shear wave, and the displacement when the shear wave passes through a certain position can be determined. Taking the propagation velocity as an example, the phase velocity of the shear wave can be determined based on the extracted shear wave signal. In addition, other transformation operations or calculation of elastic modulus can also be performed based on the propagation parameters of the shear wave.
  • the elastic modulus can be calculated based on the phase velocity of the shear wave, the square sum of the phase velocity of the shear wave, etc. can be calculated.
  • the propagation parameters of shear waves under different frequency components can be output separately; the shear wave group velocity can also be determined based on the shear wave information, and the elastic results of the region of interest can be obtained, and the elastic results can be output simultaneously (and/ Or shear wave group velocity) and shear wave propagation parameters under different frequency components.
  • the phase velocities of shear waves under different frequency components can be output.
  • the shear wave dispersion results can also be determined and displayed based on the phase velocities of the at least two shear waves.
  • the shear wave dispersion result can be a dispersion graph (reflecting the respective propagation speeds of the shear wave signals of different frequency components, the elastic modulus corresponding to the shear wave signals of different frequency components, or the shear wave of different frequency components.
  • the square result of the propagation velocity corresponding to the signal or other calculation results), the comparison calculation result of the propagation velocity corresponding to the shear wave signal of different frequency components can be obtained, and the spatial distribution of the propagation velocity corresponding to the shear wave signal of different frequency components can also be obtained.
  • the similarities between the ultrasonic dispersion measurement method 1300 according to the embodiment of the present application and the ultrasonic dispersion measurement methods 100 and 800 of the embodiment of the present application will not be repeated here.
  • a storage medium on which program instructions are stored, and when the program instructions are run by a computer or a processor, the The corresponding steps of the measurement method.
  • the storage medium may include, for example, a memory card of a smart phone, a storage component of a tablet computer, a hard disk of a personal computer, a read-only memory (ROM), an erasable programmable read-only memory (EPROM), a portable compact disk read-only memory (CD-ROM), USB memory, or any combination of the above storage media.
  • the computer-readable storage medium may be any combination of one or more computer-readable storage media.
  • a computer program is also provided, and the computer program can be stored in a cloud or a local storage medium.
  • the computer program is run by a computer or a processor, it is used to execute the corresponding steps of the ultrasonic dispersion measurement method of the embodiment of the present application.
  • the ultrasonic dispersion measurement method, device, and storage medium generate shear wave propagation in the region of interest of the target object, obtain the shear wave information of the region of interest, and extract the shear wave.
  • the shear wave signals of different frequency components in the wave information can obtain shear wave dispersion-related information based on the shear wave signals of different frequency components.
  • the disclosed device and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another device, or some features can be ignored or not implemented.
  • the various component embodiments of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some modules according to the embodiments of the present application.
  • This application can also be implemented as a device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for implementing the present application may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet sites, or provided on carrier signals, or provided in any other form.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声弹性成像方法(1300)、超声频散测量方法(100,800,900,1200)、装置(1000,1100)和存储介质,超声频散测量方法(100,800,900,1200)包括:控制超声探头(1010)向目标对象发射第一超声波,接收第一超声波的回波,并获取第一超声回波信号(S110);基于第一超声回波信号生成第一超声图像并获取第一超声图像上的感兴趣区域(S120);控制超声探头(1010)向感兴趣区域发射第二超声波,以用于在感兴趣区域产生剪切波的传播(S130);控制超声探头(1010)向感兴趣区域发射第三超声波,接收第三超声波的回波,并获取第三超声回波信号(S140);基于第三超声回波信号获取感兴趣区域的剪切波信息(S150);从剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于至少两个不同频率成分的剪切波信号各自的传播速度获取并显示剪切波频散结果(S160)。能够获取剪切波频散相关的信息。

