WO2021125532A1 - 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법 - Google Patents

표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법 Download PDF

Info

Publication number
WO2021125532A1
WO2021125532A1 PCT/KR2020/014220 KR2020014220W WO2021125532A1 WO 2021125532 A1 WO2021125532 A1 WO 2021125532A1 KR 2020014220 W KR2020014220 W KR 2020014220W WO 2021125532 A1 WO2021125532 A1 WO 2021125532A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
oxide
fuel cell
electrical conductivity
acid solution
Prior art date
Application number
PCT/KR2020/014220
Other languages
English (en)
French (fr)
Inventor
김종희
김진석
서보성
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2021125532A1 publication Critical patent/WO2021125532A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/48Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 not containing phosphates, hexavalent chromium compounds, fluorides or complex fluorides, molybdates, tungstates, vanadates or oxalates
    • C23C22/50Treatment of iron or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stainless steel excellent in surface electrical conductivity and a method for manufacturing the same, and more particularly, to a stainless steel for a fuel cell separator excellent in surface electrical conductivity and a method for manufacturing the same.
  • Stainless steel has excellent corrosion resistance and is easy to process, so it is being studied as a material for electronic parts and fuel cell separators.
  • conventional stainless steel has a problem in that the passivation film on the surface acts as a through-plane resistance element and does not secure sufficient electrical conductivity.
  • Patent Document 1 proposes a stainless steel for a separator having a low interfacial contact resistance and a high corrosion potential by controlling the surface modification process.
  • Patent Document 2 proposes a method of manufacturing stainless steel having excellent corrosion resistance and low contact resistance by immersing stainless steel containing 17 to 23 wt% of Cr in a [HF] ⁇ [HNO 3 ] solution.
  • Patent Document 3 proposes a stainless steel having an atomic ratio of Cr and Fe of 1 or more, which is contained in a passivation film of stainless steel containing 15 to 45% by weight of Cr and 0.1 to 5% by weight of Mo.
  • Patent Documents 1 to 3 have a limitation in that the fundamental penetration resistance of the passivation film of stainless steel cannot be lowered by adjusting the ratio of the Cr/Fe atom number of the passivation film within a few nm region.
  • Patent Document 0001 Korean Patent Application Laid-Open No. 10-2014-0081161 (published date of publication: 2014.07.01)
  • Patent Document 0002 Korean Patent Application Laid-Open No. 10-2013-0099148 (Published date: 2013.09.05)
  • Patent Document 0003 Japanese Laid-Open Patent Publication No. 2004-149920 (published date: May 27, 2004)
  • the present invention is to provide a stainless steel for a fuel cell separator excellent in surface electrical conductivity applicable as a material for an electrical contact and a material for a fuel cell separator, and a method for manufacturing the same.
  • the stainless steel for separator having excellent surface electrical conductivity is Al-K ⁇ X by X-ray angle resolution photoelectron spectroscopy on the surface of stainless steel containing 15 wt% or more of Cr.
  • the value of the surface oxide element ratio (1) measured below may be 0.2 or more.
  • the Cr oxide means Cr 3 O 4 , Cr 2 O 3 , CrO 2 or CrO 3
  • the Cr hydroxide means CrOOH, Cr(OH) 2 or Cr(OH) 3
  • the total oxides and hydroxides include the Cr oxide, Cr hydroxide, Fe oxide, Fe hydroxide, and metal oxide (MO), the metal oxide (MO) includes a mixed oxide, and M is in the base material except Cr and Fe. It is an alloying element or a combination thereof, and O means oxygen.
  • the surface oxide element ratio (1) may be 0.26 or more.
  • the band gap energy of the surface oxide layer of the stainless steel may be 2 eV or less.
  • the surface oxide layer of the stainless steel may form an ohmic contact with the base material.
  • the method for manufacturing stainless steel for fuel cell separator having excellent surface electrical conductivity according to an embodiment of the present invention is immersed in a non-oxidizing acid solution, or electrolytic treatment after immersion.
  • the surface of stainless steel containing 15% by weight or more of Cr, including primary surface treatment and secondary surface treatment by immersion in an oxidizing acid solution was subjected to X-ray angle resolution photoelectron spectroscopy using an Al-K ⁇ X-ray source to photoelectron
  • the take-off angle of is measured under the conditions of 12° to 85°, it is possible to manufacture stainless steel having the following surface oxide element ratio (1) value of 0.2 or more to be measured.
  • the Cr oxide means Cr 3 O 4 , Cr 2 O 3 , CrO 2 or CrO 3
  • the Cr hydroxide means CrOOH, Cr(OH) 2 or Cr(OH) 3
  • the total oxides and hydroxides include the Cr oxide, Cr hydroxide, Fe oxide, Fe hydroxide, and metal oxide (MO), the metal oxide (MO) includes a mixed oxide, and M is in the base material except Cr and Fe. It is an alloying element or a combination thereof, and O means oxygen.
  • the primary surface treatment is immersing the stainless cold-rolled steel sheet in the non-oxidizing acid solution for 5 seconds or more, or 0.1A/cm after immersion It includes electrolytic treatment for 5 seconds or more at a current density of 2 or more, and the non-oxidizing acid solution may be a hydrochloric acid or sulfuric acid solution of 50° C. or more, 5 wt % or more.
  • the secondary surface treatment includes immersing the stainless cold-rolled steel sheet in the oxidizing acid solution for 5 seconds or more, and the oxidizing acid solution is It may be a nitric acid solution of 50° C. or higher and 5 wt % or higher.
  • the present invention relates to a stainless steel for a fuel cell separator having excellent surface electrical conductivity applicable to a material for an electrical contact and a material for a fuel cell separator by making a surface oxide layer with semiconductor properties formed on the surface of the stainless steel into a conductor, and a stainless steel for a fuel cell separator and the same A manufacturing method may be provided.
  • the value By controlling the value to be 0.2 or more, it is possible to provide a stainless steel for a fuel cell separator having excellent surface electrical conductivity and a band gap energy of 2 eV or less of the surface oxide layer.
  • the Cr oxide means Cr 3 O 4 , Cr 2 O 3 , CrO 2 or CrO 3
  • the Cr hydroxide means CrOOH, Cr(OH) 2 or Cr(OH) 3
  • the total oxides and hydroxides include the Cr oxide, Cr hydroxide, Fe oxide, Fe hydroxide, and metal oxide (MO), the metal oxide (MO) includes a mixed oxide, and M is in the base material except Cr and Fe. It is an alloying element or a combination thereof, and O means oxygen.
  • the surface oxide layer of stainless steel forms an ohmic contact with the base material to provide a stainless steel for a fuel cell separator having excellent surface electrical conductivity.
  • 1A and 1B are graphs showing the correlation between the surface oxide element ratio (1) value and the bandgap energy with reference to the results of Table 2;
  • the stainless steel for a separator having excellent surface electrical conductivity has an Al-K ⁇ X-ray source using an Al-K ⁇ X-ray source by X-ray angle resolution photoelectron spectroscopy on the surface of stainless steel containing 15 wt% or more of Cr.
  • the following surface oxide element ratio (1) to be measured may be 0.2 or more.
  • the Cr oxide means Cr 3 O 4 , Cr 2 O 3 , CrO 2 or CrO 3
  • the Cr hydroxide means CrOOH, Cr(OH) 2 or Cr(OH) 3
  • the total oxides and hydroxides include the Cr oxide, Cr hydroxide, Fe oxide, Fe hydroxide, and metal oxide (MO), the metal oxide (MO) includes a mixed oxide, and M is in the base material except Cr and Fe. It is an alloying element or a combination thereof, and O means oxygen.
  • the term "stainless cold rolled steel sheet” refers to a stainless steel cold rolled steel sheet manufactured according to the conventional stainless steel manufacturing process, hot rolling-heating-cold rolling-annealing. To the extent possible, it can be interpreted as a stainless cold rolled steel sheet manufactured according to a typical manufacturing process of a stainless steel cold rolled steel sheet.
  • the term “surface oxide” refers to an oxide formed on the surface of stainless steel by spontaneously oxidizing a base metal element by external oxygen when the stainless steel is exposed to a temperature of about 200° C. or less.
  • the surface oxide contains Cr 2 O 3 as a main component, and SiO 2 , SiO, Si 2 O 3 , MnO, MnO 2 , Mn 2 O 3 , VO, V 2 O 3 , V 2 O 5 , NbO, NbO 2 , Nb 2 O 5 , TiO 2 , FeO, Fe 2 O 3 , Fe 3 O 4 and the like may be included as an example.
  • examples of the surface oxide have been listed above, it is necessary to note that these are examples for helping understanding of the present invention and do not specifically limit the technical spirit of the present invention.
  • surface oxide layer means a layer including the surface oxide of the present invention, and may be interpreted as a passivation film of stainless steel.
  • Fe oxide means FeO, Fe 2 O 3 , Fe 3 O 4 and all Fe oxides in oxide form within a range that can be clearly recognized by those skilled in the art, such as FeO.
