WO2016105070A1 - 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법 - Google Patents

고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법 Download PDF

Info

Publication number
WO2016105070A1
WO2016105070A1 PCT/KR2015/014071 KR2015014071W WO2016105070A1 WO 2016105070 A1 WO2016105070 A1 WO 2016105070A1 KR 2015014071 W KR2015014071 W KR 2015014071W WO 2016105070 A1 WO2016105070 A1 WO 2016105070A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
fuel cell
polymer fuel
cell separator
Prior art date
Application number
PCT/KR2015/014071
Other languages
English (en)
French (fr)
Inventor
김종희
조기훈
김광민
서보성
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2016105070A1 publication Critical patent/WO2016105070A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stainless steel for a polymer fuel cell separator and a method for manufacturing the same, and more particularly, to a stainless steel for a polymer fuel cell separator and a method for manufacturing the same, which have improved surface resistance and improved corrosion resistance and water discharge characteristics.
  • the polymer electrolyte fuel cell has a unit cell structure in which a gas diffusion layer and a separator are stacked on both sides of a membrane electrode assembly (MEA) including an electrolyte, an anode, and a cathode electrode.
  • MEA membrane electrode assembly
  • a plurality of such unit cells are connected in series to be called a fuel cell stack.
  • the separator is provided with a flow path for supplying fuel (hydrogen or reformed gas) and oxidizing agent (oxygen and air) to the fuel cell electrode, and for discharging water, which is an electrochemical reactant, and mechanically forming the membrane electrode assembly and the gas diffusion layer. It supports and electrically connects with adjacent unit cells.
  • the applied stainless steel material should be excellent in corrosiveness in the strong acid environment, which is the fuel cell operating environment, and should be excellent in corrosion resistance and conductivity in light weight, miniaturization and mass production.
  • the fuel cell separator channel consists of a channel through which fuel or an oxidant passes and a land that contacts the gas diffusion layer to serve as an electrical passage.
  • the shape and surface state of the channel for smooth supply of reactants and discharge of products are provided. Control is very important.
  • a polymer electrolyte fuel cell is humidified to a predetermined level or more when supplying face gas (fuel and oxidant) in order to improve conductivity of hydrogen ions in an electrolyte membrane.
  • Such a flooding phenomenon may occur at the anode electrode not only by the cathode electrode but also by the water transferred through the electrolyte membrane.
  • the flooding phenomenon causes a deficiency of fuel gas. This causes irreversible damage of the electrode.
  • This phenomenon is because when the load current is forcibly applied in a state where fuel gas is insufficient, carbon carrying an anode catalyst reacts with water to make electrons and protons in the absence of fuel gas. As a result of this reaction, the loss of the anode side catalyst occurs, leading to a reduction in the effective electrode area, thereby degrading fuel cell performance.
  • the conventional method for treating the surface of a separator plate for fuel cells is focused on reducing contact resistance and improving corrosion resistance by coating precious metal or nitride on the separator plate surface.
  • the cost was increased, and the coated surface had the problem of having near hydrophobic properties.
  • the method of hydrophilizing the surface through the plasma treatment after the coating step is specifically known in the "method of manufacturing a separator for fuel cells excellent in moisture removal ability on the reaction surface (Korean Patent Publication No. 10-2013-0136713)".
  • Patent Document 0001 Korea Patent Registration 10-1410479 (2014. 06. 16.)
  • Patent Document 0002 Korea Patent Publication 10-2013-0136713 (Dec. 13, 2013)
  • the present invention has been made to solve the above problems, and provides a stainless steel for a polymer fuel cell separator and a method for manufacturing the same, which ensures resistance to corrosion even when surface coating is not performed, and improves hydrophilicity of the surface. do.
  • a method of manufacturing a stainless steel for a polymer fuel cell separator includes: a heat treatment step of forming an passivation film on a surface by bright annealing a stainless steel sheet; And a reforming step of modifying the passivation film so that the surface contact resistance of the stainless steel sheet is 10 m ⁇ cm 2 (140 N / cm 2) or less and the contact angle with water is 60 ° or less.
  • the stainless steel sheet is, in weight% (wt%), C: 0.02% or less, N: 0.02% or less, Si: 0.4% or less, Mn: 0.2% or less, P: 0.04% or less, S: 0.02% or less, Cr : 25.0 to 32.0%, Cu: 0 to 2.0%, Ni: 0.8% or less, Ti: 0.5% or less, Nb: 0.5% or less, and may include residual Fe and unavoidable impurities.
  • the reforming step may include a first film reforming process of firstly reforming the passivation film by electrolytic pickling with a sulfuric acid solution; And a second film reforming process of immersing the first passivated film in the first modified state in a mixed acid solution in which nitric acid and hydrofluoric acid are mixed.
  • the concentration of the sulfuric acid solution is 50 ⁇ 150g / l
  • the temperature is 30 ⁇ 60 °C
  • the applied current is subjected to electrolytic pickling for 0.5 ⁇ 10 minutes at 8.0 A / dm 2 or more based on the maximum anode It is desirable to.
  • the concentration of nitric acid in the mixed acid solution is 100 ⁇ 200g / L
  • the concentration of hydrofluoric acid is 10 ⁇ 70g / L
  • the second film reforming step is preferably immersed for 1 to 10 minutes at a temperature of 40 ⁇ 60 °C. .
  • the passivation film may have a surface roughness Ra of 0.05 to 0.15 ⁇ m.
  • the stainless steel for a polymer fuel cell separator includes a base material and a passivation film formed on the surface of the base material, wherein the passivation film has a contact resistance of 10 mPa 2 (140 N / cm 2) or less.
  • the passivation film has a hydrophilic property with a contact angle of 60 ° or less.
  • the stainless steel is, in weight percent, C: greater than 0 to 0.02%, N: greater than 0 to 0.02%, Si: greater than 0 to 0.4%, Mn: greater than 0 to 0.2%, P: greater than 0 to 0.04%, S : More than 0 to 0.02%, Cr: 25.0 to 32.0%, Mo: 0 to less than 0.1%, Cu: 0 to 1%, Ni: 0 to less than 0.2%, Ti: more than 0 to 0.5%, Nb: More than 0 to 0.5% and may include residual Fe and other unavoidable impurities.
  • the passivation film may satisfy the following formulas (1) and (2).
  • Si, Al, Cr and Fe refer to the atomic weight (at%) of each element.
  • the present invention can improve the low interfacial contact resistance and hydrophilic properties by modifying the surface of the stainless steel for polymer fuel cell separator plate, it is possible to omit additional processes such as additional precious metal coating to reduce manufacturing costs and improve productivity It works.
  • the surface roughness control of the stainless steel has an effect that can easily discharge the water accumulated between the gas diffusion layer and the land of the polymer fuel cell separator plate to the channel to improve the water discharge characteristics.
  • FIG. 1 is a cross-sectional view illustrating a unit cell of a fuel cell to which a polymer fuel cell separator is applied according to an embodiment of the present invention.
  • FIGS. 2 and 3 are side views comparing the contact angle between the water of the stainless steel for polymer fuel cell separator prepared in accordance with an embodiment of the present invention and the conventional stainless steel for fuel cell separator.
  • heat treatment step of forming a passivation film on the surface by bright annealing the stainless steel sheet and a reforming step of modifying the passivation film so that the surface contact resistance of the stainless steel sheet is 10 m ⁇ cm 2 (140 N / cm 2) or less and the contact angle with water is 60 ° or less.
  • a method for manufacturing a stainless steel for a polymer fuel cell separator includes a heat treatment step of bright annealing a stainless steel sheet and a modification step of modifying the surface of the stainless steel sheet.
  • the present invention relates to a stainless steel for a separator used in a polymer fuel cell and a method of manufacturing the same.
  • the polymer fuel cell separator 10 has excellent corrosion resistance in an operating environment in a polymer fuel cell. It is manufactured using a stainless steel sheet with a high Cr content to ensure it.
  • the stainless steel sheet according to an embodiment of the present invention is a weight% (wt%), C: 0.02% or less, N: 0.02% or less, Si: 0.4% or less, Mn: 0.2% or less, P: 0.04 % Or less, S: 0.02% or less, Cr: 25.0 to 32.0%, Cu: 0 to 2.0%, Ni: 0.8% or less, Ti: 0.5% or less, Nb: 0.5% or less, and the balance consists of Fe and unavoidable impurities It is a stainless steel sheet.
  • the composition ratio is limited to C: 0.02% or less (excluding 0) and N: 0.02% or less (excluding 0).
  • the composition ratio of silicon (Si) is limited to 0.4% or less.
  • Manganese (Mn) is an element that increases deoxidation, but the inclusion MnS reduces the corrosion resistance, the present invention limits the composition ratio of manganese (Mn) to 0.2% or less.
  • composition ratio of phosphorus (P) is limited to 0.04% or less.
  • S Sulfur
  • S forms MnS
  • the reason for limiting the content of chromium (Cr) to 26% or more is as an element capable of securing not only corrosion resistance but also interfacial contact resistance as the object of the present invention by preventing iron (Fe) from eluting during operation of the fuel cell. If less than 26% is added, the performance of the fuel cell may be degraded due to the elution of iron (Fe).
  • the content of chromium (Cr) is preferably limited to 32%, because the strength is excessively increased when the content of chromium (Cr) is more than 32%, so that the moldability of the separator plate for the polymer fuel cell may be increased. This is because it is degraded.
  • Copper (Cu) increases the corrosion resistance in an acidic atmosphere in which the fuel cell is operated, but when the excessive amount is added, the copper (Cu) may be eluted, thereby degrading the performance of the fuel cell and reducing the moldability.
  • the present invention limits the composition ratio of copper (Cu) to 0% to 2% or less in consideration of this.
  • Nickel (Ni) serves to reduce some contact resistance, but when excessively added, nickel (Ni) dissolution and formability may be deteriorated.
  • the present invention limits the composition ratio of nickel (Ni) to 0.8% or less in consideration of this.
  • Titanium (Ti) and niobium (Nb) are effective elements for forming carbon (C) and nitrogen (N) in carbon as carbonitrides, but lower the toughness. Therefore, in the present invention, the composition ratio is 0.5% or less in consideration of this. Limited to
  • a stainless steel sheet having a composition as described above is manufactured using a cold rolling mill to form a stainless steel sheet, followed by bright annealing in a heat treatment step to form a passivation layer on the surface of the stainless steel sheet.
  • Bright annealing is annealing in an oxidizing atmosphere.
  • the thickness of the stainless steel sheet is 0.3 mm or less, it means annealing in a reducing atmosphere containing hydrogen and nitrogen to prevent difficulty in tension control and occurrence of surface defects. .
  • the reducing atmosphere is preferably controlled to more than 70% hydrogen content.
  • a passivation film having a smooth surface state can be formed on the surface of the stainless steel sheet, and the passivation film may be formed of Cr-Fe oxide, Mn oxide, Si oxide, Nb. Oxides and the like can be formed.
  • the passivation film When the passivation film is formed on the surface of the stainless steel sheet, since the contact resistance is increased by the passivation film, Mn oxide formed at the interface while thinning the thickness of the passivation film in order to use it in manufacturing a polymer fuel cell separator,
  • the passivation film must be modified, for example, by removing the formation of second oxides such as Si oxides and Nb oxides.
  • the passivation film formed on the surface of the stainless steel sheet is modified so that the surface contact resistance of the stainless steel sheet is 10 mPa 2 (140 N / cm 2) or less and the contact angle with water is 60 ° or less.
  • the reforming step includes a first film reforming process and a second film reforming process.
  • the annealing heat treatment is performed to electrolytically pick up a stainless steel sheet having a passivation film on the surface thereof by sulfuric acid solution to firstly modify it.
  • the concentration of the sulfuric acid solution is 50 ⁇ 150g / L, the temperature is preferably adjusted to 40 ⁇ 80 °C.