Description

超声弹性成像方法、超声频散测量方法、装置和存储介质
说明书
技术领域
本申请涉及超声频散测量技术领域,更具体地涉及一种超声频散测量方法、装置和存储介质。
背景技术
超声弹性成像技术通过提取组织的硬度相关信息进行成像,与乳腺癌、肝硬化等重大疾病的无创辅助诊断相关,是近二十年来超声成像领域的研究热点。经过多年的发展,超声弹性成像技术逐渐成熟,近年来已经更为广泛的被应用到人体各个不同部位的临床研究和辅助诊断中,比如:肝脏、乳腺、甲状腺、肌骨、血管、前列腺、宫颈等。它可以定性地反映病灶相对于周围组织的软硬差异,或者定量地反映目标组织的硬度相关物理参数,比如杨氏模量、剪切模量等,广受医生欢迎。
常用的超声弹性成像技术包括应变弹性成像、瞬时弹性成像、剪切波弹性成像等。尤其是剪切波弹性成像技术,是当前最新的弹性成像技术。它通过向组织内部发射特殊脉冲形成声辐射力,产生剪切波的传播,再通过超声波检测和记录剪切波的传播过程,并进一步计算出剪切波的传播速度,最终得到反映组织硬度的弹性模量参数,实现定量弹性成像。该技术大大拓展了弹性成像的临床应用领域,引起了极大的研究兴趣。
在当前大多数弹性相关研究中,组织都被视为一个纯弹性体,弹性成像技术也主要是基于纯弹性体的假设来进行成像。尤其是定量的弹性成像技术,都只计算出弹性模量进行显示。但是越来越多的研究已经表明人体组织除了弹性(Elasticity)特性以外,还具备粘性(Viscosity)特性,弹性和粘性共同影响剪切波在组织中的传播速度,粘性会引起组织中剪切波的频散效应。因此,在剪切波弹性成像时,如果能提取出剪切波频散相关的信息,会有非常大的临床潜在价值。
发明内容
本申请提供一种超声频散测量方案,其在目标对象的感兴趣区域中产生剪切波的传播,获取感兴趣区域的剪切波信息,并提取剪切波信息中不同频率成分的剪切波信号,从而获取剪切波频散相关的信息。下面简要描述本申请提出的超声频散测量方案,更多细节将在后续结合附图在具体实施方式中加以描述。
本申请一方面,提供了一种超声频散测量方法,所述方法包括:控制超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一超声图像并进行显示,并获取所述第一超声图像上的感兴趣区域;控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息;以及从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
本申请另一方面,提供了一种超声频散测量方法,所述方法包括:获取目标对象的感兴趣区域;控制所述感兴趣区域内产生剪切波的传播;控制超声探头向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;基于所述超声回波信号获取所述感兴趣区域的剪切波信息;以及从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果。
本申请再一方面,提供了一种超声频散测量方法,所述方法包括:获取本次针对目标对象的目标组织进行超声频散测量得到的本次剪切波频散结果;获取在本次超声频散测量之前所述目标对象的所述目标组织的历史剪切波频散结果;基于所述本次剪切波频散结果和所述历史剪切波频散结果生成统计剪切波频散结果,所述统计剪切波频散结果反映所述目标对象的所述目标组织在不同时期的剪切波频散结果。
本申请再一方面,提供了一种超声频散测量装置,所述装置包括:包括超声探头、发射/接收序列控制器、处理器和显示设备,其中:所述发射/接收序列控制器用于控制所述超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;所述处理器用于基于所述第一超声回波信号生成第一超声图像,并获取所述第一超声图像上的感兴趣区域;所述发射/接收序列控制器还用于控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;所述发射/接收序列控制器还用于控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;所述处理器还用于基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息,从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果;所述显示设备用于显示所述第一超声图像和所述剪切波频散结果。
本申请再一方面,提供了一种超声频散测量装置,所述装置包括超声探头、发射/接收序列控制器、处理器和显示设备,其中:所述处理器用于获取目标对象的感兴趣区域,并控制所述感兴趣区域内产生剪切波的传播;所述发射/接收序列控制器用于控制超声探头向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;所述处理器还用于基于所述超声回波信号获取所述感兴趣区域的剪切波信息,并从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果;所述显示设备用于显示所述剪切波频散结果。
本申请再一方面,提供一种超声弹性成像方法,包括:获取目标对象的感兴趣区域;控制于所述感兴趣区域内产生剪切波的传播;控制超声探头向所述感兴趣区域发射跟踪所述剪切波的超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;基于所述超声回波信号获取所述感兴趣区域的剪切波信息;以及从所述剪切波信息中提取至少一个频率成分的剪切波信号。
本申请再一方面,提供了一种超声频散测量装置,所述装置包括存储器 和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行上述超声频散测量方法。
本申请又一方面,提供了一种存储介质,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行上述超声频散测量方法。
根据本申请实施例的超声频散测量方法、装置和存储介质在目标对象的感兴趣区域中产生剪切波的传播,获取感兴趣区域的剪切波信息,并提取剪切波信息中不同频率成分的剪切波信号,从而能够基于不同频率成分的剪切波信号获取剪切波频散相关的信息。
附图说明
图1示出根据本申请一个实施例的超声频散测量方法的示意性流程图。
图2示出宽频剪切波的频谱的示意图。
图3A和图3B分别示出第一频率成分和第二频率成分各自的剪切波振动波形的示意图。
图4示出根据本申请实施例的超声频散测量方法从宽频剪切波中提取第一频率成分得到的剪切波信号的频谱的示意图。
图5示出根据本申请实施例的超声频散测量方法得到的剪切波频散结果的一个示例的示意图。
图6A和图6B示出根据本申请实施例的超声频散测量方法得到的剪切波频散结果的另一个示例的示意图。
图7示出根据本申请实施例的超声频散测量方法得到的显示结果的一个示例。
图8示出根据本申请另一个实施例的超声频散测量方法的示意性流程图。
图9示出根据本申请再一个实施例的超声频散测量方法的示意性流程图。
图10示出根据本申请一个实施例的超声频散测量装置的示意性框图。
图11示出根据本申请另一个实施例的超声频散测量装置的示意性框图。
图12示出根据本申请又一个实施例的超声频散测量方法的示意性流 程图。
图13示出根据本申请又一个实施例的超声弹性成像方法的示意性流程图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
图1示出根据本申请一个实施例的超声频散测量方法100。如图1所示,超声频散测量方法100可以包括如下步骤:
在步骤S110,控制超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号。
在本申请的实施例中,向目标对象发射第一超声波是为了获取目标对象的目标部位或目标组织的超声图像,从而根据超声图像获取目标对象的目标部位或目标组织的感兴趣区域,诸如病灶区域。此处,第一超声波是为了与下文中将描述的第二超声波、第三超声波相区别而如此命名,没有其他限制意义。在其他实施例中,目标对象的目标部位或目标组织的感兴趣区域也可能是直接已知的,此时可以省略该步骤以及下面的S120步骤。
在步骤S120,基于所述第一超声回波信号生成第一超声图像并进行显示,并获取所述第一超声图像上的感兴趣区域。
在本申请的实施例中,基于在步骤S110获取的第一超声回波信号,可以生成目标对象的目标部位或目标组织的超声图像,即第一超声图像。在本文中将其命名为第一超声图像是为了体现其是基于第一超声回波信号而生成,没有其他限制意义。示例性地,第一超声图像可以是B图像或C图像。
在步骤S130,控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播。
在本申请的实施例中,向目标对象的感兴趣区域发射第二超声波是为了在目标对象的感兴趣区域产生剪切波的传播,以获取剪切波信息用于后续的计算。此处,第二超声波是为了与上文中描述的第一超声波以及下文中将描述的第三超声波相区别而如此命名,没有其他限制意义。在本实施例中,是通过剪切波弹性成像的方式(即通过声辐射力)在目标对象的感兴趣区域产生剪切波的传播,例如向目标对象的感兴趣区域发射特殊超声推动脉冲(推动脉冲长度一般可以大于100微妙)。此外,为了加强所产生的剪切波的强度、范围,也可以发射多个推动脉冲。利用声辐射力在目标对象的感兴趣区域产生的剪切波通常是一个宽频信号,如图2所示的,该宽频信号可能包括0到1000赫兹(Hz)内的许多个频率成分。在其他实施例中,也可以采用其他方式。因此,可检测目标对象的感兴趣区域的剪切波,并提取不同频率成分的剪切波信号,以获取剪切波频散结果,如下文的步骤将描述的。
在步骤S140,控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号。
在本申请的实施例中,向目标对象的感兴趣区域发射第三超声波是为了检测目标对象的感兴趣区域的剪切波传播情况。此处,第三超声波是为了与上文中描述的第一超声波以及第二超声波相区别而如此命名,没有其他限制意义。
在步骤S150,基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息。
在本申请的实施例中,基于在步骤S140获取的第三超声回波信号,可以获取目标对象的感兴趣区域的剪切波信息。具体地,可以根据第三超声回波信号计算得到剪切波在组织中传播时组织的振动状态。根据波动特性,当剪切波传播经过组织中某位置时,相应位置的组织会发生振动,当剪切波传播远离某位置后,该位置的组织会恢复至原状。一般通过对不同时刻下所得到的超声回波之间进行相关对比,即可获得组织在一段时间内的运动信息。运动信息可以是组织相对参考时刻的位移量、组织的运动速度、组织的运动加速度、组织的应变量等,或者是基于上述变量进一步经过滤波、微分、积分等处理之后的数据。
相关对比可以是相邻的不同时刻所得的超声回波信号之间的计算,也可以是不同时刻的超声回波与同一个参考时刻的回波信号之间的计算。相关对比的算法可以使用常规组织位移检测的通用算法,比如基于块匹配的互相关比对算法、基于多普勒频移计算方法、基于相移检测的方法等。最终,将不同时刻剪切波引起的组织运动数据取出来,可以获取剪切波的振动波形。
