WO2021125659A1 - 전지 모듈 및 그 제조 방법 - Google Patents
전지 모듈 및 그 제조 방법 Download PDFInfo
- Publication number
- WO2021125659A1 WO2021125659A1 PCT/KR2020/017827 KR2020017827W WO2021125659A1 WO 2021125659 A1 WO2021125659 A1 WO 2021125659A1 KR 2020017827 W KR2020017827 W KR 2020017827W WO 2021125659 A1 WO2021125659 A1 WO 2021125659A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- welding
- module frame
- end plate
- module
- bonding surface
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/21—Bonding by welding
- B23K26/24—Seam welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/082—Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/482—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/204—Racks, modules or packs for multiple batteries or multiple cells
- H01M50/207—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
- H01M50/213—Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/271—Lids or covers for the racks or secondary casings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/218—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
- H01M50/22—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
- H01M50/222—Inorganic material
- H01M50/224—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/271—Lids or covers for the racks or secondary casings
- H01M50/273—Lids or covers for the racks or secondary casings characterised by the material
- H01M50/276—Inorganic material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery module and a method for manufacturing the same, and more particularly, to a battery module for improving bonding strength by welding and a method for manufacturing the same.
- Secondary batteries that are easy to apply according to product groups and have electrical characteristics such as high energy density are universally applied to electric vehicles or hybrid vehicles driven by an electric drive source, as well as portable devices, and power storage devices. These secondary batteries are attracting attention as a new energy source for improving eco-friendliness and energy efficiency in that not only the primary advantage of being able to dramatically reduce the use of fossil fuels but also the fact that no by-products are generated from the use of energy.
- the mid-to-large-sized battery module be manufactured as small as possible in size and weight, a prismatic battery, a pouch-type battery, etc. that can be stacked with a high degree of integration and have a small weight to capacity are mainly used as battery cells of the mid- to large-sized battery module.
- the battery module in order to protect the battery cell stack from external shock, heat, or vibration, the front and rear are opened to cover the module frame and the front and rear of the module frame for accommodating the battery cell stack in the internal space It may include an end plate.
- FIG. 1 is a perspective view showing a conventional battery module.
- FIG. 2 is an exploded perspective view of the battery module of FIG. 1 .
- Figure 3 is a schematic diagram showing the coupling by welding of the module frame and the end plate in the battery module of Figure 1;
- the battery module 10 includes a cell stack (not shown) including one or more battery cells, a front 23 and a rear 24 that accommodate the cell stack and face each other. ) includes an open module frame 20 and an end plate 30 covering the front 23 and rear 24 of the module frame 20, respectively.
- the module frame 20 may have a rectangular metal plate shape in which the front 23 and the rear 24 are open, and the four sides 21 and the rear 24 constituting the front 23 are It includes four sides 22 constituting the .
- a blow hole phenomenon may occur in which the compression pores remaining in the metal of the module frame 20 or the end plate 30 burst to the outside during the welding process. Therefore, it becomes a cause to reduce welding reliability.
- the surface reflectance of the material constituting the module frame 20 and the end plate 30 is high and the bonding strength is weakened.
- An object of the present invention is to provide a battery module and a method of manufacturing the same for improving bonding strength by welding.
- a coupling structure includes a first member and a second member adjacent to each other, wherein the first member and the second member are welded to each other, and the first member and the second member are welded together. includes a first welding part formed on the first member and a second welding part formed on the second member based on a coupling surface of the first member and the second member, wherein the first welding part and the second member 2 Welds have shapes that are asymmetric to each other.
- a curve of the vertical cross-section of the second weld portion may include an inflection point.
- the first member may be an extruded part or a plate part
- the second member may be a die-casting part
- the asymmetric shape of the first welding part and the second welding part may be defined based on a plane perpendicular to a welding progress direction.
- the first member and the second member may have different physical properties.
- a battery module includes a battery cell stack including a plurality of battery cells, a module frame accommodating the plurality of battery cell stacks, one side facing each other and the other side open to each other, and and an end plate welded to the module frame at one side and the other side of the module frame, and a welding part between the module frame and the end plate is attached to the module frame based on a coupling surface of the module frame and the end plate.
- a curve of the vertical cross-section of the second weld portion may include an inflection point.
- the module frame may be an extruded part or a plate part, and the end plate may be a die-casting part.
- the asymmetric shape of the first welding part and the second welding part may be defined based on a plane perpendicular to a welding progress direction.
- the module frame includes a first bonding surface formed in a portion coupled to the end plate, the end plate includes a second bonding surface formed in a portion coupled to the module frame and corresponding to the first bonding surface, , A depression may be formed in at least one of the first bonding surface and the second bonding surface.
- the recessed part may be recessed in a direction perpendicular to the first bonding surface or the second bonding surface.
- the recessed portion may be spaced apart from an edge of the first bonding surface or an edge of the second bonding surface.
- the end plate may further include a protrusion positioned at a center of the end plate rather than the second bonding surface and extending in the module frame direction.
- a method of manufacturing a battery module includes the steps of mounting a battery cell stack including a plurality of battery cells to a module frame having one side facing each other and the other side open to the module frame, and and coupling the end plate to the module frame from one side and the other side, and the step of coupling the module frame and the end plate to the module frame using a Snowman wobble pattern welding method.
- the figure 8 wobble pattern welding method may include a double wobble pattern, and a welding energy density applied to the module frame may be greater than a welding energy density applied to the end plate.
- the welding beam of the double wobble pattern applied to the module frame may have a circular shape, and the welding beam of the double wobble pattern applied to the end plate may have an elliptical shape.
- a battery pack according to another embodiment of the present invention includes the battery module described above.
- bonding strength may be improved by using a welding method having a double wobble pattern.
- FIG. 1 is a perspective view showing a conventional battery module.
- FIG. 2 is an exploded perspective view of the battery module of FIG. 1 .
- FIG. 3 is a schematic diagram showing the coupling by welding of the module frame and the end plate in the battery module of Figure 1;
- FIG. 4 is a perspective view showing a battery module having a module frame according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating a wobble pattern applied to a welding method according to a comparative example.
- FIG. 6 is a view showing a molten pool behavior when the battery module shown in FIG. 3 is manufactured by the welding method having the wobble pattern of FIG. 5 .
- FIG. 7 is a diagram illustrating a wobble pattern applied to a welding method according to an embodiment of the present invention.
- FIG. 8 is a view showing a method of manufacturing the battery module shown in FIG. 4 by the welding method having the wobble pattern of FIG. 7 .
- FIG. 9 is a view showing a molten pool behavior when the battery module of FIG. 8 is manufactured by the welding method having the wobble pattern of FIG. 8 .
- FIG. 10 is a partial perspective view showing a battery module according to another embodiment of the present invention.
- FIG. 11 is a partial perspective view illustrating a battery module according to another embodiment of the present invention.
- a part of a layer, film, region, plate, etc. when a part of a layer, film, region, plate, etc. is said to be “on” or “on” another part, it includes not only cases where it is “directly on” another part, but also cases where another part is in between. . Conversely, when we say that a part is “just above” another part, we mean that there is no other part in the middle.
- the reference portion means to be located above or below the reference portion, and to necessarily mean to be located “on” or “on” in the direction opposite to gravity no.
- planar it means when the target part is viewed from above, and "in cross-section” means when viewed from the side when a cross-section of the target part is vertically cut.