  • Fe hydroxide means all hydroxides of FeOOH, Fe(OH) 2 , Fe(OH) 3 , etc. in the form of hydroxide within a range that can be readily recognized by those skilled in the art.
  • the passivation film of conventional stainless steel has a high resistance due to the semiconducting properties of the oxide.
  • the inventors of the present invention when the bandgap energy of the surface oxide layer of stainless steel is controlled to 2 eV or less, the surface oxide layer having semiconductor properties is made into a conductor, so that it can be applied to materials for electrical contact and fuel cell separators. A stainless steel for fuel cell separator with excellent conductivity was discovered.
  • the take-off angle of photoelectrons is 12° to 85° using an Al-K ⁇ X-ray source by X-ray angle-resolved photoemission spectroscopy (ARPES).
  • ARPES X-ray angle-resolved photoemission spectroscopy
  • the value of the surface oxide element ratio (SER) (1) measured below may be 0.2 or more.
  • Cr oxide means Cr 3 O 4 , Cr 2 O 3 , CrO 2 or CrO 3
  • the Cr hydroxide means CrOOH, Cr(OH) 2 or Cr(OH) 3
  • the total oxides and hydroxides include the Cr oxide, the Cr hydroxide, Fe oxide, Fe hydroxide, and a metal oxide (MO), the metal oxide (MO) includes a mixed oxide, and M is a base material except Cr and Fe. It is an alloying element or a combination thereof, and O means oxygen.
  • Metal oxide (MO) is, for example, SiO 2 , SiO, Si 2 O 3 , MnO, MnO 2 , Mn 2 O 3 , VO, V 2 O 3 , V 2 O 5 , NbO, NbO 2 , Nb 2 O 5 , TiO 2 .
  • examples of the metal oxide (MO) are listed above, it is necessary to note that this is an example for helping understanding of the present invention, and does not specifically limit the technical idea of the present invention.
  • All oxides and hydroxides include Cr oxide, Cr hydroxide, Fe oxide, Fe hydroxide, and the metal oxide (MO).
  • the take-off angle of photoelectrons is 12 using an Al-K ⁇ X-ray source by X-ray angle-resolved photoelectron spectroscopy in order to analyze the composition of the entire oxide formed on the surface of stainless steel regardless of the thickness of the stainless steel.
  • the surface of stainless steel can be measured under conditions of ° to 85 °.
  • the value of the surface oxide element ratio (1) measured according to the above conditions is limited to 0.2 or more is because the passivation film is the limiting point at which the semiconductor properties are converted to the conductor properties.
  • the passivation film is not suitable as a stainless steel for fuel cell separator due to semiconductor characteristics.
  • the value of the surface oxide element ratio (1) is controlled to 0.2 to 0.9.
  • the present invention can control the band gap energy of the surface oxide layer to be 2 eV or less.
  • the bandgap energy is 0eV
  • the surface oxide layer has conductor characteristics
  • the bandgap energy is more than 0eV and less than 2ev
  • the surface oxide layer has characteristics in the middle region between conductor and semiconductor characteristics. Suitable.
  • the surface oxide element ratio (1) value it is preferable to control the surface oxide element ratio (1) value to 0.26 or more so that the band gap energy of the surface oxide layer is 0 eV.
  • the band gap energy of the surface oxide layer of 0 eV means that the base material of stainless steel and the surface oxide layer formed a new, unknown ohmic contact despite the passive film layer composed of oxide. In other words, it means that the surface oxide layer becomes a new conductive film layer capable of forming an ohmic contact with the base material of stainless steel.
  • the band gap energy of the surface oxide layer is 2 eV or less, and there is no particular limitation on the type of steel.
  • an austenitic, ferritic, or ferrite-austenitic two-phase stainless steel may be used as the stainless steel of the present invention.
  • the component composition of the stainless steel for fuel cell separator having excellent electrical conductivity according to the present invention is not particularly limited.
  • the preferred component composition is as follows.
  • the following component composition is only an example to help the understanding of the present invention, and does not limit the technical spirit of the present invention.
  • the stainless steel according to the present invention is, in wt%, C: more than 0% and less than 0.3%, N: more than 0% and less than 0.3%, Si: more than 0% and not more than 0.7%, Mn: more than 0% and less than 10% or less, P: more than 0% 0.04% or less, S: more than 0% 0.02% or less, Cr: 15 to 34%, Ni: 25% or less, the remaining Fe and other unavoidable impurities may be included.
  • the unit is weight % (wt%).
  • C and N combine with Cr in steel to form stable Cr carbonitride, and as a result, a region in which Cr is locally deficient is formed and corrosion resistance may be deteriorated. Therefore, a lower content of both elements is preferable. Accordingly, in the present invention, the content of C and N is limited to C: more than 0% and 0.3% or less, and N: more than 0% and 0.3% or less.
  • Si greater than 0% and less than or equal to 0.7%
  • Si is an element effective for deoxidation. However, when added excessively, toughness and formability are reduced, and SiO 2 oxide generated during the annealing process reduces electrical conductivity and hydrophilicity. In consideration of this, the content of Si in the present invention is limited to Si: more than 0% and 0.7% or less.
  • Mn more than 0% and less than 10%
  • Mn is an element effective for deoxidation.
  • MnS which is an inclusion of Mn, reduces corrosion resistance
  • the content of Mn in the present invention is limited to more than 0% and 10% or less.
  • the content of P in the present invention is limited to more than 0% and 0.04% or less.
  • the S is combined with Mn in steel to form stable MnS, and since the formed MnS becomes a starting point of corrosion and reduces corrosion resistance, the lower the S content is, the more preferable. In consideration of this, the content of S in the present invention is limited to more than 0% and 0.02% or less.
  • Cr is an element that improves corrosion resistance. Cr is actively added to ensure corrosion resistance in a fuel cell operating environment, which is a strong acid environment. However, since the excessive addition reduces toughness, the content of Cr in the present invention is limited to 15 to 34% in consideration of this.
  • Ni is an austenite phase stabilizing element and an element for improving corrosion resistance.
  • Ni is generally contained in an amount above a certain level in austenitic, ferritic-austenitic two-phase stainless steels.
  • the Ni content is limited to 25% or less in the present invention considering this.
  • the lower limit of the Ni content is not particularly limited, and may be appropriately contained depending on the type of steel.
  • the lower limit of the Ni content may be 2% or more.
  • the lower limit of the Ni content in the ferritic stainless steel may be less than 2%, preferably 1% or less, more preferably 0.01% or less.
  • the stainless steel according to an example is an optional alloy component in weight % as necessary in addition to the above-described alloy composition, Cu: more than 0.01% and less than 1.5%, V: more than 0.01% and less than 0.6%, Mo: 0.01 to 5.0%, Ti: 0.01 to 0.5%, Nb: may include one or more of 0.01 to 0.4%.
  • the composition of the optional alloy component is only an example to help the understanding of the present invention, and is not intended to limit the technical spirit of the present invention.
  • Cu is an element that improves corrosion resistance.
  • the Cu content is limited to more than 0.01% and 1.5% or less in consideration of this, since it is eluted when excessively added to deteriorate the fuel cell performance.
  • V more than 0.01% and less than 0.6%
  • V is an element that improves the lifespan characteristics of the fuel cell by suppressing the elution of Fe in the fuel cell operating environment.
  • toughness is reduced when excessively added, the content of V in the present invention is limited to more than 0.01% and 0.6% or less in consideration of this.
  • Mo is an element that improves corrosion resistance.
  • the content of Mo is limited to 0.01 to 5.0% in consideration of the decrease in workability when excessively added.
  • Ti and Nb are elements that combine with C and N in steel to form stable carbonitrides, thereby suppressing the formation of regions in which Cr is locally deficient and improving corrosion resistance.
  • the content of Ti and Nb is limited to 0.01 to 0.5% Ti, and 0.01 to 0.4% Nb in the present invention in consideration of the decrease in toughness when excessively added.
  • the remaining component is iron (Fe).
  • Fe iron
  • the impurities are known to any person skilled in the art of a conventional manufacturing process, all details thereof are not specifically mentioned in the present specification.
  • the method for manufacturing a stainless steel for fuel cell separator having excellent surface electrical conductivity according to the present invention is sufficient as long as the surface oxide element ratio (1) value can be controlled to 0.2 or more, and is not particularly limited.