在步骤S160,从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
在本申请的实施例中,基于在步骤S150获取的剪切波信息,可提取至少两个不同频率成分的剪切波信号。此处,一个频率成分可以理解为包括一个主要频率,该主要频率在该频率成分中能量占比大。也就是说,一 个频率成分可以理解为以一个频率点为主要频率的具有预设带宽的频带。例如,该频率点可以是该频带的中心频率。图3A和图3B分别示出了第一频率成分和第二频率成分各自的剪切波振动波形的示意图。其中,图3A为以300Hz为中心频率的频率成分,图3B为以600Hz为中心频率的频率成分。
对于提取出的每个频率成分的剪切波信号,并不一定仅仅包括中心频率这个单一的频率。以300Hz为例,其频率分布可能为一个以300Hz为主的频率范围,比如250~350Hz,或者200~400Hz等。图4示出了根据本申请实施例的超声频散测量方法从宽频剪切波中提取第一频率成分得到的剪切波信号的频谱的示意图。如图4所示,该剪切波信号中心频率在300Hz处,同时包含一定带宽的频率成分。
在本申请的实施例中,可以通过滤波来实现从所述剪切波信息中提取至少两个不同频率成分的剪切波信号。通过改变用于分离提取的滤波设计,可以调节所提取的频率成分的带宽。分离提取的频率成分越集中,越能准确获得当前频率下的剪切波运动信息,但是所得信号的信噪比会降低,信号的能量降低了。因此,在提取频率成分时可以在频率集中度与信噪比之间进行权衡。如前所述的,一个频率成分可以包括以一个频率点为主要频率的具有预设带宽的频带。因此,在一个实施例中,可以通过至少两个带通滤波器从所述剪切波信息中提取至少两个不同频率成分的剪切波信号。在另一个示例中,可以通过至少一个低通滤波器和至少一个高通滤波器来从所述剪切波信息中提取至少两个不同频率成分的剪切波信号。
对于纯弹性体,剪切波传播速度主要受到弹性参数的影响。对于粘弹性体,剪切波传播速度同时受到弹性、粘性的影响。由于粘性因素的影响,组织中的剪切波传播速度会表现出频散效应,即不同频率的剪切波的传播速度不同。因此,可以计算出至少两个不同频率成分的剪切波信号各自对应的剪切波的传播速度(也描述为不同频率成分的剪切波信号各自对应的传播速度),来反映剪切波的频散效应。在本申请的一个实施例中,每种频率成分的剪切波信号对应的传播速度可以是所述感兴趣区域内各位置处的剪切波的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。在本申请的另一个实施例中,步骤S150即获取所述感兴 趣区域的剪切波信息的步骤可以被执行至少两次,所述至少两次中每次提取的频率成分相同,在所述提取的频率成分中每一个频率成分的剪切波信号对应的传播速度可以为所述至少两次中相同频率成分的剪切波信号对应的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。
在本申请的一个实施例中,步骤S160中的基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,可以包括:基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的传播速度。在该实施例中,将不同频率成分的剪切波信号各自对应的传播速度用频散曲线图来表示,能够直观地反映剪切波的频散结果。
图5示出了根据本申请实施例的超声频散测量方法得到的剪切波频散结果的一个示例——即频散曲线图的示意图。如图5所示的,可以根据不同频率成分的剪切波信号各自对应的传播速度生成频散曲线图,该频散曲线图可以包括一条或者更多条频散曲线。当频散曲线图中包括一条频散曲线时,该频散曲线可以表示一个感兴趣区域的剪切波频散结果,即一个感兴趣区域不同频率成分的剪切波的传播速度随频率变化的情况。当频散曲线图中包括多条频散曲线时,它们可以对应于不同感兴趣区域的剪切波频散结果、同一感兴趣区域内不同位置的剪切波频散结果或者同一感兴趣区域在不同时期的剪切波频散结果。
其中,不同感兴趣区域可以是目标对象的不同组织,也可以是同一组织的不同位置;同一感兴趣区域的不同位置可以是同一组织的不同位置。同一目标对象不同目标组织或者同一目标组织的不同位置之间频散效应可能是不同的,因此通过生成并显示频散曲线图,可以辅助判断组织的病变情况。同一感兴趣区域在不同时期的剪切波频散结果则可以反映目标对象的同一组织随时间的病变变化情况,有助于辅助判断组织的病变发展趋势。同一目标对象同一组织的每一时期的剪切波频散结果可以根据本申请实施例的超声频散测量方法来生成并存储,并在某次生成剪切波频散结果后获取先前存储的结果进行统计,以得到不同时期的剪切波频散结果,诸如频散曲线 图或者后文中将描述的其他剪切波频散结果(下文将结合图9进一步描述)。
在本申请的另一个实施例中,步骤S160中的基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,可以包括:基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度计算相应的弹性模量或计算所述传播速度的平方结果,并基于所述计算的结果生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的弹性模量或各自对应的传播速度的平方结果。在该实施例中,将不同频率成分的剪切波信号各自对应的弹性模量(例如杨氏模量或剪切模量)或各自对应的传播速度的平方结果用频散曲线图来表示,能够直观地反映剪切波的频散结果,该频散曲线图与图5所示的类似。
在本申请的再一个实施例中,步骤S160中的基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,可以包括:对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,并将所述对比计算的结果作为剪切波频散结果来显示。示例性地,所述对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,可以包括:计算所述至少两个不同频率成分的剪切波信号对应的传播速度的差值、比值或随频率变化的斜率。在该实施例中,将不同频率成分的剪切波信号对应的传播速度的对比计算结果作为频散结果输出,能够更明确地反映剪切波的频散结果。
在本申请的又一个实施例中,步骤S160中的基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,可以包括:基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度分别生成并显示不同频率成分的剪切波信号各自对应的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述感兴趣区域的不同位置处各自对应的传播速度。在该实施例中,针对每种频率成分的剪切波信号在感兴趣区域的不同位置处的传播速度生成传播速度空间分布图,在传播速度空间分布图中用不同的图像特征(诸如不用颜色)代表不同的传播速度。
图6A和图6B示出根据本申请实施例的超声频散测量方法得到的剪切波频散结果的另一个示例——传播速度空间分布图的示意图,图6A和图 6B中,右侧颜色条上不同的值对应图中不同的颜色分布。其中,图6A示出以300Hz为主要频率的频率成分对应的传播速度空间分布图,图6B示出以600Hz为主要频率的频率成分对应的传播速度空间分布图。很明显,由于频散效应的存在,不同频率成分所对应的传播速度空间分布图相互不同。当不同组织的频散效应程度不同时,同一频率成分对应的传播速度空间分布图之间的差异也会不同。因此,通过观察固定的目标频率成分,判断其相互之间的差异情况,即可能对组织的病变情况进行辅助研究诊断。
在本申请的一个实施例中,前文中所述的感兴趣区域可以本身就是用于进行频散测量的目标区域。在该实施例中,根据本申请实施例的超声频散测量方法的整体流程可以是:控制超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一超声图像并进行显示,并获取所述第一超声图像上用于进行频散测量的目标区域;控制所述超声探头向所述目标区域发射第二超声波,以用于在所述目标区域产生剪切波的传播;控制所述超声探头向所述目标区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;基于所述第三超声回波信号获取所述目标区域的剪切波信息;以及从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
在本申请的另一实施例中,前文中所述的感兴趣区域可以是用于进行弹性测量的区域,该感兴趣区域与要进行频散测量的目标区域是不同的区域,例如该目标区域位于该感兴趣区域内或者其他的情况。基于此,根据本申请实施例的超声频散测量方法100还可以包括(未示出):基于所述感兴趣区域的剪切波信息计算剪切波群速度,并基于所述剪切波群速度计算并显示所述感兴趣区域的弹性结果;获取用于进行频散测量的目标区域,并获取所述目标区域的剪切波信息,所述提取至少两个不同频率成分的剪切波信号是从所述目标区域的剪切波信息中提取至少两个不同频率成分的剪切波信号。
在该实施例中,感兴趣区域是用于进行弹性测量的区域,因此需要计 算感兴趣区域的弹性测量结果。由于感兴趣区域的剪切波信息具备较宽的频带信息,因此计算出的剪切波传播速度是一个综合速度,成为剪切波群速度,基于该剪切波群速度可以计算感兴趣区域的弹性结果,例如基于特定公式计算得到感兴趣区域的弹性模量。对于用于频散测量的目标区域,提取得到的每个不同频率成分的剪切波信号对应的剪切波传播速度可以称为剪切波相速度,可基于剪切波相速度计算前文所述的剪切波频散结果。
示例性地,获取用于进行频散测量的目标区域,可以包括:基于所述第一超声图像和所述弹性结果获取所述用于进行频散测量的目标区域。在该实施例中,根据步骤S120生成的第一超声图像以及前述计算得到的感兴趣区域的弹性结果确定用于进行频散测量的目标区域,即基于感兴趣区域的弹性情况确定需要进行频散测量的目标区域,使得频散测量更有针对性。
在该实施例中,根据本申请实施例的超声频散测量方法的整体流程可以是:控制超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一超声图像并进行显示,并获取所述第一超声图像上用于进行弹性测量的感兴趣区域;控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息;基于所述感兴趣区域的剪切波信息计算剪切波群速度,并基于所述剪切波群速度计算并显示所述感兴趣区域的弹性结果;获取所述感兴趣区域内用于进行频散测量的目标区域,并获取所述目标区域的剪切波信息,从所述目标区域的剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示所述目标区域内的剪切波频散结果。