- FIG. 4 is a perspective view showing a battery module having a module frame according to an embodiment of the present invention.
- the battery module is coupled with the module frame 500 at one side and the other side of the module frame 500 and the module frame 500 in which one side and the other side facing each other in one direction are open. and an end plate 150 being
- the module frame 500 covers the battery cell stack formed by stacking a plurality of battery cells except for both sides open in the y-axis direction.
- the module frame 500 may include a U-shaped frame 300 and an upper plate 400 covering an open upper portion of the U-shaped frame 300 .
- the end plate 150 may include a front plate 150a covering one side of the module frame 500 and a rear plate 150b covering the other side of the module frame 500 .
- the open side of the module frame 500 in a state in which the battery cell stack is mounted inside the module frame 500 , after aligning the module frame 500 and the end plate 150 , the open side of the module frame 500 . And the front plate 150a and the rear plate 150b may be welded to a corner portion defining the other side. As shown in FIG. 4 , there may be a total of 10 coupling portions CP by welding.
- the coupling part CP which is welded between the module frame 500 and the end plate 150 having different physical properties among the coupling parts CP, uses a Snowman wobble pattern welding method.
- physical properties may refer to electrical, magnetic, optical, mechanical, or thermal properties of a material.
- having different physical properties may include a case where there is a difference in surface reflectance.
- FIG. 5 is a diagram illustrating a wobble pattern applied to a welding method according to a comparative example.
- FIG. 6 is a view showing the behavior of a molten pool when the battery module shown in FIG. 3 is manufactured by the welding method having the wobble pattern of FIG. 5 .
- the laser wobble pattern according to the comparative example simply has a pattern in which one circle is repeated.
- the wobble variable of the circular pattern can be adjusted by the radius (R) value, and the circular pattern can be formed based on one axis along the welding progress direction.
- the molten pool according to the comparative example may have a substantially symmetrical cross-sectional structure.
- a material having a high reflectance surface as shown in FIG. 3 is welded by a welding method having a laser wobble pattern according to a comparative example, welding may not be good or the bonding level by welding may be reduced.
- the module frame 20 according to the comparative example may be formed of a material having a high surface reflectance, such as an aluminum plate or an extruded material.
- the end plate 30 welded to the module frame 20 may be a cast material, and due to hydrogen remaining therein during welding of the cast material, a blow hole or burn through and spatter may occur in the weld bead. ) can occur in large numbers.
- the penetration depth H1 in the end plate 30 to which the welding method according to the comparative example is applied is large, so the compression pores and blowholes remaining in the metal of the module frame 20 or the end plate 30 are (Blow hole) can easily occur.
- FIG. 7 is a diagram illustrating a wobble pattern applied to a welding method according to an embodiment of the present invention.
- FIG. 8 is a view showing a method of manufacturing the battery module shown in FIG. 4 by the welding method having the wobble pattern of FIG. 7 .
- FIG. 9 is a view showing a molten pool behavior when the battery module of FIG. 8 is manufactured by the welding method having the wobble pattern of FIG. 8 .
- the wobble pattern applied to the welding method according to the present embodiment includes a Snowman wobble pattern.
- the figure-eight wobble pattern forms a pattern while drawing eight characters in the order of numbers 1 to 9 shown in FIG. 7, and the figure-eight pattern is repeated to form a keyhole.
- the two prototypes have wobble parameters of R 1 and R 2 respectively, and by adjusting these wobble parameters, the energy density of components with different properties can be applied differently.
- the wobble variable R 1 has R 1a and R 1b
- the figure-eight wobble pattern may have an ellipse as well as a circle
- the wobble variable R 2 also has R 2a and R 2b and thus has a figure-eight shape.
- the wobble pattern can be an ellipse as well as a circle.
- a battery cell stack including a plurality of battery cells is provided with a module frame (one side facing each other and the other side open) ( 500 ), and coupling the end plate 150 to the module frame 500 at one side and the other side of the module frame 500 .
- the step of coupling the module frame 500 and the end plate 150 uses a figure 8 wobble pattern welding method.
- the figure 8 wobble pattern may include a double wobble pattern designed so that the welding energy density applied to the upper plate 400 included in the module frame 500 is greater than the welding energy density applied to the end plate 150 . .
- the welding beam of the double wobble pattern applied to the module frame 500 may be circular, and the welding beam of the double wobble pattern applied to the end plate 150 may be elliptical.
- the wobble variables R 1a and R 1b are the same, and in the welding beam of the double wobble pattern applied to the end plate 150, the wobble variables R 2a and R 2b may be different from each other, and at least one of R 2a and R 2b may have a greater value than R 1a or R 1b.
- the shape of the welding beam is controlled differently to form a double wobble pattern capable of differentiating the energy density applied to two components having materials having different properties to be welded together.
- weak welding due to suppression of laser beam reflection can be prevented.
- a molten pool having a shallow penetration depth (H2) and a large area can be formed as shown in FIG. 9 . have. Accordingly, it is possible to facilitate the escape of pores and suppress blowholes by not eluting hydrogen from a deep part of the molten pool.
- the double wobble pattern according to this embodiment is a form in which weaving is added, the ability to respond to a gap or mis-alignment between components joined by welding is also excellent compared to the comparative example. .
- the energy density is controlled by the shape and area of the wobble pattern by adjusting the wobble parameter.
- the energy density may be controlled by simultaneously controlling the shape and area of the wobble pattern and the moving speed of the welding beam.
- the first welding part WP1 and the second welding part WP2 have asymmetric shapes.
- the asymmetric shape of the first welding part WP1 and the second welding part WP2 may be defined based on a plane perpendicular to the x-axis direction, which is the welding progress direction.
- the curve of the vertical cross-section of the second welding portion WP2 may include an inflection point.
- the vertical cross section of the second weld portion WP2 is a vertical cross section parallel to the yz plane of the molten pool as shown in FIG. 9 .
- the same problem may occur even in the case of a mono frame in which only one side and the other side in the y-axis direction of FIG. 4 are opened and four sides are integrally connected.
- a total of eight welding joints may be formed in the U-shaped module frame except for two joint portions between the U-shaped frame and the upper plate.
- FIG. 10 is a partial perspective view showing a battery module according to another embodiment of the present invention.
- the upper plate 400 included in the module frame is a first bonding surface 430 formed in the corner portions 411 defining one open side and the other side of the module frame 500 of FIG. 4 , respectively.
- the end plate 150 includes a second bonding surface 330 for bonding to the first bonding surface (430).
- the module frame 500 and the end plate 150 include metals having different physical properties, and for bonding the module frame 500 and the end plate 150 formed of metal, the first bonding surface 430 and the second The joint surfaces 330 may be welded to each other.
- the depression 340 may be formed in the second bonding surface 330 .
- the depression 340 may be formed in a structure that is depressed in a direction perpendicular to the second bonding surface 330 and extends along the x-axis direction of FIG. 4 . That is, the depression 340 may provide a passage through which the gas moves between the first bonding surface 430 and the second bonding surface 330 .
- a die-casting method may be used to manufacture the end plate 150 , and compression pores may be formed in the end plate 150 in the process.
- compression pores may be formed in the end plate 150 in the process.
- a blow hole phenomenon in which compressed pores burst outward of the battery module may occur while welding is in progress, thereby reducing welding reliability.
- the depression 340 since the depression 340 has a structure extending along the x-axis direction, it is possible to induce the compressed pores inside the metal to move along the x-axis direction.