  • the concentration of sulfuric acid when the concentration of sulfuric acid is less than 50g / l, the ability to remove the passivation film on the surface may be reduced, and if the concentration of sulfuric acid is greater than 150g / l, the stainless steel sheet may be eroded, so it is preferable to limit it to the above range. And, if the temperature of the sulfuric acid solution is out of the 30 ⁇ 60 °C range is limited to the above range because the passivation film removal efficiency may be lowered.
  • the electrolytic pickling is preferably controlled to a current of 8.0 A / dm 2 or more on the basis of the maximum anode, and the electrolytic pickling time is preferably performed for 0.5 to 10 minutes.
  • the pickling time is less than 0.5 minutes, the time to remove the passivation film is not secured, and if it exceeds 10 minutes, the manufacturing cost is increased due to the increase in unnecessary pickling tank length.
  • the passivation film is thinned, the ratio of Cr-Fe oxide is increased, and the ratio of second oxides such as Mn oxide, Si oxide, Nb oxide, etc. is reduced. There is an effect that can reduce the surface contact resistance.
  • the second film reforming process uses a mixed acid solution having a concentration of nitric acid of 100 to 200 g / l and a hydrofluoric acid concentration of 10 to 70 g / l, and adding the passivated film treated with pickling to a mixed acid solution of 40 to 60 ° C. Perform secondary reforming by soaking for ⁇ 10 minutes.
  • the reason for limitation of the concentration, temperature and time of the mixed acid solution is as described in the first film modification step.
  • FIG. 1 is a cross-sectional view illustrating a unit cell of a fuel cell to which a separator for polymer fuel cell is applied according to an embodiment of the present invention.
  • the forming step forms a flow path formed by repeating the land 11 and the channel 12 recessed in the protruded stainless steel sheet as described above.
  • a fuel cell separator 10 is manufactured.
  • the upper and lower molds having the reverse phase pattern of the polymer fuel cell separation plate 10 are formed through a metal sheet forming process.
  • stamping or multi-stage stamping by placing a stainless steel plate between the upper die processed in the shape opposite to the electrode surface of the flow path and the lower die processed in the opposite shape to the cooling surface of the flow path and hitting it at a high speed and with a high speed.
  • servo-pressing (Hydro-forming) using only the lower mold or servo-pressing may be used to arrange a stainless steel sheet between the upper mold and the lower mold and mold using a hydraulic servo press.
  • the fuel cell unit cell includes a membrane electrode assembly (MEA) 20, a gas diffusion layer 30, and a separator plate 10 for a polymer fuel cell. 20)
  • MEA membrane electrode assembly
  • the gas diffusion layer 30 is located at both sides.
  • the membrane electrode assembly 20 is composed of an electrolyte membrane and an anode electrode and a cathode electrode on both sides thereof, and a gas diffusion layer 30 is positioned on each side thereof.
  • the gas diffusion layer 30 may transfer the reaction gas from the flow path formed in the separator 10 for the polymer fuel cell to the electrode while protecting the electrode, and transfer water generated from the electrode to the flow path of the separator 10 for the polymer fuel cell. It is made of carbon paper or carbon nonwoven fabric having breathability and electronic conductivity.
  • Each of the separator plates 10 for polymer fuel cells is disposed outside the gas diffusion layer 30.
  • the separator 10 for the polymer fuel cell includes a flow path formed by alternately repeating a surface protruding from the electrode surface and a surface protruding from the cooling surface, and the surface protruding from the flow path to the electrode surface and the gas diffusion layer 30 contact each other.
  • the part is called a land 11, and the space between the land 11 and the land 11 is called a channel 12.
  • the channel 12 serves as a passage through which fuel (hydrogen or reformed gas) or oxidant (oxygen or air) required for the fuel cell reaction flows.
  • the polymer fuel cell separator 10 is largely comprised of an anode separator 10a and a cathode separator 10b, and reacts to the fuel cell reaction through the channel 12 of the anode separator 10a.
  • the required fuel hydrogen or reformed gas
  • the oxidant oxygen or air
  • the opposite side of the anode separator channel 12 and the opposite side of the cathode separator channel 12 abut against each other to serve as mechanical support and electrical passageways, and the opposite side of the anode separator land 11. And a space formed by the opposite side of the cathode separator land 11 is a cooling medium channel through which the cooling medium flows.
  • a portion where the land 11 and the gas diffusion layer 30 meet each other accumulates more water than the channel 12 portion, and the water droplets grow significantly over time.
  • the separator 10 for the polymer fuel cell The more hydrophobic the land portion and the channel portion of the surface, the less water is discharged, and a flooding phenomenon that blocks all pores of the gas diffusion layer 30 occurs, thereby degrading the performance of the fuel cell.
  • FIGS. 2 and 3 are side views comparing the contact angle between the water of the stainless steel for polymer fuel cell separator prepared in accordance with an embodiment of the present invention and the conventional stainless steel for fuel cell separator.
  • the surface roughness (Ra) value of the stainless steel sheet is managed to 0.05 ⁇ 0.15 ⁇ m, hydrophilicity of the stainless steel sheet to have a contact angle of 60 ° or less
  • the surface roughness (Ra) value of the stainless steel sheet is managed to 0.05 ⁇ 0.15 ⁇ m, hydrophilicity of the stainless steel sheet to have a contact angle of 60 ° or less
  • the cold rolled sheet of 0.1 mm thickness subjected to the bright annealing heat treatment in the reducing atmosphere contained therein was subjected to electrolytic pickling in each sulfuric acid solution, and then immersed in a mixed acid solution containing nitric acid and hydrofluoric acid, followed by molding.
  • Tables 1 and 2 below show the contact resistance, contact angle, and in-film (Si + Al) / (for the ferritic stainless steel sheet containing 30 wt% Cr according to the condition of the modification step according to one embodiment of the present invention.
  • Table shows the atomic ratio of Cr + Fe) and the atomic ratio of (Cr / Fe) in the film.
  • the contact resistance evaluation was prepared by cutting the 0.1 mm thick material in 25cm 2 area to prepare two sheets, between the 25cm 2 area of carbon paper (SGL-10BA) used as a gas diffusion layer in between , The interface contact resistance was evaluated four times at a contact pressure of 140 N / cm 2.
  • the contact angle was measured by cutting a 0.1 mm thick stainless steel sheet into 20 cm 2 area and dropping 5 ⁇ l of distilled water into the water droplets at room temperature using KRUSS GmbH's DSK 10-MK2 equipment to measure the contact angle with the surface. It was.
  • the applied current during the first film reforming process is 8.0 A / dm 2 or more based on the maximum anode, and the concentration of the sulfuric acid solution is 50 to 150 g / l, The temperature is 40-80 ° C., followed by an electrolytic pickling time of 0.5 minutes to 10 minutes, followed by a mixed acid solution in which nitric acid (100-200 g / l) and hydrofluoric acid (10-70 g / l) having a temperature of 40-60 ° C. are mixed.
  • nitric acid 100-200 g / l
  • hydrofluoric acid 10-70 g / l
  • the modified stainless steel sheet has an atomic ratio of (Cr / Fe) of 3 or more while reducing the atomic ratio of (Si + Al) / (Cr + Fe), which is an insulating material in the passivation film, to 1 or less. It is possible to improve the contact resistance by further improving the surface roughness (Ra) by modifying the surface roughness (Ra) to 0.05 ⁇ 0.15 ⁇ m, so that the contact angle is 60 ° or less, to secure the hydrophilic properties of the stainless steel sheet to improve the water discharge characteristics Able to know.
  • Comparative Example 1 is a surface-modified 0.1 mm thick stainless steel sheet subjected to bright annealing in a cyclic atmosphere containing hydrogen (75 vol.%) And nitrogen (25 vol.%) After cold rolling using a Z-mill cold rolling mill. As a result of the unprocessed material, it can be seen that the insulating SiO2 + Al2O3 content in the film remains, resulting in high contact resistance and ineffective for hydrophilic properties.
  • Comparative Example 2 when the 0.1 mm thick cold rolled sheet subjected to bright annealing was subjected to a mixed acid immersion process without sulfuric acid electrolysis, the insulating SiO 2 + Al 2 O 3 content in the passivation film was not lowered, thus the contact resistance was high, and the atoms of Cr / Fe It can be seen that the corrosion resistance is not expected to be low due to the low rain, and the contact angle is reduced to 85 °.
  • Comparative Example 3 the cold-rolled thin plate of 0.1 mm thick heat treated with bright annealing was not immersed in the mixed acid solution after sulfuric acid electrolysis, and the contact resistance was high because the content of insulating SiO 2 + Al 2 O 3 in the passivation film could not be lowered. Low atomic ratio is not expected to improve the corrosion resistance, the contact angle is 70 ° can be seen that the hydrophilic properties slightly increased compared to 2 compared to 2, but the hydrophilic properties required in the present invention can not be secured.
  • Comparative Examples 4 to 11 are the results of evaluating the contact resistance and the contact angle of the ultra-thin cold rolled annealing material of the bright annealing heat treatment according to the sulfuric acid electrolyte and mixed acid immersion process.
  • Comparative Examples 12 and 13 do not immerse the 0.1 mm thick cold rolled thin plate subjected to bright annealing after electrolytic pickling using a nitric acid solution, and then immerse it in the mixed acid solution. After cold electrolytic pickling of the cold rolled thin plate using the nitric acid solution, the characteristics of the cold rolled sheet were immersed in the mixed acid solution.
  • the sulfuric acid solution has a concentration of 50 to 150 g / l, a temperature of 30 to 60 ° C., and an applied current of 8.0 A / dm 2 or more based on the maximum anode. It turns out that it is preferable to carry out electrolytic pickling for 0.5 to 10 minutes.
  • the applied current condition in the first film modification process is preferably 8 A / dm 2 or more in view of contact resistance and surface hydrophilization treatment.
  • the electrolysis time is short in the first reforming step, the atomic ratio of Cr / Fe is low, and it is difficult to contribute to the corrosion potential and hydrophilicity. Therefore, if the electrolysis time is long, hydrophilicity and corrosion resistance due to excessive erosion on the surface of the material It is preferable to limit to 10 minutes or less because it is difficult to contribute.
  • the nitric acid concentration is limited to 100g / l or more, the hydrofluoric acid concentration to 10g / l or more, the temperature of the mixed acid solution is 40 ° C or more, and the immersion time is 60 or more.
  • the concentration of nitric acid and hydrofluoric acid is too high, the temperature of the immersion tank is high, or the immersion time is long, it is difficult to reduce the corrosion resistance due to excessive erosion of the material surface and to ensure the uniformity of the hydrophilic property.
  • the hydrofluoric acid concentration is 70 g / l or less
  • the temperature of the mixed acid solution is 60 ° C. or less
  • the immersion time is preferably limited to 600 seconds or less.
  • the polymer fuel cell separator 10 including the stainless steel for the polymer fuel cell separator according to the embodiment of the present invention manufactured as described above is suitable for, for example, fluorine-based rubber or the like for ensuring the airtightness of the reaction gas and the cooling water. It may further include a gasket formed using a material.
  • the contact resistance and the hydrophilic property are not changed even when exposed to a thermal environment of 150 to 250 ° C in the gasket formation process or the crosslinking process.
  • the stainless steel and the manufacturing method according to the embodiments of the present invention are applicable to a separator for a polymer fuel cell and a method for manufacturing the separator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 표면을 개질하여 내식성 및 물배출 특성이 개선된 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법에 관한 것으로서, 본 발명의 일 실시예에 따른 고분자 연료전지 분리판용 스테인리스강의 제조 방법은 스테인리스 강판을 광휘소둔하여 표면에 부동태 피막을 형성시키는 열처리 단계; 및 상기 스테인리스 강판의 표면 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이고, 물과의 접촉각이 60° 이하가 되도록, 상기 부동태 피막을 개질시키는 개질 단계를 포함한다.