在本申请的再一个实施例中,可以在获取超声图像后一并确定用于进行弹性测量的感兴趣区域和用于频散测量的目标区域,这两者可以是完全相同的区域,也可以是不同的区域,两者在为不同区域时通常是包含关系。在该实施例中,根据本申请实施例的超声频散测量方法的整体流程的另一 个示例可以是:控制超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;基于所述第一超声回波信号生成第一超声图像并进行显示,并获取所述第一超声图像上用于进行弹性测量的感兴趣区域和用于进行频散测量的目标区域;控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息;基于所述感兴趣区域的剪切波信息计算剪切波群速度,并基于所述剪切波群速度计算并显示所述感兴趣区域的弹性结果;获取所述目标区域的剪切波信息,从所述目标区域的剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示所述目标区域内的剪切波频散结果。
其中,获取用于进行频散测量的目标区域,可以包括:基于所述第一超声图像获取所述用于进行频散测量的目标区域。在该实施例中,可以通过图像处理的方法自动获取步骤S120生成的第一超声图像中用于进行频散测量的目标区域,也可以由用户来指定用于进行频散测量的目标区域,即通过获取用户输入的方式获取用于进行频散测量的目标区域。
在本申请的实施例中,前述感兴趣区域的弹性测量结果可以是弹性结果空间分布图,所述弹性结果空间分布图反映所述感兴趣区域不同位置处各自对应的弹性结果。在本申请的实施例中,还可以基于感兴趣区域的剪切波群速度生成并显示群速度空间分布图,所述群速度空间分布图反映所述感兴趣区域不同位置处各自对应的剪切波群速度。在本申请的实施例中,可以将前述的第一超声图像、所述感兴趣区域的弹性结果、群速度空间分布图以及所述感兴趣区域(或目标区域)的剪切波频散结果中的至少两项显示在同一界面上,从而辅助医生多维度进行临床诊断。
图7示出了根据本申请实施例的超声频散测量方法得到的显示结果的一个示例。如图7所示的,在该示例中,将所述第一超声图像、所述感兴趣区域的弹性结果以及所述目标区域的剪切波频散结果(频散曲线图)显示在同一界面上,其中所述第一超声图像中标记有所述感兴趣区域和所述 用于进行频散测量的目标区域。这样的显示结果为医生的诊断提供了直观的多维度参考。
以上示例性地示出了根据本申请实施例的超声频散测量方法。基于上面的描述,根据本申请实施例的超声频散测量方法在目标对象的感兴趣区域中产生剪切波的传播,获取感兴趣区域的剪切波信息,并提取剪切波信息中不同频率成分的剪切波信号,从而能够基于不同频率成分的剪切波信号获取剪切波频散相关的信息。
下面参照图8描述根据本申请另一实施例的超声频散测量方法。图8示出了根据本申请另一个实施例的超声频散测量方法800的示意性流程图。如图8所示,超声频散测量方法800可以包括如下步骤:
在步骤S810,获取目标对象的感兴趣区域。
在步骤S820,控制所述感兴趣区域内产生剪切波的传播。
在步骤S830,控制超声探头向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号。
在步骤S840,基于所述超声回波信号获取所述感兴趣区域的剪切波信息。
在步骤S850,从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
根据本申请实施例的超声频散测量方法800与前文所述的根据本申请实施例的超声频散测量方法100大体上类似,不同之处在于:与前文所述的根据本申请实施例的超声频散测量方法100相比,根据本申请实施例的超声频散测量方法800中获取目标对象的感兴趣区域的方式可以是任意的,而不限于是基于对目标对象实时采集的超声图像而获取的;此外,根据本申请实施例的超声频散测量方法800中在感兴趣区域产生剪切波的传播的方式可以是任意的,而不限于是通过声辐射力产生剪切波的传播。为了简洁,此处不再对根据本申请实施例的超声频散测量方法800与本申请实施例的超声频散测量方法100的相似之处进行赘述。
基于上面的描述,根据本申请实施例的超声频散测量方法800在目标对象的感兴趣区域中产生剪切波的传播,获取感兴趣区域的剪切波信息, 并提取剪切波信息中不同频率成分的剪切波信号,从而能够基于不同频率成分的剪切波信号获取剪切波频散相关的信息。
图9示出了根据本申请再一个实施例的超声频散测量方法900的示意性流程图。如图9所示,超声频散测量方法900可以包括如下步骤:
在步骤S910,获取本次针对目标对象的目标组织进行超声频散测量得到的本次剪切波频散结果。
在步骤S920,获取在本次超声频散测量之前所述目标对象的所述目标组织的历史剪切波频散结果。
在步骤S930,基于所述本次剪切波频散结果和所述历史剪切波频散结果生成统计剪切波频散结果,所述统计剪切波频散结果反映所述目标对象的所述目标组织在不同时期的剪切波频散结果。
根据本申请实施例的超声频散测量方法900实现了向用户展示同一目标对象的同一目标组织的剪切波频散结果随时间变化的情况,如前文所述的,同一目标对象的同一目标组织在不同时期的剪切波频散结果可以反映目标对象的同一组织随时间的病变变化情况,有助于辅助判断组织的病变发展趋势。因此,可以在某次生成剪切波频散结果后获取同一目标对象同一组织的在此之前的历史剪切波频散结果,将本次生成的剪切波频散结果与先前的历史剪切波频散结果结合起来生成统计剪切波频散结果,以得到不同时期的剪切波频散结果,显示同一目标对象的同一目标组织的剪切波频散结果随时间变化的情况。其中,同一目标对象同一组织的每一时期的剪切波频散结果可以根据本申请实施例的超声频散测量方法来生成并存储。
在本申请的一个实施例中,所述本次剪切波频散结果和所述历史剪切波频散结果可以均为频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的传播速度、各自对应的弹性模量或各自对应的传播速度的平方结果。基于此,所生成的统计剪切波频散结果可以例如为图5所示的频散曲线图,每条频散曲线代表一个时期的剪切波频散结果。
在本申请的另一实施例中,所述本次剪切波频散结果和所述历史剪切波频散结果可以均为对至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算的结果。其中,所述对比计算的结果可以包括:所述至少两个不同频率成分的剪切波信号对应的传播速度的差值、比值或随频率变 化的斜率。
在本申请的再一实施例中,所述本次剪切波频散结果和所述历史剪切波频散结果可以均为至少两个不同频率成分的剪切波信号各自对应的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述目标组织的不同位置处各自对应的传播速度。
基于上面的描述,根据本申请实施例的超声频散测量方法900可以实现向用户展示同一目标对象的同一目标组织的剪切波频散结果随时间变化的情况,有助于辅助判断组织的病变发展趋势。
以上示例性地示出了根据本申请实施例的超声频散测量方法。下面结合图10到图11描述根据本申请实施例的超声频散测量装置,其可以用于实施上文中所述的根据本发明实施例的超声频散测量方法。
图10示出了根据本申请一个实施例的超声频散测量装置1000的示意性框图。如图10所示,超声频散测量装置1000可以包括超声探头1010、发射/接收序列控制器1020、处理器1030和显示设备1040。
当超声频散测量装置1000用于实施上文所述的根据本发明实施例的超声频散测量方法100时,发射/接收序列控制器1020用于控制超声探头1010向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;处理器1030用于基于所述第一超声回波信号生成第一超声图像,并获取所述第一超声图像上的感兴趣区域;发射/接收序列控制器1020还用于控制超声探头1010向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;发射/接收序列控制器1020还用于控制超声探头1010向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;处理器1030还用于基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息,从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果;显示设备1040用于显示所述第一超声图像和所述剪切波频散结果。
当超声频散测量装置1000用于实施上文所述的根据本发明实施例的超声频散测量方法800时,处理器1030用于获取目标对象的感兴趣区域, 并控制所述感兴趣区域内产生剪切波的传播;发射/接收序列控制器1020用于控制超声探头1010向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;处理器1030还用于基于所述超声回波信号获取所述感兴趣区域的剪切波信息,并从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果;显示设备1040用于显示所述剪切波频散结果。
在本申请的实施例中,所述至少两个不同频率成分中的每个频率成分可以包括以一个频率点为主要频率的具有预设带宽的频带。
在本申请的实施例中,所述每个频率成分的所述频率点可以为所述频带的中心频率。
在本申请的实施例中,处理器1030从所述剪切波信息中提取至少两个不同频率成分的剪切波信号可以是通过滤波算法来实现的。
在本申请的实施例中,处理器1030可以包括至少两个带通滤波器,用于从所述剪切波信息中提取至少两个不同频率成分的剪切波信号。
在本申请的实施例中,处理器1030可以包括至少一个低通滤波器和至少一个高通滤波器,用于从所述剪切波信息中提取至少两个不同频率成分的剪切波信号。
在本申请的实施例中,处理器1030基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果,可以包括:基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度生成频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的传播速度。
在本申请的实施例中,处理器1030基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,可以包括:基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度计算相应的弹性模量或计算所述各自对应的传播速度的平方结果,并基于所述计算的结果生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的弹性模量或各自对应的传播速度的平方结果。
在本申请的实施例中,所述生成的频散曲线图可以包括多条频散曲线, 所述多条频散曲线对应于不同感兴趣区域的剪切波频散结果、同一感兴趣区域内不同位置的剪切波频散结果或者同一感兴趣区域在不同时期的剪切波频散结果。
在本申请的实施例中,处理器1030基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,可以包括:对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,并将所述对比计算的结果作为剪切波频散结果来由所述显示设备显示。
在本申请的实施例中,处理器1030对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,可以包括:计算所述至少两个不同频率成分的剪切波信号对应的传播速度的差值、比值或随频率变化的斜率。