- the recessed portion 340 is preferably formed to be spaced apart from the edge sides of the second bonding surface 330 . Among them, it is preferable to be spaced apart from the upper side of the sides of the second bonding surface 330 , that is, the side exposed to the outside of the battery module. Otherwise, since the recessed part 340 is adjacent to the outside of the battery module, it is impossible to prevent the gas moving in the space inside the recessed part 340 from bursting out.
- the end plate 150 may further include a protrusion 350 protruding toward the module frame 500 .
- the protrusion 350 may have a shape extending along a direction parallel to sides of the end plate 150 . That is, the first joint surface 430 and the second joint surface 330 may be formed in a continuous shape along the region where the welding connection is made.
- the module frame 500 When the module frame 500 is coupled with the end plate 150 , since the protrusion 350 is inserted into the open front of the module frame 500 , the module frame 500 and the end plate 150 are fastened without misalignment. can be In addition, since welding can be performed in a state in which the first bonding surface 430 and the second bonding surface 330 are in contact with each other by the protrusion 350 , the welding can be performed more easily. In addition, it is possible to prevent distortion in the welding part by the heat generated inside the module frame 500, and even if a slight distortion occurs, the twisted or protruding place in the welding part is the module frame 500 It is possible to prevent the internal battery cells or devices from being affected.
- FIG. 11 is a partial perspective view illustrating a battery module according to another embodiment of the present invention.
- the embodiment of FIG. 11 is mostly the same as the contents of the embodiment described with reference to FIG. 10 , but only the parts with differences will be described below.
- a depression 440 may be formed in the first bonding surface 430 .
- the recessed part 440 may be recessed in a direction perpendicular to the first bonding surface 430 , and may have a structure extending along the x-axis direction of FIG. 4 .
- the recessed portion 440 in the present embodiment may also provide a passage through which the gas moves between the first bonding surface 430 and the second bonding surface 330 .
- the figure 8 wobble pattern welding method has been applied to the coupling of the module frame and the end plate constituting the battery module, but the present invention is not limited thereto and may be applied to welding and bonding of components having different physical properties.
- the above-described figure 8 wobble pattern welding method may be applied to weld the first member and the second member.
- the welding portion of the first member and the second member includes a first welding portion formed in the first member and a second welding portion formed in the second member based on the coupling surface of the first member and the second member.
- first welding part and the second welding part have asymmetric shapes to each other, and the asymmetric shape of the first welding part and the second welding part may be defined based on a plane perpendicular to the welding progress direction.
- the curve of the vertical cross-section of the second weld portion may include an inflection point.
- the coupling structure according to another embodiment of the present invention includes a first member and a second member having the same physical properties, and the above-described figure 8 wobble pattern welding method is applied to weld the first member and the second member. can do.
- the thickness of the first member and the second member may be different from each other.
- welding may be performed by controlling the penetration depth and the bead width according to the thickness.
- one or more battery modules according to an embodiment of the present invention may be packaged in a pack case to form a battery pack.
- the above-described battery module and battery pack including the same may be applied to various devices.
- a device may be applied to transportation means such as an electric bicycle, an electric vehicle, and a hybrid vehicle, but the present invention is not limited thereto and is applicable to various devices that can use a battery module and a battery pack including the same, and this It belongs to the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Mounting, Suspending (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Laser Beam Processing (AREA)
Abstract
본 발명의 일 실시예에 따른 결합 구조체는 서로 이웃하는 제1 부재 및 제2 부재를 포함하고, 상기 제1 부재와 상기 제2 부재는 용접 결합되며, 상기 제1 부재와 상기 제2 부재의 용접부는, 상기 제1 부재와 상기 제2 부재의 결합면을 기준으로 상기 제1 부재에 형성되는 제1 용접부, 및 상기 제2 부재에 형성되는 제2 용접부를 포함하며, 상기 제1 용접부와 상기 제2 용접부는 서로 비대칭인 모양을 갖는다.
Description
관련 출원(들)과의 상호 인용
본 출원은 2019년 12월 19일자 한국 특허 출원 제10-2019-0170941호 및 2020년 12월 7일자 한국 특허 출원 제10-2020-0169335호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 전지 모듈 및 그 제조 방법에 관한 것으로서, 보다 구체적으로 용접에 의한 결합 강도를 향상시키는 전지 모듈 및 그 제조 방법에 관한 것이다.
제품군에 따른 적용 용이성이 높고, 높은 에너지 밀도 등의 전기적 특성을 가지는 이차 전지는 휴대용 기기뿐만 아니라 전기적 구동원에 의해 구동하는 전기 자동차 또는 하이브리드 자동차, 전력 저장 장치 등에 보편적으로 응용되고 있다. 이러한 이차 전지는 화석 연료의 사용을 획기적으로 감소시킬 수 있다는 일차적인 장점뿐만 아니라 에너지의 사용에 따른 부산물이 전혀 발생되지 않는다는 점에서 친환경 및 에너지 효율성 제고를 위한 새로운 에너지원으로 주목 받고 있다.
소형 모바일 기기들에는 디바이스 1대당 하나 또는 두서너 개의 전지 셀들이 사용됨에 반해, 자동차 등과 같이 중대형 디바이스들에는 고출력 대용량이 필요하다. 따라서, 다수의 전지 셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
중대형 전지 모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 적층될 수 있고 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지 모듈의 전지 셀로서 주로 사용되고 있다. 한편, 전지 모듈은, 전지 셀 적층체를 외부 충격, 열 또는 진동으로부터 보호하기 위해, 전면과 후면이 개방되어 전지 셀 적층체를 내부 공간에 수납하는 모듈 프레임 및 상기 모듈 프레임의 전면과 후면을 덮는 엔드 플레이트를 포함할 수 있다.
금속으로 이루어진 상기 모듈 프레임과 상기 엔드 플레이트 간의 접합을 위해 용접 공정을 수행할 수 있다. 도 1은 종래의 전지 모듈을 나타내는 사시도이다. 도 2는 도 1의 전지 모듈을 분해한 사시도이다. 도 3은 도 1의 전지 모듈에서 모듈 프레임과 엔드 플레이트의 용접에 의한 결합을 나타내는 개략도이다.
도 1 및 도 2를 참고하면, 전지 모듈(10)은, 하나 이상의 전지 셀을 포함하는 셀 적층체(도시하지 않음), 상기 셀 적층체를 수납하고 서로 마주 보는 전면(23)과 후면(24)이 개방된 모듈 프레임(20) 및 모듈 프레임(20)의 전면(23)과 후면(24)을 각각 덮는 엔드 플레이트(30)를 포함한다.
보다 구체적으로, 모듈 프레임(20)은, 전면(23)과 후면(24)이 개방된 사각형의 금속 판재 형상일 수 있으며, 전면(23)을 구성하는 4개의 변들(21)과 후면(24)을 구성하는 4개의 변들(22)을 포함한다.
다만, 도 3에서 표시한 영역을 참고하면, 용접 과정에서 모듈 프레임(20)이나 엔드 플레이트(30)의 금속 내부에 잔존해 있는 압축 기공이 외부로 터져 나오는 블로우 홀(Blow hole) 현상이 발생할 수 있어, 용접 신뢰성을 저하하는 원인이 된다. 뿐만 아니라, 모듈 프레임(20)과 엔드 플레이트(30)를 구성하는 재료의 표면 반사율이 높아 결합 강도가 약해지는 문제가 있다.