  • a stainless steel for a fuel cell separator having excellent surface electrical conductivity according to the present invention can be manufactured by surface-treating a cold-rolled steel sheet manufactured according to a conventional stainless steel manufacturing process.
  • the surface treatment according to an example may be performed in two steps, and the first surface treatment may include immersion in a nonoxidizing acid solution, or electrolytic treatment after immersion.
  • the secondary surface treatment may include immersion in an oxidizing acid solution.
  • the primary surface treatment according to an embodiment of the present invention may include immersing the stainless steel cold-rolled steel sheet in a non-oxidizing acid solution for 5 seconds or more, or electrolytic treatment at a current density of 0.1A/cm 2 or more for 5 seconds or more after immersion.
  • the non-oxidizing acid solution may be 50° C. or more, 5 wt% or more of hydrochloric acid (HCl) or sulfuric acid (H 2 SO 4 ) solution.
  • the secondary surface treatment according to an embodiment of the present invention may include immersing the cold-rolled stainless steel sheet in an oxidizing acid solution for 5 seconds or more.
  • the oxidizing acid solution is 50 °C or more, 5% by weight or more nitric acid (HNO 3 ) It may be a solution.
  • Steel grades having the composition shown in Table 1 below were manufactured as slabs through the steel making-casting process. Thereafter, the manufactured slab was hot-rolled at 1200° C. to prepare a 4.5 mm thick hot-rolled steel sheet. The hot-rolled steel sheet was heated at 1050°C, and then cold-rolled and annealed at 1000°C were repeated to manufacture a cold-rolled steel sheet with a thickness of 0.15 mm.
  • steels 1 to 9 correspond to invention steels
  • steels 1 to 3 are ferritic stainless steels
  • steels 4 to 6 are austenitic stainless steels
  • steels 7 to 9 are ferritic-austenitic two-phase stainless steels. to be.
  • Steels 10 and 11 are comparative steels, and the Cr content is less than 15% by weight.
  • the cold-rolled steel sheet prepared in Table 1 was surface-treated according to the surface treatment conditions of Table 2 below.
  • the surface treatment was performed in the first and second stages, and was treated according to the conditions A to H described in Table 2.
  • the primary surface treatment was performed by immersing the cold-rolled steel sheet in a non-oxidizing acid solution, a sulfuric acid solution, or immersing it and then electrolytic treatment.
  • the secondary surface treatment was performed by immersing the stainless steel in a nitric acid solution, which is an oxidizing acid solution.
  • the stainless steel cold-rolled steel sheet according to Invention Example 1 in Table 2 is As the primary surface treatment, it was immersed (A) in a sulfuric acid solution of 50°C, 8 wt% for 5 seconds, and then immersed (D) for 9 seconds in a 50°C, 10 wt% nitric acid solution as a secondary surface treatment.
  • the surface oxide element ratio (1) value in Table 2 is a value derived according to the following formula (1), and the surfaces of the invention examples and comparative examples are shown in Table 2 using an Al-K ⁇ X-ray source by X-ray angle resolution photoelectron spectroscopy. It is a value derived when measured under the conditions of the take-off angle of the described photoelectrons.
  • the surface oxide element ratio (1) value was measured in the following manner. First, the PHI Quantera II equipment was used to analyze the take-off angle conditions according to Table 2, and the analysis results were obtained using the CasaXPS software to obtain the peaks in the binding energy of metal oxide (MO), Cr oxide, Cr hydroxide, Fe oxide, and Fe hydroxide. was separated, and the atomic concentration was calculated using this.
  • MO metal oxide
  • Cr oxide Cr oxide
  • Cr hydroxide Cr hydroxide
  • Fe oxide Fe hydroxide
  • the 'sum of atomic concentrations (at%) of Cr elements in Cr oxide and Cr hydroxide' to obtain the surface oxide element ratio (1) value isolates the peaks in the binding energy of Cr oxide and Cr hydroxide, and then By fitting on the spectrum, the sum of the atomic concentrations (at%) of Cr was derived.
  • Cr oxide means Cr 3 O 4 , Cr 2 O 3 , CrO 2 or CrO 3
  • Cr hydroxide means CrOOH, Cr(OH) 2 or Cr(OH) 3 .
  • the 'sum of the atomic concentrations (at%) of metal elements in the total oxides and hydroxides' in the surface oxide element ratio (1) value is the 'sum of the atomic concentrations (at%) of Cr in the Cr oxides and Cr hydroxides (at%)' and It was calculated by adding the sum of the atomic concentrations (at%) of metal elements in the metal oxide (MO) and the sum of the atomic concentrations (at%) of Fe in the Fe oxide and Fe hydroxide.
  • the sum of the atomic concentrations (at%) of the metal elements in the metal oxide (MO) isolates the peak in the binding energy of the metal oxide (MO), and then fits it on the spectrum of each metal (M) to obtain the atoms of the metal element
  • the sum of concentrations (at%) was derived.
  • the metal oxide (MO) includes a mixed oxide
  • M is an alloying element in the base material other than Cr and Fe or a combination thereof
  • O means oxygen.
  • the sum of the atomic concentrations (at%) of Fe in Fe oxides and Fe hydroxides isolates the peaks in the binding energy of Fe oxides and Fe hydroxides, and then fits them on the Fe 2p spectrum to determine the atomic concentration (at%) of Fe. The sum was derived.
  • the band gap energy in Table 2 means the band gap energy of the surface oxide layer.
  • the band gap energy of the surface oxide layer was measured using a Current Sensing Atomic Force Microscope (Keysight 9500 model).
  • Inventive Examples, Comparative Examples Prepare a specimen by cutting stainless steel 1 cm x 1 cm, and apply a 20 nN load in a nitrogen atmosphere with a relative humidity of 18% so that the surface oxide layer can be measured in an inactive state so that the applied bias is -10 V
  • the bandgap energy was measured in the current probe mode from to 10V.
  • the band gap energy was measured 5 times in an area of 50 ⁇ m x 50 ⁇ m, and the width of the region where the current sensed when the applied bias was changed from -10 V to 10 V was measured as the band gap energy.
  • the probe was a silicon probe (Si tip), a platinum-coated probe with a thickness of 30 nm was used.
  • Inventive Examples 1 to 18 are the result of satisfying the surface treatment process according to the present invention, the surface oxide element ratio (1) value when the take-off angle of the photoelectron is 12° to 85° is 0.2 or more , it can be seen that the band gap energy of the surface oxide layer is 2 eV or less.
  • the band gap energy of the surface oxide layer becomes 0 eV, and in order for the surface oxide layer to form an ohmic contact with the base material, the surface oxide element ratio (1) It is preferable that a value is 0.26 or more.
  • the primary surface treatment was not performed, and the time required for the secondary surface treatment was too short as 3 seconds.
  • the Cr content was less than 15% by weight, and the surface oxide element ratio (1) value at the take-off angles of 12°, 44°, and 85° of the photoelectrons was less than 0.2.
  • the band gap energy of the surface oxide layer exceeded 2 ev.
  • 1A and 1B are graphs showing the correlation between the surface oxide element ratio (1) value and the bandgap energy with reference to the results of Table 2; 1A and 1B, the take-off angles of the photoelectrons are 12° and 85°, respectively. 1A and 1B, the horizontal axis represents the surface oxide element ratio (1), and the vertical axis represents the bandgap energy (eV).
  • the surface oxide element ratio (1) value is 0.2 or more based on 0.2 as a reference point, the bandgap energy is 2eV or less, and when it is less than 0.2, the bandgap energy rapidly increases and the bandgap energy is 2eV. was found to be exceeded.
  • the value of the surface oxide element ratio (1) is controlled to be 0.2 or more, the bandgap energy can be controlled to be 2 eV or less.
  • the surface oxide element ratio (1) is preferably controlled to be 0.26 or more in order for the bandgap energy to be 0 eV.
  • the dotted line region shown in FIGS. 1A and 1B is a region in which the surface oxide element ratio (1) is 0.2 or more and the bandgap energy is 2 eV or less.
  • the band gap energy is 2 eV or less, and the fuel cell separation excellent in surface electrical conductivity It can be seen that stainless steel for plates can be provided.
  • the present invention is a fuel cell with excellent surface electrical conductivity applicable to a material for electrical contact and a material for a fuel cell separator by making a surface oxide layer having semiconductor properties formed on the surface of stainless steel into a conductor. It can be seen that stainless steel for a separator and a manufacturing method thereof can be provided.
  • the following surface oxide element ratio (1) value measured is It can be seen that by controlling so that it is 0.2 or more, it is possible to provide a stainless steel for a fuel cell separator having excellent surface electrical conductivity in which the band gap energy of the surface oxide layer is 2 eV or less.
  • the stainless steel excellent in surface electrical conductivity according to the present invention can be applied to a fuel cell separator and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