在本申请的实施例中,处理器1030基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果,可以包括:基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度分别生成不同频率成分的剪切波信号各自对应的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述感兴趣区域的不同位置处各自对应的传播速度。
在本申请的实施例中,所述感兴趣区域可以为用于进行频散测量的目标区域。
在本申请的实施例中,所述感兴趣区域可以为用于进行弹性测量的区域,处理器1030还可以用于:基于所述感兴趣区域的剪切波信息计算剪切波群速度,并基于所述剪切波群速度计算所述感兴趣区域的弹性结果,并由所述显示设备显示;获取用于进行频散测量的目标区域,并获取所述目标区域的剪切波信息,所述提取至少两个不同频率成分的剪切波信号是从所述目标区域的剪切波信息中提取至少两个不同频率成分的剪切波信号。
在本申请的实施例中,处理器1030获取用于进行频散测量的目标区域,可以包括:基于所述第一超声图像获取所述用于进行频散测量的目标区域;或者基于所述第一超声图像和所述弹性结果获取所述用于进行频散测量的目标区域。
在本申请的实施例中,所述用于进行频散测量的目标区域可以位于所 述感兴趣区域内。
在本申请的实施例中,所述弹性结果可以显示为弹性结果空间分布图,所述弹性结果空间分布图反映所述感兴趣区域不同位置处各自对应的弹性结果。
在本申请的实施例中,处理器1030还可以用于:基于所述剪切波群速度生成群速度空间分布图,并由所述显示设备显示,所述群速度空间分布图反映所述感兴趣区域不同位置处各自对应的剪切波群速度。
在本申请的实施例中,所述第一超声图像、所述弹性结果、所述群速度空间分布图以及所述剪切波频散结果中的至少两项可以显示在同一界面上。
在本申请的实施例中,所述第一超声图像、所述弹性结果以及所述剪切波频散结果可以显示在同一界面上,其中所述第一超声图像中可以标记有所述感兴趣区域和所述用于进行频散测量的目标区域。
在本申请的实施例中,所述至少两个不同频率成分的剪切波信号中每个频率成分的剪切波信号对应的传播速度可以等于所述感兴趣区域内或用于进行频散测量的目标区域内各位置处的剪切波的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。
在本申请的实施例中,处理器1030的操作中获取所述感兴趣区域的剪切波信息的步骤可以执行至少两次,所述至少两次中处理器1030每次提取的频率成分相同,在所述提取的频率成分中每一个频率成分的剪切波信号对应的传播速度可以等于所述至少两次中相同频率成分的剪切波信号对应的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。
下面结合图11描述本申请另一个实施例的超声频散测量装置的示意性框图。图11示出了根据本申请实施例的超声频散测量装置1100的示意性框图。超声频散测量装置1100包括存储器1110以及处理器1120。
其中,存储器1110存储用于实现根据本申请实施例的超声频散测量方法200、800和900中的相应步骤的程序。处理器1120用于运行存储器1110中存储的程序,以执行根据本申请实施例的超声频散测量方法200、800和900的相应步骤。
根据本申请实施例的超声频散测量方法可以是从一次产生的剪切波信息中提取至少两种不同频率成分的剪切波信号;也可以是从至少两次产生的剪切波信息中分别提取不同频率成分的剪切波信号。在从至少两次产生的剪切波信息中分别提取不同频率成分的剪切波信号时,针对每次产生的剪切波信息可以分别提取一种频率成分的剪切波信号,且各次提取的频率成分不同;针对每次产生的剪切波信息也可以分别提取至少两种不同频率成分的剪切波信号,而各次提取的频率成分可以相同也可以不同。例如,一种示例中,以产生三次剪切波信息为例,针对第一次剪切波信息提取第一频率成分和第二频率成分的剪切波信号,针对第二次剪切波信息和第三次剪切波信息同样提取第一频率成分和第二频率成分的剪切波信号。例如,一种示例中,以产生三次剪切波信息为例,针对第一次剪切波信息提取第一频率成分和第二频率成分的剪切波信号,针对第二次剪切波信息提取第三频率成分和第四频率成分的剪切波信号,针对第三次剪切波信息提取第五频率成分和第六频率成分的剪切波信号。
图12示出了根据本申请又一个实施例的超声频散测量方法1200的示意性流程图。如图12所示,超声频散测量方法1200可以包括如下步骤:
在步骤S1210,获取目标对象的感兴趣区域。
在步骤S1220,控制于所述感兴趣区域内产生至少两次剪切波的传播,并获取所述感兴趣区域内每次产生的剪切波信息。
在步骤S1230,针对每次获取的剪切波信息提取至少一个频率成分的剪切波信号,并且针对各次获取的剪切波信息提取的剪切波信号的频率成分不同。
在步骤S1240,基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
根据本申请实施例的超声频散测量方法1200与前文所述的根据本申请实施例的超声频散测量方法100和800大体上类似,不同之处在于:与前文所述的根据本申请实施例的超声频散测量方法100和800相比,根据本申请实施例的超声频散测量方法1200中是在同一感兴趣区域产生至少两次剪切波,从各次产生的剪切波中提取不同频率成分的剪切波信号,并基于所提取的不同频率成分的剪切波信号对应的传播速度获得该感兴趣区 域的剪切波频散结果。例如,于感兴趣区域内共产生两次剪切波时,从两次产生的剪切波中分别提取出第一频率成分和第二频率成分的剪切波信号,第一频率成分和第二频率成分的中心频率不同。例如,于感兴趣区域内产生三次剪切波时,从三次产生的剪切波中分别提取出第一频率成分、第二频率成分和第三频率成分的剪切波信号,第一频率成分、第二频率成分和第三频率成分各自的中心频率不同;如此类推。提取到不同频率成分的剪切波信号后,可以生成频散曲线图(反映不同频率成分的剪切波信号各自对应的传播速度、不同频率成分的剪切波信号对应的弹性模量、或不同频率成分的剪切波信号对应的传播速度的平方结果或其他计算结果),可以得到不同频率成分的剪切波信号对应的传播速度的对比计算结果,也可以得到对应不同频率成分的剪切波信号对应的传播速度空间分布图。为了简洁,此处不再对根据本申请实施例的超声频散测量方法1200与本申请实施例的超声频散测量方法100和800的相似之处进行赘述。此外,应理解,上述超声频散测量装置1000和1100均可以用于执行根据本申请实施例的超声频散测量方法1200。
基于上面的描述,根据本申请实施例的超声频散测量方法1200在目标对象的感兴趣区域中产生至少两次剪切波的传播,并从各次产生的剪切波信息中提取不同频率成分的剪切波信号,从而能够基于不同频率成分的剪切波信号获取剪切波频散相关的信息。
图13示出了根据本申请又一个实施例的超声弹性成像方法1300的示意性流程图。如图13所示,超声弹性成像方法1300可以包括如下步骤:
在步骤S1310,获取目标对象的感兴趣区域。
在步骤S1320,控制于感兴趣区域内产生剪切波的传播。
在步骤S1330,控制超声探头向感兴趣区域发射跟踪剪切波的超声波,接收超声波的回波,并基于超声波的回波获取超声回波信号。
在步骤S1340,基于超声回波信号获取感兴趣区域的剪切波信息,剪切波信息通常是包含一段频率范围的信号。
在步骤S1350,从剪切波信息中提取至少一个频率成分的剪切波信号。
在一个示例中,可以从剪切波信息中提取一个频率成分的剪切波信号;在一个示例中,可以从剪切波信息中提取至少两个不同频率成分的剪切波 信号。这里的一个频率成分如上所述,可理解为包括一个主要频率,该主要频率在该频率成分中能量占比大。
在提取一个频率成分的剪切波信号的示例下,可基于该频率成分的剪切波信号确定该频率成分对应的剪切波的传播参数。例如,可确定该频率成分对应的剪切波的传播速度、剪切波的传播距离、剪切波的传播时间、剪切波传播经过某位置时的位移等。以传播速度为例,该频率成分对应的剪切波的传播速度可称为剪切波的相速度。另外,还可基于剪切波的传播参数进行其他变换运算或计算弹性模量。例如,可基于剪切波的相速度计算弹性模量,计算剪切波的相速度的平方和等。示例性地,可以单独输出该频率成分下的剪切波的传播参数;也可以基于剪切波信息确定剪切波群速度,并得到感兴趣区域的弹性结果,并同步输出弹性结果(和/或剪切波群速度)和该频率成分下的剪切波的传播参数。
在提取至少两个频率成分的剪切波信号的示例下,可基于提取的剪切波信号确定不同频率成分对应的剪切波的传播参数。例如,可确定不同频率成分对应的剪切波的传播速度、剪切波的传播距离、剪切波的传播时间、剪切波传播经过某位置时的位移等。以传播速度为例,可基于提取的剪切波信号确定剪切波的相速度。另外,也可基于剪切波的传播参数进行其他变换运算或计算弹性模量。例如,可基于剪切波的相速度计算弹性模量,计算剪切波的相速度的平方和等。示例性地,可以单独输出不同频率成分下的剪切波的传播参数;也可以基于剪切波信息确定剪切波群速度,并得到感兴趣区域的弹性结果,并同步输出弹性结果(和/或剪切波群速度)和不同频率成分下的剪切波的传播参数。例如,可以输出不同频率成分下的剪切波的相速度。
提取至少两个不同频率成分的剪切波信号时,还可基于至少两个剪切波的相速度确定并显示剪切波频散结果。剪切波频散结果可以是频散曲线图(反映不同频率成分的剪切波信号各自对应的传播速度、不同频率成分的剪切波信号对应的弹性模量、或不同频率成分的剪切波信号对应的传播速度的平方结果或其他计算结果),可以得到不同频率成分的剪切波信号对应的传播速度的对比计算结果,也可以得到不同频率成分的剪切波信号对应的传播速度空间分布图。为了简洁,此处不再对根据本申请实施例的超 声频散测量方法1300与本申请实施例的超声频散测量方法100和800的相似之处进行赘述。
此外,根据本申请实施例,还提供了一种存储介质,在所述存储介质上存储了程序指令,在所述程序指令被计算机或处理器运行时用于执行本申请实施例的超声频散测量方法的相应步骤。所述存储介质例如可以包括智能电话的存储卡、平板电脑的存储部件、个人计算机的硬盘、只读存储器(ROM)、可擦除可编程只读存储器(EPROM)、便携式紧致盘只读存储器(CD-ROM)、USB存储器、或者上述存储介质的任意组合。所述计算机可读存储介质可以是一个或多个计算机可读存储介质的任意组合。
此外,根据本申请实施例,还提供了一种计算机程序,该计算机程序可以存储在云端或本地的存储介质上。在该计算机程序被计算机或处理器运行时用于执行本申请实施例的超声频散测量方法的相应步骤。
基于上面的描述,根据本申请实施例的超声频散测量方法、装置和存储介质在目标对象的感兴趣区域中产生剪切波的传播,获取感兴趣区域的剪切波信息,并提取剪切波信息中不同频率成分的剪切波信号,从而能够基于不同频率成分的剪切波信号获取剪切波频散相关的信息。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个 装置,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者装置的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因 特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (59)