본 발명이 해결하고자 하는 과제는, 용접에 의한 결합 강도를 향상시키는 전지 모듈 및 그 제조 방법을 제공하기 위한 것이다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 결합 구조체는 서로 이웃하는 제1 부재 및 제2 부재를 포함하고, 상기 제1 부재와 상기 제2 부재는 용접 결합되며, 상기 제1 부재와 상기 제2 부재의 용접부는, 상기 제1 부재와 상기 제2 부재의 결합면을 기준으로 상기 제1 부재에 형성되는 제1 용접부, 및 상기 제2 부재에 형성되는 제2 용접부를 포함하며, 상기 제1 용접부와 상기 제2 용접부는 서로 비대칭인 모양을 갖는다.
상기 제2 용접부의 수직 단면이 갖는 곡선은 변곡점을 포함할 수 있다.
상기 제1 부재는 압출재 부품 또는 판재 부품이고, 상기 제2 부재는 주조재(Die-casting) 부품일 수 있다.
상기 제1 용접부와 상기 제2 용접부의 비대칭 모양은 용접 진행 방향에 수직한 면을 기준으로 정의될 수 있다.
상기 제1 부재와 상기 제2 부재는 서로 다른 물성을 가질 수 있다.
본 발명의 다른 일 실시예에 따른 전지 모듈은 복수의 전지 셀을 포함하는 전지 셀 적층체, 상기 복수의 전지 셀 적층체를 수용하며, 서로 마주하는 일측과 다른 일측이 개방되어 있는 모듈 프레임, 및 상기 모듈 프레임의 일측 및 다른 일측에서 상기 모듈 프레임과 용접 결합되는 엔드 플레이트를 포함하고, 상기 모듈 프레임과 상기 엔드 플레이트의 용접부는, 상기 모듈 프레임과 상기 엔드 플레이트의 결합면을 기준으로 상기 모듈 프레임에 형성되는 제1 용접부, 및 상기 엔드 플레이트에 형성되는 제2 용접부를 포함하며, 상기 제1 용접부와 상기 제2 용접부는 서로 비대칭인 모양을 갖는다
상기 제2 용접부의 수직 단면이 갖는 곡선은 변곡점을 포함할 수 있다.
상기 모듈 프레임은 압출재 부품 또는 판재 부품이고, 상기 엔드 플레이트는 주조재(Die-casting) 부품일 수 있다.
상기 제1 용접부와 상기 제2 용접부의 비대칭 모양은 용접 진행 방향에 수직한 면을 기준으로 정의될 수 있다.
상기 모듈 프레임은, 상기 엔드 플레이트와 결합되는 부분에 형성된 제1 접합면을 포함하고, 상기 엔드 플레이트는 상기 제1 접합면에 대응하며 상기 모듈 프레임과 결합되는 부분에 형성된 제2 접합면을 포함하며, 상기 제1 접합면과 상기 제2 접합면 중 적어도 하나에 함몰부가 형성될 수 있다.
상기 함몰부는, 상기 제1 접합면 또는 상기 제2 접합면과 수직한 방향으로 함몰될 수 있다.
상기 함몰부는 상기 제1 접합면의 테두리 또는 상기 제2 접합면의 테두리로부터 이격될 수 있다.
상기 엔드 플레이트는, 상기 제2 접합면보다 상기 엔드 플레이트의 중앙에 위치하고, 상기 모듈 프레임 방향으로 뻗어 있는 돌출부를 더 포함할 수 있다.
본 발명의 또 다른 일 실시예에 따른 전지 모듈 제조 방법은 복수의 전지 셀을 포함하는 전지 셀 적층체를 서로 마주하는 일측과 다른 일측이 개방되어 있는 모듈 프레임에 장착하는 단계, 및 상기 모듈 프레임의 일측 및 다른 일측에서 상기 모듈 프레임에 엔드 플레이트를 결합하는 단계를 포함하고, 상기 모듈 프레임과 상기 엔드 플레이트를 결합하는 단계는, 8자형 워블 패턴(Snowman wobble pattern) 용접 방법을 사용한다.
상기 8자형 워블 패턴 용접 방법은, 이중 워블 패턴을 포함하고, 상기 모듈 프레임에 가해지는 용접 에너지 밀도가 상기 엔드 플레이트에 가해지는 용접 에너지 밀도보다 클 수 있다.
상기 모듈 프레임에 가해지는 상기 이중 워블 패턴의 용접 빔은 원형이고, 상기 엔드 플레이트에 가해지는 상기 이중 워블 패턴의 용접 빔은 타원형일 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩은 상기에서 설명한 전지 모듈을 포함한다.
실시예들에 따르면, 용접에 의해 결합되는 구성품이 서로 다른 재질로 형성되어 있는 경우에, 이중 워블 패턴(double wobble pattern)을 갖는 용접 방법을 사용하여 결합 강도를 향상시킬 수 있다.
도 1은 종래의 전지 모듈을 나타내는 사시도이다.
도 2는 도 1의 전지 모듈을 분해한 사시도이다.
도 3은 도 1의 전지 모듈에서 모듈 프레임과 엔드 플레이트의 용접에 의한 결합을 나타내는 개략도이다.
도 4는 본 발명의 일 실시예에 따른 모듈 프레임을 갖는 전지 모듈을 나타내는 사시도이다.
도 5는 비교예에 따른 용접 방법에 적용되는 워블 패턴을 도시한 도면이다.
도 6은 도 5의 워블 패턴을 갖는 용접 방법으로 도 3에 도시한 전지 모듈을 제조할 때의 용융 풀 거동을 나타내는 도면이다.
도 7은 본 발명의 일 실시예에 따른 용접 방법에 적용되는 워블 패턴을 도시한 도면이다.
도 8은 도 7의 워블 패턴을 갖는 용접 방법으로 도 4에 도시한 전지 모듈을 제조하는 방법을 나타내는 도면이다.
도 9는 도 8의 워블 패턴을 갖는 용접 방법으로 도 8의 전지 모듈을 제조할 때의 용융 풀 거동을 나타내는 도면이다.
도 10은 본 발명의 다른 일 실시예에 따른 전지 모듈을 나타내는 부분 사시도이다.
도 11은 본 발명의 또 다른 일 실시예에 따른 전지 모듈을 나타내는 부분 사시도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 "상에" 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 "상에" 있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 "위에" 또는 "상에" 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
도 4는 본 발명의 일 실시예에 따른 모듈 프레임을 갖는 전지 모듈을 나타내는 사시도이다.
도 4를 참고하면, 본 실시예에 따른 전지 모듈은 일방향으로 서로 마주하는 일측과 다른 일측이 개방된 모듈 프레임(500) 및 모듈 프레임(500)의 일측 및 다른 일측에서 모듈 프레임(500)과 결합되는 엔드 플레이트(150)를 포함한다. 모듈 프레임(500)은 y축 방향으로 개방된 양측을 제외하고 복수의 전지 셀이 적층되어 형성된 전지 셀 적층체를 덮고 있다.
본 실시예에 따른 모듈 프레임(500)은 U자형 프레임(300)과 U자형 프레임(300)의 개방된 상부를 덮는 상부 플레이트(400)를 포함할 수 있다. 엔드 플레이트(150)는 모듈 프레임(500)의 일측을 덮는 전면 플레이트(150a)와 모듈 프레임(500)의 다른 일측을 덮는 후면 플레이트(150b)를 포함할 수 있다.