Description

고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법
본 발명은 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법에 관한 것으로서, 보다 상세하게는 표면을 개질하여 내식성 및 물배출 특성이 개선된 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법에 관한 것이다.
일반적으로, 고분자 전해질형 연료전지는, 전해질과 애노드(anode) 및 캐소드(cathode) 전극으로 이루어진 막전극 접합체(MEA: Membrane Electrode Assembly)의 양측에 기체 확산층과 분리판이 적층된 단위전지 구조로 이루어져 있으며, 이러한 단위전지 여러 개가 직렬로 연결되어 구성된 것을 연료전지 스택이라고 한다.
분리판은 연료전지 전극에 각각 연료(수소 혹은 개질가스)와 산화제(산소와 공기)를 공급하고, 전기화학 반응물인 물을 배출하기 위한 유로가 형성되어 있으며, 막전극 집합체와 기체 확산층을 기계적으로 지지하며, 인접한 단위전지와 전기적으로 연결시키는 기능을 수행한다.
이러한 분리판 제조시 종래에 흑연 소재를 일반적으로 사용하였으나, 최근에는 제작비용, 무게 등을 고려하여 스테인리스강을 많이 적용하고 있다.
적용되는 스테인리스강 소재는 연료전지 작동환경인 강한 산성 환경 내에 부식성이 우수하여야 하며, 경량화, 소형화, 양산성 관점에서 내식성 및 전도성이 우수해야 한다.
연료전지 분리판 유로는 연료 혹은 산화제가 지나가는 채널(Channel) 및 기체 확산층과 맞닿아 전기적 통로 역할을 하는 랜드(land)로 구성되며, 원활한 반응물의 공급과 생성물의 배출을 위하여 유로의 형상 및 표면 상태의 제어가 매우 중요하다.
일반적으로, 고분자 전해질 연료전지는, 전해질 막에서 수소 이온의 전도성을 향상시키기 위하여 반위가스(연료 및 산화제)를 공급할 때 일정 수준 이상으로 가습해서 공급한다.
한편, 캐소드 측에서는 전기화학 반응에 의해서 물이 생성되기 때문에 반응가스의 노점 온도가 연료전지 작동온도보다 높으면 채널, 기체 확산층 혹은 전극 내부에서 수증기 응축에 의한 물방울이 발생새키는데, 이를 플러딩(flooding) 현상이라고 한다.
플러딩 현상은 반응 가스의 불균일 유동 및 충분한 확산이 이루어지지 않아 반응가스의 결핍을 유발하여 연료전지의 성능을 저하시키는 원인이 된다.
이러한, 플러딩 현상은 캐소드 전극뿐만 아니라 전해질 막을 통과해 전달된 물에 의해 애노드 전극에서도 발생할 수 있는데, 특히, 애노드 측에서 응축수에 의한 가스유로의 막힘 현상이 발생한 경우에는 연료가스의 결핍을 초래하고, 이것은 전극의 비가역적 손상을 초래하게 된다.
이와 같은 현상은 연료가스가 부족한 상태로 부하전류가 강제로 가해지면 연료가 없는 상태에서 전자와 프로톤을 만들기 위해서 애노드의 촉매를 담지하고 있는 카본이 물과 반응하기 때문이다. 이러한 반응의 결과로 애노드 측 촉매의 손실이 발생하게 되고 유효 전극면적의 감소를 초래하여 연료전지 성능을 저하시킨다.
따라서, 이러한 플러딩 현상을 방지하고, 연료전지의 성능을 안정화시키기 위해서는 분리막의 표면에 친수화 특성을 부여하여 물을 잘 배출시키는 처리가 필요하다.
그러나, 종래 연료전지용 분리판의 표면처리 방법은 분리판 표면에 귀금속 혹은 질화물 등의 코팅을 하여 접촉저항을 줄이고 내식성을 향상시키는 것에 초점이 맞추어져 있어 분리판을 코팅시키는 공정이 추가됨에 따라, 제조비용이 증가되고, 코팅된 표면이 소수성에 가까운 특성을 갖는 문제점을 가지고 있었다.
종래 분리판을 성형 후 랜드 표면에 기계적인 마찰을 통해 스크래치를 형성하여 물배출 특성을 개선한 고분자 연료전지용 분리판에 대해서는 "고분자 연료전지용 분리판 및 그 제조방법(한국등록특허 10-1410479)"등에서 구체적으로 공지되어 있다.
그러나, 추가적으로 스크래치를 형성시키기 위한 공정이 추가됨에 따라 제조비용이 증가되며, 형성된 스크래치의 균일성을 확보하기 어려운 문제점을 가지고 있었다.
한편, 코팅공정 후 플라즈마 처리를 통하여 표면을 친수화하는 방법에 대해서는 "반응면에서의 습기 제거력이 우수한 연료전지용 분리판 제조 방법(한국공개특허 10-2013-0136713)"등에서 구체적으로 공지되어 있다.
그러나, 분리판의 표면을 친수화시키기 위해 코팅공정 이외에도 플라즈마 처리공정을 추가로 필요로 함에 따라 제조비용이 증가되며, 제조시 장시간이 소요되어 생산성이 저하되는 문제점을 가지고 있었다.
(특허문헌 0001) 한국등록특허 10-1410479 (2014. 06. 16.)
(특허문헌 0002) 한국공개특허 10-2013-0136713 (2013. 12. 13.)
본 발명은 상기와 같은 문제점을 해결하기 위하여 창출된 것으로서, 표면 코팅을 하지 않더라도 부식에 대한 저항성을 확보함과 동시에, 표면의 친수 특성을 향상시킨 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법을 제공한다.
본 발명의 일 실시예에 따른, 고분자 연료전지 분리판용 스테인리스강의 제조 방법은 스테인리스 강판을 광휘소둔하여 표면에 부동태 피막을 형성시키는 열처리 단계; 및 상기 스테인리스 강판의 표면 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이고, 물과의 접촉각이 60° 이하가 되도록, 상기 부동태 피막을 개질시키는 개질 단계를 포함한다.
상기 스테인리스 강판은, 중량%(wt%)로, C: 0.02% 이하, N: 0.02% 이하, Si: 0.4% 이하, Mn: 0.2% 이하, P: 0.04% 이하, S: 0.02% 이하, Cr: 25.0~32.0%, Cu: 0~2.0%, Ni: 0.8% 이하, Ti: 0.5% 이하, Nb: 0.5% 이하이고, 잔부 Fe 및 불가피한 불순물을 포함 할 수 있다.
상기 개질 단계는, 상기 부동태 피막을 황산 용액으로 전해 산세하여 1차 개질시키는 제1 피막개질 과정; 및 1차 개질된 상기 부동태 피막을 질산과 불산이 혼합된 혼산 용액에 침지시켜 2차 개질시키는 제2 피막개질 과정;를 포함할 수 있다.
상기 제1 피막개질 단계에서, 상기 황산 용액의 농도는 50~150g/ℓ이고 온도는 30~60℃이며, 인가전류는 최대 양극 기준으로 8.0 A/d㎡ 이상으로 0.5~10분간 전해 산세를 실시하는 것이 바람직하다.
상기 혼산 용액 중 질산의 농도는 100~200g/ℓ이고, 불산의 농도는 10~70g/ℓ이며, 상기 제2 피막개질 단계는, 40~60℃의 온도에서 1~10분간 침지시키는 것이 바람직하다.
상기 부동태 피막은, 표면 조도(Ra)가 0.05~0.15㎛인 것을 특징으로 할 수 있다.
본 발명의 일 실시예에 따른 고분자 연료 전지 분리판용 스테인리스강은, 모재 및 상기 모재의 표면에 형성된 부동태 피막을 포함하며, 상기 부동태 피막은, 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이며, 상기 부동태 피막은, 접촉각이 60° 이하로 친수특성을 갖는다.
상기 스테인리스강은, 중량%로, C: 0초과~0.02%, N: 0초과~0.02%, Si: 0초과~0.4%, Mn: 0초과~0.2%, P:0초과~0.04%, S: 0초과~0.02%, Cr: 25.0~32.0%, Mo:0~0.1미만%, Cu:0~1%, Ni:0~0.2% 미만, Ti: 0초과~0.5%, Nb: 0초과~0.5% 이고, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
상기 부동태 피막은, 하기의 식 (1), (2)를 만족할 수 있다.
(Si+Al)/(Cr+Fe) ≤ 1.0 ----------------------------(1)
Cr/Fe ≥ 3.0 --------------------------------------(2)
상기 식 (1), (2)에서 Si, Al, Cr 및 Fe는 각 원소의 원자량(at%)을 의미함.
본 발명은 고분자 연료전지 분리판용 스테인리스강의 표면을 개질시켜 낮은 계면 접촉저항 및 친수 특성을 개선시킬 수 있으며, 별도의 귀금속 코팅 등 부가 공정을 생략할 수 있어 제조원가를 절감시키고, 생산성을 향상시킬 수 있는 효과가 있다.