  1. 一种超声频散测量方法,其特征在于,所述方法包括:
    控制超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    基于所述第一超声回波信号生成第一超声图像并进行显示,并获取所述第一超声图像上的感兴趣区域;
    控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;
    控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;
    基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息;以及
    从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
  2. 一种超声频散测量方法,其特征在于,所述方法包括:
    获取目标对象的感兴趣区域;
    控制于所述感兴趣区域内产生剪切波的传播;
    控制超声探头向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;
    基于所述超声回波信号获取所述感兴趣区域的剪切波信息;以及
    从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
  3. 根据权利要求1或2所述的方法,其特征在于,所述至少两个不同频率成分中的每个频率成分包括以一个频率点为主要频率的具有预设带宽的频带。
  4. 根据权利要求3所述的方法,其特征在于,所述每个频率成分的所述频率点为所述频带的中心频率。
  5. 根据权利要求1-4中的任一项所述的方法,其特征在于,所述从所述剪切波信息中提取至少两个不同频率成分的剪切波信号是通过滤波来实 现的。
  6. 根据权利要求1-5中的任一项所述的方法,其特征在于,所述从所述剪切波信息中提取至少两个不同频率成分的剪切波信号是通过至少两个带通滤波器实现的。
  7. 根据权利要求1-5中的任一项所述的方法,其特征在于,所述从所述剪切波信息中提取至少两个不同频率成分的剪切波信号是通过至少一个低通滤波器和至少一个高通滤波器实现的。
  8. 根据权利要求1-7中的任一项所述的方法,其特征在于,所述基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的传播速度。
  9. 根据权利要求1-7中的任一项所述的方法,其特征在于,所述基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度计算相应的弹性模量或计算所述各自对应的传播速度的平方结果,并基于所述计算的结果生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的弹性模量或各自对应的传播速度的平方结果。
  10. 根据权利要求8或9所述的方法,其特征在于,所述生成的频散曲线图包括多条频散曲线,所述多条频散曲线对应于不同感兴趣区域的剪切波频散结果、同一感兴趣区域内不同位置的剪切波频散结果或者同一感兴趣区域在不同时期的剪切波频散结果。
  11. 根据权利要求1-7中的任一项所述的方法,其特征在于,所述基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,并将所述对比计算的结果作为剪切波频散结果来显示。
  12. 根据权利要求11所述的方法,其特征在于,所述对所述至少两个 不同频率成分的剪切波信号对应的传播速度进行对比计算,包括:
    计算所述至少两个不同频率成分的剪切波信号对应的传播速度的差值、比值或随频率变化的斜率。
  13. 根据权利要求1-7中的任一项所述的方法,其特征在于,所述基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度分别生成并显示不同频率成分的剪切波信号各自对应的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述感兴趣区域的不同位置处各自对应的传播速度。
  14. 根据权利要求1-13中的任一项所述的方法,其特征在于,所述感兴趣区域为用于进行频散测量的目标区域。
  15. 根据权利要求1-13中的任一项所述的方法,其特征在于,所述感兴趣区域为用于进行弹性测量的区域,所述方法还包括:
    基于所述感兴趣区域的剪切波信息计算剪切波群速度,并基于所述剪切波群速度计算并显示所述感兴趣区域的弹性结果;
    获取用于进行频散测量的目标区域,并获取所述目标区域的剪切波信息,所述提取至少两个不同频率成分的剪切波信号是从所述目标区域的剪切波信息中提取至少两个不同频率成分的剪切波信号。
  16. 根据权利要求15所述的方法,其特征在于,所述获取用于进行频散测量的目标区域,包括:
    基于所述第一超声图像获取所述用于进行频散测量的目标区域;或者
    基于所述第一超声图像和所述弹性结果获取所述用于进行频散测量的目标区域。
  17. 根据权利要求15或16所述的方法,其特征在于,所述用于进行频散测量的目标区域位于所述感兴趣区域内。
  18. 根据权利要求15所述的方法,其特征在于,所述弹性结果显示为弹性结果空间分布图,所述弹性结果空间分布图反映所述感兴趣区域不同位置处各自对应的弹性结果。
  19. 根据权利要求15-18中的任一项所述的方法,其特征在于,所述 方法还包括:
    基于所述剪切波群速度生成并显示群速度空间分布图,所述群速度空间分布图反映所述感兴趣区域不同位置处各自对应的剪切波群速度。
  20. 根据权利要求15-19中的任一项所述的方法,其特征在于,所述第一超声图像、所述弹性结果、所述群速度空间分布图以及所述剪切波频散结果中的至少两项显示在同一界面上。
  21. 根据权利要求20所述的方法,其特征在于,所述第一超声图像、所述弹性结果以及所述剪切波频散结果显示在同一界面上,其中所述第一超声图像中标记有所述感兴趣区域和所述用于进行频散测量的目标区域。
  22. 根据权利要求1-21中的任一项所述的方法,其特征在于,所述至少两个不同频率成分的剪切波信号中每个频率成分的剪切波信号对应的传播速度等于所述感兴趣区域内或用于进行频散测量的目标区域内各位置处的剪切波的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。
  23. 根据权利要求1-22中的任一项所述的方法,其特征在于,所述方法中获取所述感兴趣区域的剪切波信息的步骤被执行至少两次,所述至少两次中每次提取的频率成分相同,在所述提取的频率成分中每一个频率成分的剪切波信号对应的传播速度等于所述至少两次中相同频率成分的剪切波信号对应的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。
  24. 一种超声频散测量方法,其特征在于,所述方法还包括:
    获取本次针对目标对象的目标组织进行超声频散测量得到的本次剪切波频散结果;
    获取在本次超声频散测量之前所述目标对象的所述目标组织的历史剪切波频散结果;
    基于所述本次剪切波频散结果和所述历史剪切波频散结果生成统计剪切波频散结果,所述统计剪切波频散结果反映所述目标对象的所述目标组织在不同时期的剪切波频散结果。
  25. 根据权利要求24所述的方法,其特征在于,所述本次剪切波频散结果和所述剪切波频散结果均为频散曲线图,所述频散曲线图反映不同 频率成分的剪切波信号各自对应的传播速度、各自对应的弹性模量或各自对应的传播速度的平方结果。
  26. 根据权利要求24所述的方法,其特征在于,所述本次剪切波频散结果和所述剪切波频散结果均为对至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算的结果。
  27. 根据权利要求26所述的方法,其特征在于,所述对比计算的结果包括:所述至少两个不同频率成分的剪切波信号对应的传播速度的差值、比值或随频率变化的斜率。
  28. 根据权利要求24所述的方法,其特征在于,所述本次剪切波频散结果和所述剪切波频散结果均为至少两个不同频率成分的剪切波信号各自对应的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述目标组织的不同位置处各自对应的传播速度。
  29. 一种超声频散测量装置,其特征在于,所述装置包括超声探头、发射/接收序列控制器、处理器和显示设备,其中:
    所述发射/接收序列控制器用于控制所述超声探头向目标对象发射第一超声波,接收所述第一超声波的回波,并基于所述第一超声波的回波获取第一超声回波信号;
    所述处理器用于基于所述第一超声回波信号生成第一超声图像,并获取所述第一超声图像上的感兴趣区域;
    所述发射/接收序列控制器还用于控制所述超声探头向所述感兴趣区域发射第二超声波,以用于在所述感兴趣区域产生剪切波的传播;
    所述发射/接收序列控制器还用于控制所述超声探头向所述感兴趣区域发射第三超声波,接收所述第三超声波的回波,并基于所述第三超声波的回波获取第三超声回波信号;
    所述处理器还用于基于所述第三超声回波信号获取所述感兴趣区域的剪切波信息,从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果;
    所述显示设备用于显示所述第一超声图像和所述剪切波频散结果。
  30. 一种超声频散测量装置,其特征在于,所述装置包括超声探头、 发射/接收序列控制器、处理器和显示设备,其中:
    所述处理器用于获取目标对象的感兴趣区域,并控制于所述感兴趣区域内产生剪切波的传播;
    所述发射/接收序列控制器用于控制超声探头向所述感兴趣区域发射超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;
    所述处理器还用于基于所述超声回波信号获取所述感兴趣区域的剪切波信息,并从所述剪切波信息中提取至少两个不同频率成分的剪切波信号,并基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果;