이러한 전지 모듈을 형성하기 위해, 상기 전지 셀 적층체가 모듈 프레임(500) 내부에 장착된 상태에서, 모듈 프레임(500)과 엔드 플레이트(150)를 정렬한 후, 모듈 프레임(500)의 개방된 일측 및 다른 일측을 정의하는 모서리 부분에 전면 플레이트(150a)와 후면 플레이트(150b)를 용접 결합할 수 있다. 도 4에 도시한 바와 같이, 용접에 의한 결합부(CP)는 총 10군데일 수 있다. 본 실시예에 따르면, 결합부(CP) 중에서 서로 다른 물성을 갖는 모듈 프레임(500)과 엔드 플레이트(150)가 용접하는 결합부(CP)는 8자형 워블 패턴(Snowman wobble pattern) 용접 방법을 사용하여 형성될 수 있다. 이때, 물성은 물질이 가지고 있는 전기적, 자기적, 광학적, 역학적, 또는 열적 성질 따위를 통틀어 가리킬 수 있다. 예를 들어 서로 다른 물성을 갖는 것은 표면 반사율에 차이가 있는 경우를 포함할 수 있다.
이하에서는 비교예와 실시예를 대비함으로써, 본 발명에서 설명하는 8자형 워블 패턴 용접 방법에 대해 상세히 설명하기로 한다.
도 5는 비교예에 따른 용접 방법에 적용되는 워블 패턴을 도시한 도면이다. 도 6은 도 5의 워블 패턴을 갖는 용접 방법으로 도 3에 도시한 전지 모듈을 제조할 때의 용융 풀(molten pool) 거동을 나타내는 도면이다.
도 5 및 도 6을 참고하면, 비교예에 따른 레이저 워블 패턴은 단순히 1개의 원형이 반복되는 패턴을 갖는다. 원형 패턴의 워블 변수는 반지름(R) 값으로 조정할 수 있고, 원형 패턴은 용접 진행 방향을 따라 한 개의 축을 기준으로 원형 패턴이 형성될 수 있다. 비교예에 따른 용융 풀은 실질적으로 대칭인 단면 구조를 가질 수 있다. 비교예에 따른 레이저 워블 패턴을 갖는 용접 방법으로 도 3과 같이 반사율이 높은 표면을 갖는 재료를 용접하는 경우, 용접이 잘 되지 않거나 용접에 의한 결합 수준이 떨어질 수 있다. 도 3 및 도 6을 참고하면, 비교예에 따른 모듈 프레임(20)은 알루미늄 판재 또는 압출재와 같이 표면 반사율이 높은 재료로 형성될 수 있다. 또, 모듈 프레임(20)과 용접 결합하는 엔드 플레이트(30)는 주조재일 수 있는데, 주조재의 용접시 내부에 잔류하는 수소 등으로 인해 용접 비드에 블로우 홀이나 용락(burn through) 및 스패터(spatter)가 다량 발생할 수 있다. 비교예에 따른 용접 방법이 적용되는 엔드 플레이트(30)에서의 용입 깊이(H1)이 커서, 모듈 프레임(20)이나 엔드 플레이트(30)의 금속 내부에 잔존해 있는 압축 기공(pore) 및 블로우 홀(Blow hole)이 쉽게 발생할 수 있다.
도 7은 본 발명의 일 실시예에 따른 용접 방법에 적용되는 워블 패턴을 도시한 도면이다. 도 8은 도 7의 워블 패턴을 갖는 용접 방법으로 도 4에 도시한 전지 모듈을 제조하는 방법을 나타내는 도면이다. 도 9는 도 8의 워블 패턴을 갖는 용접 방법으로 도 8의 전지 모듈을 제조할 때의 용융 풀 거동을 나타내는 도면이다.
도 7을 참고하면, 본 실시예에 따른 용접 방법에 적용되는 워블 패턴은 8자형 워블 패턴(Snowman wobble pattern)을 포함한다. 8자형 워블 패턴은 도 7에 도시한 1번부터 9번까지의 순서로 8자를 그리면서 패턴을 형성해 나가며 8자형 패턴이 반복되다가 키홀(keyhole)을 형성한다. 8자형은 2개의 원형이 각각 R
1과 R
2의 워블 변수를 갖고, 이러한 워블 변수를 조절하여 물성이 서로 다른 구성품의 에너지 밀도를 다르게 적용할 수 있다. 좀 더 상세하게는, 상기 워블 변수 R
1은 R
1a와 R
1b를 가짐으로써 8자형 워블 패턴은 원형뿐만 아니라 타원을 가질 수 있고, 상기 워블 변수 R
2 역시 R
2a와 R
2b를 가짐으로써 8자형 워블 패턴은 원형뿐만 아니라 타원이 될 수 있다.
이하에서는 본 실시예에 따른 용접 방법을 적용하여 전지 모듈을 제조하는 방법에 대해 설명하기로 한다.
도 4, 도 7 및 도 8을 참고하면, 본 실시예에 따른 전지 모듈 제조 방법은, 복수의 전지 셀을 포함하는 전지 셀 적층체를, 서로 마주하는 일측과 다른 일측이 개방되어 있는 모듈 프레임(500)에 장착하는 단계, 및 모듈 프레임(500)의 일측 및 다른 일측에서 모듈 프레임(500)에 엔드 플레이트(150)를 결합하는 단계를 포함한다. 이때, 모듈 프레임(500)과 엔드 플레이트(150)를 결합하는 단계는, 8자형 워블 패턴(Snowman wobble pattern) 용접 방법을 사용한다. 8자형 워블 패턴은, 모듈 프레임(500)에 포함된 상부 플레이트(400)에 가해지는 용접 에너지 밀도가 엔드 플레이트(150)에 가해지는 용접 에너지 밀도보다 크도록 설계하는 이중 워블 패턴을 포함할 수 있다.
본 실시예에 따르면, 모듈 프레임(500)에 가해지는 이중 워블 패턴의 용접 빔은 원형이고, 엔드 플레이트(150)에 가해지는 이중 워블 패턴의 용접 빔은 타원형일 수 있다. 구체적으로, 모듈 프레임(500)에 가해지는 이중 워블 패턴의 용접 빔에서 워블 변수 R
1a와 R
1b가 서로 동일하고, 엔드 플레이트(150)에 가해지는 이중 워블 패턴의 용접 빔에서 워블 변수 R
2a와 R
2b는 서로 다르며, R
2a와 R
2b중 적어도 하나는 R
1a 또는 R
1b보다 큰 값을 가질 수 있다. 이와 같이 용접 빔의 모양을 서로 다르게 조절하여 용접 결합하는 물성이 다른 재료를 갖는 두 구성품에 적용되는 에너지 밀도를 다르게 할 수 있는 이중 워블 패턴을 형성한다. 특히, 반사율이 높은 모듈 프레임(500)에 포함된 상부 플레이트(400) 표면에 가해지는 용접 빔의 워블 변수를 작게 하여 에너지 밀도를 높임으로써, 레이저 빔 반사 억제에 따른 약용접을 방지할 수 있다.