본 명세서에서는 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 개시한다. 개시되는 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 일 실시예에 따르면 Cr을 15중량% 이상 함유하는 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상일 수 있다. 상기 Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다. 상기 전체 산화물, 수산화물은 상기 Cr산화물, 상기 Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.

Description

표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
본 발명은 표면 전기전도성이 우수한 스테인리스강 및 그 제조방법에 관한 것으로, 보다 상세하게는 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법에 관한 것이다.
스테인리스강은 내식성이 우수하며, 가공이 용이하여 전자부품용 소재 및 연료전지 분리판 용도의 소재로서의 검토가 이루어지고 있다. 그러나, 통상의 스테인리스강은 표면의 부동태 피막이 관통 저항(through-plane resistance) 요소로 작용하여 충분한 전기전도성을 확보하지 못한다는 문제가 있다.
현재까지도 스테인리스강의 표면 전기전도성에 미치는 부동태 피막의 영향에 대해서는 뚜렷하게 그 메커니즘 규명은 이루어지고 있지 않고 있다. 이러한 부동태 피막의 표면 전기전도성을 향상시키기 위해서는 전자부품용 소재의 경우에는 Ni 도금을 실시하거나, 연료전지 분리판 용도로서는 스테인리스강의 높은 접촉저항 값을 낮추기 위하여 금이나 탄소, 질화물 등의 도전성 물질을 스테인리스강의 표면에 코팅하는 공정이 제안되었다. 그러나, Ni도금 또는 기타 코팅물질을 코팅하기 위한 추가 공정으로 인하여 제조비용 및 제조시간이 증가하여 생산성이 저하되는 문제점이 있으며, 부동태 피막이 가지는 근본적인 관통 저항을 낮출 수 없다는 문제점이 있다.
또한, 스테인리스강의 표면 전기전도성을 향상시키기 위한 다른 방안으로 스테인리스강의 표면을 개질하는 방법이 시도되어 왔다.
특허문헌 1에는 표면 개질 공정을 제어하여 낮은 계면 접촉저항과 높은 부식전위를 갖는 분리판용 스테인리스강이 제시되어 있다.
특허문헌 2에는 Cr 17~23중량%를 함유한 스테인리스강을 [HF]≥[HNO 3] 용액에 침지하여 내식성이 우수하고 접촉저항이 낮은 스테인리스강을 제조하는 방법이 제시되어 있다.
특허문헌 3에는 Cr 15~45중량%, Mo 0.1~5중량%를 함유한 스테인리스강의 부동태 피막에 함유되는 Cr, Fe 원자수비가 1 이상인 스테인리스강이 제시되어 있다.
그러나, 특허문헌 1~3은 수 nm 영역 내의 부동태 피막의 Cr/Fe 원자수의 비만을 조정하여 스테인리스강의 부동태 피막이 가지는 근본적인 관통 저항을 낮출 수 없다는 한계가 있다.
(특허문헌 0001) 한국 공개특허공보 제10-2014-0081161호 (공개일자: 2014.07.01)
(특허문헌 0002) 한국 공개특허공보 제10-2013-0099148호 (공개일자: 2013.09.05)
(특허문헌 0003) 일본 공개특허공보 제2004-149920호 (공개일자: 2004.05.27)
상술한 문제점을 해결하기 위하여, 본 발명은 전기접점 용도의 소재 및 연료전지 분리판 용도의 소재로 적용 가능한 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법을 제공하고자 한다.
상술한 목적을 달성하기 위한 수단으로서 본 발명의 일 예에 따른 표면 전기전도성이 우수한 분리판용 스테인리스강은 Cr을 15중량% 이상 함유하는 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상일 수 있다.
(1)
Figure PCTKR2020014220-appb-img-000001
상기 Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다. 상기 전체 산화물, 수산화물은 상기 Cr산화물, Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.
본 발명의 각 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강에 있어서, 상기 표면 산화물 원소비 (1)값이 0.26 이상일 수 있다.
본 발명의 각 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강에 있어서, 상기 스테인리스강의 표면 산화물층의 밴드갭에너지가 2eV 이하일 수 있다.
본 발명의 각 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강에 있어서, 스테인리스강의 표면 산화물층은 모재와 옴 접촉을 형성할 수 있다.
또한, 상술한 목적을 달성하기 위한 다른 수단으로서 본 발명의 일 예에 따른 면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법은 스테인리스 냉연강판을 비산화성 산용액에 침지하거나, 침지한 다음 전해 처리하여 1차 표면 처리하고, 산화성 산용액에 침지하여 2차 표면 처리하는 것을 포함하여 Cr을 15중량% 이상 함유하는 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상인 스테인리스강을 제조할 수 있다.
(1)
Figure PCTKR2020014220-appb-img-000002
상기 Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다. 상기 전체 산화물, 수산화물은 상기 Cr산화물, Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.
본 발명의 각 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법에 있어서, 상기 1차 표면 처리는 상기 스테인리스 냉연강판을 상기 비산화성 산용액에 5초 이상 침지하거나, 침지한 다음 0.1A/cm 2 이상의 전류밀도로 5초 이상 전해 처리하는 것을 포함하고, 상기 비산화성 산용액은 50℃ 이상, 5중량% 이상의 염산 또는 황산 용액일 수 있다.
본 발명의 각 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법에 있어서, 상기 2차 표면 처리는 상기 스테인리스 냉연강판을 상기 산화성 산용액에 5초 이상 침지하는 것을 포함하고, 상기 산화성 산용액은 50℃ 이상, 5중량% 이상의 질산 용액일 수 있다.
본 발명은 스테인리스강의 표면에 형성되는 반도체적 특성을 갖는 표면 산화물층을 도체화하여 전기접점 용도의 소재 및 연료전지 분리판 용도의 소재에 적용 가능한 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법을 제공할 수 있다.
본 발명에 따르면 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상이 되도록 제어하여 표면 산화물층의 밴드갭에너지가 2eV 이하인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 제공할 수 있다.
(1)
Figure PCTKR2020014220-appb-img-000003
상기 Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다. 상기 전체 산화물, 수산화물은 상기 Cr산화물, Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.
본 발명에 따르면 스테인리스강의 표면 산화물층은 모재와 옴 접촉을 형성하여 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 제공할 수 있다.
도 1a, 도 1b는 표 2의 결과를 참조하여 표면 산화물 원소비 (1)값 대비 밴드갭에너지의 상관관계를 도시한 그래프이다.
본 발명의 일 예에 따른 표면 전기전도성이 우수한 분리판용 스테인리스강은 Cr을 15중량% 이상 함유하는 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상일 수 있다.
(1)
Figure PCTKR2020014220-appb-img-000004
상기 Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다. 상기 전체 산화물, 수산화물은 상기 Cr산화물, Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.
이하에서는 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 기술사상이 이하에서 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
본 출원에서 사용하는 용어는 단지 특정한 예시를 설명하기 위하여 사용되는 것이다. 때문에 가령 단수의 표현은 문맥상 명백하게 단수여야만 하는 것이 아닌 한, 복수의 표현을 포함한다. 덧붙여, 본 출원에서 사용되는 "포함하다" 또는 "구비하다" 등의 용어는 명세서 상에 기재된 특징, 단계, 기능, 구성요소 또는 이들을 조합한 것이 존재함을 명확히 지칭하기 위하여 사용되는 것이지, 다른 특징들이나 단계, 기능, 구성요소 또는 이들을 조합한 것의 존재를 예비적으로 배제하고자 사용되는 것이 아님에 유의해야 한다.