    所述显示设备用于显示所述剪切波频散结果。
  31. 根据权利要求29或30所述的装置,其特征在于,所述处理器从所述剪切波信息中提取至少两个不同频率成分的剪切波信号是通过滤波算法来实现的。
  32. 根据权利要求29-31中的任一项所述的装置,其特征在于,所述处理器基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果,包括:
    基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度生成频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的传播速度。
  33. 根据权利要求29-31中的任一项所述的装置,其特征在于,所述处理器基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度计算相应的弹性模量或计算所述各自对应的传播速度的平方结果,并基于所述计算的结果生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的弹性模量或各自对应的传播速度的平方结果。
  34. 根据权利要求32或33所述的装置,其特征在于,所述生成的频散曲线图包括多条频散曲线,所述多条频散曲线对应于不同感兴趣区域的剪切波频散结果、同一感兴趣区域内不同位置的剪切波频散结果或者同一 感兴趣区域在不同时期的剪切波频散结果。
  35. 根据权利要求29-31中的任一项所述的装置,其特征在于,所述处理器基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,并将所述对比计算的结果作为剪切波频散结果来由所述显示设备显示。
  36. 根据权利要求35所述的装置,其特征在于,所述处理器对所述至少两个不同频率成分的剪切波信号对应的传播速度进行对比计算,包括:
    计算所述至少两个不同频率成分的剪切波信号对应的传播速度的差值、比值或随频率变化的斜率。
  37. 根据权利要求29-31中的任一项所述的装置,其特征在于,所述处理器基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度获取剪切波频散结果,包括:
    基于所述至少两个不同频率成分的剪切波信号各自对应的传播速度分别生成不同频率成分的剪切波信号各自的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述感兴趣区域的不同位置处各自对应的传播速度。
  38. 根据权利要求29-37中的任一项所述的装置,其特征在于,所述感兴趣区域为用于进行频散测量的目标区域。
  39. 根据权利要求29-37中的任一项所述的装置,其特征在于,所述感兴趣区域为用于进行弹性测量的区域,所述处理器还用于获取用于进行频散测量的目标区域,并获取所述目标区域的剪切波信息,所述提取至少两个不同频率成分的剪切波信号是从所述目标区域的剪切波信息中提取至少两个不同频率成分的剪切波信号。
  40. 根据权利要求39所述的装置,其特征在于,所述处理器获取用于进行频散测量的目标区域,包括:
    基于所述第一超声图像获取所述用于进行频散测量的目标区域;或者
    基于所述第一超声图像和所述弹性结果获取所述用于进行频散测量的目标区域。
  41. 根据权利要求39或40所述的装置,其特征在于,所述用于进行频散测量的目标区域位于所述感兴趣区域内。
  42. 根据权利要求39所述的装置,其特征在于,所述处理器还用于:
    基于所述感兴趣区域的剪切波信息计算剪切波群速度;
    基于所述剪切波群速度计算所述感兴趣区域的弹性结果,并由所述显示设备显示,所述弹性结果显示为弹性结果空间分布图,所述弹性结果空间分布图反映所述感兴趣区域不同位置处各自对应的弹性结果;或者,基于所述剪切波群速度生成群速度空间分布图,并由所述显示设备显示,所述群速度空间分布图反映所述感兴趣区域不同位置处各自对应的剪切波群速度。
  43. 根据权利要求42所述的装置,其特征在于,所述第一超声图像、所述弹性结果、所述群速度空间分布图以及所述剪切波频散结果中的至少两项显示在同一界面上。
  44. 根据权利要求42或43所述的装置,其特征在于,所述第一超声图像、所述弹性结果以及所述剪切波频散结果显示在同一界面上,其中所述第一超声图像中标记有所述感兴趣区域和所述用于进行频散测量的目标区域。
  45. 根据权利要求29-44中的任一项所述的装置,其特征在于,所述至少两个不同频率成分的剪切波信号中每个频率成分的剪切波信号对应的传播速度等于所述感兴趣区域内或用于进行频散测量的目标区域内各位置处的剪切波的传播速度的以下中的任一项:平均值、中值、标准差、四分位数、最大值或最小值。
  46. 一种超声频散测量装置,其特征在于,所述装置包括存储器和处理器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行如权利要求1-28中的任一项所述的超声频散测量方法。
  47. 一种超声频散测量方法,其特征在于,所述方法包括:
    获取目标对象的感兴趣区域;
    控制于所述感兴趣区域内产生至少两次剪切波的传播,并获取所述感兴趣区域内每次产生的剪切波信息;
    针对每次获取的剪切波信息提取至少一个频率成分的剪切波信号,并且针对各次获取的剪切波信息提取的剪切波信号的频率成分不同;
    基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度获取并显示剪切波频散结果。
  48. 根据权利要求47所述的方法,其特征在于,所述基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的传播速度。
  49. 根据权利要求47所述的方法,其特征在于,所述基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度计算相应的弹性模量或计算所述各自对应的传播速度的平方结果,并基于所述计算的结果生成并显示频散曲线图,所述频散曲线图反映不同频率成分的剪切波信号各自对应的弹性模量或各自对应的传播速度的平方结果。
  50. 根据权利要求47所述的方法,其特征在于,所述基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    对从各次获取的剪切波信息中提取的剪切波信号对应的传播速度进行对比计算,并将所述对比计算的结果作为剪切波频散结果来显示。
  51. 根据权利要求47所述的方法,其特征在于,所述基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度获取并显示剪切波频散结果,包括:
    基于从各次获取的剪切波信息中提取的剪切波信号各自对应的传播速度生成并显示不同频率成分的剪切波信号各自的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述感兴趣区域的不同位置处各自对应的传播速度。
  52. 一种超声弹性成像方法,其特征在于,包括:
    获取目标对象的感兴趣区域;
    控制于所述感兴趣区域内产生剪切波的传播;
    控制超声探头向所述感兴趣区域发射跟踪所述剪切波的超声波,接收所述超声波的回波,并基于所述超声波的回波获取超声回波信号;
    基于所述超声回波信号获取所述感兴趣区域的剪切波信息;以及
    从所述剪切波信息中提取至少一个频率成分的剪切波信号。
  53. 根据权利要求52所述的方法,其特征在于,所述方法还包括:基于所述至少一个不同频率成分的剪切波信号确定与所述频率成分对应的剪切波的传播参数。
  54. 根据权利要求52或53所述的方法,其特征在于,所述方法还包括:基于所述至少一个不同频率成分的剪切波信号确定剪切波的相速度。
  55. 根据权利要求52或53所述的方法,其特征在于,所述提取至少一个频率成分的剪切波信号包括提取至少两个不同频率成分的剪切波信号;所述方法还包括:基于所述至少两个不同频率成分的剪切波信号确定剪切波的相速度,并基于剪切波的相速度确定剪切波频散结果。
  56. 根据权利要求55所述的方法,其特征在于,所述基于剪切波的相速度确定所述剪切波频散结果:
    基于所述剪切波的相速度生成频散曲线图,所述频散曲线图反映不同频率成分对应的剪切波的相速度;
    或者,基于所述剪切波的相速度计算相应的弹性模量或计算所述相速度的平方结果,并基于所述计算的结果生成频散曲线图,所述频散曲线图反映不同频率成分对应的弹性模量或相速度的平方结果;
    或者,对所述剪切波的相速度进行对比计算,并将所述对比计算的结果作为剪切波频散结果;
    或者,基于所述剪切波的相速度生成不同频率成分的剪切波信号各自对应的传播速度空间分布图,每个所述传播速度空间分布图反映一个频率成分的剪切波信号在所述感兴趣区域的不同位置处各自对应的传播速度。
  57. 根据权利要求55所述的方法,其特征在于,所述方法还包括:输出所述至少两个相速度。
  58. 根据权利要求52-57中任一项所述的方法,其特征在于,通过滤波从所述剪切波信息中提取至少一个频率成分的剪切波信号。
  59. 一种存储介质,其特征在于,所述存储介质上存储有计算机程序,所述计算机程序在运行时执行如权利要求1-28以及47-58中的任一项所述的超声频散测量方法。
PCT/CN2020/090343 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质 WO2021212577A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080054692.1A CN114173672A (zh) 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNPCT/CN2020/086774 2020-04-24
PCT/CN2020/086774 WO2021212494A1 (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统