이에 반해, 주조재인 엔드 플레이트(150) 표면에 가해지는 용접 빔의 워블 변수를 크게 하여 에너지 밀도를 낮춤으로써, 도 9에 도시한 것처럼 용입 깊이(H2)가 얕고 면적이 넓은 용융 풀을 형성할 수 있다. 이에 따라, 기공의 탈출을 쉽게 하고, 용융 풀의 깊은 부분에서 수소를 용출시키지 않아 블로우 홀을 억제할 수 있다. 또한, 본 실시예에 따른 이중 워블 패턴은 위빙(weaving)이 추가된 형태이므로, 용접에 의해 결합되는 구성품 사이의 갭(gap)이나 오정렬(mis-alignment)에 대한 대응력도 비교예 대비하여 우수하다.
이상에서는 워블 변수를 조절하여 워블 패턴의 모양 및 면적으로 에너지 밀도를 조절하는 것으로 설명하였으나, 이뿐만 아니라 용접 빔의 이동 속도를 조절함으로써 에너지 밀도 조절도 가능하다. 뿐만 아니라, 워블 패턴의 모양 및 면적과 용접 빔의 이동 속도를 동시에 조절함으로써 에너지 밀도를 조절할 수도 있다.
이하에서는 앞에서 설명한 본 실시예에 따른 8자형 워블 패턴 용접 방법이 적용되어 형성된 전지 모듈에 대해 추가 설명하기로 한다.
도 4, 도 8 및 도 9를 참고하면, 모듈 프레임(500)과 엔드 플레이트(150)의 용접부(WP)는, 모듈 프레임(500)과 엔드 플레이트(150)의 결합면을 기준으로 모듈 프레임(500)에 형성되는 제1 용접부(WP1), 및 엔드 플레이트(150)에 형성되는 제2 용접부(WP2)를 포함한다. 이때, 제1 용접부(WP1)와 제2 용접부(WP2)는 서로 비대칭인 모양을 갖는다. 제1 용접부(WP1)와 제2 용접부(WP2)의 비대칭 모양은 용접 진행 방향인 x축 방향에 수직한 면을 기준으로 정의될 수 있다. 본 실시예에 따르면, 제2 용접부(WP2)의 수직 단면이 갖는 곡선은 변곡점을 포함할 수 있다. 제2 용접부(WP2)의 수직 단면은, 도 9에 도시한 바와 같이 용융 풀(molten pool)의 yz평면과 평행한 수직 단면이다.
상기에서는 U자형의 모듈 프레임을 기준으로 설명하였으나, 도 4의 y축 방향으로의 일측과 다른 일측만 개방되고 4면이 일체로 연결되는 형태의 모노 프레임의 경우에도 동일한 문제가 발생할 수 있다. 이때, 상기 모노 프레임에서는, U자형 모듈 프레임에서 U자형 프레임과 상부 플레이트의 결합부 2군데를 제외한 총 8군데의 용접 결합부가 형성될 수 있다.
도 10은 본 발명의 다른 일 실시예에 따른 전지 모듈을 나타내는 부분 사시도이다.
도 10을 참고하면, 모듈 프레임에 포함된 상부 플레이트(400)는 도 4의 모듈 프레임(500)의 개방된 일측 및 다른 일측을 각각 정의하는 모서리 부분(411)에 형성된 제1 접합면(430)을 포함하고, 엔드 플레이트(150)에는 제1 접합면(430)과 접합하는 제2 접합면(330)을 포함한다.
모듈 프레임(500)과 엔드 플레이트(150)는 서로 물성이 다른 금속을 포함하며, 금속으로 형성된 모듈 프레임(500)과 엔드 플레이트(150)의 접합을 위해, 제1 접합면(430)과 제2 접합면(330)이 서로 용접 결합될 수 있다. 본 실시예에 따르면, 제2 접합면(330)에 함몰부(340)가 형성될 수 있다. 구체적으로 함몰부(340)는 제2 접합면(330)과 수직한 방향으로 함몰되고, 도 4의 x축 방향을 따라 뻗는 구조로 형성될 수 있다. 즉, 함몰부(340)는 제1 접합면(430)과 제2 접합면(330) 사이에서 기체가 이동하는 통로를 제공할 수 있다.
엔드 플레이트(150)를 제조하기 위해 다이 캐스팅 공법(Die-casting)을 이용할 수 있으며, 그 과정에서 엔드 플레이트(150)의 내부에 압축 기공이 형성될 수 있다. 이때, 함몰부(340)가 형성되지 않은 상태에서는 용접이 진행되는 동안 압축 기공이 전지 모듈의 외부 방향을 향해 터져 나오는 블로우 홀(Blow hole) 현상이 발생하여 용접 신뢰성을 떨어뜨릴 수 있다. 하지만, 본 실시예에 따르면, 함몰부(340)가 x축 방향을 따라 뻗어 있는 구조를 가짐으로써, 금속 내부의 압축 기공이 x축 방향을 따라 이동하도록 유도할 수 있다. 이에 따라, 결국에는 압축 기공이 제1 접합면(430)과 제2 접합면(330)의 결합면 외부로 뿜어져 나오는 블로우 홀 현상을 방지할 수 있어, 모듈 프레임(500)과 엔드 플레이트(150)간의 용접 결합력을 향상시킬 수 있다.
함몰부(340)는 제2 접합면(330)의 테두리 변들로부터 이격되어 형성되는 것이 바람직하다. 그 중에서도, 제2 접합면(330)의 변들 중 상부에 위치하는 변, 즉 전지 모듈의 외부로 노출되는 변으로부터 이격되는 것이 바람직하다. 그렇지 않다면, 함몰부(340)가 전지 모듈의 외부와 인접하여, 함몰부(340) 내부의 공간을 이동하는 기체가 외부로 터져 나오는 것을 방지할 수 없기 때문이다.
도 10에 도시한 바와 같이, 본 실시예에 따른 엔드 플레이트(150)는 모듈 프레임(500) 방향으로 돌출된 돌출부(350)를 더 포함할 수 있다. 돌출부(350)는 엔드 플레이트(150)의 변들과 평행한 방향을 따라 뻗어 있는 형태일 수 있다. 즉, 제1 접합면(430)과 제2 접합면(330)의 용접 결합이 이루어진 영역을 따라 이어진 형태일 수 있다.
모듈 프레임(500)이 엔드 플레이트(150)와 결합할 때, 돌출부(350)가 모듈 프레임(500)의 개방된 전면에 삽입되기 때문에, 모듈 프레임(500)과 엔드 플레이트(150)가 어긋남 없이 체결될 수 있다. 또한, 돌출부(350)에 의해 제1 접합면(430)과 제2 접합면(330)이 서로 어긋남 없이 접촉된 상태에서 용접이 진행될 수 있으므로, 용접이 보다 용이하게 이루어질 수 있다. 추가로, 모듈 프레임(500) 내부에서 발생하는 열에 의해 용접 부분에서 뒤틀림이 발생하는 것을 방지할 수 있으며, 약간의 뒤틀림이 발생하더라도, 용접 부분에서의 뒤틀린 곳이나 튀어나온 곳이 모듈 프레임(500) 내부의 전지 셀이나 장치에 영향을 주는 것을 방지할 수 있다.
도 11은 본 발명의 또 다른 일 실시예에 따른 전지 모듈을 나타내는 부분 사시도이다. 도 11의 실시예는, 도 10에서 설명한 실시예 내용과 대부분 동일하지만 이하에서는 차이가 있는 부분에 대해서만 설명하기로 한다.