한편, 다르게 정의되지 않는 한, 본 명세서에서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진 것으로 보아야 한다. 따라서, 본 명세서에서 명확하게 정의하지 않는 한, 특정 용어가 과도하게 이상적이거나 형식적인 의미로 해석되어서는 안 된다. 가령, 본 명세서에서 단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.
또한, 본 명세서의 "약", "실질적으로" 등은 언급한 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다.
또한, 본 명세서 상에서 "스테인리스 냉연강판"은 통상의 스테인리스강의 제조공정인 열간압연-가열-냉간압연-소둔에 따라 제조된 스테인리스 냉연강판을 의미하며, 해당 기술분야의 통상의 기술자가 자명하게 인식할 수 있는 범위 내에서 통상의 스테인리스 냉연강판의 제조공정에 따라 제조된 스테인리스 냉연강판으로 해석될 수 있다.
또한, 본 명세서 상에서 "표면 산화물"은 스테인리스강이 약 200℃이하의 온도에 노출될 때 모재 금속원소가 외부 산소에 의하여 자발적으로 산화되어 스테인리스강의 표면에 형성되는 산화물을 의미한다. 표면 산화물은 Cr 2O 3를 주된 성분으로 하고 SiO 2, SiO, Si 2O 3, MnO, MnO 2, Mn 2O 3, VO, V 2O 3, V 2O 5, NbO, NbO 2, Nb 2O 5, TiO 2, FeO, Fe 2O 3, Fe 3O 4등을 일례로 포함할 수 있다. 이상에서 표면 산화물의 예시를 열거하였으나, 이는 본 발명의 이해를 돕기 위한 예시이며, 본 발명의 기술사상을 특별히 제한하지 않음을 유의할 필요가 있다.
또한, 본 명세서 상에서 "표면 산화물층"은 본 발명의 표면 산화물을 포함하는 층을 의미하며, 스테인리스강의 부동태 피막으로도 해석될 수 있다.
또한, 본 명세서 상에서 "Fe산화물"은 FeO, Fe 2O 3, Fe 3O 4 등 해당 기술분야의 통상의 기술자가 자명하게 인식할 수 있는 범위 내에서 산화물 형태의 모든 Fe산화물을 의미한다. "Fe수산화물"은 FeOOH, Fe(OH) 2, Fe(OH) 3 등 해당 기술분야의 통상의 기술자가 자명하게 인식할 수 있는 범위 내에서 수산화물 형태의 모든 Fe수산화물을 의미한다.
통상적인 스테인리스강의 부동태 피막은 산화물의 반도체적 특성으로 인한 높은 저항을 갖는 것으로 알려져 있다. 본 발명의 발명자들은 스테인리스강의 표면 산화물층의 밴드갭에너지가 2eV 이하로 제어되면 반도체적 특성을 갖는 표면 산화물층을 도체화하여 전기접점 용도의 소재 및 연료전지 분리판 용도의 소재에 적용 가능한 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 발견하였다.
본 발명의 일 예에 따르면 X선 각도분해 광전자 분광법(angle-resolved photoemission spectroscopy, ARPES)에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각(take-off angle)이 12° 내지 85°조건으로 스테인리스강의 표면을 측정할 때, 측정되는 하기 표면 산화물 원소비(surface oxide element ratio, SER) (1)값이 0.2 이상일 수 있다.
(1)
Figure PCTKR2020014220-appb-img-000005
Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다. 상기 전체 산화물, 수산화물은 상기 Cr산화물, 상기 Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.
금속산화물(MO)은 예를 들면 SiO 2, SiO, Si 2O 3, MnO, MnO 2, Mn 2O 3, VO, V 2O 3, V 2O 5, NbO, NbO 2, Nb 2O 5, TiO 2일 수 있다. 이상에서는 금속산화물(MO)의 예를 열거하였으나, 이는 본 발명의 이해를 돕기 위한 예시이며, 본 발명의 기술사상을 특별히 제한하는 것이 아님을 유의할 필요가 있다.
전체 산화물, 수산화물은 Cr산화물, Cr수산화물, Fe산화물, Fe수산화물, 상기 금속산화물(MO)을 포함한다.
이하에서 X선 각도분해 광전자 분광법에서 광전자의 이륙각 범위를 한정한 이유를 설명하고, 이어서 표면 산화물 원소비 (1)값의 범위를 한정한 이유에 대해 설명하도록 한다.
X선 각도분해 광전자 분광법에서 광전자의 이륙각이 낮을수록 스테인리스강의 최표면으로부터 깊이 방향으로의 분석 깊이가 작아지고, 이륙각이 클수록 분석 깊이가 커지게 된다. 이를 고려하여, 본 발명에 따르면 스테인리스강의 두께와 상관없이 스테인리스강 표면에 형성된 전체 산화물의 조성을 분석할 수 있기 위하여 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 스테인리스강의 표면을 측정할 수 있다.
위 조건에 따라 측정되는 표면 산화물 원소비 (1)값을 0.2 이상으로 한정한 이유는 부동태 피막이 반도체적 특성에서 도체 특성으로 전환되는 한계점이기 때문이다. 표면 산화물 원소비 (1)값이 0.2 미만인 경우에는 부동태 피막이 반도체 특성으로 인하여 연료전지 분리판용 스테인리스강으로 부적합하다. 표면 전기전도성이 우수한 스테인리스강을 얻기 위해서 표면 산화물 원소비 (1)값은 0.2 내지 0.9로 제어되는 것이 보다 바람직하다.
이상과 같이 표면 산화물 원소비 (1)값이 0.2 이상이 되도록 제어함으로써 본 발명은 표면 산화물층의 밴드갭에너지가 2eV 이하가 되도록 제어할 수 있다. 밴드갭에너지가 0eV이면 표면 산화물층이 도체 특성을 갖게 되며, 밴드갭에너지가 0eV 초과 2ev 이하이면 표면 산화물층이 도체와 반도체 특성의 중간영역 특성을 갖게 되므로, 연료전지 분리판용 스테인리스강으로 사용하기 적합하다.
또한, 본 발명에 따르면 표면 산화물층의 밴드갭에너지가 0eV를 갖도록 보다 바람직하게는 표면 산화물 원소비 (1)값을 0.26 이상으로 제어하는 것이 바람직하다. 표면 산화물층의 밴드갭에너지가 0eV인 의미는 산화물로 구성된 부동태 피막층임에도 불구하고 스테인리스강의 모재와 표면 산화물층이 기존에 알려지지 않은 새로운 옴 접촉(Ohmic contatct)을 형성한 것을 의미한다. 다시 말해, 표면 산화물층이 스테인리스강의 모재와 옴 접촉을 형성할 수 있는 새로운 전도성 피막층이 된 것을 의미한다.
본 발명에 따른 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강은 표면 산화물층의 밴드갭에너지가 2eV 이하면 충분하고, 강종에 특별한 제한은 없다. 일 예에 따르면, 오스테나이트계, 페라이트계, 페라이트-오스테나이트 2상계 스테인리스강을 본 발명의 스테인리스강으로 사용할 수 있다.
또한, 본 발명에 따른 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 성분 조성은 특별히 제한되지 않는다. 다만, 바람직한 성분 조성을 나타내면 다음과 같다. 그러나, 다음의 성분 조성은 본 발명에 대한 이해를 돕기 위해 예시일 뿐, 본 발명의 기술사상을 제한하는 것이 아님을 유의할 필요가 있다.
일 예에 따르면, 본 발명에 따른 스테인리스강은 중량%로, C: 0% 초과 0.3% 이하, N: 0% 초과 0.3% 이하, Si: 0% 초과 0.7% 이하, Mn: 0% 초과 10% 이하, P: 0% 초과 0.04% 이하, S: 0% 초과 0.02% 이하, Cr: 15 내지 34%, Ni: 25% 이하, 나머지 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
이하에서는 상기 합금조성에 대해서 한정한 이유에 대하여 구체적으로 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%(wt%)이다.
C: 0% 초과 0.3% 이하, N: 0% 초과 0.3% 이하
C와 N는 강 중 Cr과 결합하여 안정한 Cr 탄질화물을 형성하며, 그 결과 Cr이 국부적으로 결핍된 영역이 형성되어 내식성이 저하될 우려가 있으므로 양 원소의 함량은 낮을수록 바람직하다. 이에 따라, 본 발명에서 C, N의 함량은 C: 0% 초과 0.3% 이하, N: 0% 초과 0.3% 이하로 제한된다.
Si: 0% 초과 0.7% 이하
Si은 탈산에 유효한 원소이다. 그러나, 과다 첨가 시 인성, 성형성을 저하시키며, 소둔 공정 중 생성되는 SiO 2 산화물은 전기전도성, 친수성을 저하시킨다. 이를 고려하여 본 발명에서 Si의 함량은 Si: 0% 초과 0.7% 이하로 제한된다.
Mn: 0% 초과 10% 이하
Mn은 탈산에 유효한 원소이다. 그러나, Mn의 개재물인 MnS는 내식성을 감소시키므로, 본 발명에서 Mn의 함량은 0% 초과 10% 이하로 제한된다.
P: 0% 초과 0.04% 이하
P는 내식성 뿐만 아니라 인성을 저하시키므로, 본 발명에서 P의 함량은 0% 초과 0.04% 이하로 제한된다.
S: 0% 초과 0.02% 이하
S은 강 중 Mn과 결합하여 안정한 MnS를 형성하며, 형성된 MnS은 부식의 기점이 되어 내식성을 저하시키므로 S의 함량을 낮을수록 바람직하다. 이를 고려하여 본 발명에서 S의 함량은 0% 초과 0.02% 이하로 제한된다.
Cr: 15 내지 34%
Cr은 내식성을 향상시키는 원소이다. 강한 산성 환경인 연료전지 작동 환경에서의 내식성을 확보하기 위하여 Cr은 적극 첨가된다. 그러나, 과다 첨가 시 인성을 저하시키므로 이를 고려하여 본 발명에서 Cr의 함량은 15 내지 34%로 제한된다.
Ni: 25% 이하
Ni은 오스테나이트 상 안정화 원소이며, 내식성을 향상시키는 원소이다. 또한, Ni은 일반적으로 오스테나이트계, 페라이트-오스테나이트 2상 스테인리스강에 일정수준 이상의 양이 함유되어 있다. 그러나, 과다 첨가 시 가공성이 저하되므로 이를 고려하여 본 발명에서 Ni의 함량은 25% 이하로 제한된다.
Ni 함량의 하한은 특별히 제한되지 않으며, 강종에 따라 적절히 함유될 수 있다. 예를 들어 오스테나이트계 스테인리스강이나 페라이트-오스테나이트 2상계 스테인리스강에서 Ni 함량의 하한은 2% 이상일 수 있다. 예를 들어 페라이트계 스테인리스강에서 Ni 함량의 하한은 2% 미만일 수 있으며, 바람직하게는 1% 이하, 보다 바람직하게는 0.01% 이하일 수 있다.
또한, 일 예에 따른 스테인리스강은 상술한 합금 조성 외에 필요에 따라 선택적 합금성분으로 중량%로, Cu: 0.01% 초과 1.5% 이하, V: 0.01% 초과 0.6% 이하, Mo: 0.01 내지 5.0%, Ti: 0.01 내지 0.5%, Nb: 0.01 내지 0.4% 중 1종 이상을 포함할 수 있다. 그러나, 선택적 합금성분의 조성은 본 발명에 대한 이해를 돕기 위해 예시일 뿐, 본 발명의 기술사상을 제한하는 것이 아님을 유의할 필요가 있다.
Cu: 0.01% 초과 1.5% 이하
Cu는 내식성을 향상시키는 원소이다. 그러나, 과다 첨가 시 용출되어 연료전지의 성능을 저하시키므로 이를 고려하여 본 발명에서 Cu의 함량은 0.01% 초과 1.5% 이하로 제한된다.
V: 0.01% 초과 0.6% 이하
V는 연료전지 작동환경에서 Fe 용출을 억제하여 연료전지의 수명특성을 향상시키는 원소이다. 그러나, 과다 첨가 시 인성이 저하되므로 이를 고려하여 본 발명에서 V의 함량은 0.01% 초과 0.6% 이하로 제한된다.
Mo: 0.01 내지 5.0%
Mo는 내식성을 향상시키는 원소이다. 그러나, 과다 첨가 시 가공성이 저하되므로 이를 고려하여 본 발명에서 Mo의 함량은 0.01 내지 5.0%로 제한된다.
Ti: 0.01 내지 0.5%, Nb: 0.01 내지 0.4%
Ti과 Nb은 강 중 C, N과 결합하여 안정한 탄질화물을 형성함으로써, Cr이 국부적으로 결핍된 영역의 형성을 억제하여 내식성을 향상시키는 원소이다. 그러나, 과다 첨가 시 인성을 저하시키므로 이를 고려하여 본 발명에서 Ti, Nb의 함량은 Ti: 0.01 내지 0.5%, Nb: 0.01 내지 0.4%로 제한된다.
나머지 성분은 철(Fe)이다. 다만, 통상의 제조 과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 상기 불순물들은 통상의 제조 과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
본 발명에 따른 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법은 표면 산화물 원소비 (1)값을 0.2 이상으로 제어할 수 있으면 충분하고, 특별히 제한되지 않는다.
본 발명의 일 예에 따르면, 통상의 스테인리스강의 제조공정에 따라 제조된 냉연강판을 표면 처리하여 본 발명에 따른 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 제조할 수 있다. 일 예에 따른 표면 처리는 2단계에 걸쳐 수행될 수 있으며, 1차 표면 처리는 비산화성(nonoxidizing) 산용액에 침지하거나, 침지한 다음 전해 처리하는 것을 포함할 수 있다. 2차 표면 처리는 산화성(oxidizing) 산용액에 침지하는 것을 포함할 수 있다.
본 발명의 일 예에 따른 1차 표면 처리는 스테인리스 냉연강판을 비산화성 산용액에 5초 이상 침지하거나, 침지한 다음 0.1A/cm 2 이상의 전류밀도로 5초 이상 전해 처리하는 것을 포함할 수 있다. 이때, 비산화성 산용액은 50℃ 이상, 5중량% 이상의 염산(HCl) 또는 황산(H 2SO 4) 용액일 수 있다.
본 발명의 일 예에 따른 2차 표면 처리는 스테인리스 냉연강판을 산화성 산용액에 5초 이상 침지하는 것을 포함할 수 있다. 이때, 산화성 산용액은 50℃ 이상, 5중량% 이상의 질산(HNO 3) 용액일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
{실시예}
하기 표 1의 조성을 갖는 강종을 제강-연주공정을 통해 슬라브로 제조하였다. 그 후 제조된 슬라브를 1200℃에서 열간압연을 통해 두께 4.5mm 열연강판으로 제조하였다. 열연강판은 1050℃에서 가열된 다음, 냉간압연과 1000℃에서의 소둔을 반복하여 두께 0.15mm 냉연강판으로 제조하였다.
아래 표 1에서, 강 1~9는 발명강에 해당하며, 강 1~3은 페라이트계 스테인리스강, 강 4~6는 오스테나이트계 스테인리스강, 강 7~9는 페라이트-오스테나이트 2상계 스테인리스강이다. 강 10, 11은 비교강으로 Cr 함량이 15중량% 미만인 강종이다.
강종 합금원소 (중량%)
C N Si Mn P S Cr Ni Cu V Mo Nb Ti
강1 0.01 0.01 0.2 0.3 0.009 0.008 15.8 - - - - - 0.15
강2 0.01 0.011 0.14 0.25 0.01 0.009 22 - - - 0.18 0.35 0.03
강3 0.008 0.012 0.11 0.15 0.03 0.004 30.2 - - 0.32 - 0.18 0.11
강4 0.12 0.04 0.65 0.9 0.025 0.005 17 6.3 0.02 - - - 0.01
강5 0.02 0.05 0.5 1.12 0.02 0.002 16.4 10 0.2 - 2 - -
강6 0.04 0.08 0.5 1.4 0.015 0.001 25.6 19.8 0.4 - 0.09 - -
강7 0.028 0.25 0.7 3.1 0.01 0.001 20.1 0.92 0.84 - 0.01 - -
강8 0.016 0.14 0.43 1.43 0.013 0.001 23.1 4.11 0.25 - 0.29 - -
강9 0.015 0.28 0.34 0.82 0.012 0.001 25.2 6.3 - - 3.78 - -
강10 0.01 0.012 0.18 0.28 0.008 0.007 14.8 - - - - - 0.15
강11 0.10 0.035 0.45 0.8 0.015 0.005 13 9 0.15 - - - 0.1
표 1의 제조된 냉연강판을 하기 표 2의 표면 처리 조건에 따라 표면 처리하였다. 표면 처리는 1차, 2차로 이루어졌으며, 표 2에 기재된 A~H 조건에 따라 처리되었다. 1차 표면 처리는 냉연강판을 비산화성 산용액인 황산용액에 침지하거나, 침지한 다음 전해 처리하여 이루어졌다. 2차 표면 처리는 산화성 산용액인 질산용액에 스테인리스강을 침지하여 표면 처리되어 이루어졌다.표 2의 표면 처리에 대한 이해를 돕기 위한 예시를 들면, 표 2의 발명예 1에 따른 스테인리스 냉연강판은 1차 표면 처리로 50℃, 8중량%인 황산용액에 5초간 침지(A)된 다음, 2차 표면 처리로 50℃, 10중량%인 질산용액에 9초간 침지(D)되어 표면 처리되었다.
표 2의 표면 산화물 원소비 (1)값은 하기 식(1)에 따라 도출된 값이며, 발명예 및 비교예의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 표 2에 기재된 광전자의 이륙각의 조건으로 측정할 때 도출되는 값이다.
(1)
Figure PCTKR2020014220-appb-img-000006
표면 산화물 원소비 (1)값은 다음과 같은 방법으로 측정되었다. 먼저, PHI Quantera II 장비에 의해 표 2에 따른 이륙각 조건으로 분석하고, 분석결과는 CasaXPS 소프트웨어를 사용하여 금속산화물(MO), Cr산화물, Cr수산화물, Fe산화물, Fe수산화물의 결합 에너지에서의 피크를 분리하고, 이를 이용하여 원자 농도를 계산하였다.
표면 산화물 원소비 (1)값을 구하기 위한 'Cr산화물 및 Cr수산화물 중의 Cr원소의 원자농도(at%)의 합'은 Cr산화물, Cr수산화물의 결합 에너지에서의 피크를 분리한 다음, 이를 Cr 2p 스펙트럼 상에 피팅하여 Cr의 원자농도(at%)의 합을 도출하였다. 이때, Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다.
표면 산화물 원소비 (1)값에서의 '전체 산화물, 수산화물 중의 금속원소의 원자농도(at%)의 합'은 '상술한 Cr산화물, Cr수산화물 중의 Cr의 원자농도(at%)의 합'과 금속산화물(MO) 중의 금속원소의 원자농도(at%)의 합 및 Fe산화물, Fe수산화물 중의 Fe의 원자농도(at%)의 합을 더하여 산출하였다.
금속산화물(MO) 중의 금속원소의 원자농도(at%)의 합은 금속산화물(MO)의 결합 에너지에서의 피크를 분리한 다음, 이를 각 금속(M)의 스펙트럼 상에 피팅하여 금속원소의 원자농도(at%)의 합을 도출하였다. 여기서, 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다. Fe산화물, Fe수산화물 중의 Fe의 원자농도(at%)의 합은 Fe산화물, Fe수산화물의 결합 에너지에서의 피크를 분리한 다음, 이를 Fe 2p 스펙트럼 상에 피팅하여 Fe의 원자농도(at%)의 합을 도출하였다.