Publications (1)

Publication Number Publication Date
WO2021212577A1 true WO2021212577A1 (zh) 2021-10-28

Family

ID=78270883

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/CN2020/086774 WO2021212494A1 (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统
PCT/CN2020/090343 WO2021212577A1 (zh) 2020-04-24 2020-05-14 超声弹性成像方法、超声频散测量方法、装置和存储介质
PCT/CN2020/090356 WO2021212578A1 (zh) 2020-04-24 2020-05-14 粘弹性测量方法、弹性测量方法和超声测量系统

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086774 WO2021212494A1 (zh) 2020-04-24 2020-04-24 粘弹性测量方法和超声测量系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090356 WO2021212578A1 (zh) 2020-04-24 2020-05-14 粘弹性测量方法、弹性测量方法和超声测量系统

Country Status (2)

Country Link
CN (2) CN114173670A (zh)
WO (3) WO2021212494A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140088421A1 (en) * 2012-09-27 2014-03-27 Mayo Foundation For Medical Education And Research System and method for local estimation of nonlinear tissue elasticity with acoustic radiation force
CN104042237A (zh) * 2013-03-15 2014-09-17 美国西门子医疗解决公司 采用剪切波传播的使用超声的脂肪分数估计
CN106175831A (zh) * 2016-09-28 2016-12-07 重庆理工大学 一种基于剪切波幅度和相位检测的组织粘弹性测量方法
CN107049360A (zh) * 2017-01-26 2017-08-18 清华大学 剪切波弹性成像方法和装置
CN108982674A (zh) * 2017-06-05 2018-12-11 郑翊 使用单个激励脉冲和具有不同宽度和形状的多个激励脉冲测量组织剪切波性质
CN109171814A (zh) * 2018-07-26 2019-01-11 清华大学 血管超声弹性成像的方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277835A1 (en) * 2003-05-30 2005-12-15 Angelsen Bjorn A Ultrasound imaging by nonlinear low frequency manipulation of high frequency scattering and propagation properties
US9237878B2 (en) * 2011-04-22 2016-01-19 Mayo Foundation For Medical Education And Research Generation and assessment of shear waves in elasticity imaging
CN103006274A (zh) * 2012-12-21 2013-04-03 深圳大学 一种超声检测角膜粘弹性的方法和系统
US10512450B2 (en) * 2013-09-24 2019-12-24 Siemens Medical Solutions Usa, Inc. Shear wave estimation from analytic data
JP5730978B2 (ja) * 2013-11-08 2015-06-10 日立アロカメディカル株式会社 超音波診断装置、及び方法
JP6353929B2 (ja) * 2014-12-08 2018-07-04 株式会社日立製作所 超音波診断装置、及び弾性評価方法
US10376242B2 (en) * 2015-04-16 2019-08-13 Siemens Medical Solutions Usa, Inc. Quantitative viscoelastic ultrasound imaging
WO2018023336A1 (zh) * 2016-08-01 2018-02-08 深圳迈瑞生物医疗电子股份有限公司 超声弹性测量显示方法及系统
CN106618635B (zh) * 2017-01-12 2019-11-08 清华大学 剪切波弹性成像方法和装置
CN106840362B (zh) * 2017-03-20 2019-08-23 西安交通大学 基于声辐射力脉冲响应的激光测振监测hifu损伤粘弹性方法
US11154277B2 (en) * 2017-10-31 2021-10-26 Siemens Medical Solutions Usa, Inc. Tissue viscoelastic estimation from shear velocity in ultrasound medical imaging
JP7258916B2 (ja) * 2018-05-03 2023-04-17 コーニンクレッカ フィリップス エヌ ヴェ 組織弾性モニタリング及び表示のためのせん断波振幅再構成
CN110573084B (zh) * 2018-08-29 2022-07-08 深圳迈瑞生物医疗电子股份有限公司 一种超声弹性检测设备及剪切波弹性成像方法、装置
CN109893172B (zh) * 2019-02-22 2020-06-19 清华大学 基于弹性成像的力学参数的确定方法及装置、计算机设备
CN110368030A (zh) * 2019-06-28 2019-10-25 深圳中科乐普医疗技术有限公司 超声弹性成像装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140088421A1 (en) * 2012-09-27 2014-03-27 Mayo Foundation For Medical Education And Research System and method for local estimation of nonlinear tissue elasticity with acoustic radiation force
CN104042237A (zh) * 2013-03-15 2014-09-17 美国西门子医疗解决公司 采用剪切波传播的使用超声的脂肪分数估计
CN106175831A (zh) * 2016-09-28 2016-12-07 重庆理工大学 一种基于剪切波幅度和相位检测的组织粘弹性测量方法
CN107049360A (zh) * 2017-01-26 2017-08-18 清华大学 剪切波弹性成像方法和装置
CN108982674A (zh) * 2017-06-05 2018-12-11 郑翊 使用单个激励脉冲和具有不同宽度和形状的多个激励脉冲测量组织剪切波性质
CN109171814A (zh) * 2018-07-26 2019-01-11 清华大学 血管超声弹性成像的方法及装置

Also Published As

Publication number Publication date
WO2021212578A1 (zh) 2021-10-28
CN114173672A (zh) 2022-03-11
WO2021212494A1 (zh) 2021-10-28
CN114173670A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
JP6734079B2 (ja) 医用診断装置、および医用解析プログラム
JP5100343B2 (ja) 超音波診断装置、及び超音波診断装置の制御プログラム
US10959704B2 (en) Ultrasonic diagnostic apparatus, medical image processing apparatus, and medical image processing method
US20130023767A1 (en) Low-cost, high fidelity ultrasound system
JP6058295B2 (ja) 超音波診断装置、医用画像処理装置、医用画像処理方法、および医用画像処理プログラム
EP2654572B1 (en) Automated doppler velocimetry using a low-cost transducer
US20040249281A1 (en) Method and apparatus for extracting wall function information relative to ultrasound-located landmarks
JPWO2007063619A1 (ja) 超音波診断装置
EP3213108A1 (en) Imaging methods and apparatuses for performing shear wave elastography imaging
JP6222829B2 (ja) 超音波診断装置、画像処理装置及び画像処理方法
EP2790588A1 (en) Automated doppler pulse cycle selection
WO2006043529A1 (ja) 超音波診断装置
JP2016528934A (ja) 超音波を使用するガスポケットを検出するための方法及び装置
US9448100B2 (en) Signal processing apparatus
JP4918369B2 (ja) 超音波診断装置
CN111050660A (zh) 超声波诊断装置及生物体组织的物性评价方法
WO2021212577A1 (zh) 超声弹性成像方法、超声频散测量方法、装置和存储介质
JPWO2019088169A1 (ja) 超音波診断システム及び超音波診断方法
WO2021226955A1 (zh) 瞬时弹性测量方法、声衰减参数测量方法和超声成像系统
JP4679141B2 (ja) 超音波診断装置および超音波診断画像の表示方法
JP5443781B2 (ja) 超音波診断装置
KR100880399B1 (ko) 초음파 영상을 형성하는 초음파 시스템 및 방법
WO2022141631A1 (zh) 粘弹性测量方法和超声成像系统
JP6207956B2 (ja) 超音波診断装置
WO2021217475A1 (zh) 弹性成像方法、系统和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20932010

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20932010

Country of ref document: EP

Kind code of ref document: A1