도 11을 참고하면, 도 10의 실시예와 다르게 함몰부(440)가 제1 접합면(430)에 형성될 수 있다. 함몰부(440)는 제1 접합면(430)과 수직한 방향으로 함몰되고, 도 4의 x축 방향을 따라 뻗는 구조로 형성될 수 있다. 본 실시예에서의 함몰부(440) 역시 제1 접합면(430)과 제2 접합면(330) 사이에서 기체가 이동하는 통로를 제공할 수 있다.
이상 차이가 있는 부분을 제외하고는 도 10을 참고하여 설명한 내용은 모두 본 실시예에 적용 가능하다.
이상에서는, 8자형 워블 패턴 용접 방법을 전지 모듈을 구성하는 모듈 프레임과 엔드 플레이트의 결합에 적용하였으나, 반드시 이에 제한되지 않고 물성이 서로 다른 구성품의 용접 결합에 적용될 수 있다. 예를 들면, 서로 다른 물성을 갖는 제1 부재와 제2 부재를 포함하는 결합 구조체에서, 제1 부재와 제2 부재를 용접 결합하기 위해 앞에서 설명한 8자형 워블 패턴 용접 방법을 적용할 수 있다. 제1 부재와 제2 부재의 용접부는, 제1 부재와 제2 부재의 결합면을 기준으로 제1 부재에 형성되는 제1 용접부, 및 제2 부재에 형성되는 제2 용접부를 포함한다. 이때, 제1 용접부와 제2 용접부는 서로 비대칭인 모양을 가지며, 제1 용접부와 제2 용접부의 비대칭 모양은 용접 진행 방향에 수직한 면을 기준으로 정의될 수 있다. 제2 용접부의 수직 단면이 갖는 곡선은 변곡점을 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 결합 구조체는, 동일한 물성을 갖는 제1 부재와 제2 부재를 포함하고, 제1 부재와 제2 부재를 용접 결합하기 위해 앞에서 설명한 8자형 워블 패턴 용접 방법을 적용할 수 있다. 이때, 제1 부재와 제2 부재의 두께가 서로 다를 수 있다. 이처럼 제1 부재와 제2 부재의 두께가 서로 다른 경우, 두께에 따른 용입 깊이 및 비드폭 제어를 통해 용접 결합할 수 있다.
한편, 본 발명의 실시예에 따른 전지 모듈은 하나 또는 그 이상이 팩 케이스 내에 패키징되어 전지 팩을 형성할 수 있다.
앞에서 설명한 전지 모듈 및 이를 포함하는 전지 팩은 다양한 디바이스에 적용될 수 있다. 이러한 디바이스에는, 전기 자전거, 전기 자동차, 하이브리드 자동차 등의 운송 수단에 적용될 수 있으나, 본 발명은 이에 제한되지 않고 전지 모듈 및 이를 포함하는 전지 팩을 사용할 수 있는 다양한 디바이스에 적용 가능하며, 이 또한 본 발명의 권리범위에 속한다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
부호의 설명
150: 엔트 플레이트
300: U자형 프레임
340: 함몰부
400: 상부 플레이트
500: 모듈 프레임
WP: 용접부
Claims (17)
- 서로 이웃하는 제1 부재 및 제2 부재를 포함하고,상기 제1 부재와 상기 제2 부재는 용접 결합되며,상기 제1 부재와 상기 제2 부재의 용접부는, 상기 제1 부재와 상기 제2 부재의 결합면을 기준으로 상기 제1 부재에 형성되는 제1 용접부, 및 상기 제2 부재에 형성되는 제2 용접부를 포함하며,상기 제1 용접부와 상기 제2 용접부는 서로 비대칭인 모양을 갖는 결합 구조체.
- 제1항에서,상기 제2 용접부의 수직 단면이 갖는 곡선은 변곡점을 포함하는 결합 구조체.
- 제2항에서,상기 제1 부재는 압출재 부품 또는 판재 부품이고, 상기 제2 부재는 주조재(Die-casting) 부품인 결합 구조체.
- 제2항에서,상기 제1 용접부와 상기 제2 용접부의 비대칭 모양은 용접 진행 방향에 수직한 면을 기준으로 정의되는 결합 구조체.
- 제1항에서,상기 제1 부재와 상기 제2 부재는 서로 다른 물성을 갖는 결합 구조체.
- 복수의 전지 셀을 포함하는 전지 셀 적층체,상기 복수의 전지 셀 적층체를 수용하며, 서로 마주하는 일측과 다른 일측이 개방되어 있는 모듈 프레임, 및상기 모듈 프레임의 일측 및 다른 일측에서 상기 모듈 프레임과 용접 결합되는 엔드 플레이트를 포함하고,상기 모듈 프레임과 상기 엔드 플레이트의 용접부는, 상기 모듈 프레임과 상기 엔드 플레이트의 결합면을 기준으로 상기 모듈 프레임에 형성되는 제1 용접부, 및 상기 엔드 플레이트에 형성되는 제2 용접부를 포함하며,상기 제1 용접부와 상기 제2 용접부는 서로 비대칭인 모양을 갖는 전지 모듈.
- 제6항에서,상기 제2 용접부의 수직 단면이 갖는 곡선은 변곡점을 포함하는 전지 모듈.
- 제7항에서,상기 모듈 프레임은 압출재 부품 또는 판재 부품이고, 상기 엔드 플레이트는 주조재(Die-casting) 부품인 전지 모듈.
- 제7항에서,상기 제1 용접부와 상기 제2 용접부의 비대칭 모양은 용접 진행 방향에 수직한 면을 기준으로 정의되는 전지 모듈.
- 제6항에서,상기 모듈 프레임은, 상기 엔드 플레이트와 결합되는 부분에 형성된 제1 접합면을 포함하고,상기 엔드 플레이트는 상기 제1 접합면에 대응하며 상기 모듈 프레임과 결합되는 부분에 형성된 제2 접합면을 포함하며,상기 제1 접합면과 상기 제2 접합면 중 적어도 하나에 함몰부가 형성되어 있는 전지 모듈.
- 제10항에서,상기 함몰부는, 상기 제1 접합면 또는 상기 제2 접합면과 수직한 방향으로 함몰되어 있는 전지 모듈.
- 제11항에서,상기 함몰부는 상기 제1 접합면의 테두리 또는 상기 제2 접합면의 테두리로부터 이격되어 있는 전지 모듈.
- 제10항에서,상기 엔드 플레이트는, 상기 제2 접합면보다 상기 엔드 플레이트의 중앙에 위치하고, 상기 모듈 프레임 방향으로 뻗어 있는 돌출부를 더 포함하는 전지 모듈.
- 복수의 전지 셀을 포함하는 전지 셀 적층체를, 서로 마주하는 일측과 다른 일측이 개방되어 있는 모듈 프레임에 장착하는 단계, 및상기 모듈 프레임의 일측 및 다른 일측에서 상기 모듈 프레임에 엔드 플레이트를 결합하는 단계를 포함하고,상기 모듈 프레임과 상기 엔드 플레이트를 결합하는 단계는, 8자형 워블 패턴(Snowman wobble pattern) 용접 방법을 사용하는 전지 모듈 제조 방법.
- 제14항에서,상기 8자형 워블 패턴 용접 방법은, 이중 워블 패턴을 포함하고, 상기 모듈 프레임에 가해지는 용접 에너지 밀도가 상기 엔드 플레이트에 가해지는 용접 에너지 밀도보다 큰 전지 모듈 제조 방법.