표 2의 밴드갭에너지는 표면 산화물층의 밴드갭에너지를 의미한다. 표면 산화물층의 밴드갭에너지의 측정은 전류 탐침 원자힘 현미경(Current Sensing Atomic Force Microscope, Keysight 9500 모델)을 사용하였다. 발명예, 비교예 스테인리스강 1cm x 1cm로 절단하여 시편을 준비하고, 표면 산화물층이 비활성 상태에서 측정될 수 있도록 상대습도 18%의 질소 분위기에서 20nN 하중을 주어 인가된 바이어스(bias)가 -10V에서 10V까지 전류 탐침모드로 밴드갭에너지를 측정하였다. 밴드갭에너지는 시편을 50μm x 50μm 면적으로 5회 측정하여 인가된 바이어스가 -10V에서 10V까지 변할 때 감지되는 전류가 "0"인 영역의 폭을 밴드갭에너지로 측정하였다. 이때, 탐침은 실리콘 탐침(Si tip) 상에 30nm 두께의 백금이 코팅된 탐침을 사용하였다.
강종 1차 표면 처리 2차 표면처리 광전자 이륙각 조건 밴드갭에너지(eV)
12°에서의 (1)값 44°에서의 (1)값 85°에서의 (1)값
발명예1 강1 A D 0.26 0.28 0.27 0
발명예2 강1 B D 0.3 0.31 0.32 0
비교예1 강1 E D 0.12 0.13 0.12 2.9
발명예3 강2 B D 0.34 0.33 0.35 0.3
발명예4 강2 A D 0.35 0.35 0.32 0.5
비교예2 강2 F D 0.14 0.13 0.13 3.5
발명예5 강3 B D 0.22 0.22 0.22 1
발명예6 강3 C D 0.4 0.39 0.41 0
비교예3 강3 F - 0.18 0.17 0.16 3.2
발명예7 강4 A D 0.33 0.32 0.34 0.2
발명예8 강4 C D 0.35 0.35 0.34 0.22
비교예4 강4 - D 0.11 0.11 0.12 2.9
발명예9 강5 B D 0.28 0.28 0.28 0.23
발명예10 강5 B D 0.26 0.26 0.26 1.8
비교예5 강5 F H 0.1 0.1 0.09 4.5
발명예11 강6 A D 0.73 0.75 0.79 0
발명예12 강6 B D 0.41 0.42 0.43 0
비교예6 강6 G - 0.08 0.09 0.09 6.5
발명예13 강7 C D 0.37 0.37 0.37 0.1
발명예14 강7 A D 0.38 0.38 0.38 0
비교예7 강7 F - 0.07 0.08 0.07 7.6
발명예15 강8 A D 0.65 0.7 0.8 0
발명예16 강8 C D 0.6 0.75 0.75 0
비교예8 강8 G H 0.09 0.09 0.09 6.6
발명예17 강9 A D 0.24 0.24 0.24 1.2
발명예18 강9 B D 0.2 0.21 0.2 1.9
비교예9 강9 - H 0.16 0.16 0.15 3.3
비교예10 강10 E H 0.13 0.12 0.13 4.5
비교예11 강10 E H 0.15 0.16 0.16 3.2
비교예12 강11 F - 0.14 0.13 0.14 3.4
비교예13 강11 A D 0.16 0.16 0.15 2.5
A: 50℃, 8중량%인 황산용액에 5초간 침지, B: 50℃, 10중량%인 황산용액에 6초간 침지, C: 50℃, 10중량%인 황산용액에 침지한 다음, 0.2A/cm 2로 10초간 전해처리, D: 50℃, 10중량%인 질산용액에 9초간 침지, E: 50℃, 8중량%인 황산용액에 3초간 침지, F: 50℃, 10중량%인 황산용액에 3초간 침지, G: 50℃, 10중량%인 황산용액에 침지한 다음, 0.2A/cm 2 로 4초간 전해처리, H: 50℃, 10중량%인 질산용액에 3초간 침지
이하에서, 표 2의 결과를 참조하여 각 발명예 및 비교예를 비교 평가하도록 한다. 표 2의 결과를 참조하면 발명예 1 내지 18은 본 발명에 따른 표면 처리 공정, 광전자의 이륙각이 12° 내지 85°조건일 때의 표면 산화물 원소비 (1)값이 0.2 이상인 것을 만족한 결과, 표면 산화물층의 밴드갭에너지가 2eV 이하임을 알 수 있다. 또한, 발명예 1, 2, 6, 11, 12, 14, 15, 16을 참조하면, 표면 산화물층의 밴드갭에너지가 0eV로 되어 표면 산화물층이 모재와 옴 접촉을 형성하기 위해서는 표면 산화물 원소비 (1)값이 0.26 이상인 것이 바람직하다.
비교예 1, 2는 1차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았고, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 3은 1차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았고, 2차 표면 처리를 실시하지 않았다. 또한, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 4는 1차 표면 처리를 실시하지 않았으며, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 5는 1, 2차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았고, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 6, 7은 1차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았고, 2차 표면 처리를 실시하지 않았다. 또한, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 8은 1, 2차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았고, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 9는 1차 표면 처리를 실시하지 않았으며, 2차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았다. 또한, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 10, 11은 1, 2차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았다. 또한, Cr 함량이 15중량% 미만이며, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
비교예 12는 1차 표면 처리를 실시하지 않았으며, 2차 표면 처리에 소요되는 시간이 3초로 지나치게 짧았다. 또한, Cr 함량이 15중량% 미만이며, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2ev를 초과하였다.
비교예 13은 1, 2차 표면 처리 시간이 5초 이상이나, Cr 함량이 15중량% 미만이며, 광전자의 이륙각이 12°, 44°, 85°에서의 표면 산화물 원소비 (1)값이 0.2 미만이었다. 그 결과, 표면 산화물층의 밴드갭에너지가 2eV를 초과하였다.
첨부된 도 1a, 도 1b는 표 2의 결과를 참조하여 표면 산화물 원소비 (1)값 대비 밴드갭에너지의 상관관계를 도시한 그래프이다. 도 1a, 도 1b에서 광전자의 이륙각은 각각 12°, 85°이다. 도 1a, 도 1b의 가로축은 표면 산화물 원소비 (1)값이며, 세로축은 밴드갭에너지(eV)이다.
도 1a, 도 1b를 참조하면 표면 산화물 원소비 (1)값이 0.2를 기준점으로 0.2 이상인 경우 밴드갭에너지가 2eV 이하임을 알 수 있으며, 0.2 미만인 경우 밴드갭에너지가 급격히 증가하여 밴드갭에너지가 2eV를 초과하였음을 알 수 있다. 이를 참조하면 표면 산화물 원소비 (1)값을 0.2 이상으로 제어하면 밴드갭에너지가 2eV 이하가 되도록 제어할 수 있음을 알 수 있다. 또한, 도 1a, 도 1b를 참조하면 밴드갭에너지가 0eV가 되기 위해서는 표면 산화물 원소비 (1)값이 0.26 이상으로 제어하는 것이 바람직한 것을 알 수 있다.
또한, 도 1a, 도 1b에서 도시된 점선영역은 표면 산화물 원소비 (1)값이 0.2 이상이면서, 밴드갭에너지가 2eV 이하인 영역이다. 도 1a, 도 1b을 참조하면 도 1a, 도 1b의 점선영역에 발명예가 모두 포함되어 표면 산화물 원소비 (1)값을 0.2 이상으로 제어하면 밴드갭에너지가 2eV 이하인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 제공할 수 있음을 알 수 있다.
이상의 실시예 결과로부터, 본 발명은 스테인리스강의 표면에 형성되는 반도체적 특성을 갖는 표면 산화물층을 도체화하여 전기접점 용도의 소재 및 연료전지 분리판 용도의 소재에 적용 가능한 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법을 제공할 수 있음을 알 수 있다.
또한, 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상이 되도록 제어하여 표면 산화물층의 밴드갭에너지가 2eV 이하인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강을 제공할 수 있음을 알 수 있다.
상술한 바에 있어서, 본 발명의 예시적인 실시예들을 설명하였지만, 본 발명은 이에 한정되지 않으며 해당 기술 분야에서 통상의 지식을 가진 자라면 다음에 기재하는 청구범위의 개념과 범위를 벗어나지 않는 범위 내에서 다양한 변경 및 변형이 가능함을 이해할 수 있을 것이다.
본 발명에 따른 표면 전기전도성이 우수한 스테인리스강은 연료전지 분리판 등에 적용될 수 있다.

Claims (7)

  1. Cr을 15중량% 이상 함유하는 스테인리스강의 표면을 X선 각도분해 광전자 분광법에 의하여 Al-Kα X-선원을 이용해 광전자의 이륙각이 12° 내지 85°조건으로 측정할 때, 측정되는 하기 표면 산화물 원소비 (1)값이 0.2 이상인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강:
    (1)
    Figure PCTKR2020014220-appb-img-000007
    상기 Cr산화물은 Cr 3O 4, Cr 2O 3, CrO 2 또는 CrO 3를 의미하며, 상기 Cr수산화물은 CrOOH, Cr(OH) 2 또는 Cr(OH) 3를 의미한다;
    상기 전체 산화물, 수산화물은 상기 Cr산화물, 상기 Cr수산화물, Fe산화물, Fe수산화물, 금속산화물(MO)을 포함하고, 상기 금속산화물(MO)은 혼합산화물을 포함하며, M은 Cr, Fe를 제외한 모재 내 합금원소 또는 그 조합이고, O는 산소를 의미한다.
  2. 제1항에 있어서,
    상기 표면 산화물 원소비 (1)값이 0.26 이상인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강.
  3. 제1항에 있어서,
    상기 스테인리스강의 표면 산화물층의 밴드갭에너지가 2eV 이하인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강.
  4. 제1항에 있어서,
    상기 스테인리스강의 표면 산화물층은 모재와 옴 접촉을 형성하는 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강.
  5. 스테인리스 냉연강판을 비산화성 산용액에 침지하거나, 침지한 다음 전해 처리하여 1차 표면 처리하고, 산화성 산용액에 침지하여 2차 표면 처리하는 것을 포함하여 제1항에 따른 스테인리스강을 제조하는 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법.
  6. 제5항에 있어서,
    상기 1차 표면 처리는 상기 스테인리스 냉연강판을 상기 비산화성 산용액에 5초 이상 침지하거나, 침지한 다음 0.1A/cm 2 이상의 전류밀도로 5초 이상 전해 처리하는 것을 포함하고, 상기 비산화성 산용액은 50℃ 이상, 5중량% 이상의 염산 또는 황산 용액인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법.
  7. 제5항에 있어서,
    상기 2차 표면 처리는 상기 스테인리스 냉연강판을 상기 산화성 산용액에 5초 이상 침지하는 것을 포함하고, 상기 산화성 산용액은 50℃ 이상, 5중량% 이상의 질산 용액인 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강의 제조방법.
PCT/KR2020/014220 2019-12-19 2020-10-19 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법 WO2021125532A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0170683 2019-12-19
KR20190170683 2019-12-19

Publications (1)

Publication Number Publication Date
WO2021125532A1 true WO2021125532A1 (ko) 2021-06-24

Family

ID=76477719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/014220 WO2021125532A1 (ko) 2019-12-19 2020-10-19 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2021125532A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149920A (ja) * 2002-10-07 2004-05-27 Jfe Steel Kk 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法およびそのステンレス鋼を用いた固体高分子型燃料電池
KR100777123B1 (ko) * 2007-04-18 2007-11-19 현대하이스코 주식회사 연료전지용 스테인리스강 분리판 및 그 제조방법
KR101558276B1 (ko) * 2010-10-08 2015-10-07 제이에프이 스틸 가부시키가이샤 내식성 및 전기 전도성이 우수한 페라이트계 스테인리스 강과 그의 제조 방법, 고체 고분자형 연료 전지 세퍼레이터 및 고체 고분자형 연료 전지
KR101588093B1 (ko) * 2013-12-24 2016-01-22 주식회사 포스코 연료전지용 오스테나이트계 스테인리스강 및 그 제조방법
KR20170035374A (ko) * 2015-09-22 2017-03-31 주식회사 포스코 연료전지 분리판용 스테인리스강 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149920A (ja) * 2002-10-07 2004-05-27 Jfe Steel Kk 固体高分子型燃料電池セパレータ用ステンレス鋼とその製造方法およびそのステンレス鋼を用いた固体高分子型燃料電池
KR100777123B1 (ko) * 2007-04-18 2007-11-19 현대하이스코 주식회사 연료전지용 스테인리스강 분리판 및 그 제조방법
KR101558276B1 (ko) * 2010-10-08 2015-10-07 제이에프이 스틸 가부시키가이샤 내식성 및 전기 전도성이 우수한 페라이트계 스테인리스 강과 그의 제조 방법, 고체 고분자형 연료 전지 세퍼레이터 및 고체 고분자형 연료 전지
KR101588093B1 (ko) * 2013-12-24 2016-01-22 주식회사 포스코 연료전지용 오스테나이트계 스테인리스강 및 그 제조방법
KR20170035374A (ko) * 2015-09-22 2017-03-31 주식회사 포스코 연료전지 분리판용 스테인리스강 및 이의 제조 방법

Similar Documents

Publication Publication Date Title
WO2017052047A1 (ko) 연료전지 분리판용 스테인리스강 및 이의 제조 방법
WO2022139337A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021125682A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2017105142A1 (ko) 친수성 및 내식성이 향상된 고분자 연료전지 분리판용 스테인리스강 및 이의 제조 방법
WO2012087045A2 (ko) 저철손 고강도 무방향성 전기강판 및 그 제조방법
WO2021125683A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2020111546A1 (ko) 내식성이 향상된 페라이트계 스테인리스강 및 그 제조 방법
WO2016105070A1 (ko) 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법
WO2021125531A1 (ko) 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2021125532A1 (ko) 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2021125533A1 (ko) 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2022114671A1 (ko) 표면 친수성 및 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2021125534A1 (ko) 표면 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2021125856A2 (ko) 무방향성 전기강판 및 그 제조방법
WO2022124788A1 (ko) 표면 관통 전기전도성 및 내식성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2018117469A1 (ko) 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강 및 이의 제조 방법
WO2022139355A1 (ko) 인산염 반응성이 우수한 강판 및 이의 제조방법
WO2022234902A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2022234901A1 (ko) (001) 집합조직으로 구성된 전기강판 및 그의 제조방법
WO2022139336A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2022139314A1 (ko) 무방향성 전기강판 및 그 제조방법
WO2021241812A1 (ko) 연료전지 분리판용 스테인리스강
WO2016104983A1 (ko) 고분자 연료전지 분리판용 스테인리스 박판 및 그 제조방법
WO2021125436A1 (ko) 내식성이 우수한 고분자 연료전지 분리판용 스테인리스강
WO2023121132A1 (ko) 연료전지 분리판용 스테인리스강 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20902600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20902600

Country of ref document: EP

Kind code of ref document: A1