또한, 스테인리스강의 표면 조도 제어를 통하여 고분자 연료전지 분리판의 기체 확산층과 랜드 사이 누적된 물을 채널로 용이하게 배출시켜 물배출 특성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 고분자 연료전지 분리판이 적용된 연료전지의 단위셀을 설명하기 위한 단면도이다.
도 2 및 도 3은 본 발명의 일 실시예에 따라 제조된 고분자 연료전지 분리판용 스테인리스강과 종래 일반적인 연료전지 분리판용 스테인리스강의 물과의 접촉각을 비교한 측면도들이다.
본 발명의 일 실시예에 따른, 고분자 연료전지 분리판용 스테인리스강의 제조 방법에 있어서, 스테인리스 강판을 광휘소둔하여 표면에 부동태 피막을 형성시키는 열처리 단계; 및 상기 스테인리스 강판의 표면 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이고, 물과의 접촉각이 60° 이하가 되도록, 상기 부동태 피막을 개질시키는 개질 단계를 포함한다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.
본 발명의 일 실시예에 따른, 고분자 연료전지 분리판용 스테인리스강의 제조 방법은 스테인리스 강판을 광휘소둔하는 열처리 단계와 스테인리스 강판의 표면을 개질시키는 개질 단계를 포함한다.
본 발명은 고분자 연료전지 내에서 사용되는 분리판용 스테인리스강 및 그 제조방법에 관한 것으로, 본 발명의 일 실시예에 따른, 고분자 연료전지 분리판(10)은 고분자 연료전지 내 작동환경에서 우수한 내식성을 확보할 수 있도록 Cr의 함량이 높은 스테인리스 강판을 사용하여 제조된다.
보다 상세하게, 본 발명의 일 실시예에 따른 스테인리스 강판은 중량%(wt%)로, C: 0.02% 이하, N: 0.02% 이하, Si: 0.4% 이하, Mn: 0.2% 이하, P: 0.04% 이하, S: 0.02% 이하, Cr: 25.0~32.0%, Cu: 0~2.0%, Ni: 0.8% 이하, Ti: 0.5% 이하, Nb: 0.5% 이하이고, 잔부 Fe 및 불가피한 불순물로로 이루어진 스테인리스 강판이다.
이하, 본 발명에 따른 실시 예에서의 성분 함량의 수치 한정 이유에 대하여 설명하기로 한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%(wt%)이다.
탄소(C)와 질소(N)는 강 중에서 크롬(Cr) 탄질화물을 형성하며, 그 결과 크롬(Cr)이 결핍된 층의 내식성이 저하되므로, 양 원소는 낮을수록 바람직하다.
따라서 본 발명에서는 C:0.02%이하(0 제외), N:0.02%이하(0 제외)로 그 조성비를 제한한다.
규소(Si)는 탈산에 유효한 원소이나 인성 및 성형성을 억제하므로, 본 발명에서는 규소(Si)의 조성비를 0.4% 이하로 제한한다.
망간(Mn)은 탈산을 증가시키는 원소이나, 개재물인 MnS는 내식성을 감소시키므로, 본 발명에서는 망간(Mn)의 조성비를 0.2%이하로 제한한다.
인(P)는 내식성뿐만 아니라 인성을 감소시키므로, 본 발명에서는 인(P)의 조성비를 0.04% 이하로 제한한다.
황(S)은 MnS를 형성하며, 이러한 MnS은 부식의 기점이 되어 내식성을 감소시키므로, 본 발명에서는 이를 고려하여 황(S)의 조성비를 0.02% 이하로 제한하는 것이 바람직하다.
크롬(Cr)의 함량을 26% 이상으로 한정하는 이유는, 연료전지 작동시 철(Fe)이 용출되는 것을 방지함으로써 내식성뿐만 아니라, 본 발명에서 목적으로 하는 계면 접촉저항을 확보할 수 있는 원소로서, 26% 미만으로 첨가되는 경우 철(Fe)의 용출로 인하여 연료전지의 성능이 저하를 유발할 수 있기 때문이다.
보다 바람직하게, 크롬(Cr)의 함량은 32% 제한하는 것이 바람직한데, 그 이유는 크롬(Cr)의 함량이 32%를 초과하는 경우 강도가 과도하게 증가되어 고분자 연료전지용 분리판 제조시 성형성이 저하되기 때문이다.
구리(Cu)는 연료전지가 작동되는 산성 분위기에서 내식성을 증가시키나, 과량 첨가시 구리(Cu)의 용출로 인하여 연료전지의 성능이 저하 및 성형성이 저하될 수 있다.
따라서 본 발명에서는 이를 고려하여 구리(Cu)의 조성비를 0% 내지 2% 이하의 범위로 제한한다.
니켈(Ni)은 일부 접촉저항을 감소시키는 역할을 하나, 과량 첨가시 니켈(Ni) 용출 및 성형성이 저하를 유발할 수 있다.
따라서, 본 발명에서는 이를 고려하여 니켈(Ni)의 조성비를 0.8% 이하로 제한한다.
티타늄(Ti)과 니오븀(Nb)는 강 중의 탄소(C) 및 질소(N)를 탄질화물로 형성하는 데 유효한 원소이나, 인성을 저하시키므로, 본 발명에서는 이를 고려하여 각각의 조성비를 0.5% 이하로 제한한다.
본 발명에서는 상기와 같은 조성을 갖는 스테인리스강을 냉간 압연기를 이용하여 스테인리스 강판을 제조한 후 열처리 단계에서 광휘소둔시켜 스테인리스 강판의 표면에 부동태 피막층을 형성한다.
광휘소둔이란 무산화성 분위기에서 소둔을 실시하는 것으로, 스테인리스 강판의 두께가 0.3㎜ 이하인 경우 장력제어의 어려움 및 표면 결함이 유발을 방지하도록, 수소와 질소가 함유된 환원성 분위기에서 소둔하는 열처리를 의미한다.
이때, 환원성 분위기는 수소 함량이 70% 이상으로 제어하는 것이 바람직하다.
이처럼, 광휘소둔 열처리는 환원성 분위기에서 실시되기 때문에, 스테인리스 강판의 표면에 매끄러운 표면상태를 갖는 수 ㎚ 두께의 부동태 피막이 형성될 수 있으며, 이러한 부동태 피막은 Cr-Fe 산화물, Mn 산화물, Si 산화물, Nb 산화물 등이 형성될 수 있다.
스테인리스 강판의 표면에 상기와 같은 부동태 피막이 형성되면, 부동태 피막에 의하여 접촉저항이 증가되기 때문에, 이를 고분자 연료전지 분리판 제조시 사용하기 위해서는 부동태 피막의 두께를 얇게 하면서, 계면에 형성된 형성된 Mn산화물, Si산화물, Nb산화물 등의 제2의 산화물 형성을 제거하는 등 부동태 피막을 개질시켜야 한다.
본 발명에서는 스테인리스 강판의 표면 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이면서, 동시에 물과의 접촉각이 60° 이하가 되도록 스테인리스 강판의 표면에 형성된 부동태 피막을 개질시킨다.
본 발명의 일 실시예에 따른, 개질 단계는 제1 피막개질 과정 및 제2 피막개질 과정으로 구성된다.
제1 피막개질 과정은 광휘소둔 열처리하여 그 표면에 부동태 피막이 형성된 스테인리스 강판을 황산 용액으로 전해 산세하여 1차 개질시킨다.
이때, 황산 용액의 농도는 50~150g/ℓ이고, 그 온도는 40~80℃로 조절하는 것이 바람직하다.
왜냐하면, 황산의 농도가 50g/ℓ 보다 작은 경우, 표면의 부동태 피막 제거 능력이 저하될 수 있으며 황산의 농도가 150g/ℓ 보다 큰 경우 스테인리스 강판이 침식될 우려가 있기 때문에 상기 범위로 한정하는 것이 바람직하며, 황산 용액의 온도가 30~60℃ 범위를 벗어나는 경우 부동태 피막 제거효율이 저하될 수 있기 때문에 상기 범위로 제한한다.
또한, 제1 피막개질 과정에서 전해 산세는 최대 양극 기준으로 인가 전류를 8.0 A/d㎡ 이상으로 제어하고, 전해 산세 시간은 0.5~10분간 실시하는 것이 바람직하다.
왜냐하면, 인가전류가 최대 양극 기준으로 8.0 A/d㎡ 미만인 경우, 스테인리스 강판의 부동태 피막의 두께를 얇게 하는 것이 불가능하며 제2 산화물 제거가 어렵기 때문이다.
한편, 산세 시간이 0.5분 미만인 경우 부동태 피막을 제거할 수 있는 시간이 확보되지 않으며, 10분을 초과하는 경우 불필요한 산세조 길이 증가로 인하여 제조비용이 증가되기 때문이다.
상기와 같이, 1차 피막개질 과정을 실시함으로써, 부동태 피막의 두께를 얇게 하고, Cr-Fe 산화물의 비율을 높여 Mn산화물, Si산화물, Nb산화물 등 제2 산화물의 비율을 감소시킴으로써, 스테인리스 강판의 표면 접촉저항을 감소시킬 수 있는 효과가 있다.
한편, 제2 피막개질 과정은 질산의 농도가 100~200g/ℓ이고, 불산의 농도가 10~70g/ℓ인 혼산 용액을 사용하며, 산세 처리한 부동태 피막을 40~60℃의 혼산 용액에 1~10분간 침지시켜 2차 개질을 실시한다. 이때, 혼산 용액의 농도, 온도 및 시간의 한정이유는 상기 제1 피막개질 단계에서 설명한 바와 같다.
이에, 스테인리스 강판의 표면의 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이면서, 물과의 접촉각이 60° 이하가 되도록 개질시킴으로써, 고분자 연료전지 내 작동환경에서 우수한 내식성을 확보하고, 물배출 특성을 향상시킬 수 있는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 고분자 연료전지용 분리판이 적용된 연료전지의 단위셀을 설명하기 위한 단면도이다.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 성형 단계는 상기와 같이 개질이 완료된 스테인리스 강판에 돌출된 랜드(11)와 함몰된 채널(12)이 반복하여 이루어진 유로를 형성하여 고분자 연료전지용 분리판(10)을 제조한다.
이때, 고분자 연료전지용 분리판(10)의 역상 형상패턴을 갖는 상부, 하부 금형을 이용하여 금속박판 성형 공정을 통해 이루어진다.
즉, 유로의 전극면과 반대의 형상으로 가공된 상부 금형과 유로의 냉각면과 반대 형상으로 가공된 하부 금형 사이에 스테인리스 판재를 놓고 빠르고 강한 속도로 타격하여 성형하는 스탬핑(Stamping) 또는 다단 스탬핑(Progress Stamping)을 사용할 수 있다.
또한, 상부 금형 및 하부 금형 사이에 스테인리스 강판을 배치하고 유압 서보프레스를 사용하여 성형하는 서보 프레싱(Servo-Pressing) 또는 하부 금형만을 이용한 하이드로포밍(Hydro-forming)을 사용할 수도 있다.
한편, 연료전지 단위셀은 도 1에 도시된 바와 같이, 막전극 접합체(Membrane Electrode Assembly; MEA, 20)와 기체 확산층(30)과 고분자 연료전지용 분리판(10)으로 이루어지며, 막전극 접합체(20) 양측에 각각 기체 확산층(30)이 위치한다.
막전극 접합체(20)는 전해질 막과 그 양측에 애노드 전극 및 캐소드 전극으로 구성되며, 양측에 각각 기체 확산층(30)이 위치한다.
이러한 기체 확산층(30)은 전극을 보호하면서 고분자 연료전지용 분리판(10)에 형성된 유로에서 전극으로 반응가스를 전달하고, 전극에서 발생된 물을 고분자 연료전지용 분리판(10)의 유로로 전달할 수 있도록, 통기성과 전자 도전성을 갖는 탄소 종이 또는 탄소 부직포로 이루어진다.
이러한, 기체 확산층(30) 외곽에는 각각 고분자 연료전지용 분리판(10)이 배치된다.
고분자 연료전지용 분리판(10)은 전극면으로 돌출된 면과 냉각면으로 돌출된 면이 교대로 반복하여 이루어진 유로를 포함하며, 유로에서 전극면으로 돌출된 면과 기체 확산층(30)이 접촉하는 부분을 랜드(11)라고 하며, 랜드(11)와 랜드(11) 사이의 공간은 채널(12)이라고 한다.
채널(12)은 연료전지 반응에 필요한 연료(수소 혹은 개질 가스) 또는 산화제(산소 혹은 공기)가 흐르는 통로 역할을 한다.
보다 상세하게 설명하면, 고분자 연료전지용 분리판(10)은 크게 애노드 분리판(10a)과 캐소드 분리판(10b)으로 구성되며, 애노드 분리판(10a)의 채널(12)을 통하여 연료전지 반응에 필요한 연료(수소 혹은 개질 가스)가 이동되며, 캐소드 분리판(10b)의 채널(12)을 통하여 연료전지 반응에 필요한 산화제(산소 혹은 공기)가 이동된다.
상기 애노드 분리판 채널(12)의 반대면과 캐소드 분리판 채널(12)의 반대면은 서로 맞닿아서 기계적인 지지 및 전기적인 통로 역할을 담당하며, 애노도 분리판 랜드(11)의 반대면과 캐소드 분리판 랜드(11)의 반대면으로 이루어진 공간은 냉각매체가 흐르는 냉각매체 채널이다.
연료전지가 작동되면, 애노드 분리판 채널(12)에 있는 연료는 확산을 통해 기체 확산층(30)을 거쳐 애노드 전극으로 이동하며 캐소드 분리판 채널(12)에 있는 산화제는 확산을 통해 기체 확산층을 거처 캐소드 전극으로 이동한다.
이때, 반응을 통해 전극에 생성된 물은 기체 확산층(30)을 통해 고분자 연료전지용 분리판(10)의 채널(12)로 이동하여 연료전지 외부로 배출이 이루어진다.
일반적으로, 랜드(11)와 기체 확산층(30)이 만나는 부분은 채널(12) 부위에 비하여 물이 많이 축적되며, 시간이 지남에 따라서 물방울이 크게 성장하게 되는데, 고분자 연료전지용 분리판(10)의 랜드부 및 채널부 표면이 소수성일수록 물배출이 용이하지 않고, 기체 확산층(30)의 기공을 전부 막아버리는 플러딩(flooding) 현상이 발생하여 연료전지의 성능을 저하시킨다.
특히, 응축수에 의한 가스유로의 막힘 현상이 발생한 경우에는 연료가스의 결핍을 초래하고, 이것은 연료전극의 비가역적 손상을 초래하게 된다.
도 2 및 도 3은 본 발명의 일 실시예에 따라 제조된 고분자 연료전지 분리판용 스테인리스강과 종래 일반적인 연료전지 분리판용 스테인리스강의 물과의 접촉각을 비교한 측면도들이다.
도 2에 도시된 바와 같이, 본 발명에서는 이와 같은 문제를 해결하기 위하여, 스테인리스 강판의 표면 조도(Ra)값을 0.05~0.15㎛로 관리하고, 60°이하의 접촉각도를 갖도록 하여 스테인리스 강판의 친수 특성을 확보함으로써, 물배출을 용이하게 하여 플러딩 현상이 발생되는 것을 최소화함으로써, 연료전지의 성능을 향상시켰다.
이하 실시예를 통하여 본 발명에 대하여 보다 상세하게 설명한다.
[실시예]
중량%(wt%)로, C: 0.02% 이하, N: 0.02% 이하, Si: 0.4% 이하, Mn: 0.2% 이하, P: 0.04% 이하, S: 0.02% 이하, Cr: 25.0~32.0%, Cu: 0~2.0%, Ni: 0.8% 이하, Ti: 0.5% 이하, Nb: 0.5% 이하이고, 잔부 Fe 및 불가피한 불순물로로 이루어진 스테인리스 강판을 수소(75vol%) 및 질소(25vol%)가 함유된 환원성 분위기에서 광휘소둔 열처리를 실시한 0.1㎜ 두께의 냉연박판을 각각의 황산 용액 내에서 전해산세처리 후, 질산 및 불산이 포함된 혼산 용액에서 침지공정을 실시한 다음 성형을 실시하였다.
하기 표 1 및 표 2는 30 wt% Cr을 함유하는 페라이트계 스테인리스 강판에 대하여 본 발명의 일 실시예에 따른 개질 단계의 조건별 소재에 대한 접촉저항, 접촉각, 피막 내 (Si+Al)/(Cr+Fe)의 원자비, 피막 내 (Cr/Fe)의 원자비를 나타낸 표이다.
인가전류(A/dm2) 질산용액농도(g/l) 황산용액 온도(℃) 전해조 온도(초) 전해시간(초) 혼산(질산+불산)용액 농도 혼산침지조온도(℃) 침지시간(초)
질산(g/l) 불산(g/l)
발명예 1 8 - 70 70 30 100 10 40 60
발명예 2 11 - 90 50 400 150 50 45 600
발명예 3 15 - 120 45 55 200 70 50 244
발명예 4 20 - 115 40 250 200 30 60 344
발명예 5 9 - 210 80 600 120 40 55 150
발명예 6 10 - 150 50 45 150 50 50 240
발명예 7 11 - 60 60 60 100 15 50 200
발명예 8 12 - 80 60 50 125 20 45 150
비교예 1 - - - - - - - - -
비교예 2 - - - - - 120 15 50 200
비교예 3 10 - 70 75 300 - - - -
비교예 4 2 - 60 50 60 150 20 50 300
비교예 5 15 - 25 60 60 150 20 50 300
비교예 6 12 - 80 60 20 125 20 45 150
비교예 7 20 - 115 35 250 200 30 60 344
비교예 8 20 - 115 60 250 50 10 60 344
비교예 9 9 - 210 80 600 120 3 55 150
비교예 10 11 - 60 60 60 100 15 35 200
비교예 11 10 - 150 50 45 150 50 50 50
비교예 12 15 30 - 40 50 - - - -
비교예 13 8 30 - 40 60 - - - -
비교예 14 10 40 - 60 60 200 30 45 150
비교예 15 10 40 - 60 60 50 10 60 344
접촉저항(@140N/㎠) 접촉각(°) 피막 내(Si+Al)/(Cr+Fe)at.(%)비 피막 내(Cr/Fe) at.(%)비 표면조도(Ra), ㎛
발명예 1 5.2 32 0 3.8 0.12
발명예 2 4.2 45 0 3.9 0.1
발명예 3 4.5 33 0.01 4.1 0.09
발명예 4 5.1 36 0.05 3.8 0.08
발명예 5 3.9 47 0 3.2 0.11
발명예 6 4 59 0.01 3.3 0.05
발명예 7 3.5 30 0.01 3.8 0.15
발명예 8 5.4 29 0.2 4 0.08
비교예 1 120 88 2.7 0.9 0.04
비교예 2 67 85 1.7 1 0.04
비교예 3 31 70 1.5 1.2 0.05
비교예 4 15 79 1.9 2.1 0.08
비교예 5 18 77 1.5 1.5 0.18
비교예 6 20 72 1.9 1.8 0.2
비교예 7 18 61 1.8 2 0.3
비교예 8 25 65 2.1 1.2 0.09
비교예 9 18 72 1.3 1.3 0.1
비교예 10 30 59 1.7 2 0.17
비교예 11 27 61 2.7 2 0.16
비교예 12 58 0.12 4.5 1.8 0.04
비교예 13 25 -0.01 4 1.5 0.04
비교예 14 15 0.15 3.8 1.2 0.04
비교예 15 13 0.2 4 1.5 0.04
이때, 접촉저항 평가는 제조된 0.1㎜ 두께의 소재를 25㎠ 면적으로 절단하여 2매를 준비 후, 그 사이에 가스 확산층으로 사용되는 25㎠ 면적의 카본페이퍼(SGL-10BA)를 사이에 배치하여, 접촉압력 140N/㎠에서 계면 접촉저항을 4회씩 평가하였다.
한편, 접촉각 평가는 제조된 0.1mm 두께의 스테인리스 강판을 20㎠ 면적으로 절단하여 KRUSS GmbH사 DSK 10-MK2 장비를 사용하여 5㎕ 증류수를 상온에서 표면에 물방울 형태로 떨어뜨려 표면과의 접촉각을 측정하였다.
또한, 부동태 피막두께, 피막내 (Si+Al)/(Cr+Fe) 원자비, 피막 내(Cr/Fe)의 원자비의 측정은 제조된 0.1㎜ 두께의 강판소재를 XPS(x-ray photoelectron spectroscopy)를 이용하여 측정하였다.
도 1의 발명예들 및 비교예들에 나타난 바와 같이, 제1 피막개질 과정시 인가전류는 최대 양극 기준으로 8.0 A/d㎡ 이상, 황산 용액의 농도는 50~150g/ℓ 이며, 황산 용액의 온도는 40~80℃이고, 전해 산세시간 0.5분~10분에서 이루어진 후, 40~60℃의 온도를 갖는 질산(100~200g/ℓ)과 불산(10~70g/ℓ)이 혼합된 혼산 용액에 1~10분간 침지시켜 제2 피막개질 과정을 실시하는 경우, 접촉저항이 10mΩ㎠ 이하로 낮게 확보할 수 있음을 알 수 있었다.
본 발명에 실시예에 따라 개질된 스테인리스 강판은 부동태 피막 내 절연성 물질인 (Si+Al)/(Cr+Fe)의 원자비를 1 이하로 감소시키면서, (Cr/Fe)의 원자비를 3이상으로 향상시켜 접촉저항을 추가로 개선할 수 있으며, 표면조도(Ra)를 0.05~0.15㎛으로 개질시켜, 접촉각이 60°이하가 되도록 함으로써, 스테인리스 강판의 친수 특성을 확보하여 물배출 특성이 향상됨을 알 수 있다.
본 발명의 실시예에 따른 개질 단계의 조건에 대하여 실시예 및 비교예를 통하여 한정이유를 설명하기로 한다.
비교예 1은 Z-mill 냉간압연기를 이용하여 냉간압연 후 수소(75vol.%) 및 질소(25 vol.%)가 함유된 환화성 분위기에서서 광휘소둔 열처리한 0.1mm 두께의 스테인리스 강판을 표면개질 공정을 거치지 않은 소재에 대한 결과로 피막 내 절연성 SiO2+Al2O3함량이 잔류하여 접촉저항이 높고, 친수특성에 효과적이지 못함을 알 수 있다.
비교예 2는 광휘소둔 열처리한 0.1㎜ 두께의 냉연박판을 황산 전해를 하지 않고 혼산 침지 공정을 하였을 경우로, 부동태 피막 내 절연성 SiO2+Al2O3 함량을 낮출 수 없어 접촉저항이 높고, Cr/Fe의 원자비가 낮아 내식성 향상을 기대할 수 없으며, 접촉각이 85°로 친수특성이 저하됨을 알 수 있다.
비교예 3는 광휘소둔 열처리한 0.1㎜ 두께의 냉연박판을 황산 전해를 실시한 후 혼산 용액에 침지하지 않을 경우로, 부동태 피막 내 절연성 SiO2+Al2O3 함량을 낮출 수 없어 접촉저항이 높고, Cr/Fe의 원자비가 낮아 내식성 향상을 기대할 수 없으며, 접촉각이 70°로 비교에 2에 비해 친수특성이 소폭 상승하나 본 발명에서 요구되는 친수특성을 확보할 수 없음을 알 수 있다.
한편, 비교예 4~11은 광휘소둔 열처리한 0.1mm 두께의 극박 냉연 소둔재를 황산전해 및 혼산 침지 공정에 따른 접촉저항 및 접촉각을 평가한 결과이다.
비교예 4~11의 경우, 광휘소둔 열처리한 0.1㎜ 두께의 냉연박판을 황산 전해를 실시한 후 혼산 용액에 침지시킨 경우로서, 황산 전해 및 혼산 용액에 침지시켜 부동태 피막을 개질키더라도 본 실시예에 따른 개질 단계의 조건범위를 벗어나는 경우, 부동태 피막 내 절연성 SiO2+Al2O3 함량을 낮출 수 없어 접촉저항이 높고, Cr/Fe의 원자비가 낮아 내식성 향상을 기대할 수 없으며, 접촉각 역시 60°를 초과하여 본 발명에서 요구되는 친수특성을 확보할 수 없음을 알 수 있다.
한편, 비교예 12, 13은 광휘소둔 열처리한 0.1㎜ 두께의 냉연박판을 질산 용액을 이용하여 전해 산세를 실시한 후 혼산 용액에 침지하지 않을 경우이며, 비교예 14, 15는 광휘소둔 열처리한 0.1㎜ 두께의 냉연박판을 질산 용액을 이용하여 전해 산세를 실시한 후 혼산 용액에 침지 시 각각의 조건에 따른 특성평가를 나타내었다.
비교예 12 내지 비교예 15 모두 부동태 피막 내 절연성 SiO2+Al2O3 함량을 낮출 수 없어 접촉저항이 높고, Cr/Fe의 원자비가 낮아 내식성 향상을 기대할 수 없으며, 접촉각 역시 60°초과하여 본 발명에서 요구되는 친수특성을 만족하지 못함을 알 수 있다.
따라서, 본 발명의 일 실시예에 따른 제1 피막개질 과정은 상기 황산 용액의 농도는 50~150g/ℓ이고 온도는 30~60℃이며, 인가전류는 최대 양극 기준으로 8.0 A/d㎡ 이상으로 0.5~10분간 전해 산세를 실시하는 것이 바람직함을 알 수 있다.
도 1에 나타난 바와 같이, 절연성 SiO2+Al2O3 함량이 높고, 피막의 Cr/Fe 원자비가 낮으며, 표면조도가 너무 작거나 높지 않을 때, 접촉저항 및 친수성을 동시에 확보할 수 있음을 알 수 있었다.
이들 실시예로부터 제1 피막개질 과정시 인가전류 조건은 접촉저항 및 표면 친수화 처리 관점에서 8A/d㎡이상이 바람직하다.
황산 용액의 온도가 낮을 경우 Strip 이송속도를 높일 수 없어 생산성을 저해되기 때문에 40℃이상이 되어야 하며, 온도가 높아질 경우 두께제어가 어렵고 표면에 과도한 침식에 의한 친수성 및 내식성에 기여가 어려워 80℃이하로 설정한다.
또한, 제1 개질 단계에서 전해시간이 짧을 경우, Cr/Fe의 원자비가 낮아, 부식전위 및 친수성에 기여가 어려워 0.5분 이상이어야 하며, 전해시간이 길어질 경우 소재 표면에 과도한 침식에 의한 친수성 및 내식성에 기여가 어려워 10분 이하로 제한하는 것이 바람직하다.
또한, 제2 피막개질 과정에서, 질산 및 불산의 농도가 너무 낮거나 혼산 용액의 온도 저하/시간이 짧은 경우에는 절연성 SiO2+Al2O3 함량을 낮출 수 없고, Cr/Fe의 원자비가 낮아 접촉저항 및 친수특성 확보에 기여할 수 없으므로 질산 농도는 100g/ℓ 이상, 불산 농도는 10g/ℓ 이상, 혼산 용액의 온도는 40℃이상, 침지 시간은 60이상으로 제한한다.
한편, 질산 및 불산의 농도가 너무 높거나 침지조 온도가 높거나, 침지 시간이 긴 경우에는 소재표면의 과도한 침식에 의한 내식성 저하 및 친수특성의 균일성 확보가 어려워 질산 농도는 200g/ℓ 이하, 불산 농도는 70g/ℓ 이하, 혼산 용액의 온도는 60℃이하, 침지 시간은 600초 이하로 제한하는 것이 바람직함을 알 수 있다.
상기와 같이 제조되는 본 발명의 일 실시예에 따른, 고분자 연료전지 분리판용 스테인리스강을 포함하는 고분자 연료전지 분리판(10)은 반응가스 및 냉각수의 기밀확보를 위하여 예를 들어, 불소계 고무 등 적절한 재질을 사용하여 형성된 가스켓을 더 포함할 수 있다.
이때, 가스켓 형성과정 또는 가교 공정에서 150~250℃의 열 환경에 노출되더라도 접촉저항 및 친수 특성이 변화되지 않는 것이 바람직하다.
본 발명을 첨부 도면과 전술된 바람직한 실시예를 참조하여 설명하였으나, 본 발명은 그에 한정되지 않으며, 후술되는 특허청구범위에 의해 한정된다. 따라서, 본 기술분야의 통상의 지식을 가진 자라면 후술되는 특허청구범위의 기술적 사상에서 벗어나지 않는 범위 내에서 본 발명을 다양하게 변형 및 수정할 수 있다.
본 발명의 실시예들에 따른 스테인리스강 및 제조 방법은 고분자 연료전지용 분리판 및 분리판의 제조 방법에 적용 가능하다.

Claims (9)

  1. 스테인리스 강판을 광휘소둔하여 표면에 부동태 피막을 형성시키는 열처리 단계; 및
    상기 스테인리스 강판의 표면 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이고, 물과의 접촉각이 60°이하가 되도록, 상기 부동태 피막을 개질시키는 개질 단계;를 포함하는 고분자 연료전지 분리판용 스테인리스강의 제조 방법.
  2. 청구항 1에 있어서,
    상기 스테인리스 강판은,
    중량%(wt%)로, C: 0.02% 이하, N: 0.02% 이하, Si: 0.4% 이하, Mn: 0.2% 이하, P: 0.04% 이하, S: 0.02% 이하, Cr: 25.0~32.0%, Cu: 0~2.0%, Ni: 0.8% 이하, Ti: 0.5% 이하, Nb: 0.5% 이하이고, 잔부 Fe 및 불가피한 불순물을 포함하는 것을 특징으로 하는 고분자 연료전지 분리판용 스테인리스강의 제조 방법.
  3. 청구항 1에 있어서,
    상기 개질 단계는,
    상기 부동태 피막을 황산 용액으로 전해 산세하여 1차 개질시키는 제1 피막개질 과정; 및
    1차 개질된 상기 부동태 피막을 질산과 불산이 혼합된 혼산 용액에 침지시켜 2차 개질시키는 제2 피막개질 과정;를 포함하는 것을 특징으로 하는 고분자 연료전지 분리판용 스테인리스강의 제조 방법.
  4. 청구항 3에 있어서,
    상기 제1 피막개질 단계에서,
    상기 황산 용액의 농도는 50~150g/ℓ이고 온도는 30~60℃이며, 인가전류는 최대 양극 기준으로 8.0 A/d㎡ 이상으로 0.5~10분간 전해 산세를 실시하는 것을 특징으로 하는 고분자 연료전지 분리판용 스테인리스강의 제조 방법.
  5. 청구항 3에 있어서,
    상기 혼산 용액 중 질산의 농도는 100~200g/ℓ이고, 불산의 농도는 10~70g/ℓ이며, 상기 제2 피막개질 단계는, 40~60℃의 온도에서 1~10분간 침지시키는 것을 특징으로 하는, 고분자 연료전지 분리판용 스테인리스강의 제조 방법.
  6. 청구항 3에 있어서,
    상기 혼산 용액 중 질산의 농도는 100~200g/ℓ이고, 불산의 농도는 10~70g/ℓ이며, 상기 제2 피막개질 단계는, 40~60℃의 온도에서 1~10분간 침지시키는 것을 특징으로 하는, 고분자 연료전지 분리판용 스테인리스강의 제조 방법.
  7. 모재 및 상기 모재의 표면에 형성된 부동태 피막을 포함하는 고분자 연료전지 분리판용 스테인리스강에 있어서,
    상기 스테인리스강의 표면 접촉저항이 10 mΩ㎠(140 N/㎠) 이하이며 물과의 접촉각이 60° 이하로 친수특성을 갖는 고분자 연료전지 분리판용 스테인리스강.
  8. 청구항 7에 있어서, 상기 스테인리스강판은, 중량%(wt%)로, C: 0.02% 이하, N: 0.02% 이하, Si: 0.4% 이하, Mn: 0.2% 이하, P: 0.04% 이하, S: 0.02% 이하, Cr: 25.0~32.0%, Cu: 0~2.0%, Ni: 0.8% 이하, Ti: 0.5% 이하, Nb: 0.5% 이하(0제외)이고, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 고분자 연료전지 분리판용 스테인리스강.
  9. 청구항 7에 있어서, 상기 부동태 피막은, 하기의 식 (1), (2)를 만족하는 것을 특징으로 하는, 고분자 연료전지 분리판용 스테인리스강.
    (Si+Al)/(Cr+Fe) ≤ 1.0 ----------------------------(1)
    Cr/Fe ≥ 3.0 --------------------------------------(2)
    상기 식 (1), (2)에서 Si, Al, Cr 및 Fe는 각 원소의 원자량(at%)을 의미함.
PCT/KR2015/014071 2014-12-26 2015-12-22 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법 WO2016105070A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140190496A KR20160082632A (ko) 2014-12-26 2014-12-26 고분자 연료전지용 분리판 및 그 제조방법
KR10-2014-0190496 2014-12-26

Publications (1)

Publication Number Publication Date
WO2016105070A1 true WO2016105070A1 (ko) 2016-06-30

Family

ID=56151014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014071 WO2016105070A1 (ko) 2014-12-26 2015-12-22 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR20160082632A (ko)
WO (1) WO2016105070A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3576199A4 (en) * 2017-04-25 2020-04-08 JFE Steel Corporation STAINLESS STEEL SHEET FOR FUEL CELL SEPARATOR AND METHOD FOR THE PRODUCTION THEREOF
JP2021529256A (ja) * 2018-06-20 2021-10-28 ポスコPosco 接触抵抗に優れている高分子燃料電池分離板用ステンレス鋼の製造方法
CN114730892A (zh) * 2019-11-11 2022-07-08 株式会社Posco 用于制造聚合物燃料电池隔离件用不锈钢的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020500B1 (ko) * 2018-09-17 2019-09-10 주식회사 포스코 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강의 제조방법
CN113348273A (zh) * 2019-01-21 2021-09-03 杰富意钢铁株式会社 燃料电池的隔离件用的奥氏体系不锈钢板及其制造方法
KR102102608B1 (ko) * 2019-12-20 2020-04-22 현대비앤지스틸 주식회사 고분자 연료전지 분리판용 스테인리스강 제조 방법
KR102497442B1 (ko) * 2020-11-25 2023-02-08 주식회사 포스코 접촉저항이 향상된 고분자 연료전지 분리판용 오스테나이트계 스테인리스강 및 그 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068964A (ko) * 2001-02-22 2002-08-28 가와사끼 세이데쓰 가부시키가이샤 연료 전지용 세퍼레이터와 그 제조방법 및 고체 고분자형연료 전지
JP2006219749A (ja) * 2005-02-14 2006-08-24 Toyota Auto Body Co Ltd ステンレス鋼薄板の表面処理方法および同表面処理方法によって表面処理される燃料電池用メタルセパレータ
KR100993412B1 (ko) * 2008-12-29 2010-11-09 주식회사 포스코 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
KR101172163B1 (ko) * 2010-06-24 2012-08-07 현대하이스코 주식회사 연료전지용 분리판 및 그 제조 방법
KR101410479B1 (ko) * 2012-12-28 2014-06-27 (주)퓨얼셀 파워 고분자 연료전지용 분리판 및 그 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101395419B1 (ko) 2012-06-05 2014-05-15 현대하이스코 주식회사 반응면에서의 습기 제거력이 우수한 연료전지용 분리판 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020068964A (ko) * 2001-02-22 2002-08-28 가와사끼 세이데쓰 가부시키가이샤 연료 전지용 세퍼레이터와 그 제조방법 및 고체 고분자형연료 전지
JP2006219749A (ja) * 2005-02-14 2006-08-24 Toyota Auto Body Co Ltd ステンレス鋼薄板の表面処理方法および同表面処理方法によって表面処理される燃料電池用メタルセパレータ
KR100993412B1 (ko) * 2008-12-29 2010-11-09 주식회사 포스코 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
KR101172163B1 (ko) * 2010-06-24 2012-08-07 현대하이스코 주식회사 연료전지용 분리판 및 그 제조 방법
KR101410479B1 (ko) * 2012-12-28 2014-06-27 (주)퓨얼셀 파워 고분자 연료전지용 분리판 및 그 제조방법

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3576199A4 (en) * 2017-04-25 2020-04-08 JFE Steel Corporation STAINLESS STEEL SHEET FOR FUEL CELL SEPARATOR AND METHOD FOR THE PRODUCTION THEREOF
US11085120B2 (en) 2017-04-25 2021-08-10 Jfe Steel Corporation Stainless steel sheet for fuel cell separators and production method therefor
JP2021529256A (ja) * 2018-06-20 2021-10-28 ポスコPosco 接触抵抗に優れている高分子燃料電池分離板用ステンレス鋼の製造方法
JP7133652B2 (ja) 2018-06-20 2022-09-08 ポスコ 接触抵抗に優れている高分子燃料電池分離板用ステンレス鋼の製造方法
CN114730892A (zh) * 2019-11-11 2022-07-08 株式会社Posco 用于制造聚合物燃料电池隔离件用不锈钢的方法
CN114730892B (zh) * 2019-11-11 2024-06-18 株式会社Posco 用于制造聚合物燃料电池隔离件用不锈钢的方法

Also Published As

Publication number Publication date
KR20160082632A (ko) 2016-07-08

Similar Documents

Publication Publication Date Title
WO2016105070A1 (ko) 고분자 연료전지 분리판용 스테인리스강 및 그 제조 방법
WO2017105142A1 (ko) 친수성 및 내식성이 향상된 고분자 연료전지 분리판용 스테인리스강 및 이의 제조 방법
WO2017052047A1 (ko) 연료전지 분리판용 스테인리스강 및 이의 제조 방법
WO2010077065A2 (ko) 고분자 연료전지 분리판용 스테인리스강 및 그 제조방법
KR101588093B1 (ko) 연료전지용 오스테나이트계 스테인리스강 및 그 제조방법
KR102020500B1 (ko) 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강의 제조방법
WO2013100600A1 (ko) 표면품질 및 성형성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2018117469A1 (ko) 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강 및 이의 제조 방법
WO2019074215A1 (ko) 전기전도성이 우수한 오스테나이트계 스테인리스강 및 그 제조방법
WO2021241812A1 (ko) 연료전지 분리판용 스테인리스강
JP6648273B2 (ja) 親水性および接触抵抗が向上した高分子燃料電池の分離板用ステンレス鋼およびその製造方法
WO2019245076A1 (ko) 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강의 제조 방법
WO2016104983A1 (ko) 고분자 연료전지 분리판용 스테인리스 박판 및 그 제조방법
KR20180073157A (ko) 접촉저항이 우수한 고분자 연료전지 분리판용 스테인리스강의 제조 방법
WO2023121132A1 (ko) 연료전지 분리판용 스테인리스강 및 그 제조 방법
WO2021095997A1 (ko) 고분자 연료전지 분리판용 스테인리스강의 제조방법
KR101410944B1 (ko) 고분자 연료전지 분리판용 스테인리스강의 제조방법
WO2021125436A1 (ko) 내식성이 우수한 고분자 연료전지 분리판용 스테인리스강
WO2022114671A1 (ko) 표면 친수성 및 전기전도성이 우수한 연료전지 분리판용 스테인리스강 및 그 제조방법
WO2020251103A1 (ko) 전기전도성이 우수한 오스테나이트계 스테인리스강 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873597

Country of ref document: EP

Kind code of ref document: A1