- 제15항에서,상기 모듈 프레임에 가해지는 상기 이중 워블 패턴의 용접 빔은 원형이고, 상기 엔드 플레이트에 가해지는 상기 이중 워블 패턴의 용접 빔은 타원형인 전지 모듈 제조 방법.
- 제6항에 따른 전지 모듈을 포함하는 전지 팩.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080030350.6A CN113710406B (zh) | 2019-12-19 | 2020-12-08 | 电池模块和制造该电池模块的方法 |
US17/785,710 US20230066980A1 (en) | 2019-12-19 | 2020-12-08 | Battery module and method of manufacturing the same |
JP2021560879A JP7317429B2 (ja) | 2019-12-19 | 2020-12-08 | 電池モジュールおよびその製造方法 |
EP20902921.4A EP3952015A4 (en) | 2019-12-19 | 2020-12-08 | BATTERY MODULE AND METHOD OF MANUFACTURE THEREOF |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0170941 | 2019-12-19 | ||
KR20190170941 | 2019-12-19 | ||
KR1020200169335A KR20210079190A (ko) | 2019-12-19 | 2020-12-07 | 전지 모듈 및 그 제조 방법 |
KR10-2020-0169335 | 2020-12-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021125659A1 true WO2021125659A1 (ko) | 2021-06-24 |
Family
ID=76478474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/017827 WO2021125659A1 (ko) | 2019-12-19 | 2020-12-08 | 전지 모듈 및 그 제조 방법 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230066980A1 (ko) |
EP (1) | EP3952015A4 (ko) |
JP (1) | JP7317429B2 (ko) |
WO (1) | WO2021125659A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114639909A (zh) * | 2022-03-29 | 2022-06-17 | 远景动力技术(江苏)有限公司 | 一种电池包的壳体及其制造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023065366A1 (zh) * | 2021-10-22 | 2023-04-27 | 宁德时代新能源科技股份有限公司 | 电池、用电设备、制备电池单体的方法和设备 |
KR20240057122A (ko) * | 2022-10-24 | 2024-05-02 | 에스케이온 주식회사 | 배터리 모듈 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015228334A (ja) * | 2014-06-02 | 2015-12-17 | トヨタ自動車株式会社 | 二次電池およびその製造方法 |
KR20170035218A (ko) * | 2015-09-22 | 2017-03-30 | 주식회사 엘지화학 | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 |
KR20180018769A (ko) * | 2015-06-19 | 2018-02-21 | 아이피지 포토닉스 코포레이션 | 빔 이동을 제공하는 이중 가동 미러를 갖는 레이저 용접 헤드 |
KR20180081921A (ko) * | 2017-01-09 | 2018-07-18 | 에이치엘그린파워 주식회사 | 배터리 모듈 하우징 구조 |
JP2019089097A (ja) * | 2017-11-14 | 2019-06-13 | トヨタ自動車株式会社 | 平角線のレーザ溶接方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09177974A (ja) * | 1995-12-27 | 1997-07-11 | Kobe Steel Ltd | アルミニウム又はアルミニウム合金製容器及びその製造方法 |
JP2005040853A (ja) | 2003-07-25 | 2005-02-17 | Matsushita Electric Ind Co Ltd | レーザ溶接方法 |
JP6071010B2 (ja) | 2014-01-30 | 2017-02-01 | トヨタ自動車株式会社 | 溶接方法 |
CN107755912B (zh) | 2017-10-26 | 2019-08-30 | 重庆科技学院 | 管材全位置激光-电弧复合焊接系统 |
DE102017126867A1 (de) | 2017-11-15 | 2019-05-16 | Precitec Gmbh & Co. Kg | Laserbearbeitungssystem und Verfahren zur Laserbearbeitung |
KR102203250B1 (ko) | 2017-11-29 | 2021-01-13 | 주식회사 엘지화학 | 엔드 프레임을 구비한 배터리 모듈 |
-
2020
- 2020-12-08 EP EP20902921.4A patent/EP3952015A4/en active Pending
- 2020-12-08 US US17/785,710 patent/US20230066980A1/en active Pending
- 2020-12-08 JP JP2021560879A patent/JP7317429B2/ja active Active
- 2020-12-08 WO PCT/KR2020/017827 patent/WO2021125659A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015228334A (ja) * | 2014-06-02 | 2015-12-17 | トヨタ自動車株式会社 | 二次電池およびその製造方法 |
KR20180018769A (ko) * | 2015-06-19 | 2018-02-21 | 아이피지 포토닉스 코포레이션 | 빔 이동을 제공하는 이중 가동 미러를 갖는 레이저 용접 헤드 |
KR20170035218A (ko) * | 2015-09-22 | 2017-03-30 | 주식회사 엘지화학 | 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차 |
KR20180081921A (ko) * | 2017-01-09 | 2018-07-18 | 에이치엘그린파워 주식회사 | 배터리 모듈 하우징 구조 |
JP2019089097A (ja) * | 2017-11-14 | 2019-06-13 | トヨタ自動車株式会社 | 平角線のレーザ溶接方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3952015A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114639909A (zh) * | 2022-03-29 | 2022-06-17 | 远景动力技术(江苏)有限公司 | 一种电池包的壳体及其制造方法 |
CN114639909B (zh) * | 2022-03-29 | 2024-04-19 | 远景动力技术(江苏)有限公司 | 一种电池包的壳体及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20230066980A1 (en) | 2023-03-02 |
EP3952015A1 (en) | 2022-02-09 |
EP3952015A4 (en) | 2023-02-22 |
JP7317429B2 (ja) | 2023-07-31 |
JP2022529258A (ja) | 2022-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021125659A1 (ko) | 전지 모듈 및 그 제조 방법 | |
JP7247361B2 (ja) | 保護板、電池セル組立体、電池モジュール及び車両 | |
WO2018030846A1 (ko) | 프레임의 구조가 개선된 배터리 모듈 및 이를 위한 프레임 어셈블리 | |
WO2020251176A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
US20200212396A1 (en) | Battery module and battery pack | |
CN210092179U (zh) | 电池模组、电池包和车辆 | |
WO2021210806A1 (ko) | 전지 팩 및 이를 포함하는 디바이스 | |
WO2022085969A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022030785A1 (ko) | 전지 모듈, 이를 포함하는 전지 팩 및 전지 모듈 제조 방법 | |
WO2021071056A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2021210805A1 (ko) | 전지 팩 및 이를 포함하는 디바이스 | |
WO2021080126A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
KR20210079190A (ko) | 전지 모듈 및 그 제조 방법 | |
WO2021206493A1 (ko) | 전지 모듈 및 그 제조 방법 | |
WO2022045594A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2022080909A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022085997A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2021221306A1 (ko) | 전지 모듈 및 이를 포함하는 전지팩 | |
WO2021187747A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
WO2022158734A1 (ko) | 전지 모듈, 이를 포함하는 전지팩 및 전지 모듈의 제조 방법 | |
WO2024071883A1 (ko) | 열 전파 방지구조가 개선된 팩 케이스 | |
KR20210037453A (ko) | 전지 모듈, 이의 제조 방법 및 전지팩 | |
WO2022092677A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 | |
KR20210126514A (ko) | 전지 모듈 및 그 제조 방법 | |
WO2022124598A1 (ko) | 전지 모듈 및 이를 포함하는 전지 팩 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20902921 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021560879 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020902921 Country of ref document: EP Effective date: 20211028 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |